1
|
Zhang X, Wang Y, Zhang M, Liu B, Li X, Zhao J, Qiao W, Liu Y, Liu Y, Chen L. Association between fat-soluble vitamins in breast milk and neonatal gut microbiome in Tibetan mother-infant dyads during the first month postnatal. Food Res Int 2025; 212:116350. [PMID: 40382082 DOI: 10.1016/j.foodres.2025.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The Tibetan Plateau is a high-altitude environment characterized by hypoxic conditions, strong ultraviolet rays, and significant temperature variations that affect the well-being of local residents, including mother-infant dyads. Adaptive evolution through lifestyle and dietary patterns plays an important role in nutrition during the maternal lactation period, which offers unique merits for investigation at the intersection of environmental and nutritional fields. Specifically, changes in the nutrient composition of human milk among Tibetan lactating mothers and their associated consequences for infants provide insight into early nutrition research and infant food production. In this study, the concentrations of vitamins A, D, E, and β-carotene in the human milk of Tibetan mothers, as well as the fecal microbiome profiles of their infants, were analyzed within the first month postnatal. The results showed that the fat-soluble vitamins in Tibetan human milk were at satisfactory levels, particularly during the colostrum stage, which may be attributed to the advantages of their dietary pattern and dwelling environment. Dynamic changes in the gut microbiota composition of Tibetan infants were observed, with the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria being relatively abundant. The abundance of Bifidobacterium increased as infants aged within the first month postnatal. Correlations were found between the fat-soluble vitamin composition in human milk and the characteristics of the infant gut microbiota, including alpha (α)-diversity indices and microbial abundances. These findings will help enhance the understanding of early nutrition under harsh natural conditions and will guide relevant innovations and improvements in the maternal and infant food industry.
Collapse
Affiliation(s)
- Xiaomei Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Bin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xianping Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
2
|
Schoultz I, Claesson MJ, Dominguez‐Bello MG, Fåk Hållenius F, Konturek P, Korpela K, Laursen MF, Penders J, Roager H, Vatanen T, Öhman L, Jenmalm MC. Gut microbiota development across the lifespan: Disease links and health-promoting interventions. J Intern Med 2025; 297:560-583. [PMID: 40270478 PMCID: PMC12087861 DOI: 10.1111/joim.20089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The gut microbiota plays a pivotal role in human life and undergoes dynamic changes throughout the human lifespan, from infancy to old age. During our life, the gut microbiota influences health and disease across life stages. This review summarizes the discussions and presentations from the symposium "Gut microbiota development from infancy to old age" held in collaboration with the Journal of Internal Medicine. In early infancy, microbial colonization is shaped by factors such as mode of delivery, antibiotic exposure, and milk-feeding practices, laying the foundation for subsequent increased microbial diversity and maturation. Throughout childhood and adolescence, microbial maturation continues, influencing immune development and metabolic health. In adulthood, the gut microbiota reaches a relatively stable state, influenced by genetics, diet, and lifestyle. Notably, disruptions in gut microbiota composition have been implicated in various inflammatory diseases-including inflammatory bowel disease, Type 1 diabetes, and allergies. Furthermore, emerging evidence suggests a connection between gut dysbiosis and neurodegenerative disorders such as Alzheimer's disease. Understanding the role of the gut microbiota in disease pathogenesis across life stages provides insights into potential therapeutic interventions. Probiotics, prebiotics, and dietary modifications, as well as fecal microbiota transplantation, are being explored as promising strategies to promote a healthy gut microbiota and mitigate disease risks. This review focuses on the gut microbiota's role in infancy, adulthood, and aging, addressing its development, stability, and alterations linked to health and disease across these critical life stages. It outlines future research directions aimed at optimizing the gut microbiota composition to improve health.
Collapse
Affiliation(s)
- Ida Schoultz
- School of Medical SciencesFaculty of Medicine and Health Örebro UniversityOrebroSweden
| | | | - Maria Gloria Dominguez‐Bello
- Department of Biochemistry & Microbiology and of AnthropologyRutgers University–New BrunswickNew BrunswickNew JerseyUSA
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and NutritionLund UniversityLundSweden
| | - Peter Konturek
- Department of Medicine, Thuringia Clinic SaalfeldTeaching Hospital of the University JenaJenaGermany
| | - Katri Korpela
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtthe Netherlands
| | - H. Roager
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksbergDenmark
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Department of Microbiology, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Liggins InstituteUniversity of AucklandAucklandNew Zealand
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
3
|
Adamko DJ, Hildebrand KJ. The changing epidemiology of paediatric childhood asthma and allergy in different regions of the world. FRONTIERS IN ALLERGY 2025; 6:1584928. [PMID: 40370529 PMCID: PMC12075412 DOI: 10.3389/falgy.2025.1584928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Allergic disorders encompass a variety of conditions including asthma, atopic dermatitis, food allergy, allergic rhinitis, and eosinophilic esophagitis. These atopic disorders are connected via an abnormal host immune response to the environment. A series of longitudinal cross-sectional studies conducted over the past 3 decades have reported on the epidemiological trends that contribute towards the development of pediatric asthma and allergic disease. Infant birth cohort studies assessing the microbiome have offered clues as to the underlying biological mechanisms and basis for allergic disease. Why this abnormal immune response is occurring is the basis of decades of research and the reasons for this chapter. Our understanding of the biology of the immune system has increased exponentially with the advances in genomic testing, providing further opportunity for targeted treatments and more importantly, primary prevention of atopic disease.
Collapse
Affiliation(s)
- D. J. Adamko
- Division of Respiratory Medicine, Department of Pediatrics, University of Saskatchewan, Saskatchewan, SK, Canada
| | - Kyla J. Hildebrand
- Division of Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Keshet A, Hochwald O, Lavon A, Borenstein-Levin L, Shoer S, Godneva A, Glantz-Gashai Y, Cohen-Dolev N, Timstut F, Lotan-Pompan M, Solt I, Weinberger A, Segal E, Shilo S. Development of antibiotic resistome in premature infants. Cell Rep 2025; 44:115515. [PMID: 40198224 DOI: 10.1016/j.celrep.2025.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Preterm birth is a major concern in neonatal care, significantly impacting infant survival and long-term health. The gut microbiome, essential for infant development, often becomes imbalanced in preterm infants, making it crucial to understand the effects of antibiotics on its development. Our study analyzed weekly, 6-month, and 1-year stool samples from 100 preterm infants, correlating clinical data on antibiotic use and feeding patterns. Comparing infants who received no antibiotics with those given empirical post-birth treatment, we observed notable alterations in the gut microbiome's composition and an increase in antibiotic resistance gene abundance early in life. Although these effects diminished over time, their long-term clinical impacts remain unclear. Human milk feeding was associated with beneficial microbiota like Actinobacteriota and reduced antibiotic resistance genes, underscoring its protective role. This highlights the importance of judicious antibiotic use and promoting human milk to foster a healthy gut microbiome in preterm infants.
Collapse
Affiliation(s)
- Ayya Keshet
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amit Lavon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel; Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Saar Shoer
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yitav Glantz-Gashai
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Noa Cohen-Dolev
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Fanny Timstut
- Neonatal Intensive Care Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Solt
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Arrieta MC. Microbiome Maturation Trajectory and Key Milestones in Early Life. ANNALS OF NUTRITION & METABOLISM 2025:1-8. [PMID: 40228484 DOI: 10.1159/000543754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/30/2024] [Indexed: 04/16/2025]
Abstract
BACKGROUND The development of the gut microbiome during early life plays a critical role in shaping long-term health. The first 1,000 days represent a crucial period in which the microbiome is particularly malleable, influenced by various factors such as birth mode, diet, antibiotic exposure, and environmental interactions. SUMMARY This review outlines the key stages of microbiome maturation, beginning with initial colonization at birth and progressing through the diversification and stabilization phases during the first 5 years of life. Factors like breastfeeding, the introduction of solid foods, and early-life antibiotic have a critical impact on microbial diversity and immune system development. Disruptions to the microbiome during this critical window, particularly through antibiotic use, are associated with an increased risk of immune, metabolic, and neurodevelopmental disorders. Recent research emphasizes the need for a better understanding of these early-life trajectories to inform interventions that promote a healthy microbiome.
Collapse
Affiliation(s)
- Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Shah K, Khan AS, Kunwar D, Jacob SR, Akbar A, Singh A, Ahmed MMH. Influence of gut microbiota on the pediatric endocrine system and associated disorders. Ann Med Surg (Lond) 2025; 87:2149-2162. [PMID: 40212169 PMCID: PMC11981368 DOI: 10.1097/ms9.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/15/2025] [Indexed: 04/13/2025] Open
Abstract
The microbiota, a complex assembly of microorganisms residing in various body systems, including the gastrointestinal tract, plays a crucial role in influencing various physiological processes in the human body. The dynamic nature of gut microbiota is especially pronounced in children and is influenced by factors like breastfeeding and antibiotic use. Dysbiosis, characterized by alterations in microbiota composition or function, is associated with several pediatric endocrine disorders, such as precocious puberty, polycystic ovarian syndrome, and diabetes mellitus. This review focuses on the intricate relationship between gut microbiota and the pediatric endocrine system. The aim of this narrative review is to critically examine the existing literature to elucidate the impact of gut microbiota on the pediatric endocrine system and associated disorders. Additionally, potential interventions, such as probiotics and current gaps in knowledge, will be discussed. Despite emerging treatments like probiotics, further research is needed to understand and validate their effectiveness in treating pediatric endocrine disorders associated with dysbiosis.
