1
|
Fumagalli A, Castells-Nobau A, Trivedi D, Garre-Olmo J, Puig J, Ramos R, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Swann J, Martin-Garcia E, Maldonado R, Fernández-Real JM, Mayneris-Perxachs J. Archaea methanogens are associated with cognitive performance through the shaping of gut microbiota, butyrate and histidine metabolism. Gut Microbes 2025; 17:2455506. [PMID: 39910065 PMCID: PMC11810085 DOI: 10.1080/19490976.2025.2455506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
The relationship between bacteria, cognitive function and obesity is well established, yet the role of archaeal species remains underexplored. We used shotgun metagenomics and neuropsychological tests to identify microbial species associated with cognition in a discovery cohort (IRONMET, n = 125). Interestingly, methanogen archaeas exhibited the strongest positive associations with cognition, particularly Methanobrevibacter smithii (M. smithii). Stratifying individuals by median-centered log ratios (CLR) of M. smithii (low and high M. smithii groups: LMs and HMs) revealed that HMs exhibited better cognition and distinct gut bacterial profiles (PERMANOVA p = 0.001), characterized by increased levels of Verrucomicrobia, Synergistetes and Lentisphaerae species and reduced levels of Bacteroidetes and Proteobacteria. Several of these species were linked to the cognitive test scores. These findings were replicated in a large-scale validation cohort (Aging Imageomics, n = 942). Functional analyses revealed an enrichment of energy, butyrate, and bile acid metabolism in HMs in both cohorts. Global plasma metabolomics by CIL LC-MS in IRONMET identified an enrichment of methylhistidine, phenylacetate, alpha-linolenic and linoleic acid, and secondary bile acid metabolism associated with increased levels of 3-methylhistidine, phenylacetylgluamine, adrenic acid, and isolithocholic acid in the HMs group. Phenylacetate and linoleic acid metabolism also emerged in the Aging Imageomics cohort performing untargeted HPLC-ESI-MS/MS metabolic profiling, while a targeted bile acid profiling identified again isolithocholic acid as one of the most significant bile acid increased in the HMs. 3-Methylhistidine levels were also associated with intense physical activity in a second validation cohort (IRONMET-CGM, n = 116). Finally, FMT from HMs donors improved cognitive flexibility, reduced weight, and altered SCFAs, histidine-, linoleic acid- and phenylalanine-related metabolites in the dorsal striatum of recipient mice. M. smithii seems to interact with the bacterial ecosystem affecting butyrate, histidine, phenylalanine, and linoleic acid metabolism with a positive impact on cognition, constituting a promising therapeutic target to enhance cognitive performance, especially in subjects with obesity.
Collapse
Affiliation(s)
- Andrea Fumagalli
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Dakshat Trivedi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josep Garre-Olmo
- serra-hunter program Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Catalonia, Spain
- Research in Vascular Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, IDIBGI-CERCA, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Jonathan Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Elena Martin-Garcia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| |
Collapse
|
2
|
Charlesson B, Jones J, Abbiss C, Peeling P, Watts S, Christophersen C. Training load influences gut microbiome of highly trained rowing athletes. J Int Soc Sports Nutr 2025; 22:2507952. [PMID: 40400144 PMCID: PMC12100958 DOI: 10.1080/15502783.2025.2507952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Despite the importance of the gut microbiome on physical performance and health, little is known on the impact of training on an athlete's gut health. OBJECTIVE This study investigates the effect of training load on markers of gut health. METHODS Whole stool (24 h) samples were collected from 23 highly trained rowers (mean ± SD; age 19.2 ± 1.1 y; weight 80.1 ± 11.4 kg; height 1.83 ± 0.09 m) following periods of high (HT) and low training load (LT). The microbiome and short-chain fatty acid concentrations were characterized from the whole stool samples. Three-day weighted food records were used to determine diet quality (ADIcore), macronutrient, and fiber intakes during HT and LT. RESULTS By design, training duration (147%) and intensity (130%) were greater during (HT), compared with (LT) (p < 0.001). Carbohydrate, fat, protein, and fiber intake remained stable, but ADIcore was higher in HT (55 ± 10) compared with LT (49 ± 9; t(15) = 2.78, p = 0.014; CI: 1.34 to 10.155). Stool frequency (1.11 ± 0.47 vs 0.67 ± 0.76; p = 0.007) was lower in HT compared with LT, and a greater number of participants were unable to produce a stool sample during LT (8% vs 47%). Short chain fatty acid (SCFA), propionic (120.64 ± 30.06 mm vs 91.35 ± 34.91 mm; p = 0.007), and butyric acid (104.76 ± 50.02 vs 64.23 ± 22.05 mm, p = 0.003) concentrations were lower in HT compared with LT. Alpha diversity, Shannon-Wiener diversity index (3.43 ± 0.37 vs 3.67 ± 0.34, p = 0.09) was lower in HT than LT. The abundance of the dominant Bacteroidia was greater at HT compared to LT and ratio of firmicutes to Bacteroidota (n = 16, 1.31 ± 1.19 vs 4.29 ± 3.88, t(15) = -3.44, p = 0.04, CI = -4.82 to -1.13) was lower in HT compared to LT. CONCLUSION Results of this study indicate that gut microbiome, SCFA concentrations, stool frequency, and diet quality vary between periods of high and low training load in athletes. The relationship between these factors and impact of such changes in gut health is currently unclear and warrants further investigation.
Collapse
Affiliation(s)
- B. Charlesson
- Edith Cowan University, School of Medical and Health Science, Perth, Australia
- Western Australian Institute of Sport, Perth, Australia
| | - J. Jones
- Edith Cowan University, School of Medical and Health Science, Perth, Australia
| | - C. Abbiss
- Edith Cowan University, School of Medical and Health Science, Perth, Australia
| | - P. Peeling
- Western Australian Institute of Sport, Perth, Australia
- University of Western Australia, School of Human Sciences, Perth, Australia
| | - S. Watts
- Western Australian Institute of Sport, Perth, Australia
- University of Western Australia, School of Human Sciences, Perth, Australia
| | - C.T. Christophersen
- Edith Cowan University, School of Medical and Health Science, Perth, Australia
| |
Collapse
|
3
|
Martinez-Tellez B, Xu H, Ortiz-Alvarez L, Rodríguez-García C, Schönke M, Jurado-Fasoli L, Osuna-Prieto FJ, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Folkerts G, Vilchez-Vargas R, Link A, Plaza-Diaz J, Gil A, Labayen I, Fernandez-Veledo S, Rensen PCN, Ruiz JR. Effect of a 24-week supervised concurrent exercise intervention on fecal microbiota diversity and composition in young sedentary adults: The ACTIBATE randomized controlled trial. Clin Nutr 2025; 49:128-137. [PMID: 40279809 DOI: 10.1016/j.clnu.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Numerous physiological responses to exercise are observed in humans, yet the effects of long-term exercise and varying intensities on the diversity and composition of human fecal microbiota remain unclear. We investigated the effect of a 24-week supervised concurrent exercise intervention, at moderate and vigorous intensities, on fecal microbiota diversity and composition in young adults. METHODS This ancillary study was based on data from the ACTIBATE randomized controlled trial (ClinicalTrials.gov ID: NCT02365129), and included adults (aged 18-25 years, 70 % female) that were randomized to (i) a control group (CON: no exercise, n = 20), (ii) a moderate-intensity exercise group (MOD-EX, n = 21), and (iii) a vigorous-intensity exercise group (VIG-EX, n = 20). Fecal samples were collected before and after the 24-week exercise intervention, and the diversity and composition of the fecal microbiota were analyzed by 16S rRNA sequencing. Inferential functional profiling of the fecal microbiota was performed and correlations between microbial changes and cardiometabolic outcomes were assessed. RESULTS Exercise did not modify beta or alpha diversities regardless of the intensity (all P ≥ 0.062). The relative abundance of the Erysipelotrichaceae family (Bacillota phylum) (-0.3 ± 1.2 %; P = 0.031) was however reduced in the VIG-EX group. Coprococcus was the only genus showed a significant difference between MOD-EX and VIG-EX after the intervention, with its relative abundance increasing in MOD-EX (+0.4 ± 0.6 %; P = 0.005). None of these changes were related to the exercise-induced cardiometabolic benefits (all P ≥ 0.05). CONCLUSIONS In young adults, a 24-week supervised concurrent exercise program, at moderate and vigorous intensities, resulted in minor changes in fecal microbiota composition, while neither alpha nor beta diversities were affected. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365129.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Nursing, Physiotherapy and Medicine and SPORT Research Group, CIBIS Research Center, University of Almería, 04120, Almería, Spain.
| | - Huiwen Xu
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Carmen Rodríguez-García
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
| | - Juan M A Alcantara
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Francisco M Acosta
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, 20520, Turku, Finland
| | - Francisco J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, 80336, Munich, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain; School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006, Logroño, Spain
| | - Angel Gil
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18016, Granada, Spain
| | - Idoia Labayen
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Sonia Fernandez-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili, 43003, Tarragona, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain.
| |
Collapse
|
4
|
Li C, Li X, Liu K, Xu J, Yu J, Liu Z, Mach N, Ni W, Liu C, Zhou P, Wang L, Hu S. Multiomic analysis of different horse breeds reveals that gut microbial butyrate enhances racehorse athletic performance. NPJ Biofilms Microbiomes 2025; 11:87. [PMID: 40410196 PMCID: PMC12102227 DOI: 10.1038/s41522-025-00730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/12/2025] [Indexed: 05/25/2025] Open
Abstract
Gut microbes play a vital role in host physiology, but whether specific bacterial functions contribute to the exceptional athletic performance of racehorses needs to be better understood. Here, we identify an association of gut butyrate-producing bacteria with athletic performance in racehorses (Thoroughbred horse). Butyrate-producing bacteria and microbial butyrate synthesis genes were significantly enriched in the racehorse gut, and the GC-MS results confirmed this conclusion. Using a mouse model, we demonstrated that sodium butyrate is sufficient to increase treadmill run time performance. We also show that butyrate improves the host response to exercise, significantly altering muscle fibre type in skeletal muscle, and increasing muscle mitochondrial function and activity. In addition, in-depth analysis of the published data showed that the gene for the synthesis of butyrate was also significantly enriched in the gut microbes of human athletes. Overall, our study indicates that gut microbial butyrate improves run time via the gut-muscle axis, providing novel insights into gut microbial functions and paving the way for improving athletic performance by targeted gut microbiome manipulation.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Junli Xu
- Novogene Bioinformatics Institute, Beijing, China
| | - Jinming Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China.
| | - Chen Liu
- Novogene Bioinformatics Institute, Beijing, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
| | - Shengwei Hu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China.
