1
|
Florio M, Crudele L, Sallustio F, Moschetta A, Cariello M, Gadaleta RM. Disentangling the nutrition-microbiota liaison in inflammatory bowel disease. Mol Aspects Med 2025; 102:101349. [PMID: 39922085 DOI: 10.1016/j.mam.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
Inflammatory Bowel Disease (IBD) is a set of chronic intestinal inflammatory disorders affecting the gastrointestinal (GI) tract. Beside compromised intestinal barrier function and immune hyperactivation, a common IBD feature is dysbiosis, characterized by a reduction of some strains of Firmicutes, Bacteroidetes, Actinobacteria and an increase in Proteobacteria and pathobionts. Emerging evidence points to diet and nutrition-dependent gut microbiota (GM) modulation, as etiopathogenetic factors and adjuvant therapies in IBD. Currently, no nutritional regimen shows universal efficacy, and advice are controversial, especially those involving restrictive diets potentially resulting in malnutrition. This review provides an overview of the role of macronutrients, dietary protocols and GM modulation in IBD patients. A Western-like diet contributes to an aberrant mucosal immune response to commensal bacteria and impairment of the intestinal barrier integrity, thereby triggering intestinal inflammation. Conversely, a Mediterranean nutritional pattern appears to be one of the most beneficial dietetic regimens able to restore the host intestinal physiology, by promoting eubiosis and preserving the intestinal barrier and immune function, which in turn create a virtuous cycle improving patient adherence to the pattern. Further clinical studies are warranted, to corroborate current IBD nutritional guidelines, and develop more accurate models to move forward precision nutrition and ameliorate patients' quality of life.
Collapse
Affiliation(s)
- Marilina Florio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| | - Raffaella M Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie D'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
2
|
El-Shafie S, Metwaly A. Diet-specific impacts on the gut microbiome and their relation to health and inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:77-124. [DOI: 10.1016/b978-0-443-18979-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Ruiz-Perez D, Gimon I, Sazal M, Mathee K, Narasimhan G. Unfolding and de-confounding: biologically meaningful causal inference from longitudinal multi-omic networks using METALICA. mSystems 2024; 9:e0130323. [PMID: 39240096 PMCID: PMC11494969 DOI: 10.1128/msystems.01303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/10/2024] [Indexed: 09/07/2024] Open
Abstract
A key challenge in the analysis of microbiome data is the integration of multi-omic datasets and the discovery of interactions between microbial taxa, their expressed genes, and the metabolites they consume and/or produce. In an effort to improve the state of the art in inferring biologically meaningful multi-omic interactions, we sought to address some of the most fundamental issues in causal inference from longitudinal multi-omics microbiome data sets. We developed METALICA, a suite of tools and techniques that can infer interactions between microbiome entities. METALICA introduces novel unrolling and de-confounding techniques used to uncover multi-omic entities that are believed to act as confounders for some of the relationships that may be inferred using standard causal inferencing tools. The results lend support to predictions about biological models and processes by which microbial taxa interact with each other in a microbiome. The unrolling process helps identify putative intermediaries (genes and/or metabolites) to explain the interactions between microbes; the de-confounding process identifies putative common causes that may lead to spurious relationships to be inferred. METALICA was applied to the networks inferred by existing causal discovery, and network inference algorithms were applied to a multi-omics data set resulting from a longitudinal study of IBD microbiomes. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases. IMPORTANCE We have developed a suite of tools and techniques capable of inferring interactions between microbiome entities. METALICA introduces novel techniques called unrolling and de-confounding that are employed to uncover multi-omic entities considered to be confounders for some of the relationships that may be inferred using standard causal inferencing tools. To evaluate our method, we conducted tests on the inflammatory bowel disease (IBD) dataset from the iHMP longitudinal study, which we pre-processed in accordance with our previous work. From this dataset, we generated various subsets, encompassing different combinations of metagenomics, metabolomics, and metatranscriptomics datasets. Using these multi-omics datasets, we demonstrate how the unrolling process aids in the identification of putative intermediaries (genes and/or metabolites) to explain the interactions between microbes. Additionally, the de-confounding process identifies potential common causes that may give rise to spurious relationships to be inferred. The most significant unrollings and de-confoundings were manually validated using the existing literature and databases.
Collapse
Affiliation(s)
- Daniel Ruiz-Perez
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Isabella Gimon
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Musfiqur Sazal
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
| | - Kalai Mathee
- Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Geesala R, Gongloor P, Recharla N, Shi XZ. Mechanisms of Action of Exclusive Enteral Nutrition and Other Nutritional Therapies in Crohn's Disease. Nutrients 2024; 16:3581. [PMID: 39519414 PMCID: PMC11547457 DOI: 10.3390/nu16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Crohn's disease (CD) is an inflammatory bowel disease (IBD) characterized by transmural inflammation and intestinal fibrosis involving mostly the small intestine and colon. The pathogenic mechanisms of CD remain incompletely understood and cures are unavailable. Current medical therapies are aimed at inducing prolonged remission. Most of the medical therapies such as corticosteroids have substantial adverse effects. Consequently, many dietary therapies have been explored for the management of CD. Up to now, exclusive enteral nutrition (EEN) has been considered the only established dietary treatment for IBD, especially CD. In this article, we aim to give a concise review about the current therapeutic options and challenges in the management of CD and aim to compare the efficacy of EEN with other dietary therapies and update on the possible mechanisms of the benefits of EEN and other nutritional therapies. METHODS We searched the literature up to August 2024 through PubMed, Web of Science, and other sources using search terms such as EEN, nutritional therapy, IBD, Crohn's disease, ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic benefits. RESULTS AND CONCLUSIONS EEN involves oral or nasogastric tube feeding of a complete liquid diet with exclusion of normal foods for a defined period (usually 6 to 8 weeks). EEN treatment is demonstrated to have anti-inflammatory and healing effects in CD through various potential pathways, including altering gut bacteria and their metabolites, restoring the barrier function, direct anti-inflammatory action, and indirect anti-inflammatory action by eliminating mechanical stress in the bowel. However, efficacy of other nutritional therapies is not well established in CD, and mechanisms of action are largely unknown.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Pratik Gongloor
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Neeraja Recharla
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| |
Collapse
|
5
|
Incekoy Girgian F, Ozturk MN. Risk factors and cost of nosocomial infections in pediatric patients with traumatic brain injury. North Clin Istanb 2023; 10:761-768. [PMID: 38328718 PMCID: PMC10846576 DOI: 10.14744/nci.2023.26037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 04/24/2023] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE This study aimed to determine the factors that increase nosocomial infections (NIs) in pediatric patients with traumatic brain injury (TBI) and the effects on both treatment cost and length of hospital stay. METHODS We performed a case-control study on patients admitted to the pediatric intensive care unit (PICU) with (n=66) or without (n=120) TBI between 2012 and 2014. The risk factors, length of stay, and costs of NIs were determined. RESULTS Data for 186 patients were analyzed. One hundred and twenty patients were controls (54 males vs. 66 females), while 66 were cases (27 males vs. 39 females). Seventeen out of the 186 PICU patients had NIs. About 7.6% of TBI patients had infections whereas 10% of control groups had NIs (p=0.58). The most isolated microbial agent was Acinetobacterbaumannii (four cases). Thirteen (76.5%) out of the 17 infections were catheter-related bloodstream infections. The mean expenses per PICU patient were $762, with an additional cost of $2081 for patients with nosocomial contamination. CONCLUSION The use of catheters was the most critical risk factor for NIs in our study probably underestimated the cost for several reasons. Nevertheless, the findings supported our hypothesis about the additional burden of nosocomial spread on PICU patients. This study's results should help provide evidence on cost-effectiveness or calculate the cost-benefit ratio of reducing NIs in children.