Collapse
Affiliation(s)
- Krutik Shah
- Byramjee Jeejeebhoy (BJ) Medical College and Civil Hospital, Ahmedabad, India
| | - Alina Sami Khan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Digbijay Kunwar
- Department of Internal Medicine, Bagahi Primary Healthcare Center, Birgunj, Nepal
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ajeet Singh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
7
|
Ghouri I, Demir M, Khan SA, Mansoor MA, Iqbal M. Unveiling the Potential of Protein-Based Sustainable Antibacterial Materials. Probiotics Antimicrob Proteins 2025; 17:737-762. [PMID: 39422822 DOI: 10.1007/s12602-024-10381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
The surge in bacterial growth and the escalating resistance against a multitude of antibiotic drugs have burgeoned into an alarming global threat, necessitating urgent and innovative interventions. In response to this peril, scientists have embarked on the development of advanced biocompatible antibacterial materials, aiming to counteract not only bacterial infections but also the pervasive issue of food spoilage resulting from microbial proliferation. Protein-based biopolymers and their meticulously engineered composites are at the forefront of this endeavor. Their potential in combating this severe global concern presents an approach that intersects the domains of biomedicine and environmental science. The present review article delves into the intricate extraction processes employed to derive various proteins from their natural sources, unraveling the complex biochemical pathways that underpin their antibacterial properties. Expanding on the foundational knowledge, the review also provides a comprehensive synthesis of functionalized proteins modified to enhance their antibacterial efficacy, unveiling a realm of possibilities for tailoring solutions to specific biomedical and environmental applications. The present review navigates through their antibacterial applications; from wound dressings to packaging materials with inherent antibacterial properties, the potential applications underscore the versatility and adaptability of these materials. Moreover, this comprehensive review serves as a valuable roadmap, guiding future research endeavors in reshaping the landscape of natural antibacterial materials on a global scale.
Collapse
Affiliation(s)
- Iqra Ghouri
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- Materials Institute, TUBITAK Marmara Research Center, 41470, Gebze, Turkey
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Muhammad Adil Mansoor
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
8
|
Shukla A, Sharma C, Malik MZ, Singh AK, Aditya AK, Mago P, Shalimar, Ray AK. Deciphering the tripartite interaction of urbanized environment, gut microbiome and cardio-metabolic disease. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124693. [PMID: 40022791 DOI: 10.1016/j.jenvman.2025.124693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
The world is experiencing a sudden surge in urban population, especially in developing Asian and African countries. Consequently, the global burden of cardio-metabolic disease (CMD) is also rising owing to gut microbiome dysbiosis due to urbanization factors such as mode of birth, breastfeeding, diet, environmental pollutants, and soil exposure. Dysbiotic gut microbiome indicated by altered Firmicutes to Bacteroides ratio and loss of beneficial short-chain fatty acids-producing bacteria such as Prevotella, and Ruminococcus may disrupt host-intestinal homeostasis by altering host immune response, gut barrier integrity, and microbial metabolism through altered T-regulatory cells/T-helper cells balance, activation of pattern recognition receptors and toll-like receptors, decreased mucus production, elevated level of trimethylamine-oxide and primary bile acids. This leads to a pro-inflammatory gut characterized by increased pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin-2, Interferon-ϒ and elevated levels of metabolites or metabolic endotoxemia due to leaky gut formation. These pathophysiological characteristics are associated with an increased risk of cardio-metabolic disease. This review aims to comprehensively elucidate the effect of urbanization on gut microbiome-driven cardio-metabolic disease. Additionally, it discusses targeting the gut microbiome and its associated pathways via strategies such as diet and lifestyle modulation, probiotics, prebiotics intake, etc., for the prevention and treatment of disease which can potentially be integrated into clinical and professional healthcare settings.
Collapse
Affiliation(s)
- Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Chanchal Sharma
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Md Zubbair Malik
- Department of Translational Medicine, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Abhishek Kumar Aditya
- Department of Medicine, K.D. Medical College, Hospital and Research Center, Mathura, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India; Campus of Open Learning, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Tao W, Zhang Y, Wang B, Nie S, Fang L, Xiao J, Wu Y. Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance. J Adv Res 2025; 69:261-278. [PMID: 38579985 PMCID: PMC11954836 DOI: 10.1016/j.jare.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUD Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.
Collapse
Affiliation(s)
- Wei Tao
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yanren Zhang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Bingbin Wang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Saiqun Nie
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Li Fang
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Ioannou A, Berkhout MD, Geerlings SY, Belzer C. Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential. Nat Rev Microbiol 2025; 23:162-177. [PMID: 39406893 DOI: 10.1038/s41579-024-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host-microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics.
Collapse
Affiliation(s)
- Athanasia Ioannou
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sharon Y Geerlings
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Ryan N, O’Mahony S, Leahy-Warren P, Philpott L, Mulcahy H. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review. PLoS One 2025; 20:e0318237. [PMID: 40019912 PMCID: PMC11870360 DOI: 10.1371/journal.pone.0318237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Perinatal maternal stress, which includes both psychological and physiological stress experienced by healthy women during pregnancy and the postpartum period, is becoming increasingly prevalent. Infant early exposure to adverse environments such as perinatal stress has been shown to increase the long-term risk to metabolic, immunologic and neurobehavioral disorders. Evidence suggests that the human microbiome facilitates the transmission of maternal factors to infants via the vaginal, gut, and human milk microbiomes. The colonization of aberrant microorganisms in the mother's microbiome, influenced by the microbiome-brain-gut axis, may be transferred to infants during a critical early developmental period. This transfer may predispose infants to a more inflammatory-prone microbiome which is associated with dysregulated metabolic process leading to adverse health outcomes. Given the prevalence and potential impact of perinatal stress on maternal and infant health, with no systematic mapping or review of the data to date, the aim of this scoping review is to gather evidence on the relationship between perinatal maternal stress, and the human milk, maternal, and infant gut microbiomes. METHODS This is an exploratory mapping scoping review, guided by the Joanna Briggs Institute's methodology along with use of the Prisma Scr reporting guideline. A comprehensive search was conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus with a protocol registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV. RESULTS After screening 1145 papers there were 7 paper that met the inclusion criteria. Statistically significant associations were found in five of the studies which identify higher abundance of potentially pathogenic bacteria such as Erwinia, Serratia, T mayombie, Bacteroides with higher maternal stress, and lower levels of stress linked to potentially beneficial bacteria such Lactococcus, Lactobacillus, Akkermansia. However, one study presents conflicting results where it was reported that higher maternal stress was linked to the prevalence of more beneficial bacteria. CONCLUSION This review suggests that maternal stress does have an impact on the alteration of abundance and diversity of influential bacteria in the gut microbiome, however, it can affect colonisation in different ways. These bacterial changes have the capacity to influence long term health and disease. The review analyses data collection tools and methods, offers potential reasons for these findings as well as suggestions for future research.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Ganesan R, Thirumurugan D, Vinayagam S, Kim DJ, Suk KT, Iyer M, Yadav MK, HariKrishnaReddy D, Parkash J, Wander A, Vellingiri B. A critical review of microbiome-derived metabolic functions and translational research in liver diseases. Front Cell Infect Microbiol 2025; 15:1488874. [PMID: 40066068 PMCID: PMC11891185 DOI: 10.3389/fcimb.2025.1488874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Significant changes in gut microbial composition are associated with chronic liver disease. Using preclinical models, it has been demonstrated that ethanol/alcohol-induced liver disease is transmissible through fecal microbiota transplantation (FMT). So, the survival rate of people with severe alcoholic hepatitis got better, which suggests that changes in the makeup and function of gut microbiota play a role in metabolic liver disease. The leaky intestinal barrier plays a major role in influencing metabolic-related liver disease development through the gut microbiota. As a result, viable bacteria and microbial products can be transported to the liver, causing inflammation, contributing to hepatocyte death, and causing the fibrotic response. As metabolic-related liver disease starts and gets worse, gut dysbiosis is linked to changes in the immune system, the bile acid composition, and the metabolic function of the microbiota in the gut. Metabolic-related liver disease, as well as its self-perpetuation, will be demonstrated using data from preclinical and human studies. Further, we summarize how untargeted treatment approaches affect the gut microbiota in metabolic-related liver disease, including dietary changes, probiotics, antibiotics, and FMT. It discusses how targeted therapies can improve liver disease in various areas. These approaches may improve metabolic-related liver disease treatment options.
Collapse
Affiliation(s)
- Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saranya Vinayagam
- Department of Bioscience, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dong Joon Kim
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mahalaxmi Iyer
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Science, Central University of Punjab, Bathinda, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Parkash
- Neurochemistry and Neuroendocrinology Lab, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Arvinder Wander
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Capra ME, Aliverti V, Bellani AM, Berzieri M, Montani AG, Pisseri G, Sguerso T, Esposito S, Biasucci G. Breastfeeding and Non-Communicable Diseases: A Narrative Review. Nutrients 2025; 17:511. [PMID: 39940369 PMCID: PMC11819769 DOI: 10.3390/nu17030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION Breastfeeding plays a fundamental role in newborns' and infants' health. Breast milk's protective power against malnutrition and its positive effect on neurological and physical development are well established and are reflected in the policy statements of all major pediatric health entities. However, breastfeeding also plays an important role in the prevention of so-called non-communicable diseases, such as obesity, hypertension, dyslipidemia, and autoimmune diseases. METHODS This narrative review aims to analyze the effect of breastfeeding and breast milk on the development of non-communicable diseases, with a special focus on weight excess, dyslipidemia, allergy, and gastrointestinal diseases. This narrative review was carried out through three steps: executing the search, examining abstracts and full texts, and analyzing results. To achieve this, the databases PubMed, EMBASE, Scopus, ScienceDirect, Web of Science, and Google Scholar were explored to collect and select publications from 1990 to 2024 to find pertinent studies in line with this review's development. The search included randomized placebo-controlled trials, controlled clinical trials, double-blind, randomized controlled studies, and systematic reviews. A total of 104 manuscripts were ultimately included in the analysis. RESULTS Breastfeeding is associated with a decreased vulnerability to early viral infections or chronic inflammatory conditions during preschool years, a reduced incidence of weight excess, and likely lower cholesterol concentration, besides having a small protective effect against systolic blood hypertension. CONCLUSIONS Pediatricians must promote breastfeeding, support the mother-infant dyad, and consider breast milk as a real "health voucher" that can last lifelong. However, further studies are needed to better define the extent and duration of breastfeeding's protective power in this context.