| |
Collapse
|
5
|
Zhang L, Liu R, Song Z, Zhang X. Exercise, Diet, and Brain Health: From the Perspective of Gut Microbiota Regulation. Nutrients 2025; 17:1686. [PMID: 40431427 DOI: 10.3390/nu17101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The existing body of evidence has highlighted gut microbiota as a versatile regulator of body wellness affecting not only multiple physiological metabolisms but also the function of remote organs. Emerging studies revealed a reciprocal relationship between physical exercise and intestinal microbiota, suggesting that physical exercise could enhance gut health, including regulating intestinal barrier integrity, increasing microbial diversity, and promoting beneficial microbial metabolism. Furthermore, the beneficial outcomes of exercise on the intestine may also promote brain health through the gut-brain axis. Diet is an important factor in boosting exercise performance and also greatly impacts the structure of gut microbiota. Abundant research has reported that diet alongside exercise could exert beneficial effects on metabolism, immune regulation, and the neuropsychiatric system. In this paper, we used a narrative review, primarily searching PubMed, Web of Science, and Elsevier, to review the existing research on how moderate-intensity exercise promotes gut health, and we introduced the effects of exercise on the nervous system through the gut-brain axis. We also proposed dietary strategies targeting the regulation of gut microbiota to provide guidelines for boosting brain health. This review highlights that moderate exercise and a healthy diet promote gut and brain health.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Renhe Liu
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Aya V, Pardo-Rodriguez D, Vega LC, Cala MP, Ramírez JD. Integrating metagenomics and metabolomics to study the gut microbiome and host relationships in sports across different energy systems. Sci Rep 2025; 15:15356. [PMID: 40316630 PMCID: PMC12048592 DOI: 10.1038/s41598-025-98973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
The gut microbiome plays a critical role in modulating host metabolism, influencing energy production, nutrient utilization, and overall physiological adaptation. In athletes, these microbial functions may be further specialized to meet the unique metabolic demands of different sports disciplines. This study explored the role of the gut microbiome in modulating host metabolism among Colombian athletes by comparing elite weightlifters (n = 16) and cyclists (n = 13) through integrative omics analysis. Fecal and plasma samples collected one month before an international event underwent metagenomic, metabolomic, and lipidomic profiling. Metagenomic analysis revealed significant microbial pathways, including L-arginine biosynthesis III and fatty acid biosynthesis initiation. Key metabolic pathways, such as phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; and folate biosynthesis, were enriched in both athlete groups. Plasma metabolomics and lipidomics revealed distinct metabolic profiles and a separation between athlete types through multivariate models, with lipid-related pathways such as lipid droplet formation and glycolipid synthesis driving the differences. Notably, elevated carnitine, amino acid, and glycerolipid levels in weightlifters suggest energy system-specific metabolic adaptations. These findings underscore the complex relationship between the gut microbiota composition and metabolic responses tailored to athletic demands, laying the groundwork for personalized strategies to optimize performance. This research highlights the potential for targeted modulation of the gut microbiota as a basis for tailored interventions to support specific energy demands in athletic disciplines.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Laura Camila Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Mónica P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Valido E, Bertolo A, Hertig-Godeschalk A, Flueck JL, Ruettimann B, Glisic M, Stoyanov J. Characteristics of the gut microbiome of Swiss elite athletes with a spinal cord injury: An exploratory study. J Spinal Cord Med 2025; 48:376-384. [PMID: 38207282 PMCID: PMC12035930 DOI: 10.1080/10790268.2023.2265610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVES To illustrate and explore associations between the gut microbiome and spinal cord injury (SCI) characteristics, physical training, dietary intake, body composition, and blood biomarkers of elite Swiss athletes. DESIGN AND SETTING Baseline data analysis of athletes with SCI who participated in a pilot trial (NCT04659408) in the Swiss Paraplegic Center, Nottwil, Switzerland. PARTICIPANTS Elite athletes, five males, and six females, with SCI who competed internationally. OUTCOME MEASURES We conducted a differential abundance analysis and measured the alpha and beta diversity of the gut microbiome. RESULTS The athletes' median age was 34.5 years. Six had traumatic SCI and five had a spina bifida. The athletes competed in para-cycling (5), wheelchair athletics (3), and wheelchair tennis (3). A higher duration of training per week was positively associated with Akkermansia and Akkermansiaceae but negatively associated with Prevotellaceae. Muribaculaceae was negatively associated with the average number of trainings per week. Waist circumference is negatively associated with Butyricimonas. Significant differences in the alpha diversity were found with sex, gastrointestinal quality of life index (GIQLI) scores, total caloric intake, total fat intake, total carbohydrate intake, and high-sensitivity C-reactive protein (hs-CRP). Beta diversity differences were found with impairment of the sympathetic nervous system of the gut at the genus level and HbA1c at the family level. CONCLUSIONS This study provides insight into the gut microbiome of athletes with SCI. Our results were similar to those found in athletes without SCI. Further replication is needed to confirm the relationships of organisms observed in the gut of athletes with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Nottwil, Switzerland
- Department of Orthopedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | | | - Joelle Leonie Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Belinda Ruettimann
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Marija Glisic
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Sun YF, Han ZX, Yao XK, Meng J, Ren WL, Wang CK, Yuan XX, Zeng YQ, Wang YF, Sun ZW, Wang JW. Effects of Different Stages of Training on the Intestinal Microbes of Yili Horses Analyzed Using Metagenomics. Genes (Basel) 2025; 16:504. [PMID: 40428326 PMCID: PMC12111061 DOI: 10.3390/genes16050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Objectives: The aim of this study was to investigate the effects of different stages of training on the intestinal microbial abundance of Yili horses. Methods: Ten Yili horses, all aged 2 years old and weighing 305 ± 20 kg, were selected and divided into a training group and an untrained group. The training group performed riding training 6 days a week, and the untrained group moved freely in the activity circle every day. Fecal samples were collected on days 30 and 60, and the intestinal microorganisms were detected and analyzed using metagenomics. Results: Compared with the 30-day untrained group, the relative abundances of Bacteroidetes were significantly increased in the 30-day training group (p < 0.01). Conversely, the abundances of Clostridiaceae, Clostridium, and Ruminococcus were significantly decreased (p < 0.01), whereas those of Prevotella, Bacteroideaceae, and Bacteroidetes were significantly increased (p < 0.05). Additionally, the relative abundances of Firmicutes and Actinomycetes were significantly decreased (p < 0.05). Compared with the 60-day untrained group, no significant differences in the phyla Bacteriaceae and Bacteriae of the 60-day training group (p > 0.05) were observed. In the linear discriminant analysis effect size analysis, seven significantly different bacteria were detected in the fecal flora of horses in the 30-day training group versus the untrained 30-day group, but only one significantly different bacterium was detected after 60 days. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the differentially expressed genes were related to metabolism and the environmental information processing pathway, carbohydrate metabolism, and membrane transport pathways. Conclusions: Therefore, training seems to affect the diversity and composition of the gut microbiota of Yili horses, especially during the first 30 days of training.
Collapse
Affiliation(s)
- Yuan-Fang Sun
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Zi-Xiang Han
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Xin-Kui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi 830052, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi 830052, China
| | - Wan-Lu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Chuan-Kun Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Xin-Xin Yuan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Ya-Qi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi 830052, China
| | - Yong-Fa Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Zhi-Wen Sun
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
| | - Jian-Wen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.-F.S.); (Z.-X.H.); (X.-K.Y.); (J.M.); (W.-L.R.); (C.-K.W.); (X.-X.Y.); (Y.-Q.Z.); (Y.-F.W.); (Z.-W.S.)
- Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Urumqi 830052, China
| |
Collapse
|
9
|
Martin D, Bonneau M, Orfila L, Horeau M, Hazon M, Demay R, Lecommandeur E, Boumpoutou R, Guillotel A, Guillemot P, Croyal M, Cressard P, Cressard C, Cuzol A, Monbet V, Derbré F. Atypical gut microbial ecosystem from athletes with very high exercise capacity improves insulin sensitivity and muscle glycogen store in mice. Cell Rep 2025; 44:115448. [PMID: 40154488 DOI: 10.1016/j.celrep.2025.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
Although the gut microbiota is known to act as a bridge between dietary nutrients and the body's energy needs, the interactions between the gut microbiota, host energy metabolism, and exercise capacity remain uncertain. Here, we characterized the gut microbiota ecosystem in a cohort of healthy normo-weight humans with highly heterogeneous aerobic exercise capacities and closely related body composition and food habits. While our data support the idea that the bacterial ecosystem appears to be modestly altered between individuals with low-to-high exercise capacities and close food habits, we report that gut bacterial α diversity, density, and functional richness are significantly reduced in athletes with very high exercise capacity. By using fecal microbiota transplantation, we report that the engraftment of gut microbiota from athletes with very high exercise capacity improves insulin sensitivity and muscle glycogen stores into transplanted mice, which highlights promising therapeutic perspectives in fecal transplantation from human donors selected based on exercise capacity traits.
Collapse
Affiliation(s)
- David Martin
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France; IRMAR - UMR CNRS 6625, University of Rennes, Rennes, France
| | - Mathis Bonneau
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France
| | - Luz Orfila
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France
| | - Mathieu Horeau
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France
| | | | - Romain Demay
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France
| | | | - Rufin Boumpoutou
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France; Rennes Ortho Sport, Polyclinique Saint Laurent, Rennes, France
| | - Arthur Guillotel
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France; Stade Rennais Football Club, Rennes, France
| | | | - Mikael Croyal
- Institut du thorax, Nantes Université, CNRS, INSERM, Nantes, France; UMS 016, UMS 3556, Nantes Université, INSERM, CNRS, Nantes, France
| | | | | | - Anne Cuzol
- IUT Vannes, University of South Brittany, Vannes, France
| | - Valérie Monbet
- IRMAR - UMR CNRS 6625, University of Rennes, Rennes, France.
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences", University of Rennes 2/ENS Rennes, Rennes, France.
| |
Collapse
|
10
|
Ichikawa A, Takayama T, Kojima C, Fujie S, Iemitsu M, Inoue K. Conversion Reaction of Stable-Isotope Oxygen Labeling of Carboxylic Acids for Accurate Screening LC-MS/MS Assay: Application of Behavioral Changes of Short-Chain Fatty Acids in Sports Athletes under Exercise Loading. Anal Chem 2025; 97:7765-7771. [PMID: 40183608 DOI: 10.1021/acs.analchem.4c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Short-chain fatty acids (SCFAs) have attracted considerable interest as potential biomarkers, therapeutic targets, and nutritional factors in athletic training. SCFAs are typically produced by the intestinal microbiome and exhibit various structural forms, including linear- and branched-chain types. In particular, branched-chain SCFAs have been associated with muscle metabolism during exercise loading. Consequently, accurate and efficient analytical methods are essential for identifying these biomarkers. Liquid chromatography-tandem mass spectrometry is a suitable and accurate technique for SCFA analysis; however, stable isotope calibrations are required for all analytes. Because of technological limitations, the available species are restricted to certain types of SCFAs. To address this issue, this study performed a simple conversion reaction involving the incorporation of 18O into the carboxyl group. Specifically, oxygen atoms in the carboxyl groups were substituted with 18O sourced from commercially available H218O. An SCFA mixture standard solution was successfully labeled under optimized conditions, and the SIL purity and amount were sufficient for isotope dilution (95.2-96.9%, 250 assays using 10 μL of H218O). Moreover, no reversion to 16O was observed during storage or analysis. Analytical validation was performed in human serum using the substituted isotopic standard mixture, achieving good accuracy (90-110%) and precision (<10% relative standard deviation) across three concentration levels. Finally, changes in SCFA patterns were examined in athletes during exercise loading.