Collapse
Affiliation(s)
- Feyza Incekoy Girgian
- Correspondence: FeyzaI NCEKOYGIRGIN, MD. Marmara Universitesi Tip Fakultesi, Cocuk Yogun Bakim Anabilim Dali, Istanbul, Turkiye. Tel: +90 216 625 45 45 - 7512 e-mail:
| | | |
Collapse
|
6
|
Upadhyay KG, Desai DC, Ashavaid TF, Dherai AJ. Microbiome and metabolome in inflammatory bowel disease. J Gastroenterol Hepatol 2023; 38:34-43. [PMID: 36287112 DOI: 10.1111/jgh.16043] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 01/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease of unknown etiology, involving complex interactions between the gut microbiome and host immune response. The microbial dysbiosis is well documented in IBD and significantly influences the host metabolic pathways. Thus, a metabolomic fingerprint resulting from the influence of gut dysbiosis in IBD could aid in assessing the disease activity. PubMed, Medline, Science Direct, and Web of Science were searched for studies exploring the association between microbiome and metabolome in IBD patients in the last 5 years. Additionally, references of cited original articles and reviews were further assessed for relevant work. We provide a literature overview of the recent metabolomic studies performed on patients with IBD. The findings report alterations in the metabolite levels of these patients. We also discuss the gut dysbiosis observed in IBD and its influence on host metabolic pathways such as lipids, amino acids, short-chain fatty acids, and others. IBD, being a chronic idiopathic disease, requires routine monitoring. The available non-invasive markers have their limitations. The metabolite changes account for both dysbiosis and its influence on the host's immune response and metabolism. A metabolome approach would thus facilitate the identification of surrogate metabolite markers reflecting the disease activity.
Collapse
Affiliation(s)
- Khushboo G Upadhyay
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Devendra C Desai
- Department of Gastroenterology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| | - Alpa J Dherai
- Department of Laboratory Medicine, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
7
|
Insights into the Biocompatibility and Biological Potential of a Chitosan Nanoencapsulated Textile Dye. Int J Mol Sci 2022; 23:ijms232214234. [PMID: 36430710 PMCID: PMC9693863 DOI: 10.3390/ijms232214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Traditionally synthetic textile dyes are hazardous and toxic compounds devoid of any biological activity. As nanoencapsulation of yellow everzol textile dye with chitosan has been shown to produce biocompatible nanoparticles which were still capable of dyeing textiles, this work aims to further characterize the biocompatibility of yellow everzol nanoparticles (NPs) and to ascertain if the produced nanoencapsulated dyes possess any biological activity against various skin pathogens in vitro assays and in a cell infection model. The results showed that the NPs had no deleterious effects on the HaCat cells' metabolism and cell wall, contrary to the high toxicity of the dye. The biological activity evaluation showed that NPs had a significant antimicrobial activity, with low MICs (0.5-2 mg/mL) and MBCs (1-3 mg/mL) being registered. Additionally, NPs inhibited biofilm formation of all tested microorganisms (inhibitions between 30 and 87%) and biofilm quorum sensing. Lastly, the dye NPs were effective in managing MRSA infection of HaCat cells as they significantly reduced intracellular and extracellular bacterial counts.
Collapse
|
8
|
Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients 2022; 14:nu14194117. [PMID: 36235770 PMCID: PMC9572914 DOI: 10.3390/nu14194117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a chronic relapsing–remitting condition affecting the gastrointestinal system. The specific triggering IBD elements remain unknown: genetic variability, environmental factors, and alterations in the host immune system seem to be involved. An unbalanced diet and subsequent gut dysbiosis are risk factors, too. This review focuses on the description of the impact of pro- and anti-inflammatory food components on IBD, the role of different selected regimes (such as Crohn’s Disease Exclusion Diet, Immunoglobulin Exclusion Diet, Specific Carbohydrate Diet, LOFFLEX Diet, Low FODMAPs Diet, Mediterranean Diet) in the IBD management, and their effects on the gut microbiota (GM) composition and balance. The purpose is to investigate the potential positive action on IBD inflammation, which is associated with the exclusion or addition of certain foods or nutrients, to more consciously customize the nutritional intervention, taking also into account GM fluctuations during both disease flare-up and remission.
Collapse
|
9
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
10
|
Shi G, Lin Y, Wu Y, Zhou J, Cao L, Chen J, Li Y, Tan N, Zhong S. Bacteroides fragilis Supplementation Deteriorated Metabolic Dysfunction, Inflammation, and Aorta Atherosclerosis by Inducing Gut Microbiota Dysbiosis in Animal Model. Nutrients 2022; 14:nu14112199. [PMID: 35684000 PMCID: PMC9183096 DOI: 10.3390/nu14112199] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. Methods and results: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. Conclusions: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Guoxiang Shi
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Hypertension Research Institute, Nanchang 335100, China
| | - Yubi Lin
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Jing Zhou
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Lixiang Cao
- School of Medicine, Sun Yat-sen University, Guangzhou 510317, China;
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510317, China
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Shilong Zhong
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| |
Collapse
|
11
|
Danailova Y, Velikova T, Nikolaev G, Mitova Z, Shinkov A, Gagov H, Konakchieva R. Nutritional Management of Thyroiditis of Hashimoto. Int J Mol Sci 2022; 23:ijms23095144. [PMID: 35563541 PMCID: PMC9101513 DOI: 10.3390/ijms23095144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
Since the thyroid gland is one of the organs most affected by autoimmune processes, many patients with thyroiditis of Hashimoto (TH) seek medical advice on lifestyle variance and dietary modifications to improve and maintain their hyroid function. In this review, we aim to present and discuss some challenges associated with the nutritional management of TH, focusing on environmental and dietary deficits, inflammatory and toxic nutrients, cyanotoxins, etc. We discuss the relationships among different diets, chronic inflammation, and microbiota, and their impact on the development and exacerbation of TH in detail. We share some novel insights into the role of vitamin D and melatonin for preserving thyroid function during chronic inflammation in autoimmune predisposed subjects. A comprehensive overview is provided on anti-inflammatory nutrients and ecological diets, including foods for cleansing and detoxification, which represent strategies to prevent relapses and achieve overall improvement of life quality. In conclusion, data from biomedical and clinical studies provide evidence that an appropriate dietary and lighting regimen could significantly improve the function of the thyroid gland and reduce the reactivity of autoantibodies in TH. Compliance with nutritional guidelines may help TH patients to reduce the need for medicines.