Collapse
Affiliation(s)
- Maria Elena Capra
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
| | - Valentina Aliverti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Arianna Maria Bellani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Martina Berzieri
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Anna Giuseppina Montani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gianlorenzo Pisseri
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Tullia Sguerso
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
14
|
Renk H, Schoppmeier U, Müller J, Kuger V, Neunhoeffer F, Gille C, Peter S. Oxygenation and intestinal perfusion and its association with perturbations of the early life gut microbiota composition of children with congenital heart disease. Front Microbiol 2025; 15:1468842. [PMID: 39881980 PMCID: PMC11775010 DOI: 10.3389/fmicb.2024.1468842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Background Early life gut microbiota is known to shape the immune system and has a crucial role in immune homeostasis. Only little is known about composition and dynamics of the intestinal microbiota in infants with congenital heart disease (CHD) and potential influencing factors. Methods We evaluated the intestinal microbial composition of neonates with CHD (n = 13) compared to healthy controls (HC, n = 30). Fecal samples were analyzed by shotgun metagenomics. Different approaches of statistical modeling were applied to assess the impact of influencing factors on variation in species composition. Unsupervised hierarchical clustering of the microbial composition of neonates with CHD was used to detect associations of distinct clusters with intestinal tissue oxygenation and perfusion parameters, obtained by the "oxygen to see" (O2C) method. Results Overall, neonates with CHD showed an intestinal core microbiota dominated by the genera Enterococcus (27%) and Staphylococcus (20%). Furthermore, a lower abundance of the genera Bacteroides (8% vs. 14%), Parabacteroides (1% vs. 3%), Bifidobacterium (4% vs. 12%), and Escherichia (8% vs. 23%) was observed in CHD compared to HCs. CHD patients that were born by vaginal delivery showed a lower fraction of the genera Bacteroides (15% vs. 21%) and Bifidobacterium (7% vs. 22%) compared to HCs and in those born by cesarean section, these genera were not found at all. In infants with CHD, we found a significant impact of oxygen saturation (SpO2) on relative abundances of the intestinal core microbiota by multivariate analysis of variance (F[8,2] = 24.9, p = 0.04). Statistical modeling suggested a large proportional shift from a microbiota dominated by the genus Streptococcus (50%) in conditions with low SpO2 towards the genus Enterococcus (61%) in conditions with high SpO2. We identified three distinct compositional microbial clusters, corresponding neonates differed significantly in intestinal blood flow and global gut perfusion. Conclusion Early life differences in gut microbiota of CHD neonates versus HCs are possibly linked to oxygen levels. Delivery method may affect microbiota stability. However, further studies are needed to assess the effect of potential interventions including probiotics or fecal transplants on early life microbiota perturbations in neonates with CHD.
Collapse
Affiliation(s)
- Hanna Renk
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University Children’s Hospital Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Ulrich Schoppmeier
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Jennifer Müller
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Vanessa Kuger
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Felix Neunhoeffer
- Department of Pediatric Cardiology, Pulmonology and Pediatric Intensive Care Medicine, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Silke Peter
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Graf MD, Murgueitio N, Vogel SC, Hicks L, Carlson AL, Propper CB, Kimmel M. Maternal Prenatal Stress and the Offspring Gut Microbiome: A Cross-Species Systematic Review. Dev Psychobiol 2025; 67:e70005. [PMID: 39636074 PMCID: PMC12010507 DOI: 10.1002/dev.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
The prenatal period is a critical developmental juncture with enduring effects on offspring health trajectories. An individual's gut microbiome is associated with health and developmental outcomes across the lifespan. Prenatal stress can disrupt an infant's microbiome, thereby increasing susceptibility to adverse outcomes. This cross-species systematic review investigates whether maternal prenatal stress affects the offspring's gut microbiome. The study analyzes 19 empirical, peer-reviewed research articles, including humans, rodents, and non-human primates, that included prenatal stress as a primary independent variable and offspring gut microbiome characteristics as an outcome variable. Prenatal stress appeared to correlate with differences in beta diversity and specific microbial taxa, but not alpha diversity. Prenatal stress is positively correlated with Proteobacteria, Bacteroidaceae, Lachnospiraceae, Prevotellaceae, Bacteroides, and Serratia. Negative correlations were observed for Actinobacteria, Enterobacteriaceae, Streptococcaceae, Bifidobacteria, Eggerthella, Parabacteroides, and Streptococcus. Evidence for the direction of association between prenatal stress and Lactobacillus was mixed. The synthesis of findings was limited by differences in study design, operationalization and timing of prenatal stress, timing of infant microbiome sampling, and microbiome analysis methods.
Collapse
Affiliation(s)
- Michelle D. Graf
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicolas Murgueitio
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Vogel
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Lauren Hicks
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexander L. Carlson
- Pediatric Physician Scientist Training Program, Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, California, USA
| | - Cathi B. Propper
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mary Kimmel
- Department of Psychiatry, Washington University in St. Louis., St. Louis, Missouri, USA
| |
Collapse
|
16
|
Duman H, Karav S. Fiber and the gut microbiome and its impact on inflammation. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:51-76. [DOI: 10.1016/b978-0-443-18979-1.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Woortman MA, Barrett ES, O’Connor TG, Gill SR, Scheible K, Brunner J, Sun H, Dominguez-Bello MG. Feeding Expressed Breast Milk Alters the Microbial Network of Breast Milk and Increases Breast Milk Microbiome Diversity over Time. Microorganisms 2024; 13:12. [PMID: 39858780 PMCID: PMC11767962 DOI: 10.3390/microorganisms13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Breastfeeding supplies nutrition, immunity, and hormonal cues to infants. Feeding expressed breast milk may result in de-phased milk production and feeding times, which distort the real-time circadian cues carried by breast milk. We hypothesized that providing expressed breast milk alters the microbiotas of both breast milk and the infant's gut. To test this hypothesis, we analyzed the microbiota of serial breast milk and infant fecal samples obtained from 14 mother-infant dyads who were lactating, half of which were providing expressed breast milk. Infant fecal microbiota showed lower α-diversity than breast milk microbiota. Bacterial amplicon sequence variant sharing occurred between breast milk and infant feces with no feeding group differences. However, the age-dependent gain in breast milk α-diversity was only significant in the expressed breast milk group and not in the direct breastfeeding group, suggesting that decreased contact with the infant's mouth influences the milk microbiota. Trending lower connectivity was also noted with breast milk microbes in the direct breastfeeding group, consistent with regular perturbations of the developing baby's oral microbiota by latching on the breast. The results of this preliminary study urge further research to independently confirm the effects of providing expressed breast milk and their health significance.
Collapse
Affiliation(s)
- Melissa A. Woortman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA;
| | - Thomas G. O’Connor
- Departments of Psychiatry, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA;
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA;
| | - Kristin Scheible
- Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA;
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY 14642, USA;
| | - Haipeng Sun
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Maria G. Dominguez-Bello
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Anthropology, Rutgers University, New Brunswick, NJ 08901, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
18
|
Ma X, Li T, Liu C, Ge H, Zheng D, Ma J, Guo Y, Zhang X, Liu J, Liu Y, Li Y, Shen W, Ma Y, Liu Y, Su R, Wang T, Zhang X, Ma J, Wang H. Alterations of gut microbiota and metabolome are associated with primary nephrotic syndrome in children. BMC Microbiol 2024; 24:519. [PMID: 39633292 PMCID: PMC11619441 DOI: 10.1186/s12866-024-03667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Dysbiosis of gut microbiota acts as a cause of Treg abnormalities. However, the intestinal metabolic impact of PNS with children remains poorly understood. This study aims to investigate the dynamic changes of gut microbiota and it's metabolism in children with PNS. METHODS Fecal and peripheral blood samples were separately collected from patients with initial diagnosis of PNS (PNS_In group), recurrence of PNS (PNS_Re group), and healthy controls (HCs group). The fecal samples were subjected to the microbiome and metabolome by the multi-omics analysis. Additionally, the peripheral blood samples were collected and associated inflammatory indicators were determined. RESULTS We found that in PNS_In group, lipopolysaccharide (LPS), pro-inflammatory interleukin (IL)-6, IL-17A, IL-23p19, and IL-1β were significantly increased compared with those in HCs group. However, these abnormalities were dramatically reversed in PNS_Re group treated with prednisone acetate. Moreover, the crucial Treg/Th17 axis in PNS inflammation was also proved to be discriminated between PNS and HCs. Gut microbial dysbiosis was identified in PNS_In and PNS_Re patients. At the genus level, compared to HCs group, the abundance of Faecalibacterium notably changed in PNS_In and PNS_Re groups, showing negatively correlated with inflammatory factors. Moreover, the fecal metabolome of PNS_In and PNS_Re remarkably altered with the major impacts in the metabolism of phenylalanine, ABC transporters, arginine and proline. CONCLUSION The dynamic changes of gut microbiota and associated metabolites are closely correlated with initial period and recurrence of PNS in children via probably regulating inflammatory Th17/Treg axis, which may potentially provide novel targets for the control of the disease. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xiaolong Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ting Li
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 750001, China
| | - Chunxia Liu
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Huiqing Ge
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, 750001, China
| | - Dandan Zheng
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yamei Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxu Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jian Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yunyun Ma
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yajuan Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Rong Su
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Jinhai Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
19
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024; 16:1937-1953. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
20
|
Pahirah N, Narkwichean A, Taweechotipatr M, Wannaiampikul S, Duang-Udom C, Laosooksathit W. Comparison of Gut Microbiomes Between Neonates Born by Cesarean Section and Vaginal Delivery: Prospective Observational Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8302361. [PMID: 39640900 PMCID: PMC11620805 DOI: 10.1155/bmri/8302361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Background: Balanced diversity and abundance of gut microbiome play important roles in human health, including neonatal health. Though not established, there is evidence that the delivery route could alter the diversity of neonatal gut microbiomes. Objective: The objective of the study was to investigate the differences in the gut microbiomes of neonates delivered via cesarean section compared to those born by vaginal delivery and to identify the predominant microbial taxa present in each group. Study Design: A prospective observational study of 281 healthy neonates born between February 2021 and April 2023 at Her Royal Highness Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Thailand, was performed. The study population was divided into two groups: 139 neonates born via vaginal delivery and 141 neonates born via cesarean section. The microbiota composition of each neonate's fecal sample was identified by using 16S ribosomal ribonucleic acid metagenomic sequencing. Results: Neonates delivered vaginally exhibited a gut microbiome with higher abundance and diversity than those delivered by cesarean delivery. Bifidobacterium was the dominant genus in both groups. Bifidobacterium breve was the dominant species and was significantly higher in cesarean-delivered neonates compared to those delivered vaginally (24.0% and 9.2%, respectively) (p < 0.001). However, the taxonomy of only 89 (64.0%) and 44 (31.43%) fecal samples could be identified from the vaginal and cesarean delivery groups, respectively. Conclusion: Route of delivery is associated with neonatal gut microbiome abundance and diversity. Neonates delivered via vaginal delivery exhibited higher diversity but lower abundance of the dominant species in the gut microbiome. Trial Registration: Thai Clinical Trials Registry identifier: TCTR20221024003.