Collapse
Affiliation(s)
- Aoi Ichikawa
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Takayama
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Chihiro Kojima
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
11
|
Boshuizen B, De Maré L, Oosterlinck M, Van Immerseel F, Eeckhaut V, De Meeus C, Devisscher L, Vidal Moreno de Vega C, Willems M, De Oliveira JE, Hosotani G, Gansemans Y, Meese T, Van Nieuwerburgh F, Deforce D, Vanderperren K, Verdegaal EL, Delesalle C. Aleurone supplementation enhances the metabolic benefits of training in Standardbred mares: impacts on glucose-insulin dynamics and gut microbiome composition. Front Physiol 2025; 16:1565005. [PMID: 40276369 PMCID: PMC12018385 DOI: 10.3389/fphys.2025.1565005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Aleurone, derived from the bran layer of grains like wheat and barley, has demonstrated positive effects on energy metabolism in pigs, mice, and untrained horses, influencing glucose-insulin dynamics and gut microbiome composition. Training itself enhances insulin sensitivity in horses, similar to the improvements in performance capacity observed in human athletes. This study aimed to investigate whether aleurone supplementation provides additional benefits to training by modulating insulin metabolism and gut microbiota in Standardbred mares. Methods Sixteen Standardbred mares (aged 3-5 years) participated in a cross-over study with two 8-week training periods separated by 8 weeks of detraining. Each horse received either 200 g/day aleurone supplementation or a control diet. Insulin metabolism was evaluated using oral (OGTT) and intravenous (FSIGTT) glucose tolerance tests, measuring parameters such as Maximumglucose, AUCglucose, Maximuminsulin, AUCinsulin, Time to peakinsulin (OGTT), Acute Insulin Response to Glucose (AIRg), glucose effectiveness (Sg), and disposition index (DI) (FSIGTT). Fecal samples underwent metagenomic analysis to assess alpha and beta diversity and microbial composition. Results Training alone: Training significantly improved OGTT parameters by decreasing Maximuminsulin (P = 0.005) and AUCinsulin (P = 0.001), while increasing Time to peakinsulin (P = 0.03), indicating enhanced insulin sensitivity. FSIGTT results also showed a decrease in logAIRg (P = 0.044). Training with Aleurone: Aleurone supplementation further reduced FSIGTT AIRg (P = 0.030), logAIRg (P = 0.021) while increasing glucose effectiveness (Sg; P = 0.031). These findings suggest aleurone improves insulin sensitivity, glucose disposal, and fasting glucose regulation beyond training. Microbiome analysis revealed training decreased Pseudomonas, associated with dysbiosis, while aleurone reduced inflammation-associated Desulfovibrio. Beta diversity metrics showed no significant changes. Conclusion Aleurone supplementation enhances training-induced improvements in glucose metabolism and fecal microbiota composition, which could offer potential benefits for equine athletes by optimizing metabolic flexibility. It also supports improvements in glucose and insulin dynamics, particularly by further enhancing insulin sensitivity and glucose-mediated disposal. Future studies should investigate the mechanisms of aleurone at the muscle and gut level and explore its potential applications for metabolic disorders such as Equine Metabolic Syndrome.
Collapse
Affiliation(s)
- Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Hospital Wolvega, Oldeholtpade, Netherlands
| | - Lorie De Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Venessa Eeckhaut
- Department of Pathobiology, Pharmacology and Special Animals Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance De Meeus
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lindsey Devisscher
- Gut-Liver ImmunoPharmacology Unit, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Willems
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Katrien Vanderperren
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Elisabeth-Lidwien Verdegaal
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Equine Health and Performance Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Nieman DC, Sakaguchi CA, Williams JC, Lawson J, Lambirth KC, Omar AM, Mulani FA, Zhang Q. Gut Prevotella copri abundance linked to elevated post-exercise inflammation. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101039. [PMID: 40194740 PMCID: PMC12145743 DOI: 10.1016/j.jshs.2025.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
PURPOSE This study aimed to examine the linkage between gut microbiome taxa and exercise-induced inflammation. METHODS Twenty-five cyclists provided 4 stool samples during a 10-week period and cycled vigorously for 2.25 h at 67% maximal oxygen uptake (VO2max) in a laboratory setting. Blood samples were collected pre- and post-exercise, with additional samples collected at 1.5-h, 3-h, and 24-h post exercise. Primary outcomes included stool microbiome composition and alpha diversity via whole genome shotgun (WGS) sequencing (averaged from 4 stool samples) and a targeted panel of 75 plasma oxylipins. A total of 5719 taxa were identified, and the 339 that were present in more than 20% of stool samples were used in the analysis. Alpha diversity was calculated by evenness, and the Analysis of Composition of Microbiomes (ANCOM) differential abundance analysis was performed using Quantitative Insights Into Microbial Ecology-2 (QIIME2). A composite variable was calculated from 8 pro-inflammatory oxylipins generated from arachidonic acid (ARA) and cytochrome P-450 (CYP). RESULTS ARA-CYP oxylipins were significantly elevated for at least 3-h post-exercise (p < 0.001); they were strongly and positively related to Prevotella copri (P. copri) abundance (R2 = 0.676, p < 0.001) and negatively related to gut microbiome alpha diversity (R2 = 0.771, p < 0.001). CONCLUSION This analysis revealed for the first time a novel, positive relationship between gut microbiome P. copri abundance in cyclists and post-exercise pro-inflammatory oxylipins. These data demonstrate that about two-thirds of the wide variance in inflammation following prolonged and intensive exercise is largely explained by the abundance of a single gut bacterial species: P. copri.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus (NCRC), Kannapolis, NC 28081, USA.
| | - Camila A Sakaguchi
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus (NCRC), Kannapolis, NC 28081, USA
| | - James C Williams
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus (NCRC), Kannapolis, NC 28081, USA
| | - Jackie Lawson
- College of Computing and Informatics, University of North Carolina at Charlotte, NCRC, Kannapolis, NC 28081, USA
| | - Kevin C Lambirth
- College of Computing and Informatics, University of North Carolina at Charlotte, NCRC, Kannapolis, NC 28081, USA
| | - Ashraf M Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, NCRC, Kannapolis, NC 28081, USA
| | - Fayaj A Mulani
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, NCRC, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, NCRC, Kannapolis, NC 28081, USA
| |
Collapse
|
13
|
Pang L, Liu Y, Yuan C, Ju Y, Wu J, Cheng M, Jin S, Fan Y, Zhang H, Wang Y, Min D. Yi Mai Granule Improves High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice by Regulating Gut Microbiota and Metabolites. Int J Microbiol 2025; 2025:2273986. [PMID: 40166691 PMCID: PMC11955292 DOI: 10.1155/ijm/2273986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/24/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Yi Mai granule (YMG) is a traditional Chinese medicine (TCM) herbal decoction consisting of two TCM formulas: Gua-Lou-Ban-Xia decoction and Si-Jun-Zi decoction. YMG has shown clinical benefit in the treatment of nonalcoholic fatty liver disease (NAFLD), which may be due to its regulatory effects on lipid metabolism. Previous studies have highlighted the importance of the gut microbiota and its metabolites in the use of TCM. However, the effect of YMG on the gut microbiota in the treatment of NAFLD remains unclear. In this study, we established an NAFLD model in ApoE-/- mice and treated them with YMG. High-performance liquid chromatography was adopted to identify the chemical components of YMG. By mapping the candidate targets using network pharmacology, we found that the targets of the main components of YMG were significantly enriched in NAFLD-related pathways. Moreover, 16S rRNA gene sequencing revealed that YMG affected the constitution and metabolism of the gut microbiota in NAFLD model mice, including lipid and carbohydrate metabolism. Similarly, metabolites related to lipid and carbohydrate metabolism in mouse serum were significantly altered by YMG. The correlation heat map and network analyses showed that the gut microbiota and metabolites affected by YMG were closely related to the blood lipid content. Collectively, YMG may exert therapeutic effects by affecting the metabolism of gut microbiota, thus regulating lipid and carbohydrate metabolism. These findings offer novel insight into the pharmacological mechanism of YMG in the treatment of NAFLD and provide theoretical bases for its clinical applications.
Collapse
Affiliation(s)
- Linlin Pang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
- Department of Cardiovascular Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yongming Liu
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Changbin Yuan
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yetao Ju
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Junpeng Wu
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Meijia Cheng
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Sian Jin
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Ying Fan
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Huiyong Zhang
- Department of Traditional Chinese Medicine, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Yang J, Zhang W, Dong C. Gut Microbiota Alteration with Moderate-to-Vigorous-Intensity Exercise in Middle School Female Football Athletes. BIOLOGY 2025; 14:211. [PMID: 40001979 PMCID: PMC11852635 DOI: 10.3390/biology14020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The gut microbiota significantly influences health and metabolic processes. This study aimed to investigate the impact of exercise intensity on the gut microbiota of middle school female football athletes. METHODS In this four-week controlled comparative study, twenty-nine participants were divided into three groups: non-exercise group (NEG), moderate-intensity exercise group (MIEG), and vigorous-intensity exercise group (VIEG). They followed their respective exercise regimens for four weeks. Fecal samples were collected for 16S rRNA gene sequencing to evaluate microbiota composition. RESULTS The MIEG exhibited significantly greater microbial diversity compared to the NEG, while the VIEG showed lower diversity than the MIEG. Various microbiota profiles were identified, with the MIEG having higher levels of beneficial bacteria such as Bacteroides. CONCLUSIONS Moderate-intensity exercise promotes a healthier gut microbiota compared to vigorous exercise in young female athletes. These findings underscore the potential of moderate exercise to enhance gut health and may inform training strategies for adolescent athletes.
Collapse
Affiliation(s)
- Jianlou Yang
- School of Sport Management, Shandong Sport University, Jinan 250102, China;
| | - Wei Zhang
- School of Sports Leisure, Shandong Sport University, Jinan 250102, China;
| | - Chen Dong
- School of Sport Management, Shandong Sport University, Jinan 250102, China;
| |
Collapse
|
15
|
O' Donovan CM, Nori SRC, Shanahan F, Celentano G, Murphy TB, Cotter PD, Sullivan OO. Temporal stability and lack of variance in microbiome composition and functionality in fit recreational athletes. Sci Rep 2025; 15:5619. [PMID: 39955324 PMCID: PMC11829997 DOI: 10.1038/s41598-025-88723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Human gut microbiome composition and function is influenced by environmental and lifestyle factors, including exercise and fitness. We studied the composition and functionality of the faecal microbiome of recreational (non-elite) runners (n = 62) with serial shotgun metagenomics, at 4 time points over a 7-week period. Gut microbiome composition and function was stable over time. Grouping of samples on the basis of their fitness level (fair, good, excellent, and superior) or habitual training (low (4-6 h/week), medium (7-9 h/week), high (10-12 h/week), and extreme (13 + hours/week)) revealed no significant microbiome-related differences. Overall, the species Faecalibacterium prausnitzii, Blautia wexlerae, and Prevotella copri were the most abundant members of the gut microbiome. Analysis of co-abundance groups (CAGs) revealed no significant relationship between CAGs and fitness levels or training subgroups. Functional pathways were similar across all samples and timepoints with no clustering based on associated metadata. The most abundant genes identified within samples corresponded to pathways for nucleoside and nucleotide biosynthesis, amino acid biosynthesis, and cell wall biosynthesis. Collectively, these results describe the microbiome of active recreational runners and note temporal stability amongst participants.