Collapse
Affiliation(s)
- Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.D.); (H.G.)
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetsz, Sofia University St. Kliement Ohridski, 1 “Kozyak” St., 1407 Sofia, Bulgaria
- Correspondence:
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| | - Zorka Mitova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Blvd. 25, 1113 Sofia, Bulgaria;
| | - Alexander Shinkov
- Department of Endocrinology, Medical Faculty, Medical University of Sofia, 2 Zdrave St., 1431 Sofia, Bulgaria;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (Y.D.); (H.G.)
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (G.N.); (R.K.)
| |
Collapse
|
12
|
Bakir-Gungor B, Hacılar H, Jabeer A, Nalbantoglu OU, Aran O, Yousef M. Inflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methods. PeerJ 2022; 10:e13205. [PMID: 35497193 PMCID: PMC9048649 DOI: 10.7717/peerj.13205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
The tremendous boost in next generation sequencing and in the "omics" technologies makes it possible to characterize the human gut microbiome-the collective genomes of the microbial community that reside in our gastrointestinal tract. Although some of these microorganisms are considered to be essential regulators of our immune system, the alteration of the complexity and eubiotic state of microbiota might promote autoimmune and inflammatory disorders such as diabetes, rheumatoid arthritis, Inflammatory bowel diseases (IBD), obesity, and carcinogenesis. IBD, comprising Crohn's disease and ulcerative colitis, is a gut-related, multifactorial disease with an unknown etiology. IBD presents defects in the detection and control of the gut microbiota, associated with unbalanced immune reactions, genetic mutations that confer susceptibility to the disease, and complex environmental conditions such as westernized lifestyle. Although some existing studies attempt to unveil the composition and functional capacity of the gut microbiome in relation to IBD diseases, a comprehensive picture of the gut microbiome in IBD patients is far from being complete. Due to the complexity of metagenomic studies, the applications of the state-of-the-art machine learning techniques became popular to address a wide range of questions in the field of metagenomic data analysis. In this regard, using IBD associated metagenomics dataset, this study utilizes both supervised and unsupervised machine learning algorithms, (i) to generate a classification model that aids IBD diagnosis, (ii) to discover IBD-associated biomarkers, (iii) to discover subgroups of IBD patients using k-means and hierarchical clustering approaches. To deal with the high dimensionality of features, we applied robust feature selection algorithms such as Conditional Mutual Information Maximization (CMIM), Fast Correlation Based Filter (FCBF), min redundancy max relevance (mRMR), Select K Best (SKB), Information Gain (IG) and Extreme Gradient Boosting (XGBoost). In our experiments with 100-fold Monte Carlo cross-validation (MCCV), XGBoost, IG, and SKB methods showed a considerable effect in terms of minimizing the microbiota used for the diagnosis of IBD and thus reducing the cost and time. We observed that compared to Decision Tree, Support Vector Machine, Logitboost, Adaboost, and stacking ensemble classifiers, our Random Forest classifier resulted in better performance measures for the classification of IBD. Our findings revealed potential microbiome-mediated mechanisms of IBD and these findings might be useful for the development of microbiome-based diagnostics.
Collapse
Affiliation(s)
- Burcu Bakir-Gungor
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Hilal Hacılar
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Amhar Jabeer
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey
| | | | - Oya Aran
- TETAM, Bogazici University, Istanbul, Turkey
| | - Malik Yousef
- Zefat Academic College, Zefat, Israel,Galilee Digital Health Research Center, Zefat Academic College, Zefat, Israel
| |
Collapse
|
13
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
14
|
Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Hupp T, Duchnowska R, Marek-Trzonkowska N, Połom K. Next-generation probiotics - do they open new therapeutic strategies for cancer patients? Gut Microbes 2022; 14:2035659. [PMID: 35167406 PMCID: PMC8855854 DOI: 10.1080/19490976.2022.2035659] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gut microbiota and its association with cancer development/treatment has been intensively studied during the past several years. Currently, there is a growing interest toward next-generation probiotics (NGPs) as therapeutic agents that alter gut microbiota and impact on cancer development. In the present review we focus on three emerging NGPs, namely Faecalibacterium prausnitzii, Akkermansia muciniphila, and Bacteroides fragilis as their presence in the digestive tract can have an impact on cancer incidence. These NGPs enhance gastrointestinal immunity, maintain intestinal barrier integrity, produce beneficial metabolites, act against pathogens, improve immunotherapy efficacy, and reduce complications associated with chemotherapy and radiotherapy. Notably, the use of NGPs in cancer patients does not have a long history and, although their safety remains relatively undefined, recently published data has shown that they are non-toxigenic. Notwithstanding, A. muciniphila may promote colitis whereas enterotoxigenic B. fragilis stimulates chronic inflammation and participates in colorectal carcinogenesis. Nevertheless, the majority of B. fragilis strains provide a beneficial effect to the host, are non-toxigenic and considered as the best current NGP candidate. Overall, emerging studies indicate a beneficial role of these NGPs in the prevention of carcinogenesis and open new promising therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland,CONTACT Karolina Kaźmierczak-Siedlecka Department of Surgical Oncology, Medical University of Gdansk, Ul. Smoluchowskiego 18, 80-214Gdańsk, Poland
| | | | - Theodore Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science University of Gdańsk, Gdańsk, Poland,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
15
|
Ceballos D, Hernández-Camba A, Ramos L. Diet and microbiome in the beginning of the sequence of gut inflammation. World J Clin Cases 2021; 9:11122-11147. [PMID: 35071544 PMCID: PMC8717522 DOI: 10.12998/wjcc.v9.i36.11122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract due, at least partially, to an aberrant and excessive mucosal immune response to gut bacteria in genetically-predisposed individuals under certain environmental factors. The incidence of IBD is rising in western and newly industrialized countries, paralleling the increase of westernized dietary patterns, through new antigens, epithelial function and permeability, epigenetic mechanisms (e.g., DNA methylation), and alteration of the gut microbiome. Alteration in the composition and functionality of the gut microbiome (including bacteria, viruses and fungi) seems to be a nuclear pathogenic factor. The microbiome itself is dynamic, and the changes in food quality, dietary habits, living conditions and hygiene of these western societies, could interact in a complex manner as modulators of dysbiosis, thereby influencing the activation of immune cells' promoting inflammation. The microbiome produces diverse small molecules via several metabolic ways, with the fiber-derived short-chain fatty acids (i.e., butyrate) as main elements and having anti-inflammatory effects. These metabolites and some micronutrients of the diet (i.e., vitamins, folic acid, beta carotene and trace elements) are regulators of innate and adaptive intestinal immune homeostasis. An excessive and unhealthy consumption of sugar, animal fat and a low-vegetable and -fiber diet are risk factors for IBD appearance. Furthermore, metabolism of nutrients in intestinal epithelium and in gut microbiota is altered by inflammation, changing the demand for nutrients needed for homeostasis. This role of food and a reduced gut microbial diversity in causing IBD might also have a prophylactic or therapeutic role for IBD. The relationship between dietary intake, symptoms, and bowel inflammation could lead to dietary and lifestyle recommendations, including diets with abundant fruits, vegetables, olive oil and oily fish, which have anti-inflammatory effects and could prevent dysbiosis and IBD. Dietary modulation and appropriate exclusion diets might be a new complementary management for treatment at disease flares and in refractory patients, even reducing complications, hospitalizations and surgery, through modifying the luminal intestinal environment.