Collapse
Affiliation(s)
- Nichapat Pahirah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Amarin Narkwichean
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sivaporn Wannaiampikul
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Wipada Laosooksathit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| |
Collapse
|
21
|
Łuszczki E, Wyszyńska J, Dymek A, Drożdż D, González-Ramos L, Hartgring I, García-Carbonell N, Mazur A, Erdine S, Parnarauskienė J, Alvarez-Pitti J. The Effect of Maternal Diet and Lifestyle on the Risk of Childhood Obesity. Metabolites 2024; 14:655. [PMID: 39728436 DOI: 10.3390/metabo14120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Childhood obesity is a global health problem that affects at least 41 million children under the age of five. Increased BMI in children is associated with serious long-term health consequences, such as type 2 diabetes, cardiovascular disease, and psychological problems, including depression and low self-esteem. Although the etiology of obesity is complex, research suggests that the diet and lifestyle of pregnant women play a key role in shaping metabolic and epigenetic changes that can increase the risk of obesity in their children. Excessive gestational weight gain, unhealthy dietary patterns (including the Western diet), and pregnancy complications (such as gestational diabetes) are some of the modifiable factors that contribute to childhood obesity. The purpose of this narrative review is to summarize the most important and recent information on the impact of the diet and lifestyle of pregnant women on the risk of childhood obesity. Methods: This article is a narrative review that aims to summarize the available literature on the impact of pregnant women's diet and lifestyle on the risk of obesity in their offspring, with a focus on metabolic and epigenetic mechanisms. Results/Conclusions: Current evidence suggests that a pregnant woman's lifestyle and diet can significantly contribute to lowering the risk of obesity in their offspring. However, further high-quality research is needed to understand better the metabolic and epigenetic relationships concerning maternal factors that predispose offspring to obesity.
Collapse
Affiliation(s)
- Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Dymek
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Pediatric Institute, Jagiellonian University Medical College, 31-007 Krakow, Poland
| | - Laura González-Ramos
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Isa Hartgring
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Nuria García-Carbonell
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
| | - Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Serap Erdine
- Cerrahpasa Faculty of Medicine, Department of Cardiology, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| | - Justė Parnarauskienė
- Pediatric Department, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Julio Alvarez-Pitti
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Froń A, Orczyk-Pawiłowicz M. Breastfeeding Beyond Six Months: Evidence of Child Health Benefits. Nutrients 2024; 16:3891. [PMID: 39599677 PMCID: PMC11597163 DOI: 10.3390/nu16223891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Breastfeeding is globally recognized as the optimal method of infant nutrition, offering health benefits for both the child and the mother, making it a public health priority. However, the potential advantages of breastfeeding extend well beyond initial months. Breast milk adapts to the evolving needs of the growing infant, and its immunological, microbiological, and biochemical properties have been associated with enhanced protection against infections and chronic diseases, improved growth and development, and lower rates of hospitalization and mortality. This review explores the evidence supporting the continuation of breastfeeding beyond six months. More meticulous studies employing consistent methodologies and addressing confounders are essential. This will enable a more accurate determination of the extent and mechanisms of the positive impact of prolonged breastfeeding and allow for the implementation of effective public health strategies.
Collapse
Affiliation(s)
- Anita Froń
- Division of Chemistry and Immunochemistry, Department of Biochemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | | |
Collapse
|
23
|
Bilder DA, Sullivan S, Hughes MM, Dalton S, Hall-Lande J, Nicholls C, Bakian AV. Regional differences in autism and intellectual disability risk associated with cesarean section delivery. Autism Res 2024; 17:2418-2429. [PMID: 39420702 PMCID: PMC11568895 DOI: 10.1002/aur.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Prior epidemiological studies investigating the association between delivery mode (i.e., vaginal birth and cesarean section [C-section]) and autism spectrum disorder (ASD) and intellectual disability (ID) risk have reported mixed findings. This study examined ASD and ID risks associated with primary and repeat C-section within diverse US regions. During even years 2000-2016, 8-years-olds were identified with ASD and/or ID and matched to birth records [ASD only (N = 8566, 83.6% male), ASD + ID (N = 3445, 79.5% male), ID only (N = 6158, 60.8% male)] using the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring Network methodology. The comparison birth cohort (N = 1,456,914, 51.1% male) comprised all births recorded in the National Center for Health Statistics corresponding to birth years and counties in which surveillance occurred. C-section rates in the birth cohort demonstrated significant regional variation with lowest rates in the West. Overall models demonstrate increased odds of disability associated with primary and repeat C-section. Adjusted models, stratified by region, identified significant variability in disability likelihood associated with repeat C-section: increased odds occurred for all case groups in the Southeast, for ASD only and ID only in the Mid-Atlantic, and no case groups in the West. Regional variability in disability risk associated with repeat C-section coincides with differences in birth cohorts' C-section rates. This suggests increased likelihood of disability is not incurred by the procedure itself, but rather C-section serves as a proxy for exposures with regional variability that influence fetal development and C-section rates.
Collapse
Affiliation(s)
- Deborah A. Bilder
- Department of Psychiatry, University of Utah Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Scott Sullivan
- Department of Ob/Gyn, Inova Health System, Virginia, USA
| | - Michelle M. Hughes
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susan Dalton
- Department of Obstetrics & Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jennifer Hall-Lande
- Institute on Community Integration (ICI), University of Minnesota, Minneapolis, Minnesota, USA
| | - Connor Nicholls
- Department of Psychiatry, University of Utah Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Amanda V. Bakian
- Department of Psychiatry, University of Utah Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| |
Collapse
|
24
|
Berseth CL, Yeiser M, Harris CL, Kinnaman JN, Lappin V, Wampler JL, Zhuang W, Vanderhoof J. Infant formula with added Lacticaseibacillus rhamnosus GG supported adequate growth and was well tolerated in healthy term infants: a randomized controlled trial. Front Pediatr 2024; 12:1456607. [PMID: 39507493 PMCID: PMC11538007 DOI: 10.3389/fped.2024.1456607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Lacticaseibacillus rhamnosus GG (LGG) is a well-studied probiotic with a history of safe use. Methods In this double-blind, prospective study, growth and tolerance were evaluated in healthy term infants randomized to: marketed, routine intact cow's milk protein-based formula (Control, n = 172) or a similar investigational formula with added LGG (INV-LGG, n = 179; 106 CFU LGG®/g powder) from 14 to 120 days of age. Anthropometrics, stool characteristics, fussiness, and gassiness were evaluated through Day 120. Medically confirmed adverse events were recorded throughout the study period. The primary outcome was rate of weight gain from Day 14-120. Results Of 351 infants enrolled, 275 completed (Control, n = 131; INV-LGG, n = 144). No significant group differences in rate of weight gain from Day 14-120 were detected. Study formula acceptance and tolerance was good with no significant differences in study discontinuation due to study formula or parent-reported gassiness, stool frequency, or stool consistency; however mean fussiness relative to normal was significantly lower for INV-LGG vs Control at Days 60 and 90. Discussion In healthy term infants, a routine intact cow's milk protein-based formula with added LGG supported adequate growth and was well tolerated. Further studies are needed to evaluate potential benefits for fussiness and efficacy outcomes. Clinical Trial Registration Clinicaltrials.gov, identifier (NCT01897922).
Collapse
Affiliation(s)
- Carol Lynn Berseth
- Medical Sciences, Reckitt | Mead Johnson Nutrition, Evansville, IN, United States
| | | | - Cheryl L. Harris
- Medical Sciences, Reckitt | Mead Johnson Nutrition, Evansville, IN, United States
| | - Jennifer N. Kinnaman
- Nutrition Sciences, Reckitt | Mead Johnson Nutrition, Evansville, IN, United States
| | - Victoria Lappin
- Clinical Research, Research & Development, Reckitt, Hull, United Kingdom
| | - Jennifer L. Wampler
- Medical Sciences, Reckitt | Mead Johnson Nutrition, Evansville, IN, United States
| | - Weihong Zhuang
- Medical Sciences, Reckitt | Mead Johnson Nutrition, Evansville, IN, United States
| | - Jon Vanderhoof
- Gastroenterology, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Acharya B, Tofthagen M, Maciej-Hulme ML, Suissa MR, Karlsson NG. Limited support for a direct connection between prebiotics and intestinal permeability - a systematic review. Glycoconj J 2024; 41:323-342. [PMID: 39287885 PMCID: PMC11522178 DOI: 10.1007/s10719-024-10165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The intestinal barrier is a selective interface between the body´s external and the internal environment. Its layer of epithelial cells is joined together by tight junction proteins. In intestinal permeability (IP), the barrier is compromised, leading to increased translocation of luminal contents such as large molecules, toxins and even microorganisms. Numerous diseases including Inflammatory Bowel Disease (IBD), Coeliac disease (CD), autoimmune disorders, and diabetes are believed to be associated with IP. Dietary interventions, such as prebiotics, may improve the intestinal barrier. Prebiotics are non-digestible food compounds, that promote the growth and activity of beneficial bacteria in the gut. This systematic review assesses the connection between prebiotic usage and IP. PubMed and Trip were used to identify relevant studies conducted between 2010-2023. Only six studies were found, which all varied in the characteristics of the population, study design, and types of prebiotics interventions. Only one study showed a statistically significant effect of prebiotics on IP. Alteration of intestinal barrier function was measured by lactulose/mannitol, chromium-labelled Ethylenediaminetetraacetic acid (51Cr-EDTA), lactulose/rhamnose, and sucralose/erythritol excretion as well as zonulin and glucagon-like peptide 2 levels. Three studies also conducted gut microbiota assessment, and one of them showed statistically significant improvement of the gut microbiome. This study also reported a decrease in zonulin level. The main conclusion from this review is that there is a lack of human studies in this important field. Futhermore, large population studies and using standardized protocols, would be required to properly assess the impact of prebiotic intervention and improvement on IP.