Collapse
Affiliation(s)
- Ciara M O' Donovan
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Sai Ravi Chandra Nori
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Gerardina Celentano
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Thomas Brendan Murphy
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
- VistaMilk, Fermoy, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- VistaMilk, Fermoy, Cork, Ireland
| | - Orla O' Sullivan
- APC Microbiome Ireland, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- VistaMilk, Fermoy, Cork, Ireland.
| |
Collapse
|
16
|
Guers JJ, Heffernan KS, Campbell SC. Getting to the Heart of the Matter: Exploring the Intersection of Cardiovascular Disease, Sex and Race and How Exercise, and Gut Microbiota Influence these Relationships. Rev Cardiovasc Med 2025; 26:26430. [PMID: 40026503 PMCID: PMC11868917 DOI: 10.31083/rcm26430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with physical inactivity being a known contributor to the global rates of CVD incidence. CVD incidence, however, is not uniform with recognized sex differences as well and racial and ethnic differences. Furthermore, gut microbiota have been associated with CVD, sex, and race/ethnicity. Researchers have begun to examine the interplay of these complicated yet interrelated topics. This review will present evidence that CVD (risk and development), and gut microbiota are distinct between the sexes and racial/ethnic groups, which appear to be influenced by acculturation, discrimination, stress, and lifestyle factors like exercise. Furthermore, this review will address the beneficial impacts of exercise on the cardiovascular system and will provide recommendations for future research in the field.
Collapse
Affiliation(s)
- John J. Guers
- Department of Health Sciences and Nursing, Rider University, Lawrenceville, NJ 08648, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10027, USA
| | - Sara C. Campbell
- Department of Kinesiology and Health, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Centers for Human Nutrition, Exercise, and Metabolism, Nutrition, Microbiome, and Health, and Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Öneş E, Zavotçu M, Nisan N, Baş M, Sağlam D. Effects of Kefir Consumption on Gut Microbiota and Athletic Performance in Professional Female Soccer Players: A Randomized Controlled Trial. Nutrients 2025; 17:512. [PMID: 39940370 PMCID: PMC11820909 DOI: 10.3390/nu17030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to determine the impact of the daily consumption of kefir on the gut microbiome, body composition, and athletic performance of professional female soccer players. METHODS The participants encompassed 21 females aged 18-29 years who were assigned to one of the two groups: the experimental group, which comprised females who consumed 200 mL of kefir daily for 28 days, and the control group, which comprised females who continued with their normal diet. Anthropometric measurements, dietary intake, the composition of the gut microbiome through 16S rRNA gene sequencing, and an athletic performance test known as the 30-15 Intermittent Fitness Test were performed before and after the intervention. RESULTS The results of this study revealed that the consumption of kefir increased the microbial diversity (Shannon and Chao1 indices), wherein a significant increase was noted in the abundance of Akkermansia muciniphila and Faecalibacterium prausnitzii, microorganisms that regulate energy metabolism and have anti-inflammatory effects. Furthermore, the athletic performance variables, including VO2max (mL.kg-1.min-1) and finishing speed (km/h), were strongly related to the abundance of these short-chain fatty acid-producing bacteria. A link between the microbiota profile and the dietary intake of fiber and protein as well as the body composition measurements was also established. CONCLUSIONS This study indicated that kefir consumption can positively affect the gut microbiota, which could in turn affect the athletes' performance. Therefore, to determine the effects of kefir as a functional food in sports nutrition over a longer period, more research should be conducted.
Collapse
Affiliation(s)
- Ece Öneş
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Mutlucan Zavotçu
- Movement and Training Sciences Program, Institute of Health Sciences, Marmara University, Istanbul 34865, Türkiye;
| | - Nida Nisan
- Fatih Vatan Sports Club, Istanbul 34091, Türkiye;
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (M.B.); (D.S.)
| | - Duygu Sağlam
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (M.B.); (D.S.)
| |
Collapse
|
18
|
Geng X, Li Z, Qu C, Feng Y, Rao Z, Wang C, Zhao J. Effect of different cold acclimation methods on the exercise capacity of mice in low-temperature environments. J Therm Biol 2025; 127:104050. [PMID: 39862756 DOI: 10.1016/j.jtherbio.2025.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments. METHODS Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure. Body weight, food intake, and rectal temperature were monitored throughout the study. Post-acclimation assessments included low-temperature exhaustion exercise ability testing; 16 S rDNA sequencing of gut microbiota; and quantification of gene expression related to brown adipose thermogenesis, skeletal muscle synthesis, and degradation. RESULTS (1) After 8 weeks of acclimation, neither serum adrenaline nor angiotensin II levels significantly increased in mice exposed to 10 °C or 20 °C water. (2) Cold acclimation extended the endurance time under low-temperature conditions, notably in the 20 °CI, 10 °CS, and 20 °CS groups. (3) Compared with the control (C) group, the 20 °CI and 10 °CS groups showed significantly increased UCP1, IGF-1, AKT, and mTOR gene expression levels (P < 0.05). The expression levels of MAFbx and MuRF1 genes in the 10 °CS and 20 °CS groups significantly decreased compared with those in the C group (P < 0.05). (4) Compared with the C group, the 20 °CI, 10 °CS, and 20 °CS groups demonstrated significant changes in intestinal microbiota diversity. Specifically, the abundance of Akkermansia strains significantly increased in the 20 °CI and 10 °C S groups. The abundance of Ruminococcus and Prevotellaceae_UCG-001 significantly increased in the 20 °C S group. CONCLUSION Exercise in cold environments can activate genes related to heat production and skeletal muscle synthesis and increase the abundance of beneficial bacteria producing short-chain fatty acids, thereby modulating host metabolism, accelerating the formation of cold acclimation, and enhancing exercise capacity in low-temperature environments.
Collapse
Affiliation(s)
- Xue Geng
- China Institute of Sport Science, Beijing, 100061, China
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing 100850, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yiwei Feng
- China Institute of Sport Science, Beijing, 100061, China
| | - Zhijian Rao
- China Institute of Sport Science, Beijing, 100061, China
| | - Changzhen Wang
- Laboratory of Electromagnetic Biological Effects, Beijing Institute of Radiation and Medicine, Beijing 100850, China
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing, 100061, China.
| |
Collapse
|
19
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Shalmon G, Ibrahim R, Israel-Elgali I, Grad M, Shlayem R, Shapira G, Shomron N, Youngster I, Scheinowitz M. Differential Gut Microbiome Profiles in Long-Distance Endurance Cyclists and Runners. Life (Basel) 2024; 14:1703. [PMID: 39768409 PMCID: PMC11677284 DOI: 10.3390/life14121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
We recently have shown that the gut microbiota composition in female and male runners positively correlates with sports, and female runners show similar gut microbiome diversity to male runners. However, gut microbiota composition has not yet been fully investigated in other endurance athletes, such as cyclists. Therefore, in the current study, we investigated the gut microbiome profiles in competitive, non-professional female and male cyclists compared to what we have shown in runners. We aim to understand (1) whether the gut microbiome signature is sport-specific; (2) whether there is a microbiome difference between female and male cyclists and runners; and (3) whether the gut bacteria expressed in cyclists and runners correlates with exercise performance. Our study included 58 subjects: 18 cyclists (9 males), 22 runners (13 males), and 18 control subjects (9 males). Fecal samples were obtained and subjected to taxonomic analysis to assess the relative abundances of species across subjects based on 16S rRNA sequencing results. Both alpha and beta diversity of the bacterial communities were evaluated to identify compositional variations between the groups. Each participant completed a maximal oxygen consumption test and a time-to-exhaustion test at 85% of the measured VO2max. Cyclists performed the test on an SRM ergometer, while runners used a motorized treadmill. Blood lactate levels were measured at 5 min intervals throughout the time-to-exhaustion trials. Alpha diversity demonstrated a significant difference (p-adj < 0.001) between cyclists and runners. Male cyclists showed significantly lower alpha diversity than runners (p-adj < 0.001). The taxonomic analysis of gut microbiota composition between cyclists, runners, and controls showed a lower or higher abundance of fifteen different bacteria. In cyclists, there was a significant positive correlation between six bacteria, and in runners, there was a significant positive correlation between eight bacteria, with weekly training volume, time-to-exhaustion, VO2max, and blood lactate levels. This study suggests potential sport-specific characteristics in long-distance cyclists' and runners' gut microbiome signatures. These findings emphasize the differences in gut microbiota between cyclists and runners, probably due to the difference in physiological and biomechanical conditions related to the activity mode during each sport.
Collapse
Affiliation(s)
- Guy Shalmon
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ifat Israel-Elgali
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Meitar Grad
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Rani Shlayem
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Guy Shapira
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Noam Shomron
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ilan Youngster
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Pediatric Infectious Diseases Unit, The Center for Microbiome Research, Shamir Medical Center, Tel Aviv-Yafo 6997801, Israel
| | - Mickey Scheinowitz
- Sylvan Adams Sports Institute, School of Public Health, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
21
|
Karačić A, Zonjić J, Stefanov E, Radolović K, Starčević A, Renko I, Krznarić Ž, Ivančić M, Šatalić Z, Liberati Pršo AM. Short-Term Supplementation of Sauerkraut Induces Favorable Changes in the Gut Microbiota of Active Athletes: A Proof-of-Concept Study. Nutrients 2024; 16:4421. [PMID: 39771042 PMCID: PMC11677004 DOI: 10.3390/nu16244421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition. METHODS To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted. The microbiota composition of organic pasteurized sauerkraut was analyzed, and then healthy active athletes were provided with the same sauerkraut for 10 days as an intervention. The effects of sauerkraut on the athlete's gut microbiota, laboratory parameters, and bowel function were assessed. RESULTS Significant changes in the gut microbiota composition were seen on taxonomic and functional levels, independent of baseline microbiota composition, even after short-term supplementation. Most notably, there was an increase in several health-promoting genera of the family Lachnospiraceae, as well as significant alterations in metabolic pathways regarding cell wall synthesis and the metabolism of nucleotide bases. An increase in the proportion of lymphocytes and a decrease in B12 vitamin levels was observed, as well as a risk of indigestion in certain athletes, which significantly resolved after seven days of supplementation in all athletes. It is unclear whether the observed effects are attributable to the sauerkraut's own microbiome or its pre- and postbiotics since it is a whole food. CONCLUSIONS Our study has demonstrated that the concept of whole fermented foods, such as sauerkraut, could potentially be feasible and effective in sports nutrition for gut microbiota optimization.
Collapse
Affiliation(s)
- Andrija Karačić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- The Gut Microbiome Center (CCM), Jablanska 82, 10000 Zagreb, Croatia
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Jadran Zonjić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ena Stefanov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Katja Radolović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Antonio Starčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ira Renko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Željko Krznarić
- Department of Internal Medicine, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Matija Ivančić
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zvonimir Šatalić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
| | - Ana-Marija Liberati Pršo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (A.K.); (J.Z.); (E.S.); (A.S.); (I.R.); (Z.Š.)