Collapse
Affiliation(s)
- Daniel Ceballos
- Department of Gastroenterology, Hospital Universitario de Gran Canaria Doctor Negrin, Las Palmas 35019, Canarias, Spain
| | - A Hernández-Camba
- Department of Gastroenterology, Hospital Universitario Nuestra Señora de La Candelaria, Santa Cruz de Tenerife 38010, Canarias, Spain
| | - Laura Ramos
- Department of Gastroenterology, Hospital Universitario de Canarias, San Cristóbal de La Laguna 38320, Canarias, Spain
| |
Collapse
|
16
|
Hart L, Verburgt CM, Wine E, Zachos M, Poppen A, Chavannes M, Van Limbergen J, Pai N. Nutritional Therapies and Their Influence on the Intestinal Microbiome in Pediatric Inflammatory Bowel Disease. Nutrients 2021; 14:nu14010004. [PMID: 35010879 PMCID: PMC8746384 DOI: 10.3390/nu14010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, autoimmune disorder of the gastrointestinal tract with numerous genetic and environmental risk factors. Patients with Crohn’s disease (CD) or ulcerative colitis (UC) often demonstrate marked disruptions of their gut microbiome. The intestinal microbiota is strongly influenced by diet. The association between the increasing incidence of IBD worldwide and increased consumption of a westernized diet suggests host nutrition may influence the progression or treatment of IBD via the microbiome. Several nutritional therapies have been studied for the treatment of CD and UC. While their mechanisms of action are only partially understood, existing studies do suggest that diet-driven changes in microbial composition and function underlie the diverse mechanisms of nutritional therapy. Despite existing therapies for IBD focusing heavily on immune suppression, nutrition is an important treatment option due to its superior safety profile, potentially low cost, and benefits for growth and development. These benefits are increasingly important to patients. In this review, we will describe the clinical efficacy of the different nutritional therapies that have been described for the treatment of CD and UC. We will also describe the effects of each nutritional therapy on the gut microbiome and summarize the strength of the literature with recommendations for the practicing clinician.
Collapse
Affiliation(s)
- Lara Hart
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Charlotte M. Verburgt
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands
| | - Eytan Wine
- Edmonton Paediatric IBD Clinic, Division of Paediatric Gastroenterology and Nutrition, Departments of Paediatrics & Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Mary Zachos
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Alisha Poppen
- College of Medicine and Health, University College Cork, T12 K8AF Cork, Ireland;
| | - Mallory Chavannes
- Department of Paediatrics, Division of Paediatric Gastroenterology and Nutrition, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA;
| | - Johan Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Amsterdam University Medical Centers, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (J.V.L.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Paediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Paediatric Gastroenterology & Nutrition, McMaster University, Hamilton, ON L8N 3Z5, Canada; (L.H.); (M.Z.)
- McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Correspondence: ; Tel.: +905-521-2100 (ext. 73587); Fax: +905-521-2655
| |
Collapse
|
17
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
18
|
Svolos V, Gkikas K, Gerasimidis K. Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis. Proc Nutr Soc 2021; 80:1-15. [PMID: 34551834 DOI: 10.1017/s0029665121002846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aetiology of inflammatory bowel disease (IBD) is multifactorial, with diet and gut microbiota playing an important role. Nonetheless, there are very few studies, particularly clinical research, which have explored the interaction between diet and gut microbiota. In the current review, we summarise the evidence from clinical trials exploring the interactions between the gut microbiota and diet in the management of IBD. Data from the effect of exclusive enteral nutrition (EEN) on the gut microbiota of children with active Crohn's disease (CD), receiving induction treatment, offer opportunities to understand the role of gut microbiota in underlying disease pathogenesis and develop novel dietary and pharmacological microbial therapeutics. In contrast, the evidence which links the effectiveness of food-based dietary therapies for IBD with mechanisms involving the gut microbiota is far less convincing. The microbial signals arising from these dietary therapies are inconsistent and vary compared to the effects of effective treatment with EEN in CD.
Collapse
Affiliation(s)
- Vaios Svolos
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Konstantinos Gkikas
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| |
Collapse
|
19
|
Wagenaar CA, van de Put M, Bisschops M, Walrabenstein W, de Jonge CS, Herrema H, van Schaardenburg D. The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients 2021; 13:nu13093208. [PMID: 34579085 PMCID: PMC8464906 DOI: 10.3390/nu13093208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation plays a central role in the pathophysiology of various non-communicable diseases. Dietary interventions can reduce inflammation, in part due to their effect on the gut microbiome. This systematic review aims to determine the effect of dietary interventions, specifically fiber intake, on chronic inflammatory diseases and the microbiome. It aims to form hypotheses on the potential mediating effects of the microbiome on disease outcomes after dietary changes. Included were clinical trials which performed a dietary intervention with a whole diet change or fiber supplement (>5 g/day) and investigated the gut microbiome in patients diagnosed with chronic inflammatory diseases such as cardiovascular disease (CVD), type 2 diabetes (T2DM), and autoimmune diseases (e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD)). The 30 articles which met the inclusion criteria had an overall moderate to high risk of bias and were too heterogeneous to perform a meta-analysis. Dietary interventions were stratified based on fiber intake: low fiber, high fiber, and supplemental fiber. Overall, but most pronounced in patients with T2DM, high-fiber plant-based dietary interventions were consistently more effective at reducing disease-specific outcomes and pathogenic bacteria, as well as increasing microbiome alpha diversity and short-chain fatty acid (SCFA)-producing bacteria, compared to other diets and fiber supplements.