Collapse
Affiliation(s)
- Binayak Acharya
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marthe Tofthagen
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Marissa L Maciej-Hulme
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Michal Rachel Suissa
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, P.O. Box 4, N-0130, Oslo, Norway.
| |
Collapse
|
26
|
Horwell E, Bearn P, Cutting SM. A microbial symphony: a literature review of the factors that orchestrate the colonization dynamics of the human colonic microbiome during infancy and implications for future health. MICROBIOME RESEARCH REPORTS 2024; 4:1. [PMID: 40207275 PMCID: PMC11977369 DOI: 10.20517/mrr.2024.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Since the advent of new sequencing and bioinformatic technologies, our understanding of the human microbiome has expanded rapidly over recent years. Numerous studies have indicated causal links between alterations to the microbiome and a range of pathological conditions. Furthermore, a large body of epidemiological data is starting to suggest that exposure, or lack thereof, to specific microbial species during the first five years of life has key implications for long-term health outcomes. These include chronic inflammatory and metabolic conditions such as diabetes, asthma, inflammatory bowel disease (IBD), and obesity, with the effects lasting into adulthood. Human microbial colonisation during these first five years of life is a highly dynamic process, with multiple environmental exposures recently being characterised to have influence before the microbiome stabilises and resembles that of an adult at 3-5 years. This short period of time, known as the window of opportunity, appears to "prime" immunoregulation for later life. Understanding and appreciating this aspect of human physiology is therefore crucial for clinicians, scientists, and public health officials. This review outlines the most recent evidence for the pre- and post-natal environments that order the development of the microbiome, how these influences metabolic and immunoregulatory pathways, and their associated health outcomes. It also discusses the limitations of the current knowledge base, and describes the potential microbiome-mediated interventions and public health measures that may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Edward Horwell
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Philip Bearn
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Simon M. Cutting
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
| |
Collapse
|
27
|
Cheng M, Dai Q, Liu Z, Wang Y, Zhou C. New progress in pediatric allergic rhinitis. Front Immunol 2024; 15:1452410. [PMID: 39351215 PMCID: PMC11439695 DOI: 10.3389/fimmu.2024.1452410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
The prevalence of allergic rhinitis (AR) in children is steadily increasing, and its onset is closely associated with genetic factors, living environment, and exposure to allergens. In recent years, an increasing number of diagnostic methods have been employed to assist in diagnosing AR. In addition to pharmaceutical treatments, personalized approaches such as environmental control and allergen-specific immunotherapy are gradually gaining popularity. In this article, we reviewed recent research on the etiology, diagnostic classification, treatment methods, and health management of AR in children. These insights will benefit the implementation of personalized diagnosis and treatment for children with AR, promoting health management strategies that improve symptoms and quality of life.
Collapse
Affiliation(s)
- Miao Cheng
- Department of Ophthalmology and Otolaryngology, Jingmen Centra Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Qianqian Dai
- Department of Infectious Disease, Jingmen Central Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Wang
- Department of Pediatrics, Jingmen Central Hospital, Jingmen Central Hospital affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Cuiyun Zhou
- Department of Ophthalmology and Otolaryngology, Jingmen Centra Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| |
Collapse
|
28
|
Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep 2024; 26:217-230. [PMID: 38642272 PMCID: PMC11282161 DOI: 10.1007/s11894-024-00932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW Growing evidence supports the contribution of age in the composition and function of the gut microbiome, with specific findings associated with health in old age and longevity. RECENT FINDINGS Current studies have associated certain microbiota, such as Butyricimonas, Akkermansia, and Odoribacter, with healthy aging and the ability to survive into extreme old age. Furthermore, emerging clinical and pre-clinical research have shown promising mechanisms for restoring a healthy microbiome in elderly populations through various interventions such as fecal microbiota transplant (FMT), dietary interventions, and exercise programs. Despite several conceptually exciting interventional studies, the field of microbiome research in the elderly remains limited. Specifically, large longitudinal studies are needed to better understand causative relationships between the microbiome and healthy aging. Additionally, individualized approaches to microbiome interventions based on patients' co-morbidities and the underlying functional capacity of their microbiomes are needed to achieve optimal results.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers, New Brunswick, NJ, USA.
| | - Kaitlyn Boyle
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
29
|
AlZaabi A, Younus HA, Al-Reasi HA, Al-Hajri R. Could environmental exposure and climate change Be a key factor in the rising incidence of early onset colorectal cancer? Heliyon 2024; 10:e35935. [PMID: 39258208 PMCID: PMC11386049 DOI: 10.1016/j.heliyon.2024.e35935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/12/2024] Open
Abstract
The emergence of early onset colorectal cancer (EOCRC) is believed to result from the complex interplay between external environmental factors and internal molecular processes. This review investigates the potential association between environmental exposure to chemicals and climate change and the increased incidence of EOCRC, focusing on their effects on gut microbiota (GM) dynamics. The manuscript explores the birth cohort effect, suggesting that individuals born after 1950 may be at higher risk of developing EOCRC due to cumulative environmental exposures. Furthermore, we also reviewed the impact of environmental pollution, including particulate matter and endocrine disrupting chemicals (EDCs), as well as global warming, on GM disturbance. Environmental exposures have the potential to disrupt GM composition and diversity, leading to dysbiosis, chronic inflammation, and oxidative stress, which are known risk factors associated with EOCRC. Particulate matter can enter the gastrointestinal tract, modifying GM composition and promoting the proliferation of pathogenic bacteria while diminishing beneficial bacteria. Similarly, EDCs, can induce GM alterations and inflammation, further increasing the risk of EOCRC. Additionally, global warming can influence GM through shifts in gut environmental conditions, affecting the host's immune response and potentially increasing EOCRC risk. To summarize, environmental exposure to chemicals and climate change since 1950 has been implicated as contributing factors to the rising incidence of EOCRC. Disruptions in gut microbiota homeostasis play a crucial role in mediating these associations. Consequently, there is a pressing need for enhanced environmental policies aimed at minimizing exposure to pollutants, safeguarding public health, and mitigating the burden of EOCRC.
Collapse
Affiliation(s)
- Adhari AlZaabi
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Hussein A Younus
- Nanotechnology Research Center, Sultan Qaboos University, PO Box 17, Al-Khoud, PC 123 Oman
| | - Hassan A Al-Reasi
- Department of Biology, College of Science, Sultan Qaboos University, PO Box 36, PC 123, Al-Khoud, Muscat, Oman
- Faculty of Education and Arts, Sohar University, PO Box 44, PC 311, Sohar, Oman
| | - Rashid Al-Hajri
- Department of Petrolleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P. O. Box 33, Al Khoud, Muscat, PC 123, Oman
| |
Collapse
|
30
|
Samarra A, Cabrera-Rubio R, Martínez-Costa C, Collado MC. Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Ann Clin Microbiol Antimicrob 2024; 23:72. [PMID: 39138497 PMCID: PMC11323388 DOI: 10.1186/s12941-024-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Alongside microbiota development, the evolution of the resistome is crucial in understanding the early-life acquisition and persistence of Antibiotic Resistance Genes (ARGs). Therefore, the aim of this study is to provide a comprehensive view of the evolution and dynamics of the neonatal resistome from 7 days to 4 months of age using a high-throughput qPCR platform. METHODS In the initial phase, a massive screening of 384 ARGs using a high-throughput qPCR in pooled healthy mother-infant pairs feces from the MAMI cohort was carried out to identify the most abundant and prevalent ARGs in infants and in mothers. This pre-analysis allowed for later targeted profiling in a large number of infants in a longitudinal manner during the first 4 months of life. 16S rRNA V3-V4 amplicon sequencing was performed to asses microbial composition longitudinally. Potential factors influencing the microbiota and ARGs in this period were also considered, such as mode of birth and breastfeeding type. RESULTS Following the massive screening, the top 45 abundant ARGs and mobile genetic elements were identified and studied in 72 infants during their first months of life (7 days, 1, 2, and 4 months). These genes were associated with resistance to aminoglycosides, beta-lactams and tetracyclines, among others, as well as integrons, and other mobile genetic elements. Changes in both ARG composition and quantity were observed during the first 4 months of life: most ARGs abundance increased over time, but mobile genetic elements decreased significantly. Further exploration of modulating factors highlighted the effect on ARG composition of specific microbial genus, and the impact of mode of birth at 7 days and 4 months. The influence of infant formula feeding was observed at 4-month-old infants, who exhibited a distinctive resistome composition. CONCLUSIONS This study illustrates the ARG evolution and dynamics in the infant gut by use of a targeted, high-throughput, quantitative PCR-based method. An increase in antibiotic resistance over the first months of life were observed with a fundamental role of delivery mode in shaping resistance profiles. Further, we highlighted the influence of feeding methods on the resistome development. These findings offer pivotal insights into dynamics of and factors influencing early-life resistome, with potential avenues for intervention strategies.
Collapse
Affiliation(s)
- Anna Samarra
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Raúl Cabrera-Rubio
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, School of Medicine, University of Valencia, Valencia, Spain
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, Valencia, Spain
| | - Maria Carmen Collado
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology- National Spanish Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
31
|
Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, García-Marcos L, Ros G, Martínez-Graciá C. The Early Appearance of Asthma and Its Relationship with Gut Microbiota: A Narrative Review. Microorganisms 2024; 12:1471. [PMID: 39065238 PMCID: PMC11278858 DOI: 10.3390/microorganisms12071471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is, worldwide, the most frequent non-communicable disease affecting both children and adults, with high morbidity and relatively low mortality, compared to other chronic diseases. In recent decades, the prevalence of asthma has increased in the pediatric population, and, in general, the risk of developing asthma and asthma-like symptoms is higher in children during the first years of life. The "gut-lung axis" concept explains how the gut microbiota influences lung immune function, acting both directly, by stimulating the innate immune system, and indirectly, through the metabolites it generates. Thus, the process of intestinal microbial colonization of the newborn is crucial for his/her future health, and the alterations that might generate dysbiosis during the first 100 days of life are most influential in promoting hypersensitivity diseases. That is why this period is termed the "critical window". This paper reviews the published evidence on the numerous factors that can act by modifying the profile of the intestinal microbiota of the infant, thereby promoting or inhibiting the risk of asthma later in life. The following factors are specifically addressed in depth here: diet during pregnancy, maternal adherence to a Mediterranean diet, mode of delivery, exposure to antibiotics, and type of infant feeding during the first three months of life.
Collapse
Affiliation(s)
- Clara Suárez-Martínez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Genoveva Yagüe-Guirao
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Microbiology Service, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Luis García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Pediatric Allergy and Pulmonology Units, Virgen de La Arrixaca University Clinical Hospital, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Gaspar Ros
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (C.S.-M.); (G.Y.-G.); (G.R.)