- Department of Internal Medicine, University Hospital “Sveti Duh”, Sveti Duh 64, 10000 Zagreb, Croatia;
| |
Collapse
|
22
|
Su L, Guo J, Shi W, Tong W, Li X, Yang B, Xiang Z, Qin C. Metagenomic analysis reveals the community composition of the microbiome in different segments of the digestive tract in donkeys and cows: implications for microbiome research. BMC Microbiol 2024; 24:530. [PMID: 39695983 DOI: 10.1186/s12866-024-03696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION The intestinal microbiota plays a crucial role in health and disease. This study aimed to assess the composition and functional diversity of the intestinal microbiota in donkeys and cows by examining samples collected from different segments of the digestive tract using two distinct techniques: direct swab sampling and faecal sampling. RESULTS In this study, we investigated and compared the effects of multiple factors on the composition and function of the intestinal microbial community. Approximately 300 GB of metagenomic sequencing data from 91 samples obtained from various segments of the digestive tract were used, including swabs and faecal samples from monogastric animals (donkeys) and polygastric animals (cows). We assembled 4,004,115 contigs for cows and 2,938,653 contigs for donkeys, with a total of 9,060,744 genes. Our analysis revealed that, compared with faecal samples, swab samples presented a greater abundance of Bacteroidetes, whereas faecal samples presented a greater abundance of Firmicutes. Additionally, we observed significant variations in microbial composition among different digestive tract segments in both animals. Our study identified key bacterial species and pathways via different methods and provided evidence that multiple factors can influence the microbial composition. These findings provide new insights for the accurate characterization of the composition and function of the gut microbiota in microbiome research. CONCLUSIONS The results obtained by both sampling methods in the present study revealed that the composition and function of the intestinal microbiota in donkeys and cows exhibit species-specific and region-specific differences. These findings highlight the importance of using standardized sampling protocols to ensure accurate and consistent characterization of the intestinal microbiota in various animal species. The implications and underlying mechanisms of these associations provide multiple perspectives for future microbiome research.
Collapse
Affiliation(s)
- Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Jindan Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Wei Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Bochao Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Zhiguang Xiang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| |
Collapse
|
23
|
Xia W, Li X, Han R, Liu X. Microbial Champions: The Influence of Gut Microbiota on Athletic Performance via the Gut-Brain Axis. Open Access J Sports Med 2024; 15:209-228. [PMID: 39691802 PMCID: PMC11651067 DOI: 10.2147/oajsm.s485703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In recent years, exercise has shown a powerful ability to regulate the gut microbiota received with concern. For instance, compared with the sedentary group, high-level athletes showed a different gut microbiota composition and remarkable capability of physiological metabolism. In addition, different diet patterns (eg, high-fat diet, high carbohydrate diet et.al) have different effects on gut microbiota, which can also affect exercise performance. Furthermore, adaptations to exercise also might be influenced by the gut microbiota, due to its important role in the transformation and expenditure of energy obtained from the diet. Therefore, appropriate dietary supplementation is important during exercise. And exploring the mechanisms by which dietary supplements affect exercise performance by modulating gut microbiota is of considerable interest to athletes wishing to achieve health and athletic performance. In this narrative review, the relationship between gut microbiota, dietary supplements, training adaptations and performance is discussed as follows. (i) The effects of the three main nutritional supplements on gut microbiota and athlete fitness. (ii) Strategies for dietary supplements and how they exerted function through gut microbiota alteration based on the gut-brain axis. (iii) Why dietary supplement interventions on gut microbiota should be tailored to different types of exercise. Our work integrates these factors to elucidate how specific nutritional supplements can modulate gut microbiota composition and, consequently, influence training adaptations and performance outcomes, unlike previous literature that often focuses solely on the effects of exercise or diet independently. And provides a comprehensive framework for athletes seeking to optimize their health and performance through a microbiota-centric approach.
Collapse
Affiliation(s)
- Wenrui Xia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoang Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ruixuan Han
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Gao F, Du Y, Liu H, Ding H, Zhang W, Li Z, Shi B. Maternal supplementation with konjac glucomannan and κ-carrageenan promotes sow performance and benefits the gut barrier in offspring. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:272-286. [PMID: 39640556 PMCID: PMC11617309 DOI: 10.1016/j.aninu.2024.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 12/07/2024]
Abstract
This research aims to investigate the effects of dietary konjac glucomannan and κ-carrageenan (SF) on sow performance and suckling piglet gut barrier. Thirty-four sows in late gestation (parity 2-5) were selected at random and grouped into two treatments. The control group (Con group; n = 17) was fed the basal diet; the SF group was fed the same diet supplemented with 0.25% konjac glucomannan + 0.25% κ-carrageenan (SF group; n = 17). The results showed that sows fed the SF diet had a higher feed intake during lactation than the Con group (P < 0.05), and the levels of neuropeptide tyrosine (NPY) (P = 0.006) and acetylcholine enzyme (AChE) (P < 0.05) significantly increased. The fecal microbial analysis indicated that the SF diet had a higher abundance of Subdoligranulum, Holdemanella, and Succinivibrio at the genus level, and the acetate level was significantly increased (P < 0.05). Moreover, SF lowered the level of interleukin-6 (IL-6) in milk (P < 0.05). Regarding suckling piglets, maternal supplementation with SF reduced jejunal IL-6 protein levels in suckling piglets (P < 0.05). In the colon of the piglet, the SF group up-regulated protein levels of occludin (P < 0.05), and the nuclear factor erythroid 2-related factor 2 (Nrf2) (0.05 ≤ P < 0.1), and claudin 4 (CLDN4) (0.05 ≤ P < 0.1) protein levels tended to be up-regulated. Consequently, supplementation of SF in sow diets positively affects lactation feed intake and maternal microflora. Furthermore, the maternal effect improves the jejunum and colon barriers of suckling piglets.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
25
|
Park SS, Park SH, Jeong HT, Shin MS, Kim MK, Kim BK, Yoon HS, Kim SH, Kim TW. The effect of treadmill exercise on memory function and gut microbiota composition in old rats. J Exerc Rehabil 2024; 20:205-212. [PMID: 39781508 PMCID: PMC11704711 DOI: 10.12965/jer.2448692.346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is associated with declines in memory function and significant change in gut microbiota. In this study, we investigated how exercise affects age-related memory decline and inflammation, and gut microbiota diversity. Bl6 mice were divided into control, control and exercise, old, and old and exercise groups. Treadmill exercise was performed once a day, 5 days a week for 8 consecutive weeks. Short-term memory was assessed using step-through test and spatial learning memory was assessed using Morris water maze task. Enzyme-linked immunosorbent assay was performed for the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in the hippocampus. Western blot analysis was conducted for the neurotrophic factors, brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB), in the hippocampus. In addition, fecal samples were collected for sequencing and metagenomic analysis. Old rats showed decline in short-term memory and spatial learning memory. Increment of TNF-α and IL-6 concentration with decrement of BDNF and TrkB expression were observed in the old rats. Decreased diversity of gut microbiota composition and decreased beneficial gut microbiota were found in the old rats. However, treadmill exercise improved short-term memory, decreased TNF-α and IL-6 concentration, and increased BDNF and TrkB expression in the old rats. Treadmill exercise also increased the diversity of gut microbiota composition and affected the increase of beneficial gut microbiota in the old rats. In conclusion, treadmill exercise reduced age-related inflammatory markers and effectively improved memory decline while enhancing the diversity and abundance of beneficial gut microbiota.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Si-Hyeon Park
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Hyun-Tae Jeong
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon,
Korea
| | - Hye-Sun Yoon
- Department of Pediatrics, Eulji Hospital, Eulji University School of Medicine, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ,
USA
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| |
Collapse
|
26
|
Peña-Ocaña BA, Silva-Flores M, Shotaro T, García-Gálvez L, Hernández-Esquivel L, Robledo-Cadena DX, Barrera-Oviedo D, Pérez-Torres I, Tostado-Islas O, Maeda T, Rodríguez-Zavala JS, Marín-Hernández Á, García-Contreras R, Jasso-Chávez R. Transplant of gut microbiota ameliorates metabolic and heart disorders in rats fed with a hypercaloric diet by modulating microbial metabolism and diversity. Biomed Pharmacother 2024; 181:117667. [PMID: 39546851 DOI: 10.1016/j.biopha.2024.117667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders which have a tight correlation with dysbiosis of gut microbiota (GM) that have to be treated to avoid higher risks for health. In this work, probiotics obtained from healthy cultured GM were provided to rats with metabolic syndrome (MSR) as therapy in treating MS through the correction of dysbiosis. MSR showed obesity, high blood pressure, abnormal blood chemistry parameters and high heart rate respect to control rats (CNTR). Cultivated GM from feces of MSR in media favoring anaerobic species, showed dysbiosis as judged by differences in the 16S rRNA metabarcoding analysis and by affected intermediary metabolism (methane and SCFA production, nutrients consumption and enzyme activities) compared to CNTR. The metabarcoding analysis of cultured healthy GM identified 211 species, which were further transplanted alive in MSR once a week for 9 weeks. Thereafter, in transplanted MSR the excess of Clostridium and Lactobacillus diminished, while Prevotella, Eubacterium, Faecalibacterium and methanogens, among others increased, leading to the recovery of the microbial metabolic capacity. The presence of butyric acid-producing bacteria in the transplanted GM correlated with increased levels of anti-inflammatory cytokines. Therefore, transplanted MSR recovered the normal levels of weight, blood glucose, triglycerides and cholesterol as well as the heart function. Data suggested that the great diversity of species contained in the GM transplanted restored the microbial metabolism, consuming excessive nutrients and secondary metabolites produced by MS. The use of cultivated GM as probiotics may be a safer alternative for the treatment of different diseases.