Collapse
Affiliation(s)
- Carlijn A. Wagenaar
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Marieke van de Put
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Michelle Bisschops
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Wendy Walrabenstein
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Catharina S. de Jonge
- Department of Radiology and Nuclear Medicine, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers (UMC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Wang C, Li S, Hong K, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. The roles of different Bacteroides fragilis strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food Funct 2021; 12:8300-8313. [PMID: 34308455 DOI: 10.1039/d1fo00875g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of supplementation with different Bacteroides fragilis (B. fragilis) strains in alleviating ulcerative colitis (UC) is unclear due to the controversial results from animal experiments. In this study, three B. fragilis strains were evaluated for their ability to alleviate dextran sulfate sodium (DSS)-induced UC in C57BL/6J mice. We analyzed the anti-inflammatory effects of different B. fragilis strains and the changes they caused in the intestinal microbiota composition, intestinal epithelial permeability, cytokine concentrations, protein expression of nuclear factor kappa-B (NF-κB) and the underlying specific genes. The results showed that when orally administered, the different B. fragilis strains exerted different effects on the assessed parameters of the mice. The results of real-time quantitative polymerase chain reaction and immunofluorescence staining showed that the supplementation of B. fragilis FSHCM14E1, but not FJSWX11BF, enhanced the expression of the tight-junction proteins ZO-1, occludin and claudin-1. Western blot analysis showed that the anti-inflammatory effects of B. fragilis FSHCM14E1 were related to the NF-κB pathway. Genomic analysis suggested that the anti-inflammatory effects of FSHCM14E1 may be mediated through specific genes associated with defense mechanisms and the secretion of SCFAs. Overall, this study indicates the therapeutic potential of B. fragilis FSHCM14E1 for the prevention of UC.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Sijia Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kan Hong
- Wuxi People's Hospital Afliated to Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
21
|
The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients 2021; 13:nu13072125. [PMID: 34206152 PMCID: PMC8308385 DOI: 10.3390/nu13072125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal symptoms in Crohn’s disease (CD) are common and affect the quality of life of patients; consequently, a growing number of studies have been published on diet interventions in this group. The role of the gut microbiota in the pathogenesis and the progression of inflammatory bowel diseases (IBD), including CD, has been widely discussed. Mainly, a decreased abundance of Firmicutes, species of the Bifidobacterium genus, and the Faecalibacterium prausnitzii species as well as a reduced general diversity have been described. In this review article, we summarize available data on the influence of reduction diets on the microbiome of patients with CD. One of the most frequently used elimination diets in CD patients is the low-FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) diet. Although many papers show it may reduce abdominal pain, diarrhea, or bloating, it also reduces the intake of prebiotic substances, which can negatively affect the gut microbiota composition, decreasing the abundance of Bifidobacterium species and Faecalibacterium prausnitzii. Other elimination diets used by IBD patients, such as lactose-free or gluten-free diets, have also been shown to disturb the microbial diversity. On the other hand, CDED (Crohn’s disease exclusion diet) with partial enteral nutrition not only induces the remission of CD but also has a positive influence on the microbiota. The impact of diet interventions on the microbiota and, potentially, on the future course of the disease should be considered when nutritional guidelines for IBD patients are designed. Dietetic recommendations should be based not only on the regulation of the symptoms but also on the long-term development of the disease.
Collapse
|
22
|
Kappler K, Lasanajak Y, Smith DF, Opitz L, Hennet T. Increased Antibody Response to Fucosylated Oligosaccharides and Fucose-Carrying Bacteroides Species in Crohn's Disease. Front Microbiol 2020; 11:1553. [PMID: 32765449 PMCID: PMC7381230 DOI: 10.3389/fmicb.2020.01553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease is associated with intestinal dysbiosis and with elevated antibody production toward microbial epitopes. The underlying processes linking the gut microbiota with inflammation are still unclear. Considering the constant induction of antibodies by gut microbial glycans, the aim of this study was to address whether the repertoire of carbohydrate-specific antibodies is altered in Crohn's disease or ulcerative colitis. IgG and IgM reactivities to oligosaccharides representative of mucosal glycans were tested in blood serum from 20 healthy control subjects, 17 ulcerative colitis patients, and 23 Crohn's disease patients using glycan arrays. An increased IgG and IgM reactivity toward fucosylated oligosaccharides was detected in Crohn's disease but not in ulcerative colitis. To address the antibody reactivity to the gut microbiota, IgG binding to members of a complex intestinal microbiota was measured and observed to be increased in sera of patients with Crohn's disease. Based on the elevated reactivity to fucosylated oligosaccharides, gut bacteria were tested for recognition by the fucose-binding Aleuria aurantia lectin. Bacteroides stercoris was detected in IgG- and lectin-positive fractions and reactivity of A. aurantia lectin was demonstrated for additional Bacteroides species. IgG reactivity to these Bacteroides species was significantly increased in inflammatory bowel disease patients, indicating that the increased reactivity to fucosylated oligosaccharides detected in Crohn's disease may be induced by fucose-carrying intestinal bacteria. Enhanced antibody response to fucosylated epitopes may have systemic effects by altering the binding of circulating antibodies to endogenous glycoproteins.
Collapse
Affiliation(s)
| | - Yi Lasanajak
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - David F. Smith
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12:nu12040944. [PMID: 32235316 PMCID: PMC7230231 DOI: 10.3390/nu12040944] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process that requires lifelong treatment. The underlying causes of IBD are still unclear, as this heterogeneous disorder results from a complex interplay between genetic variability, the host immune system and environmental factors. The current knowledge recognizes diet as a risk factor for the development of IBD and attributes a substantial pathogenic role to the intestinal dysbiosis inducing an aberrant mucosal immune response in genetically predisposed individuals. This review focused on the clinical evidence available that considers the impact of some nutrients on IBD onset and the role of different diets in the management of IBD and their effects on the gut microbiota composition. The effects of the Specific Carbohydrate Diet, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, gluten free diet, anti-inflammatory diet and Mediterranean diet are investigated with regard to their impact on microbiota and on the evolution of the disease. At present, no clear indications toward a specific diet are available but the assessment of dysbiosis prior to the recommendation of a specific diet should become a standard clinical approach in order to achieve a personalized therapy.
Collapse
|
24
|
Grosse CSJ, Christophersen CT, Devine A, Lawrance IC. The role of a plant-based diet in the pathogenesis, etiology and management of the inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol 2020; 14:137-145. [PMID: 32077339 DOI: 10.1080/17474124.2020.1733413] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Inflammatory Bowel Disease (IBD) carries a significant burden on an individual's quality-of-life and on the healthcare system. The majority of patients use dietary modifications to manage their symptoms, despite limited research to support these changes. There is emerging data that a plant-based diet will be of benefit to IBD patients.Areas covered: A literature review on the pathogenesis and potential benefits of dietary management of IBD.Expert opinion: A Westernized diet has been associated with IBD risk and relapse; hence a plant-based diet may be of benefit to IBD patients through reducing inflammation and restoring symbiosis. Dietary therapy can be an important adjunct therapy, however, better quality studies are still required.
Collapse
Affiliation(s)
- Charlene S J Grosse
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.,Allied Health, Saint John of God Subiaco Hospital, Subiaco, Australia
| | - Claus T Christophersen
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia.,WA Human Microbiome Collaboration Centre, School of Molecular & Life Sciences, Curtin University, Bentley, Australia
| | - Amanda Devine
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Ian C Lawrance
- School of Medicine and Pharmacology, University of Western Australia, Murdoch, Australia.,Centre for Inflammatory Bowel Diseases, Saint John of God Subiaco Hospital, Subiaco, Australia
| |
Collapse
|
25
|
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8:pathogens8030126. [PMID: 31412603 PMCID: PMC6789542 DOI: 10.3390/pathogens8030126] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Ashiq Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China.
| |
Collapse
|
26
|
Britto S, Kellermayer R. Carbohydrate Monotony as Protection and Treatment for Inflammatory Bowel Disease. J Crohns Colitis 2019; 13:942-948. [PMID: 30715243 DOI: 10.1093/ecco-jcc/jjz011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/17/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
The nutritional developmental origins of inflammatory bowel disease[s] (IBDs: Crohn's disease or Crohn disease [CD] and ulcerative colitis [UC]) and their diet-based treatments continue to receive increasing attention. There is growing evidence for the success of nutrition-based treatments, such as exclusive enteral nutrition [EEN] and the specific carbohydrate diet [SCD], in both paediatric and adult patients. Beyond these two dietary interventions, symptomatic benefit in IBD has also been shown from a gluten-free diet [GFD] and paleolithic diet [PALEO], among others. These nutritional therapies may point to critical factors in not only the pathology, but also the pathogenesis of the disease group. It is difficult, however, to discern a common element within the large number of diet-based causation theories [e.g. emulsifiers, processed foods, refrigeration, increased total fat intake, low fibre intake, carbohydrate dominant food, etc.] and the varied dietary treatments of IBD. This Viewpoint article highlights that carbohydrate variation links diet-based causation theories, and that carbohydrate monotony or persistence is the commonly shared characteristic of diet-based IBD therapy. Further research directed towards carbohydrate monotony may critically advance the prevention and treatment of these highly morbid conditions.