- Food Science and Nutrition Department, Veterinary Faculty, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
32
|
Reznik SE, Akinyemi AJ, Harary D, Latuga MS, Fuloria M, Charron MJ. The effect of cesarean delivery on the neonatal gut microbiome in an under-resourced population in the Bronx, NY, USA. BMC Pediatr 2024; 24:450. [PMID: 38997672 PMCID: PMC11245842 DOI: 10.1186/s12887-024-04908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Neonatal and early-life gut microbiome changes are associated with altered cardiometabolic and immune development. In this study, we explored Cesarean delivery effects on the gut microbiome in our high-risk, under-resourced Bronx, NY population. RESULTS Fecal samples from the Bronx MomBa Health Study (Bronx MomBa Health Study) were categorized by delivery mode (vaginal/Cesarean) and analyzed via 16 S rRNA gene sequencing at four timepoints over the first two years of life. Bacteroidota organisms, which have been linked to decreased risk for obesity and type 2 diabetes, were relatively reduced by Cesarean delivery, while Firmicutes organisms were increased. Organisms belonging to the Enterococcus genus, which have been tied to aberrant immune cell development, were relatively increased in the Cesarean delivery microbiomes. CONCLUSION Due to their far-reaching impact on cardiometabolic and immune functions, Cesarean deliveries in high-risk patient populations should be carefully considered.
Collapse
Affiliation(s)
- Sandra E Reznik
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forch. 312, Bronx, NY, 10461, USA
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Ayodele J Akinyemi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Harary
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Mariam S Latuga
- Department of Pediatrics, Division of Neonatology, The Children's Hospital at Montefiore Albert Einstein College of Medicine, 1601 Tenbroeck Avenue, 2nd floor, Bronx, NY, 10461, USA
| | - Mamta Fuloria
- Department of Pediatrics, Division of Neonatology, The Children's Hospital at Montefiore Albert Einstein College of Medicine, 1601 Tenbroeck Avenue, 2nd floor, Bronx, NY, 10461, USA.
| | - Maureen J Charron
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forch. 312, Bronx, NY, 10461, USA.
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine & the Fleischer Institute for Diabetes & Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Inchingolo F, Inchingolo AM, Latini G, Ferrante L, de Ruvo E, Campanelli M, Longo M, Palermo A, Inchingolo AD, Dipalma G. Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review. Pathogens 2024; 13:533. [PMID: 39057760 PMCID: PMC11280328 DOI: 10.3390/pathogens13070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed infants with that of F-fed infants and to evaluate the clinical implications of these differences. We searched databases on Scopus, Web of Science, and Pubmed with the following keywords: "gut microbiota", "gut microbiome", and "neonatal milk". The inclusion criteria were articles relating to the analysis of the intestinal microbiome of newborns in relation to the type of nutrition, clinical studies or case series, excluding reviews, meta-analyses, animal models, and in vitro studies. The screening phase ended with the selection of 13 publications for this work. Breastfed infants showed higher levels of beneficial bacteria such as Bifidobacterium and Lactobacillus, while F-fed infants had a higher prevalence of potentially pathogenic bacteria, including Clostridium difficile and Enterobacteriaceae. Infant feeding type influences the composition of oral GM significantly. Breastfeeding promotes a healthier and more diverse microbial ecosystem, which may offer protective health benefits. Future research should explore strategies to improve the GM of F-fed infants and understand the long-term health implications.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Angelo Michele Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Giulia Latini
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Laura Ferrante
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Elisabetta de Ruvo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Merigrazia Campanelli
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Marialuisa Longo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| | - Gianna Dipalma
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (A.M.I.); or (G.L.); or (L.F.); or (E.d.R.); (M.L.); or (A.D.I.); or (G.D.)
| |
Collapse
|
34
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
35
|
Xu J, Duar RM, Quah B, Gong M, Tin F, Chan P, Sim CK, Tan KH, Chong YS, Gluckman PD, Frese SA, Kyle D, Karnani N. Delayed colonization of Bifidobacterium spp. and low prevalence of B. infantis among infants of Asian ancestry born in Singapore: insights from the GUSTO cohort study. Front Pediatr 2024; 12:1421051. [PMID: 38915873 PMCID: PMC11194334 DOI: 10.3389/fped.2024.1421051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | | | - Baoling Quah
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Min Gong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Felicia Tin
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Penny Chan
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kiat Sim
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Kok Hian Tan
- SingHealth Duke-NUS Institute for Patient Safety and Quality, Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D. Gluckman
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Centre for SPDS Centre for Informed Futures, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - David Kyle
- Infinant Health, Inc., Davis, CA, United States
| | - Neerja Karnani
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Ryan N, Leahy-Warren P, Mulcahy H, O’Mahony S, Philpott L. The impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes: A scoping review protocol. PLoS One 2024; 19:e0304787. [PMID: 38837966 PMCID: PMC11152305 DOI: 10.1371/journal.pone.0304787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. INTRODUCTION Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. INCLUSION CRITERIA This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. METHODS This study will be guided by the Joanna Briggs Institute's (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Collapse
Affiliation(s)
- Niamh Ryan
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | | | - Helen Mulcahy
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| | - Siobhain O’Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Ireland, University College Cork, Ireland
| | - Lloyd Philpott
- School of Nursing and Midwifery, University College Cork, Wilton, Cork, Ireland
| |
Collapse
|
37
|
Bridgman SL, Penfold S, Field CJ, Haqq AM, Mandhane PJ, Moraes TJ, Turvey SE, Simons E, Subbarao P, Kozyrskyj AL. Pre-labor and post-labor cesarean delivery and early childhood adiposity in the Canadian Healthy Infant Longitudinal Development (CHILD) Cohort Study. Int J Obes (Lond) 2024; 48:717-724. [PMID: 38302592 DOI: 10.1038/s41366-024-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND/OBJECTIVES Delivery by cesarean section (CS) compared to vaginal delivery has been associated with increased risk of overweight in childhood. Our study examined if the presence or absence of labor events in CS delivery altered risk of overweight in early childhood (1-5 years) compared to vaginal delivery and if this association differed according to infant sex. SUBJECTS/METHODS The study included 3073 mother-infant pairs from the CHILD Cohort Study in Canada. Data from birth records were used to categorize infants as having been vaginally delivered, or delivered by CS, with or without labor events. Age and sex adjusted weight-for-length (WFL) and body mass index (BMI) z scores were calculated from height and weight data from clinic visits at 1, 3 and 5 years and used to classify children as overweight. Associations between delivery mode and child overweight at each timepoint were assessed using regression models, adjusting for relevant confounding factors including maternal pre-pregnancy BMI. Effect modification by infant sex was tested. RESULTS One in four infants (24.6%) were born by CS delivery; 13.0% involved labor events and 11.6% did not. Infants born by CS without labor had an increased odds of being overweight at age 1 year compared to vaginally delivered infants after adjustment for maternal pre-pregnancy BMI, maternal diabetes, smoking, infant sex and birthweight-for-gestational age (aOR 1.68 [95% CI 1.05-2.67]). These effects did not persist to 3 or 5 years of age and, after stratification by sex, were only seen in boys (aOR at 1 year 2.21 [95% CI 1.26-3.88]). CONCLUSION AND RELEVANCE Our findings add to the body of evidence that CS, in particular CS without labor events, may be a risk factor for overweight in early life, and that this association may be sex-specific. These findings could help to identify children at higher risk for developing obesity.
Collapse
Affiliation(s)
- Sarah L Bridgman
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- London School of Hygiene and Tropical Medicine, University of London, London, UK.
| | - Suzanne Penfold
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Catherine J Field
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital, Vancouver, BC, Canada
| | - Elinor Simons
- Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Padmaja Subbarao
- Department of Pediatrics and Physiology, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Jones JM, Reinke SN, Mousavi-Derazmahalleh M, Garssen J, Jenmalm MC, Srinivasjois R, Silva D, Keelan J, Prescott SL, Palmer DJ, Christophersen CT. Maternal prebiotic supplementation during pregnancy and lactation modifies the microbiome and short chain fatty acid profile of both mother and infant. Clin Nutr 2024; 43:969-980. [PMID: 38452522 DOI: 10.1016/j.clnu.2024.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND & AIMS Improving maternal gut health in pregnancy and lactation is a potential strategy to improve immune and metabolic health in offspring and curtail the rising rates of inflammatory diseases linked to alterations in gut microbiota. Here, we investigate the effects of a maternal prebiotic supplement (galacto-oligosaccharides and fructo-oligosaccharides), ingested daily from <21 weeks' gestation to six months' post-partum, in a double-blinded, randomised placebo-controlled trial. METHODS Stool samples were collected at multiple timepoints from 74 mother-infant pairs as part of a larger, double-blinded, randomised controlled allergy intervention trial. The participants were randomised to one of two groups; with one group receiving 14.2 g per day of prebiotic powder (galacto-oligosaccharides GOS and fructo-oligosaccharides FOS in ratio 9:1), and the other receiving a placebo powder consisting of 8.7 g per day of maltodextrin. The faecal microbiota of both mother and infants were assessed based on the analysis of bacterial 16S rRNA gene (V4 region) sequences, and short chain fatty acid (SCFA) concentrations in stool. RESULTS Significant differences in the maternal microbiota profiles between baseline and either 28-weeks' or 36-weeks' gestation were found in the prebiotic supplemented women. Infant microbial beta-diversity also significantly differed between prebiotic and placebo groups at 12-months of age. Supplementation was associated with increased abundance of commensal Bifidobacteria in the maternal microbiota, and a reduction in the abundance of Negativicutes in both maternal and infant microbiota. There were also changes in SCFA concentrations with maternal prebiotics supplementation, including significant differences in acetic acid concentration between intervention and control groups from 20 to 28-weeks' gestation. CONCLUSION Maternal prebiotic supplementation of 14.2 g per day GOS/FOS was found to favourably modify both the maternal and the developing infant gut microbiome. These results build on our understanding of the importance of maternal diet during pregnancy, and indicate that it is possible to intervene and modify the development of the infant microbiome by dietary modulation of the maternal gut microbiome.