Collapse
Affiliation(s)
- Betsy Anaid Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| | - Mayel Silva-Flores
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Toya Shotaro
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Leslie García-Gálvez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | | | - Diana Barrera-Oviedo
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Israel Pérez-Torres
- Departamento de Medicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Oswaldo Tostado-Islas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - José S Rodríguez-Zavala
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar 411A, Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
27
|
Hai C, Hao Z, Bu L, Lei J, Liu X, Zhao Y, Bai C, Su G, Yang L, Li G. Increased rumen Prevotella enhances BCAA synthesis, leading to synergistically increased skeletal muscle in myostatin-knockout cattle. Commun Biol 2024; 7:1575. [PMID: 39592704 PMCID: PMC11599727 DOI: 10.1038/s42003-024-07252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Myostatin (MSTN) is a negative regulator of muscle growth, and its relationship with the gut microbiota is not well understood. In this study, we observed increase muscle area and branched-chain amino acids (BCAAs), an energy source of muscle, in myostatin knockout (MSTN-KO) cattle. To explore the link between increased BCAAs and rumen microbiota, we performed metagenomic sequencing, metabolome analysis of rumen fluid, and muscle transcriptomics. MSTN-KO cattle showed a significant increase in the phylum Bacteroidota (formerly Bacteroidetes), particularly the genus Prevotella (P = 3.12e-04). Within this genus, Prevotella_sp._CAG:732, Prevotella_sp._MSX73, and Prevotella_sp._MA2016 showed significant upregulation of genes related to BCAA synthesis. Functional enrichment analysis indicated enrichment of BCAA synthesis-related pathways in both rumen metagenomes and metabolomes. Additionally, muscle transcriptomics indicated enrichment in muscle fiber and amino acid metabolism, with upregulation of solute carrier family genes, enhancing BCAA transport. These findings suggest that elevated rumen Prevotella in MSTN-KO cattle, combined with MSTN deletion, synergistically improves muscle growth through enhanced BCAA synthesis and transport.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhenting Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lige Bu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Jiaru Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
28
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024; 187:6521-6536.e18. [PMID: 39481381 PMCID: PMC11949080 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
29
|
Lee MC, Chiu CH, Liao YC, Cheng YC, Lee CC, Ho CS, Hsu YJ, Chang HY, Lin JS, Huang CC. Gut microbiota modulation and amino acid absorption by Lactiplantibacillus plantarum TWK10 in pea protein ingestion: TWK10 boosts hut microbiota, amino acid uptake. Curr Res Food Sci 2024; 9:100917. [PMID: 39628601 PMCID: PMC11613169 DOI: 10.1016/j.crfs.2024.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
For vegetarians or vegan athletes, improving the utilization of plant-based protein and the absorption of amino acids is crucial. This study explored the impact of combining pea protein with Lactiplantibacillus plantarum TWK10 and resistance training on amino acid absorption and exercise performance. Sixteen male and sixteen female participants were randomly assigned to either a control group (20 g of pea protein without TWK10) or a TWK10 group (20 g of pea protein combined with 1 × 1010 colony-forming units of TWK10). After 28 days of supplementation combined with resistance exercise training three times per week. All subjects underwent body composition and muscle strength performance, plasma and fecal samples were collected for microbiota analysis and blood amino acid concentrations. The TWK10 group showed a significant increase in muscle thickness and improvements were observed in 1 repetition maximum bench press, explosive, anaerobic power output compared to before the intervention, and were significantly higher than those in the control group (p < 0.05). TWK10 supplementation significantly increased the area under the curve and maximum concentration of branched-chain amino acids, essential amino acids, and total amino acids (p < 0.05). Furthermore, TWK10 supplementation effectively increased the richness of gut bacterial families. Our study demonstrated that the TWK10 significant increase in the abundance of specific bacterial families in the gut, resulting in increased pea protein amino acid absorption. Moreover, increasing muscle mass and significantly improving muscle thickness, muscle strength, power, and anaerobic capacity.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hui Chiu
- Graduate Institute of Health Industry and Technology, Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, 20401, Taiwan
| | - Yi-Chu Liao
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Yi-Chen Cheng
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chia-Chia Lee
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| | - Hsiao-Yun Chang
- Department of Athletic Training and Health, National Taiwan Sports University, Taoyuan, 333325, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung, 82151, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, 333325, Taiwan
| |
Collapse
|
30
|
Pérez-Prieto I, Plaza-Florido A, Ubago-Guisado E, Ortega FB, Altmäe S. Physical activity, sedentary behavior and microbiome: A systematic review and meta-analysis. J Sci Med Sport 2024; 27:793-804. [PMID: 39048485 DOI: 10.1016/j.jsams.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effects of physical activity and sedentary behavior on human health are well known, however, the molecular mechanisms are poorly understood. Growing evidence points to physical activity as an important modulator of the composition and function of microbial communities, while evidence of sedentary behavior is scarce. We aimed to synthesize and meta-analyze the current evidence about the effects of physical activity and sedentary behavior on microbiome across different body sites and in different populations. METHODS A systematic search in PubMed, Web of Science, Scopus and Cochrane databases was conducted until September 2022. Random-effects meta-analyses including cross-sectional studies (active vs. inactive/athletes vs. non-athletes) or trials reporting the chronic effect of physical activity interventions on gut microbiome alpha-diversity in healthy individuals were performed. RESULTS Ninety-one studies were included in this systematic review. Our meta-analyses of 2632 participants indicated no consistent effect of physical activity on microbial alpha-diversity, although there seems to be a trend toward a higher microbial richness in athletes compared to non-athletes. Most of studies reported an increase in short-chain fatty acid-producing bacteria such as Akkermansia, Faecalibacterium, Veillonella or Roseburia in active individuals and after physical activity interventions. CONCLUSIONS Physical activity levels were positively associated with the relative abundance of short-chain fatty acid-producing bacteria. Athletes seem to have a richer microbiome compared to non-athletes. However, high heterogeneity between studies avoids obtaining conclusive information on the role of physical activity in microbial composition. Future multi-omics studies would enhance our understanding of the molecular effects of physical activity and sedentary behavior on the microbiome.
Collapse
Affiliation(s)
- Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, United States.
| | - Esther Ubago-Guisado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
31
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
32
|
Lewis G, Reczek S, Omozusi O, Hogue T, Cook MD, Hampton-Marcell J. Machine Learning Reveals Microbial Taxa Associated with a Swim across the Pacific Ocean. Biomedicines 2024; 12:2309. [PMID: 39457621 PMCID: PMC11504845 DOI: 10.3390/biomedicines12102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: This study aimed to characterize the association between microbial dynamics and excessive exercise. Methods: Swabbed fecal samples, body composition (percent body fat), and swimming logs were collected (n = 94) from a single individual over 107 days as he swam across the Pacific Ocean. The V4 region of the 16S rRNA gene was sequenced, generating 6.2 million amplicon sequence variants. Multivariate analysis was used to analyze the microbial community structure, and machine learning (random forest) was used to model the microbial dynamics over time using R statistical programming. Results: Our findings show a significant reduction in percent fat mass (Pearson; p < 0.01, R = -0.89) and daily swim distance (Spearman; p < 0.01, R = -0.30). Furthermore, the microbial community structure became increasingly similar over time (PERMANOVA; p < 0.01, R = -0.27). Decision-based modeling (random forest) revealed the genera Alistipes, Anaerostipes, Bifidobacterium, Butyricimonas, Lachnospira, Lachnobacterium, and Ruminococcus as important microbial biomarkers of excessive exercise for explaining variations observed throughout the swim (OOB; R = 0.893). Conclusions: We show that microbial community structure and composition accurately classify outcomes of excessive exercise in relation to body composition, blood pressure, and daily swim distance. More importantly, microbial dynamics reveal the microbial taxa significantly associated with increased exercise volume, highlighting specific microbes responsive to excessive swimming.
Collapse
Affiliation(s)
- Garry Lewis
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Sebastian Reczek
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| | - Osayenmwen Omozusi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Taylor Hogue
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
| | - Marc D. Cook
- Department of Kinesiology, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA; (T.H.); (M.D.C.)
- Center of Integrative Health Disparities and Equity Research, North Carolina Agriculture and Technical State University, Greensboro, NC 27411, USA
| | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA; (G.L.); (S.R.)
| |
Collapse
|
33
|
Huang B, Zhao L, Campbell SC. Bidirectional Link Between Exercise and the Gut Microbiota. Exerc Sport Sci Rev 2024; 52:132-144. [PMID: 39190614 DOI: 10.1249/jes.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Exercise is well known to exert beneficial changes to the gut microbiota. An emerging area is how the gut microbiota may regulate exercise tolerance. This review will summarize the current evidence on how exercise influences gut microbial communities, with emphasis on how disruptions or depletion of an intact gut microbiota impacts exercise tolerance as well as future directions.
Collapse
Affiliation(s)
- Belle Huang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| | | | | |
Collapse
|
34
|
Yun S, Seo Y, Lee Y, Lee DT. Gut microbiome related to metabolic diseases after moderate-to-vigorous intensity exercise. J Exerc Sci Fit 2024; 22:375-382. [PMID: 39185003 PMCID: PMC11342187 DOI: 10.1016/j.jesf.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Background objectives The purpose of this study is to investigate changes in gut microbiota related to metabolic diseases after moderate and high-intensity exercise. A total of 24 participants were divided into three groups: Non-Exercise Group (NEG, n = 8, 28.6 ± 5.3 years, 176.0 ± 7.8 cm, 81.3 ± 14.6 kg), Moderate Intensity Exercise Group (MIEG, n = 8, 26.5 ± 3.3 years, 176.9 ± 5.0 cm, 75.4 ± 9.5 kg), and Vigorous Intensity Exercise Group (VIEG, n = 8, 30.6 ± 5.9 years, 174.2 ± 3.5 cm, 77.8 ± 12.2 kg). Methods The participants were selected by assessing physical activity, gut health status, presence of diseases, recent disease diagnoses, and dietary disorders. Those who reported any presence disease or recent disease diagnosis were excluded from the current study. Stool samples were collected after a 10-h fast for gut microbiome analysis. MIEG participants trained at 40-59 % heart rate reserve (HRR) for at least 150 min per week, while VIEG participants trained at ≥ 60 % HRR for at least 90 min per week. After 4 weeks, all participants provided stool samples for gut microbiome analysis.Data analysis was conducted using the Wilcoxon test, with statistical significance set at ≤ 0.05. Results The results indicated an increase in Prevotella in MIEG, while Veillonella, Dorea_formicigenerans, and Dorea_longicatena exhibited a decrease (p < 0.05). In VIEG, there was an increase in Bacteroides, Butyricimonas, Odoribacter, and Alistipes (p < 0.05). Conclusion These modified microbial groups were associated with factors related to metabolic diseases, including inflammatory bowel disease, obesity, colorectal cancer, diabetes, hypertension, metabolic liver diseases, and ischemic heart diseases. Additional research is essential to delve into the relationship between exercise and these alterations in the microbiome.
Collapse
Affiliation(s)
| | | | - Yunbin Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| | - Dae Taek Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Li D, Liu Z, Fan X, Zhao T, Wen D, Huang X, Li B. Lactic Acid Bacteria-Gut-Microbiota-Mediated Intervention towards Inflammatory Bowel Disease. Microorganisms 2024; 12:1864. [PMID: 39338538 PMCID: PMC11433943 DOI: 10.3390/microorganisms12091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), arises from intricate interactions involving genetics, environment, and pharmaceuticals with an ambiguous pathogenic mechanism. Recently, there has been an increasing utilization of lactic acid bacteria (LAB) in managing IBD, attributed to their ability to enhance intestinal barrier function, mitigate inflammatory responses, and modulate gut microbiota. This review initiates by elucidating the pathogenesis of IBD and its determinants, followed by an exploration of the mechanisms underlying LAB therapy in UC and CD. Special attention is directed towards their influence on intestinal barrier function and homeostasis regulated by gut microbiota. Furthermore, the review investigates the complex interplay among pivotal gut microbiota, metabolites, and pathways associated with inflammation. Moreover, it underscores the limitations of LAB in treating IBD, particularly in light of their varying roles in UC and CD. This comprehensive analysis endeavors to offer insights for the optimized application of LAB in IBD therapy.
Collapse
Affiliation(s)
- Diantong Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Liu
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; (D.L.); (Z.L.); (X.F.); (T.Z.); (D.W.)
| |
Collapse
|
36
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
37
|
Ghaffar T, Ubaldi F, Volpini V, Valeriani F, Romano Spica V. The Role of Gut Microbiota in Different Types of Physical Activity and Their Intensity: Systematic Review and Meta-Analysis. Sports (Basel) 2024; 12:221. [PMID: 39195597 PMCID: PMC11360093 DOI: 10.3390/sports12080221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intense exercise during training requires dietary modulation to support health and performance and differs in different types of activities. Diet, supplementation with prebiotics and probiotics, and, more recently, even physical activity can potentially improve health outcomes by modifying and protecting the gut microbiota. A systematic review and meta-analysis were conducted to investigate the modulation of gut microbiota in different types and intensities of physical activity and different lifestyles of athletes. METHODS The systematic review and meta-analysis were conducted according to the PRISMA guidelines, and the protocol was registered in PROSPERO (CRD42024500826). RESULTS Out of 1318 studies, only 10 met the criteria for inclusion in the meta-analysis. The pilot study's meta-regression analysis highlights the role of type and intensity of exercise in changing the B/B (Bacillota/Bacteroidota) ratio (p = 0.001). CONCLUSIONS As gut training becomes more popular among athletes, it is necessary to map interactions between microbiota and different types of physical activity, personalized diets, physical activities, and ergogenic supplements to enhance performance and athletic wellness.