Collapse
Affiliation(s)
- Savini Britto
- Section of Pediatric Gastroenterology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
27
|
Sood A, Ahuja V, Kedia S, Midha V, Mahajan R, Mehta V, Sudhakar R, Singh A, Kumar A, Puri AS, Tantry BV, Thapa BR, Goswami B, Behera BN, Ye BD, Bansal D, Desai D, Pai G, Yattoo GN, Makharia G, Wijewantha HS, Venkataraman J, Shenoy KT, Dwivedi M, Sahu MK, Bajaj M, Abdullah M, Singh N, Singh N, Abraham P, Khosla R, Tandon R, Misra SP, Nijhawan S, Sinha SK, Bopana S, Krishnaswamy S, Joshi S, Singh SP, Bhatia S, Gupta S, Bhatia S, Ghoshal UC. Diet and inflammatory bowel disease: The Asian Working Group guidelines. Indian J Gastroenterol 2019; 38:220-246. [PMID: 31352652 PMCID: PMC6675761 DOI: 10.1007/s12664-019-00976-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION These Asian Working Group guidelines on diet in inflammatory bowel disease (IBD) present a multidisciplinary focus on clinical nutrition in IBD in Asian countries. METHODOLOGY The guidelines are based on evidence from existing published literature; however, if objective data were lacking or inconclusive, expert opinion was considered. The conclusions and 38 recommendations have been subject to full peer review and a Delphi process in which uniformly positive responses (agree or strongly agree) were required. RESULTS Diet has an important role in IBD pathogenesis, and an increase in the incidence of IBD in Asian countries has paralleled changes in the dietary patterns. The present consensus endeavors to address the following topics in relation to IBD: (i) role of diet in the pathogenesis; (ii) diet as a therapy; (iii) malnutrition and nutritional assessment of the patients; (iv) dietary recommendations; (v) nutritional rehabilitation; and (vi) nutrition in special situations like surgery, pregnancy, and lactation. CONCLUSIONS Available objective data to guide nutritional support and primary nutritional therapy in IBD are presented as 38 recommendations.
Collapse
Affiliation(s)
- Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ramit Mahajan
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Varun Mehta
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ritu Sudhakar
- Department of Dietetics, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Ajay Kumar
- BLK Super Speciality Hospital, New Delhi, 110 005, India
| | | | | | - Babu Ram Thapa
- Department of Gastroenterology Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Bhabhadev Goswami
- Department of Gastroenterology, Gauhati Medical College, Guwahati, 781 032, India
| | - Banchha Nidhi Behera
- Department of Dietetics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, Seoul, South Korea
| | - Deepak Bansal
- Consultant Gastroenterology, Bathinda, 151 001, India
| | - Devendra Desai
- P. D. Hinduja Hospital and Medical Research Centre, Mumbai, 400 016, India
| | - Ganesh Pai
- Department of Gastroenterology, Kasturba Medical College, Manipal, 576 104, India
| | | | - Govind Makharia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | | | | | - K T Shenoy
- Department of Gastroenterology, Sree Gokulum Medical College and Research Foundation, Trivandrum, 695 011, India
| | - Manisha Dwivedi
- Department of Gastroenterology, Moti Lal Nehru Medical College, Allahabad, 211 001, India
| | - Manoj Kumar Sahu
- Department of Gastroenterology, IMS and Sum Hospital, Bhubaneswar, 756 001, India
| | | | - Murdani Abdullah
- Department of Internal Medicine, Faculty of Medicine Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Namrata Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, 110 023, India
| | - Neelanjana Singh
- Dietician, Pushpawati Singhania Research Institute, New Delhi, 110 001, India
| | - Philip Abraham
- P D Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Cadel Road, Mahim, Mumbai, 400 016, India
| | - Rajiv Khosla
- Max Super Speciality Hospital, Saket, New Delhi, 110 017, India
| | - Rakesh Tandon
- Pushpawati Singhania Research Institute, New Delhi, 110 001, India
| | - S P Misra
- Department of Gastroenterology, Moti Lal Nehru Medical College, Allahabad, 211 001, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, SMS Medical College, Jaipur, 302 004, India
| | - Saroj Kant Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Sawan Bopana
- Fortis Hospital, Vasant Kunj, New Delhi, 110 070, India
| | | | - Shilpa Joshi
- Dietician, Mumbai Diet and Health Centre, Mumbai, 400 001, India
| | - Shivram Prasad Singh
- Department of Gastroenterology, Sriram Chandra Bhanj Medical College and Hospital, Cuttack, 753 001, India
| | - Shobna Bhatia
- Department of Gastroenterology, King Edward Memorial Hospital, Mumbai, 400 012, India
| | - Sudhir Gupta
- Shubham Gastroenterology Centre, Nagpur, 440 001, India
| | - Sumit Bhatia
- Consultant Gastroenterology, Medanta The Medicity, Gurgaon, 122 001, India
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226 014, India
| |
Collapse
|
28
|
Dam B, Misra A, Banerjee S. Role of Gut Microbiota in Combating Oxidative Stress. OXIDATIVE STRESS IN MICROBIAL DISEASES 2019:43-82. [DOI: 10.1007/978-981-13-8763-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Kinuthia J, Singa B, McGrath CJ, Odeny B, Langat A, Katana A, Ng'ang'a L, Pintye J, John-Stewart G. Prevalence and correlates of non-disclosure of maternal HIV status to male partners: a national survey in Kenya. BMC Public Health 2018; 18:671. [PMID: 29848345 PMCID: PMC5975408 DOI: 10.1186/s12889-018-5567-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prevention of mother-to-child HIV transmission (PMTCT) programs usually test pregnant women for HIV without involving their partners. Non-disclosure of maternal HIV status to male partners may deter utilization of PMTCT interventions since partners play a pivotal role in decision-making within the home including access to and utilization of health services. METHODS Mothers attending routine 6-week and 9-month infant immunizations were enrolled at 141 maternal and child health (MCH) clinics across Kenya from June-December 2013. The current analysis was restricted to mothers with known HIV status who had a current partner. Multivariate logistic regression models adjusted for marital status, relationship length and partner attendance at antenatal care (ANC) were used to determine correlates of HIV non-disclosure among HIV-uninfected and HIV-infected mothers, separately, and to evaluate the relationship of non-disclosure with uptake of PMTCT interventions. All analyses accounted for facility-level clustering, RESULTS: Overall, 2522 mothers (86% of total study population) met inclusion criteria, 420 (17%) were HIV-infected. Non-disclosure of HIV results to partners was higher among HIV-infected than HIV-uninfected women (13% versus 3% respectively, p < 0.001). HIV-uninfected mothers were more likely to not disclose their HIV status to male partners if they were unmarried (adjusted odds ratio [aOR] = 3.79, 95% CI: 1.56-9.19, p = 0.004), had low (≤KSH 5000) income (aOR = 1.85, 95% CI: 1.00-3.14, p = 0.050), experienced intimate partner violence (aOR = 3.65, 95% CI: 1.84-7.21, p < 0.001) and if their partner did not attend ANC (aOR = 4.12, 95% CI: 1.89-8.95, p < 0.001). Among HIV-infected women, non-disclosure to male partners was less likely if women had salaried employment (aOR = 0.42, 95%CI: 0.18-0.96, p = 0.039) and each increasing year of relationship length was associated with decreased likelihood of non-disclosure (aOR = 0.90, 95% CI: 0.82-0.98, p = 0.015 for each year increase). HIV-infected women who did not disclose their HIV status to partners were less likely to uptake CD4 testing (aOR = 0.32, 95% CI: 0.15-0.69, p = 0.004), to use antiretrovirals (ARVs) during labor (OR = 0.38, 95% CI 0.15-0.97, p = 0.042), or give their infants ARVs (OR = 0.08, 95% CI 0.02-0.31, p < 0.001). CONCLUSION HIV-infected women were less likely to disclose their status to partners than HIV-uninfected women. Non-disclosure was associated with lower use of PMTCT services. Facilitating maternal disclosure to male partners may enhance PMTCT uptake.