Collapse
Affiliation(s)
- Jacquelyn M Jones
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; The Western Australian Human Microbiome Collaboration Centre, Curtin University, Bentley, WA 6027, Australia.
| | - Stacey N Reinke
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CS Utrecht, the Netherlands; Nutricia Research, 3584 CT Utrecht, the Netherlands
| | - Maria C Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Ravisha Srinivasjois
- Joondalup Health Campus, Joondalup, WA 6027, Australia; School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Desiree Silva
- Joondalup Health Campus, Joondalup, WA 6027, Australia; School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jeffrey Keelan
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Susan L Prescott
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; Department of Immunology and Dermatology, Perth Children's Hospital, Nedlands, WA 6009, Australia; Nova Institute for Health, Baltimore, MD 21231, USA
| | - Debra J Palmer
- School of Medicine, The University of Western Australia, Crawley, WA 6009, Australia; Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Claus T Christophersen
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; The Western Australian Human Microbiome Collaboration Centre, Curtin University, Bentley, WA 6027, Australia; Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
39
|
Huang K, Gaml-Sørensen A, Brix N, Ernst A, Arendt LH, Bonde JPE, Hougaard KS, Toft G, Tøttenborg SS, Ramlau-Hansen CH. Birth by caesarean section and semen quality in adulthood: a Danish population-based cohort study. Reprod Health 2024; 21:33. [PMID: 38459587 PMCID: PMC10921573 DOI: 10.1186/s12978-024-01761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The caesarean section (CS) rate has increased worldwide and there is an increasing public and scientific interest in the potential long-term health consequences for the offspring. CS is related to persistent aberrant microbiota colonization in the offspring, which may negatively interfere with sex hormone homeostasis and thus potentially affect the reproductive health. It remains unknown whether adult sons' semen quality is affected by CS. We hypothesize that CS is associated with lower semen quality. METHODS This study was based on the Fetal Programming of Semen Quality cohort (FEPOS, enrolled from 2017 to 2019) nested within the Danish National Birth Cohort (DNBC, enrolled from 1996 to 2002). A total of 5697 adult sons of mothers from the DNBC were invited to the FEPOS cohort, and 1044 young men participated in this study. Information on mode of delivery was extracted from the Danish Medical Birth Registry, and included vaginal delivery, elective CS before labor, emergency CS during labor and unspecified CS. The young men provided a semen sample for analysis of semen volume, sperm concentration, motility and morphology. Negative binomial regression models were applied to examine the association between CS and semen characteristics with estimation of relative differences in percentages with 95% confidence intervals (CIs). RESULTS Among included sons, 132 (13%) were born by CS. We found a slightly lower non-progressive sperm motility (reflecting higher progressive sperm motility) among sons born by CS compared to sons born by vaginal delivery [relative difference (95% CI): - 7.5% (- 14.1% to - 0.4%)]. No differences were observed for other sperm characteristics. When CS was further classified into elective CS, emergency CS and unspecified CS in a sensitivity analysis, no significant differences in non-progressive motility were observed among sons born by any of the three types of CS compared to sons born vaginally. CONCLUSIONS This large population-based cohort study found no significant evidence for an adverse effect on semen quality in adult sons born by CS.
Collapse
Affiliation(s)
- Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, 230032, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, Hefei, 230032, China.
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark.
| | - Anne Gaml-Sørensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Linn Håkonsen Arendt
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000, Aarhus C, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400, Copenhagen, NV, Denmark
- Department of Public Health, University of Copenhagen, 1353, Copenhagen K, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, University of Copenhagen, 1353, Copenhagen K, Denmark
- National Research Centre for the Working Environment, 2100, Copenhagen, OE, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200, Arhus N, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, 2400, Copenhagen, NV, Denmark
- Department of Public Health, University of Copenhagen, 1353, Copenhagen K, Denmark
| | | |
Collapse
|
40
|
Tarracchini C, Milani C, Lugli GA, Mancabelli L, Turroni F, van Sinderen D, Ventura M. The infant gut microbiota as the cornerstone for future gastrointestinal health. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:93-119. [PMID: 38637108 DOI: 10.1016/bs.aambs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| |
Collapse
|
41
|
Rodríguez-Negrete EV, Morales-González Á, Madrigal-Santillán EO, Sánchez-Reyes K, Álvarez-González I, Madrigal-Bujaidar E, Valadez-Vega C, Chamorro-Cevallos G, Garcia-Melo LF, Morales-González JA. Phytochemicals and Their Usefulness in the Maintenance of Health. PLANTS (BASEL, SWITZERLAND) 2024; 13:523. [PMID: 38498532 PMCID: PMC10892216 DOI: 10.3390/plants13040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Inflammation is the immune system's first biological response to infection, injury, or irritation. Evidence suggests that the anti-inflammatory effect is mediated by the regulation of various inflammatory cytokines, such as nitric oxide, interleukins, tumor necrosis factor alpha-α, interferon gamma-γ, as well as the non-cytokine mediator, prostaglandin E2. Currently, the mechanism of action and clinical usefulness of phytochemicals is known; their action on the activity of cytokines, free radicals, and oxidative stress. The latter are of great relevance in the development of diseases, such that the evidence collected demonstrates the beneficial effects of phytochemicals in maintaining health. Epidemiological evidence indicates that regular consumption of fruits and vegetables is related to a low risk of developing cancer and other chronic diseases.
Collapse
Affiliation(s)
- Elda Victoria Rodríguez-Negrete
- Servicio de Gastroenterología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional ”A. López Mateos”, Ciudad de México 07738, Mexico
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Karina Sánchez-Reyes
- Servicio de Cirugía General, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Mexico City 06720, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Zacatenco, Gustavo A. Madero, Mexico City 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - German Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico;
| | - Luis Fernando Garcia-Melo
- Laboratorio de Nanotecnología e Ingeniería Molecular, Área Electroquímica, Departamento de Química, CBI, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
42
|
Inchingolo F, Inchingolo AD, Palumbo I, Trilli I, Guglielmo M, Mancini A, Palermo A, Inchingolo AM, Dipalma G. The Impact of Cesarean Section Delivery on Intestinal Microbiota: Mechanisms, Consequences, and Perspectives-A Systematic Review. Int J Mol Sci 2024; 25:1055. [PMID: 38256127 PMCID: PMC10816971 DOI: 10.3390/ijms25021055] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The relationship between cesarean section (CS) delivery and intestinal microbiota is increasingly studied. CS-born infants display distinct gut microbial compositions due to the absence of maternal birth canal microorganisms. These alterations potentially link to long-term health implications like immune-related disorders and allergies. This correlation underscores the intricate connection between birth mode and the establishment of diverse intestinal microbiota. A systematic literature review was conducted on the PubMed, Scopus, and Web of Science databases by analyzing the articles and examining the intricate interactions between CS delivery and the infant's intestinal microbiota. The analysis, based on a wide-ranging selection of studies, elucidates the multifaceted dynamics involved in CS-associated shifts in the establishment of fetal microbiota. We also explore the potential ramifications of these microbial changes on neonatal health and development, providing a comprehensive overview for clinicians and researchers. By synthesizing current findings, this review contributes to a deeper understanding of the interplay between delivery mode and early microbial colonization, paving the way for informed clinical decisions and future investigations in the field of perinatal medicine.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irene Palumbo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Mariafrancesca Guglielmo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (I.P.); (I.T.); (M.G.); (A.M.); (A.M.I.); (G.D.)
| |
Collapse
|
43
|
Kijner S, Ennis D, Shmorak S, Florentin A, Yassour M. CRISPR-Cas-based identification of a sialylated human milk oligosaccharides utilization cluster in the infant gut commensal Bacteroides dorei. Nat Commun 2024; 15:105. [PMID: 38167825 PMCID: PMC10761964 DOI: 10.1038/s41467-023-44437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The infant gut microbiome is impacted by early-life feeding, as human milk oligosaccharides (HMOs) found in breastmilk cannot be digested by infants and serve as nutrients for their gut bacteria. While the vast majority of HMO-utilization research has focused on Bifidobacterium species, recent studies have suggested additional HMO-utilizers, mostly Bacteroides, yet their utilization mechanism is poorly characterized. Here, we investigate Bacteroides dorei isolates from breastfed-infants and identify that polysaccharide utilization locus (PUL) 33 enables B. dorei to utilize sialylated HMOs. We perform transcriptional profiling and identity upregulated genes when growing on sialylated HMOs. Using CRISPR-Cas12 to knock-out four PUL33 genes, combined with complementation assays, we identify GH33 as the critical gene in PUL33 for sialylated HMO-utilization. This demonstration of an HMO-utilization system by Bacteroides species isolated from infants opens the way to further characterization of additional such systems, to better understand HMO-utilization in the infant gut.
Collapse
Affiliation(s)
- Sivan Kijner
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dena Ennis
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shimrit Shmorak
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Florentin
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moran Yassour
- Microbiology & Molecular Genetics Department, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
Peng Y, Tun HM, Ng SC, Wai HKF, Zhang X, Parks J, Field CJ, Mandhane P, Moraes TJ, Simons E, Turvey SE, Subbarao P, Brook JR, Takaro TK, Scott JA, Chan FKL, Kozyrskyj AL. Maternal smoking during pregnancy increases the risk of gut microbiome-associated childhood overweight and obesity. Gut Microbes 2024; 16:2323234. [PMID: 38436093 PMCID: PMC10913716 DOI: 10.1080/19490976.2024.2323234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Childhood obesity is linked to maternal smoking during pregnancy. Gut microbiota may partially mediate this association and could be potential targets for intervention; however, its role is understudied. We included 1,592 infants from the Canadian Healthy Infants Longitudinal Development Cohort. Data on environmental exposure and lifestyle factors were collected prenatally and throughout the first three years. Weight outcomes were measured at one and three years of age. Stool samples collected at 3 and 12 months were analyzed by sequencing the V4 region of 16S rRNA to profile microbial compositions and magnetic resonance spectroscopy to quantify the metabolites. We showed that quitting smoking during pregnancy did not lower the risk of offspring being overweight. However, exclusive breastfeeding until the third month of age may alleviate these risks. We also reported that maternal smoking during pregnancy significantly increased Firmicutes abundance and diversity. We further revealed that Firmicutes diversity mediates the elevated risk of childhood overweight and obesity linked to maternal prenatal smoking. This effect possibly occurs through excessive microbial butyrate production. These findings add to the evidence that women should quit smoking before their pregnancies to prevent microbiome-mediated childhood overweight and obesity risk, and indicate the potential obesogenic role of excessive butyrate production in early life.