Collapse
Affiliation(s)
| | | | | | - Federica Valeriani
- Department of Movement, Health and Human Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (T.G.); (F.U.); (V.V.); (V.R.S.)
| | | |
Collapse
|
38
|
Chen X, Wei J, Li Z, Zhang Y, Zhang X, Zhang L, Wang X, Zhang Y, Zhang T. Dysregulation of Gut Microbiota-Derived Neuromodulatory Amino Acid Metabolism in Human Immunodeficiency Virus-Associated Neurocognitive Disorder: An Integrative Metagenomic and Metabolomic Analysis. Ann Neurol 2024; 96:306-320. [PMID: 38752697 DOI: 10.1002/ana.26963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Although accumulating evidence implicating altered gut microbiota in human immunodeficiency virus (HIV) infection and neurodegenerative disorders; however, the association between dysbiosis of the gut microbiota and metabolites in the pathogenesis of HIV-associated neurocognitive disorder (HAND) remains unclear. METHODS Fecal and plasma samples were obtained from 3 cohorts (HAND, HIV-non-HAND, and healthy controls), metagenomic analysis and metabolomic profiling were performed to investigate alterations in the gut microbial composition and circulating metabolites in HAND. RESULTS The gut microbiota of people living with HIV (PLWH) had an increased relative abundance of Prevotella and a decreased relative abundance of Bacteroides. In contrast, Prevotella and Megamonas were substantially decreased, and Bacteroides and Phocaeicola were increased in HAND patients. Moreover, untargeted metabolomics identified several neurotransmitters and certain amino acids associated with neuromodulation, and the differential metabolic pathways of amino acids associated with neurocognition were depleted in HAND patients. Notably, most neuromodulatory metabolites are associated with an altered abundance of specific gut bacteria. INTERPRETATION Our findings provide new insights into the intricate interplay between the gut and microbiome-brain axis in the pathogenesis of HAND, highlighting the potential for developing novel therapeutic strategies that specifically target the gut microbiota. ANN NEUROL 2024;96:306-320.
Collapse
Affiliation(s)
- Xue Chen
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wei
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xia Wang
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Wosinska L, Walsh LH, Walsh CJ, Cotter PD, Guinane CM, O’Sullivan O. Cataloging metagenome-assembled genomes and microbial genes from the athlete gut microbiome. MICROBIOME RESEARCH REPORTS 2024; 3:41. [PMID: 39741946 PMCID: PMC11684919 DOI: 10.20517/mrr.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Aim: Exercise has been increasingly recognized as a potential influencer of the gut microbiome. Nevertheless, findings remain incongruous, particularly in relation to sport-specific patterns. Methods: In this study, we harness all publicly available data from athlete gut microbiome shotgun studies to explore how exercise may influence the gut microbiota through metagenomic assembly supplemented with short read-based taxonomic profiling. Through this analysis, we provide insights into exercise-associated taxa and genes, including the identification and annotation of putative novel species from the analysis of approximately 2,000 metagenome-assembled genomes (MAGs), classified as high-quality (HQ) MAGs and assembled as part of this investigation. Results: Our metagenomic analysis unveiled potential athlete-associated microbiome patterns at both the phylum and species levels, along with their associated microbial genes, across a diverse array of sports and individuals. Specifically, we identified 76 species linked to exercise, with a notable prevalence of the Firmicutes phylum. Furthermore, our analysis detected MAGs representing potential novel species across various phyla, including Bacteroidota, Candidatus Melainabacteria, Elusimicrobia, Firmicutes, Lentisphaerae, Proteobacteria, Tenericutes, and Verrucomicrobiota. Conclusion: In summary, this catalog of MAGs and their corresponding genes stands as the most extensive collection yet compiled from athletes. Our analysis has discerned patterns in genes associated with exercise. This underscores the value of employing shotgun metagenomics, specifically a MAG recovery strategy, for pinpointing sport-associated microbiome signatures. Furthermore, the identification of novel MAGs holds promise for developing probiotics and deepening our comprehension of the intricate interplay between fitness and the microbiome.
Collapse
Affiliation(s)
- Laura Wosinska
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Liam H. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- Authors contributed equally
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork Campus, Cork T12 P928, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, Cork T12 YT20, Ireland
- VistaMilk, Fermoy, Cork P61 C996, Ireland
| |
Collapse
|
40
|
Kou X, Ma Q, Liu Y, Khan MZ, Wu B, Chen W, Liu X, Wang C, Li Y. Exploring the Effect of Gastrointestinal Prevotella on Growth Performance Traits in Livestock Animals. Animals (Basel) 2024; 14:1965. [PMID: 38998077 PMCID: PMC11240335 DOI: 10.3390/ani14131965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Microorganisms in the rumen play a crucial role in determining the most efficient utilization rate of nutrients. Among these microorganisms, Prevotella stands out as one of the most representative bacteria within the rumen biological system. Prevotella is a common strict anaerobic bacterium that is found in the gastrointestinal tract of livestock. Prevotella plays a crucial role in breaking down and metabolizing complex nutrients like cellulose and protein during food digestion. Moreover, it is capable of working together with other bacteria in the body's digestive system. Several studies have shown a strong correlation between the abundance of Prevotella and livestock growth performance. This paper provides a comprehensive review of the current research on the function, mechanisms, and applications of Prevotella in the gastrointestinal tract. The insights provided in this review could serve as a theoretical basis for accurately classifying Prevotella, further investigating its effects and potential mechanisms on livestock growth performance, and exploring its practical applications.
Collapse
Affiliation(s)
- Xiyan Kou
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yihong Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Boxian Wu
- Shandong Dong’e Black Donkey Husbandry Technology Co., Ltd., Liaocheng 252000, China
| | - Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xiaotong Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
41
|
Petri C, Mascherini G, Izzicupo P, Rosati D, Cerboneschi M, Smeazzetto S, Arrones LS. Gut microbiota and physical activity level: characterization from sedentary to soccer players. Biol Sport 2024; 41:169-176. [PMID: 38952907 PMCID: PMC11167455 DOI: 10.5114/biolsport.2024.134759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence of the relationship between physical activity and gut microbiota composition is steadily increasing. The purpose of the study is to compare the gut microbiota composition of a group of elite male soccer players with a group of subjects with different physical activity levels. Cross-sectional studies were performed on 91 healthy young males, in detail: 17 elite soccer players (23.7 ± 4.2 yrs, BMI 23.2 ± 1.2 kg/m2); 14 with high levels of physical training (24.5 ± 5.6 yrs, BMI 22.7 ± 0.8 kg/m2); 23 with moderate levels of physical training (29.3 ± 3.9 yrs, BMI 22.5 ± 0.8 kg/m2); and 37 healthy men without exercise habits (28.1 ± 5.9 yrs, BMI 22.4 ± 1.0 kg/m2). Relative microbiota composition was determined by analyzing DNA extracted from stool samples. The quality and quantity of extracted DNA were assessed using a Qubit Fluorometer. Differences between subjects' populations were analyzed using a one-way ANOVA, and Bonferroni's post-hoc test was employed to identify localized effects. Elite soccer players and subjects with high physical activity levels showed a significantly higher prevalence of the nine microbiota populations analyzed than subjects with moderate physical training or who were sedentary. No differences were found in the Firmicutes to Bacteroidetes ratio among the different study populations. This study reports the gut microbiota parameters of elite footballers for the first time. In addition, it brings new insights into the effects of different levels of physical activity on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Cristian Petri
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| | - Gabriele Mascherini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Pascal Izzicupo
- Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, Via L. Polacchi, 11, 66100 Chieti, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | | | | | - Luis Suarez Arrones
- Department of Sports and Computer Science, Section of Physical Education and Sports, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
42
|
Álvarez-Herms J, Odriozola A. Microbiome and physical activity. ADVANCES IN GENETICS 2024; 111:409-450. [PMID: 38908903 DOI: 10.1016/bs.adgen.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Phymo® Lab, Physiology and Molecular Laboratory, Collado Hermoso, Segovia, Spain.
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
43
|
Álvarez-Herms J. Summatory Effects of Anaerobic Exercise and a 'Westernized Athletic Diet' on Gut Dysbiosis and Chronic Low-Grade Metabolic Acidosis. Microorganisms 2024; 12:1138. [PMID: 38930520 PMCID: PMC11205432 DOI: 10.3390/microorganisms12061138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Anaerobic exercise decreases systemic pH and increases metabolic acidosis in athletes, altering the acid-base homeostasis. In addition, nutritional recommendations advising athletes to intake higher amounts of proteins and simple carbohydrates (including from sport functional supplements) could be detrimental to restoring acid-base balance. Here, this specific nutrition could be classified as an acidic diet and defined as 'Westernized athletic nutrition'. The maintenance of a chronic physiological state of low-grade metabolic acidosis produces detrimental effects on systemic health, physical performance, and inflammation. Therefore, nutrition must be capable of compensating for systemic acidosis from anaerobic exercise. The healthy gut microbiota can contribute to improving health and physical performance in athletes and, specifically, decrease the systemic acidic load through the conversion of lactate from systemic circulation to short-chain fatty acids in the proximal colon. On the contrary, microbial dysbiosis results in negative consequences for host health and physical performance because it results in a greater accumulation of systemic lactate, hydrogen ions, carbon dioxide, bacterial endotoxins, bioamines, and immunogenic compounds that are transported through the epithelia into the blood circulation. In conclusion, the systemic metabolic acidosis resulting from anaerobic exercise can be aggravated through an acidic diet, promoting chronic, low-grade metabolic acidosis in athletes. The individuality of athletic training and nutrition must take into consideration the acid-base homeostasis to modulate microbiota and adaptive physiological responses.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab, Physiology and Molecular Laboratory, 40170 Collado Hermoso, Segovia, Spain
| |
Collapse
|
44
|
Moura F, Romeiro C, Petriz B, Cavichiolli N, Almeida JA, Castro A, Franco OL. Endurance exercise associated with a fructooligosaccharide diet modulates gut microbiota and increases colon absorptive area. J Gastroenterol Hepatol 2024; 39:1145-1154. [PMID: 38642000 DOI: 10.1111/jgh.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND AND AIM Fructooligosaccharide (FOS) supplementation can stimulate beneficial intestinal bacteria growth, but little is known about its influence on training performance. Therefore, this study analyzed FOS and exercise effects on gut microbiota and intestinal morphology of C57Bl/6 mice. METHODS Forty male mice were divided into four groups: standard diet-sedentary (SDS), standard diet-exercised (SDE), FOS supplemented (7.5% FOS)-sedentary (FDS), and FOS supplemented-exercised (FDE), n = 10 each group. Exercise training consisted of 60 min/day, 3 days/week, for 12 weeks. RESULTS SDE and FDE groups had an increase in aerobic performance compared to the pretraining period and SDS and FDS groups (P < 0.01), respectively. Groups with FOS increased colonic crypts size (P < 0.05). The FDE group presented rich microbiota (α-diversity) compared to other groups. The FDE group also acquired a greater microbial abundance (β-diversity) than other groups. The FDE group had a decrease in the Ruminococcaceae (P < 0.002) and an increase in Roseburia (P < 0.003), Enterorhabdus (P < 0.004) and Anaerotruncus (P < 0.006). CONCLUSIONS These findings suggest that aerobic exercise associated with FOS supplementation modulates gut microbiota and can increase colonic crypt size without improving endurance exercise performance.