Collapse
Affiliation(s)
- John Kinuthia
- Kenyatta National Hospital, P.O. Box 2590-00202, Nairobi, Kenya.
| | - Benson Singa
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | - Agnes Langat
- Division of Global HIV & TB, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Abraham Katana
- Division of Global HIV & TB, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Lucy Ng'ang'a
- Division of Global HIV & TB, US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | | | | |
Collapse
|
30
|
Sigall-Boneh R, Levine A, Lomer M, Wierdsma N, Allan P, Fiorino G, Gatti S, Jonkers D, Kierkus J, Katsanos KH, Melgar S, Yuksel ES, Whelan K, Wine E, Gerasimidis K. Research Gaps in Diet and Nutrition in Inflammatory Bowel Disease. A Topical Review by D-ECCO Working Group [Dietitians of ECCO]. J Crohns Colitis 2017; 11:1407-1419. [PMID: 28961811 DOI: 10.1093/ecco-jcc/jjx109] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Although the current doctrine of IBD pathogenesis proposes an interaction between environmental factors and gut microbiota in genetically susceptible individuals, dietary exposures have attracted recent interest and are, at least in part, likely to explain the rapid rise in disease incidence and prevalence. The D-ECCO working group along with other ECCO experts with expertise in nutrition, microbiology, physiology, and medicine reviewed the evidence investigating the role of diet and nutritional therapy in the onset, perpetuation, and management of IBD. A narrative topical review is presented where evidence pertinent to the topic is summarised collectively under three main thematic domains: i] the role of diet as an environmental factor in IBD aetiology; ii] the role of diet as induction and maintenance therapy in IBD; and iii] assessment of nutritional status and supportive nutritional therapy in IBD. A summary of research gaps for each of these thematic domains is proposed, which is anticipated to be agenda-setting for future research in the area of diet and nutrition in IBD.
Collapse
Affiliation(s)
- Rotem Sigall-Boneh
- PIBD Research Center, Pediatric Gastroenterology and Nutrition Unit, Edith Wolfson Medical Center, Israel
| | - Arie Levine
- Paediatric Gastroenterology & Nutrition Unit, Wolfson Medical Center, Tel Aviv University, Israel
| | - Miranda Lomer
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust and King's College London, UK
| | - Nicolette Wierdsma
- Department of Nutrition and Dietetics, VU University Medical Centre, The Netherlands
| | - Philip Allan
- Department of Translational Gastroenterology, John Radcliffe Hospital, UK
| | - Gionata Fiorino
- Department of Gastroenterology, IBD Center, Humanitas Research Hospital, Italy
| | - Simona Gatti
- Department of Paediatrics, Polytechnic University of Marche, Italy
| | - Daisy Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, The Netherlands
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Poland
| | - Konstantinos H Katsanos
- Department of Gastroenterology and Hepatology, University and Medical School of Ioannina, Greece
| | - Silvia Melgar
- APC Microbiome Institute, University College Cork, Ireland
| | - Elif Saritas Yuksel
- Department of Gastroenterology, Izmir Katip Celebi University Ataturk Teaching and Research Hospital, Turkey
| | - Kevin Whelan
- King's College London, Division of Diabetes and Nutritional Sciences, UK
| | - Eytan Wine
- Division of Paediatric Gastroenterology and Nutrition, Departments of Paediatrics and Physiology, University of Alberta, Canada
| | | |
Collapse
|
31
|
Haskey N, Gibson DL. An Examination of Diet for the Maintenance of Remission in Inflammatory Bowel Disease. Nutrients 2017; 9:nu9030259. [PMID: 28287412 PMCID: PMC5372922 DOI: 10.3390/nu9030259] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Diet has been speculated to be a factor in the pathogenesis of inflammatory bowel disease and may be an important factor in managing disease symptoms. Patients manipulate their diet in attempt to control symptoms, often leading to the adoption of inappropriately restrictive diets, which places them at risk for nutritional complications. Health professionals struggle to provide evidence-based nutrition guidance to patients due to an overall lack of uniformity or clarity amongst research studies. Well-designed diet studies are urgently needed to create an enhanced understanding of the role diet plays in the management of inflammatory bowel disease. The aim of this review is to summarize the current data available on dietary management of inflammatory bowel disease and to demonstrate that dietary modulation may be an important consideration in managing disease. By addressing the relevance of diet in inflammatory bowel disease, health professionals are able to better support patients and collaborate with dietitians to improve nutrition therapy.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, The Irving K. Barber School of Arts and Sciences, University of British Columbia, Room, ASC 368, 3187 University Way, Okanagan campus, Kelowna, BC V1V 1V7, Canada.
| | - Deanna L Gibson
- Department of Biology, The Irving K. Barber School of Arts and Sciences, University of British Columbia, Room, ASC 368, 3187 University Way, Okanagan campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
32
|
Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol 2016; 9:606-25. [PMID: 27366227 PMCID: PMC4913337 DOI: 10.1177/1756283x16644242] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental 'hits' are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function.