Collapse
Affiliation(s)
- Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hein M Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hogan Kok-Fung Wai
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jaclyn Parks
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Piush Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Stuart E Turvey
- Department of Pediatrics, Child and Family Research Institute, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Francis KL Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Fasano A, Matera M. Probiotics to Prevent Celiac Disease and Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:95-111. [PMID: 39060733 DOI: 10.1007/978-3-031-58572-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The incidence of chronic inflammatory diseases (CIDs) is dramatically increasing in the developed world, resulting in an increased burden of disease in childhood. Currently, there are limited effective strategies for treating or preventing these conditions. To date, myriads of cross-sectional studies have described alterations in the composition of the gut microbiota in a variety of disease states, after the disease has already occurred. We suggest that to mechanically link these microbiome changes with disease pathogenesis, a prospective cohort design is needed to capture changes that precede or coincide with disease onset and symptoms. In addition, these prospective studies must integrate microbiological, metagenomic, meta transcriptomic and metabolomic data with minimal and standardized clinical and environmental metadata that allow to correctly compare and interpret the results of the analysis of the human microbiota in order to build a system-level model of the interactions between the host and the development of the disease. The creation of new biological computational models thus constructed will allow us to finally move from the detection of simple elements of "association" to the identification of elements of real "causality" allowing to provide a mechanistic approach to the exploration of the development of CIDs.This can only be done when these diseases are studied as complex biological networks. In this chapter we discuss the current knowledge regarding the contribution of the microbiome to CID in childhood, focusing on celiac disease and inflammatory bowel disease, with the overall aim of identifying pathways to shift research from descriptive to mechanistic approaches. We then examine how some components of the microbiota, through epigenetic reprogramming, can start the march from genetic predisposition to clinical expression of CIDs, thus opening up new possibilities for intervention, through microbiota therapy targeting the manipulation of the composition and function of the microbiota, for future applications of precision medicine and primary prevention.
Collapse
Affiliation(s)
- Alessio Fasano
- Research Centre for Immunology and Mucosal Biology and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, USA, MA.
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Mass General for Children - Harvard Medical School, Boston, MA, USA.
| | - Mariarosaria Matera
- Neonatologist, Neurodevelopmental Clinics and Pediatric Clinical Microbiomic - Misericordia Hospital, Grosseto, Italy
| |
Collapse
|
46
|
Chowdhury K, Sinha S, Kumar S, Haque M, Ahmad R. Constipation: A Pristine Universal Pediatric Health Delinquent. Cureus 2024; 16:e52551. [PMID: 38249647 PMCID: PMC10797657 DOI: 10.7759/cureus.52551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Constipation suffered by children is a global public health problem. Functional constipation (FC) brings about deteriorating effects in the children's lives who suffer from it. The risk factors for the development of constipation include the consumption of a diet low in fiber and high in calories (such as the consumption of fast food), a sedentary lifestyle with a lack of exercise, a family history of constipation, and emotional and psychological stress endured by children in their families. It is one of the most common causes of stomachaches in children. FC may lead to fecal incontinence (FI), anal fissures, recurrent urinary tract infections (RUTI), and enuresis in children. Severe constipation may result in stool becoming rock-hard and inflexible in the rectum, which is clinically identified as fecal impaction. It is imperative to perform clinical evaluation and treatment, including pharmacological (the use of stimulant and osmotic laxatives) and non-pharmacological (education, changes in diet, intervention to promote positive behavior and address any emotional issues, toilet training, and physiotherapy for the pelvic floor) interventions. In the case of refractory patients, neuromodulation, the irrigation of the anal canal, and surgical management may be needed. It is essential to lead a healthy, stress-free lifestyle with plenty of exercise and a balanced diet rich in fiber (such as fruits and vegetables) so children can have regular bowel habits and thrive.
Collapse
Affiliation(s)
- Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| |
Collapse
|
47
|
Vänni P, Tejesvi MV, Paalanne N, Aagaard K, Ackermann G, Camargo CA, Eggesbø M, Hasegawa K, Hoen AG, Karagas MR, Kolho KL, Laursen MF, Ludvigsson J, Madan J, Ownby D, Stanton C, Stokholm J, Tapiainen T. Machine-learning analysis of cross-study samples according to the gut microbiome in 12 infant cohorts. mSystems 2023; 8:e0036423. [PMID: 37874156 PMCID: PMC10734493 DOI: 10.1128/msystems.00364-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE There are challenges in merging microbiome data from diverse research groups due to the intricate and multifaceted nature of such data. To address this, we utilized a combination of machine-learning (ML) models to analyze 16S sequencing data from a substantial set of gut microbiome samples, sourced from 12 distinct infant cohorts that were gathered prospectively. Our initial focus was on the mode of delivery due to its prior association with changes in infant gut microbiomes. Through ML analysis, we demonstrated the effective merging and comparison of various gut microbiome data sets, facilitating the identification of robust microbiome biomarkers applicable across varied study populations.
Collapse
Affiliation(s)
- Petri Vänni
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Mysore V. Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Niko Paalanne
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Kjersti Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Merete Eggesbø
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kaija-Leena Kolho
- Children’s Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Martin F. Laursen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Juliette Madan
- Department of Psychiatry, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Department of Pediatrics, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Dennis Ownby
- Medical College of Georgia, Augusta, Georgia, USA
| | - Catherine Stanton
- Teagasc Food Research Centre & APC Microbiome Ireland, Moorepark, Fermoy, Co. Cork, Ireland
| | - Jakob Stokholm
- Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Terhi Tapiainen
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
48
|
Motoki N, Inaba Y, Toubou H, Hasegawa K, Shibazaki T, Tsukahara T, Nomiyama T. Impact of dog and/or cat ownership on functional constipation at 3 years of age: the Japan Environment and Children's study. BMC Pediatr 2023; 23:595. [PMID: 37996790 PMCID: PMC10666348 DOI: 10.1186/s12887-023-04412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE This investigation assessed the impact of dog and/or cat ownership during infancy on the presence of functional constipation (FC) at 3 years of age. METHODS The fixed data of 73,936 singleton births from a large national birth cohort study commencing in 2011 were used to identify FC as estimated by Rome III at 3 years of age. Multiple logistic regression analysis was employed to search for correlations between FC development and dog and/or cat ownership in early childhood. RESULTS A total of 8,459 toddlers (11.6%) met the Rome III criteria for FC at 3 years of age. Overall, 57,264 (77.5%) participants had never owned a dog or cat. We identified 7,715 (10.4%) infant-period owners, 1,295 (1.8%) current owners, and 7,762 (10.5%) long-term owners. Multivariate analysis showed that infant-period ownership remained significantly associated with the risk of developing FC at 3 years of age after adjusting for covariates (adjusted OR [95% CI] 1.09 [1.01-1.19] based on non-ownership). CONCLUSIONS This Japanese large nationwide survey uncovered a possible adverse effect of infant-period dog and/or cat ownership prior to 6 months of age on FC status at 3 years of age.
Collapse
Affiliation(s)
- Noriko Motoki
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.
| | - Yuji Inaba
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Neurology, Nagano Children's Hospital, Azumino, Nagano, Japan
- Life Science Research Center, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Hirokazu Toubou
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kohei Hasegawa
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Teruomi Tsukahara
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tetsuo Nomiyama
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
49
|
Miyayama C, Morisaki N, Ogawa K, Tanaka H, Shoji H, Shimizu T, Sago H, Horikawa R, Urayama KY. Evaluating the association between caesarean delivery and weight status in early childhood in a Japanese birth cohort study. Sci Rep 2023; 13:19612. [PMID: 37949883 PMCID: PMC10638261 DOI: 10.1038/s41598-023-45316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
To examine whether the prevailing hypothesis of an association between caesarean section (CS) delivery method and increased weight status in early childhood is observed in Japanese. A total of 1277 mother-infant pairs from a prospective hospital-based mother-infant birth cohort that recruited women in their first trimester from May 2010 to November 2013 were included. We assessed the relationship between delivery method and weight status of delivered children at 1, 3 and 6 years of age. In total, 366 children (28.7%) were delivered by CS. Delivery by CS was not associated with body mass index (BMI) z-score (≥ 75 percentile) at age 1 year, (odds ratio (OR) 0.97, 95% confidence interval (CI) 0.69-1.36), 3 years (OR 0.98, 95% CI 0.67-1.42), and 6 years (OR 0.71, 95% CI 0.45-1.12), and also showed no association with low weight status (< 25th percentile). Supplemental evaluations addressing the influence of preterm births, pre-pregnancy BMI, emergency CS, and modification by breastfeeding were consistent with the primary analyses. Our findings do not support the hypothesis that children born by CS are at risk of being overweight in childhood among the Japanese population.
Collapse
Affiliation(s)
- Chiharu Miyayama
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Graduate School of Public Health, St. Luke's International University, 3-6-2 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Naho Morisaki
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kohei Ogawa
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
- Collaborative Departments of Advanced Pediatric Medicine, Tohoku University, Miyagi, Japan
| | - Hisako Tanaka
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
- Collaborative Departments of Advanced Pediatric Medicine, Tohoku University, Miyagi, Japan
| | - Reiko Horikawa
- Department of Endocrinology, National Center for Child Health and Development, Tokyo, Japan
| | - Kevin Y Urayama
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan.
- Graduate School of Public Health, St. Luke's International University, 3-6-2 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
50
|
Gao S, Wang J. Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care. Protein Cell 2023; 14:807-823. [PMID: 37184065 PMCID: PMC10636639 DOI: 10.1093/procel/pwad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Microbes are commonly sensitive to shifts in the physiological and pathological state of their hosts, including mothers and babies. From this perspective, the microbiome may be a good indicator for diseases during pregnancy and has the potential to be used for perinatal health monitoring. This is embodied in the application of microbiome from multi body sites for auxiliary diagnosis, early prediction, prolonged monitoring, and retrospective diagnosis of pregnancy and infant complications, as well as nutrition management and health products developments of mothers and babies. Here we summarized the progress in these areas and explained that the microbiome of different body sites is sensitive to different diseases and their microbial biomarkers may overlap between each other, thus we need to make a diagnosis prudently for those diseases. Based on the microbiome variances and additional anthropometric and physical data, individualized responses of mothers and neonates to meals and probiotics/prebiotics were predictable, which is of importance for precise nutrition and probiotics/prebiotics managements and developments. Although a great deal of encouraging performance was manifested in previous studies, the efficacy could be further improved by combining multi-aspect data such as multi-omics and time series analysis in the future. This review reconceptualizes maternal and infant health from a microbiome perspective, and the knowledge in it may inspire the development of new options for the prevention and treatment of adverse pregnancy outcomes and bring a leap forward in perinatal health care.
Collapse
Affiliation(s)
- Shengtao Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|