Collapse
Affiliation(s)
- Filipe Moura
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
- Laboratory of Molecular Physiology of Exercise, University Center UDF, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Caroline Romeiro
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
| | - Bernardo Petriz
- Laboratory of Molecular Physiology of Exercise, University Center UDF, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| | - Nathalia Cavichiolli
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | | | - Alinne Castro
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Octavio L Franco
- Postgraduate Program in Physical Education, Catholic University of Brasília, Brasília, Brazil
- Center for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
- S-Inova Biotech, Postgraduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
45
|
Aya JV, Vega LC, Muñoz E, Muñoz M, López DF, Guzmán MP, Martínez DF, Cruz-Saavedra LB, Castillo AK, Quintero KJ, Gónzalez Soltero R, Cala MP, Ramírez JD. Divergent Gut Microbiota: Archaeal and Bacterial Signatures Unveil Unique Patterns in Colombian Cyclists Compared to Weightlifters and Non-Athletes. Adv Biol (Weinh) 2024; 8:e2400069. [PMID: 38548661 DOI: 10.1002/adbi.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Indexed: 06/16/2024]
Abstract
Engagement in physical activity, across various sports, promotes a diverse microbiota in active individuals. This study examines the gut microbiota of Colombian athletes, specifically weightlifters (n = 16) and road cyclists (n = 13), compared to non-athletes (n = 15). Using Kruskal-Wallis tests, the physical activity level of a group of non-athletic individuals and the sports experience of a group of professional athletes is analyzed. The median age of participants is 24 years, comprising 25 men and 19 women. The microbiota is collected using fecal samples. Participants provided these samples during their pre-competitive stage, specifically during the concentration phase occurring two weeks prior to national competitions. This timing is chosen to capture the microbial composition during a period of heightened physical preparation. Questionnaire responses and microbial composition assessments identify disparities among groups. Microbial composition analysis explores core microbiome, abundance, and taxonomy using Pavian, MicrobiomeAnalyst 2.0, and GraPhlAn. ANCOM-BC2 reveals differentially abundant species. Road cyclists exhibit decreased Bacteria and increased Archaea abundance. Phylum-level variations included Planctomycetes, Acidobacteria, and Proteobacteria, while Bacteroidetes prevailed. Key families influencing gut microbiota are Bacteroidaceae, Muribaculaceae, and Selenomonadaceae. Weightlifters exhibit unique viral and archaeal community connections, while cyclists showed specialized microbial interplay influenced by endurance exercise. Correlation network analysis emphasizes distinctive microbial interactions within athlete groups, shedding light on the impact of physical activities on gut microbiota and athlete health.
Collapse
Affiliation(s)
- J V Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L C Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - E Muñoz
- Universidad Santo Tomás, Bogotá, Colombia
| | - M Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - D F López
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - M P Guzmán
- Centro Latinoamericano de Nutrición (CELAN), Bogotá, Colombia
| | - D F Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - L B Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - A K Castillo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - K J Quintero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - R Gónzalez Soltero
- MAS Microbiota Group, Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - M P Cala
- MetCore - Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - J D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
46
|
Zhang L, Li H, Song Z, Liu Y, Zhang X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024; 13:1680. [PMID: 38890909 PMCID: PMC11171530 DOI: 10.3390/foods13111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous research studies have shown that moderate physical exercise exerts positive effects on gastrointestinal tract health and increases the variety and relative number of beneficial microorganisms in the intestinal microbiota. Increasingly, studies have shown that the gut microbiota is critical for energy metabolism, immunological response, oxidative stress, skeletal muscle metabolism, and the regulation of the neuroendocrine system, which are significant for the physiological function of exercise. Dietary modulation targeting the gut microbiota is an effective prescription for improving exercise performance and alleviating exercise fatigue. This article discusses the connection between exercise and the makeup of the gut microbiota, as well as the detrimental effects of excessive exercise on gut health. Herein, we elaborate on the possible mechanism of the gut microbiota in improving exercise performance, which involves enhancing skeletal muscle function, reducing oxidative stress, and regulating the neuroendocrine system. The effects of dietary nutrition strategies and probiotic supplementation on exercise from the perspective of the gut microbiota are also discussed in this paper. A deeper understanding of the potential mechanism by which the gut microbiota exerts positive effects on exercise and dietary nutrition recommendations targeting the gut microbiota is significant for improving exercise performance. However, further investigation is required to fully comprehend the intricate mechanisms at work.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Haoyu Li
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| |
Collapse
|
47
|
Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024; 16:1634. [PMID: 38892567 PMCID: PMC11175060 DOI: 10.3390/nu16111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510500, China;
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Jiaji Luo
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yanshuo Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, China
| |
Collapse
|
48
|
Duan R, Liu Y, Zhang Y, Shi J, Xue R, Liu R, Miao Y, Zhou X, Lv Y, Shen H, Xie X, Ai X. The impact of exercise on the gut microbiota in middle-aged amateur serious runners: a comparative study. Front Physiol 2024; 15:1343219. [PMID: 38737829 PMCID: PMC11082653 DOI: 10.3389/fphys.2024.1343219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Exercise, health, and the gut microbiota (GM) are strongly correlated. Research indicates that professional athletes, especially ultra-marathon runners, have unique GM characteristics. However, more research has focused on elite athletes, with little attention given to amateur sports enthusiasts, especially those in the middle-aged population. Therefore, this study focuses on the impact of long-term running on the composition and potential functions of the GM in middle-aged individuals. Methods We compared the GM of 25 middle-aged serious runnerswith 22 sedentary healthy controls who had minimal exercise habitsusing 16S rRNA gene sequencing. Additionally, we assessed dietary habits using a food frequency questionnaire. Results and Discussion Statistical analysis indicates that there is no significant difference in dietary patterns between the control group and serious runners. Diversity analysis results indicate that there is no significant difference in α diversity between the two groups of GM, but there is a significant difference in β diversity. Analysis of the composition of GM reveals that Ruminococcus and Coprococcus are significantly enriched in serious runners, whereas Bacteroides, Lachnoclostridium, and Lachnospira are enriched in the control group. Differential analysis of functional pathway prediction results reveals significant differences in the functional metabolism levels of GM between serious runners and the control group. Further correlation analysis results indicate that this difference may be closely related to variations in GM. In conclusion, our results suggest that long-term exercise can lead to changes in the composition of the GM. These changes have the potential to impact the overall health of the individual by influencing metabolic regulation.
Collapse
Affiliation(s)
- Rui Duan
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yu Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yonglian Zhang
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Jinrong Shi
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Rong Xue
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Ruijie Liu
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Yuanxin Miao
- Research Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xianfeng Zhou
- School of Life Sciences and Health Engineering, Hubei University of Technology, Wuhan, China
- Maintainbiotech Ltd., Wuhan, Hubei, China
| | | | - Hexiao Shen
- Maintainbiotech Ltd., Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwei Xie
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| | - Xu Ai
- Jingmen Central Hospital, Hubei Clinical Medical Research Center for Functional Colorectal Diseases, Jingmen, Hubei, China
| |
Collapse
|
49
|
Jang YJ, Choi HS, Oh I, Chung JH, Moon JS. Effects of Limosilactobacillus reuteri ID-D01 Probiotic Supplementation on Exercise Performance and Gut Microbiota in Sprague-Dawley Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10257-9. [PMID: 38635106 DOI: 10.1007/s12602-024-10257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
The gut microbiota composition in animals and humans has recently been found to be influenced by exercise. Although Limosilactobacillus reuteri strains have notable probiotic properties that promote human health, understanding of its effects in combination with exercise and physical activity is limited. Therefore, this study examined the effects of L. reuteri ID-D01, a human-derived probiotic, on exercise performance and fatigue in Sprague-Dawley rats. Organ weight, maximal running distance, serum biochemistry, muscle performance, microbial community composition, and short-chain fatty acid (SCFA) levels were assessed. Results indicated that ID-D01 supplementation significantly improved endurance performance. Rats in the probiotic group demonstrated a significant increase in maximal running distance compared with that in the control group (p < 0.05). Additionally, levels of fatigue markers, such as lactate and creatine phosphokinase, were significantly reduced in the ID-D01-administered groups, suggesting its potential to alleviate exercise-induced fatigue. Microbiome analysis revealed a distinct shift in gut microbiota composition in response to ID-D01 administration. The group that received ID-D01 probiotics exhibited a significant increase in the abundance of SCFA-producing bacteria, particularly Akkermansia spp., compared with that in the control groups. Furthermore, they showed elevated production of SCFAs, such as acetate and butyrate. In conclusion, this study demonstrated that ID-D01 can enhance exercise performance and reduce fatigue. Herein, we highlighted that human-derived probiotics could improve physical performance, as observed by changes in gut microbiota composition and SCFA production.
Collapse
Affiliation(s)
- Ye-Ji Jang
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Han Sol Choi
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | - Ikhoon Oh
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea
| | | | - Jin Seok Moon
- YUNOVIA Co., Ltd, Hwaseong, 18449, Republic of Korea.
- Ildong Pharmaceutical Co., Ltd, Seoul, 06752, Republic of Korea.
| |
Collapse
|
50
|
Bertuccioli A, Zonzini GB, Cazzaniga M, Cardinali M, Di Pierro F, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Palazzi CM. Sports-Related Gastrointestinal Disorders: From the Microbiota to the Possible Role of Nutraceuticals, a Narrative Analysis. Microorganisms 2024; 12:804. [PMID: 38674748 PMCID: PMC11051759 DOI: 10.3390/microorganisms12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Intense physical exercise can be related to a significant incidence of gastrointestinal symptoms, with a prevalence documented in the literature above 80%, especially for more intense forms such as running. This is in an initial phase due to the distancing of the flow of blood from the digestive system to the skeletal muscle and thermoregulatory systems, and secondarily to sympathetic nervous activation and hormonal response with alteration of intestinal motility, transit, and nutrient absorption capacity. The sum of these effects results in a localized inflammatory process with disruption of the intestinal microbiota and, in the long term, systemic inflammation. The most frequent early symptoms include abdominal cramps, flatulence, the urge to defecate, rectal bleeding, diarrhea, nausea, vomiting, regurgitation, chest pain, heartburn, and belching. Promoting the stability of the microbiota can contribute to the maintenance of correct intestinal permeability and functionality, with better control of these symptoms. The literature documents various acute and chronic alterations of the microbiota following the practice of different types of activities. Several nutraceuticals can have functional effects on the control of inflammatory dynamics and the stability of the microbiota, exerting both nutraceutical and prebiotic effects. In particular, curcumin, green tea catechins, boswellia, berberine, and cranberry PACs can show functional characteristics in the management of these situations. This narrative review will describe its application potential.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
| | - Massimiliano Cazzaniga
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
| | - Marco Cardinali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
| | - Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| |
Collapse
|