Collapse
Affiliation(s)
- Stephen M. Vindigni
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy L. Zisman
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David L. Suskind
- Department of Pediatrics, Seattle Children’s Hospital and University of Washington, Seattle, WA, USA
| | | |
Collapse
|
33
|
Manuc TEM, Manuc MM, Diculescu MM. Recent insights into the molecular pathogenesis of Crohn's disease: a review of emerging therapeutic targets. Clin Exp Gastroenterol 2016; 9:59-70. [PMID: 27042137 PMCID: PMC4801167 DOI: 10.2147/ceg.s53381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic inflammatory bowel diseases (IBDs) are a subject of great interest in gastroenterology, due to a pathological mechanism that is difficult to explain and an optimal therapeutic approach still undiscovered. Crohn's disease (CD) is one of the main entities in IBD, characterized by clinical polymorphism and great variability in the treatment response. Modern theories on the pathogenesis of CD have proven that gut microbiome and environmental factors lead to an abnormal immune response in a genetically predisposed patient. Genome-wide association studies in patients with CD worldwide revealed several genetic mutations that increase the risk of IBD and that predispose to a more severe course of disease. Gut microbiota is considered a compulsory and an essential part in the pathogenesis of CD. Intestinal dysmicrobism with excessive amounts of different bacterial strains can be found in all patients with IBD. The discovery of Escherichia coli entero-invasive on resection pieces in patients with CD now increases the likelihood of antimicrobial or vaccine-type treatments. Recent studies targeting intestinal immunology and its molecular activation pathways provide new possibilities for therapeutics. In addition to antitumor necrosis factor molecules, which were a breakthrough in IBD, improving mucosal healing and resection-free survival rate, other classes of therapeutic agents come to focus. Leukocyte adhesion inhibitors block the leukocyte homing mechanism and prevent cellular immune response. In addition to anti-integrin antibodies, chemokine receptor antagonists and SMAD7 antisense oligonucleotides have shown encouraging results in clinical trials. Micro-RNAs have demonstrated their role as disease biomarkers but it could also become useful for the treatment of IBD. Moreover, cellular therapy is another therapeutic approach under development, aimed for severe refractory CD. Other experimental treatments include intravenous immunoglobulins, exclusive enteral nutrition, and granulocyte colony-stimulating factors.
Collapse
Affiliation(s)
| | - Mircea M Manuc
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | | |
Collapse
|
34
|
Obih C, Wahbeh G, Lee D, Braly K, Giefer M, Shaffer ML, Nielson H, Suskind DL. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center. Nutrition 2015; 32:418-25. [PMID: 26655069 DOI: 10.1016/j.nut.2015.08.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Despite dietary factors being implicated in the pathogenesis of inflammatory bowel disease (IBD), nutritional therapy, outside of exclusive enteral nutrition (EEN), has not had a defined role within the treatment paradigm of pediatric IBD within IBD centers. Based on emerging data, Seattle Children's Hospital IBD Center has developed an integrated dietary program incorporating the specific carbohydrate diet (SCD) into its treatment paradigm. This treatment paradigm uses the SCD as primary therapy as well as adjunctive therapy for the treatment of IBD. The aim of this study was to evaluate the potential effects of the SCD on clinical outcomes and laboratory studies of pediatric patients with Crohn's disease (CD) and ulcerative colitis (UC). METHODS In this retrospective study, we reviewed the medical records of patients with IBD on SCD. RESULTS We analyzed 26 children on the SCD: 20 with CD and 6 with UC. Duration of the dietary therapy ranged from 3 to 48 mo. In patients with active CD (Pediatric Crohn's Disease activity index [PCDAI] >10), PCDAI dropped from 32.8 ± 13.2 at baseline to 20.8 ± 16.6 by 4 ± 2 wk, and to 8.8 ± 8.5 by 6 mo. The mean Pediatric Ulcerative Colitis Activity Index for patients with active UC decreased from a baseline of 28.3 ± 10.3 to 20.0 ± 17.3 at 4 ± 2 wk, to 18.3 ± 31.7 at 6 mo. CONCLUSION This retrospective review provides evidence that the SCD can be integrated into a tertiary care center and may improve clinical and laboratory parameters for pediatric patients with nonstructuring, nonpenetrating CD as well as UC. Further prospective studies are needed to fully assess the safety and efficacy of the SCD in pediatric patients with IBD.
Collapse
Affiliation(s)
- Chinonyelum Obih
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Ghassan Wahbeh
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Dale Lee
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Kim Braly
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Matthew Giefer
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Michele L Shaffer
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Heather Nielson
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - David L Suskind
- Department of Pediatrics, Seattle Children's Hospital and University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Murmu S, Debnath C, Pramanik AK, Mitra T, Jana S, Dey S, Banerjee S, Batabyal K. Detection and characterization of zoonotic dermatophytes from dogs and cats in and around Kolkata. Vet World 2015; 8:1078-82. [PMID: 27047202 PMCID: PMC4774776 DOI: 10.14202/vetworld.2015.1078-1082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 01/04/2023] Open
Abstract
AIM The ringworms of pet dogs, cats, and stray animals (dogs, cats, and other animals) could be a potential source of zoonotic infections causing a serious public health problem in the busy city Kolkata. The pet owners are more susceptible to get this infection from their pets, because of the close contact with them as dermatophytosis is very much prevalent in those pets. So, this study was aimed to check the prevalence of dermatophytosis in dogs, cats, and in pet owners. MATERIALS AND METHODS A total of 362 clinically suspected cases of dermatophytosis from dogs (123 in number), cats (202 in number), and human beings (37 in number) were collected and studied from in and around Kolkata to detect the presence of significant dermatophytes. Direct microscopy and cultural examination of the isolates were performed following standard methodology. Identification and characterization of the isolates were done by different biochemical tests. RESULTS Samples (n=285) having significant dermatophytic fungal infections were found to be of highest number in cats (158, 55.5%) than in dogs (108, 37.8%) and humans (19, 6.7%), respectively. The incidence of Microsporum canis (60.0%) was the highest from affecting dogs, cats, and human beings in comparison to Microsporum gypseum (22.5%), Trichophyton mentagrophytes (15.8%) and Trichophyton rubrum (1.7%). Detection of T. rubrum was only from human cases in this study, whereas the presence of rest three were slightly higher in cats than that of the dogs and humans in this present study. The incidences were higher in young animals and in humans of the age group of 21-30 years, during the rainy season (from April to August) and also in in-contact human beings. CONCLUSION M. canis was the most commonly pathogen among all causing dermatophytosis in animals and also in the pet owners. M. gypseum and T. mentagrophytes were other pathogens associated with these infections. These infections were more prevalent in the rainy seasons and in in-contact human patients or pet owners.
Collapse
Affiliation(s)
- S. Murmu
- Department of Veterinary Public Health, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - C. Debnath
- Department of Veterinary Public Health, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - A. K. Pramanik
- Department of Veterinary Public Health, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - T. Mitra
- Department of Veterinary Public Health, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - S. Jana
- Swastha Bhavan, Ministry of Health & Family Welfare, Government of West Bengal, GN 29, Salt lake, Sector V, Kolkata, West Bengal, India
| | - S. Dey
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - S. Banerjee
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| | - K. Batabyal
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata - 700 037, West Bengal, India
| |
Collapse
|
36
|
|