1
|
Safri AA, Nassir CMNCM, Iman IN, Mohd Taib NH, Achuthan A, Mustapha M. Diffusion tensor imaging pipeline measures of cerebral white matter integrity: An overview of recent advances and prospects. World J Clin Cases 2022; 10:8450-8462. [PMID: 36157806 PMCID: PMC9453345 DOI: 10.12998/wjcc.v10.i24.8450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/20/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of age-related microvascular cognitive decline, resulting in significant morbidity and decreased quality of life. Despite a progress on its key pathophysiological bases and general acceptance of key terms from neuroimaging findings as observed on the magnetic resonance imaging (MRI), key questions on CSVD remain elusive. Enhanced relationships and reliable lesion studies, such as white matter tractography using diffusion-based MRI (dMRI) are necessary in order to improve the assessment of white matter architecture and connectivity in CSVD. Diffusion tensor imaging (DTI) and tractography is an application of dMRI that provides data that can be used to non-invasively appraise the brain white matter connections via fiber tracking and enable visualization of individual patient-specific white matter fiber tracts to reflect the extent of CSVD-associated white matter damage. However, due to a lack of standardization on various sets of software or image pipeline processing utilized in this technique that driven mostly from research setting, interpreting the findings remain contentious, especially to inform an improved diagnosis and/or prognosis of CSVD for routine clinical use. In this minireview, we highlight the advances in DTI pipeline processing and the prospect of this DTI metrics as potential imaging biomarker for CSVD, even for subclinical CSVD in at-risk individuals.
Collapse
Affiliation(s)
- Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ismail Nurul Iman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Hartini Mohd Taib
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Anusha Achuthan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Neurosciences, Hospital Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
2
|
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16:272. [PMID: 31870389 PMCID: PMC6929340 DOI: 10.1186/s12974-019-1674-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory-neurodegenerative disease of the central nervous system presenting with significant inter- and intraindividual heterogeneity. However, the application of clinical and imaging biomarkers is currently not able to allow individual characterization and prediction. Complementary, molecular biomarkers which are easily quantifiable come from the areas of immunology and neurobiology due to the causal pathomechanisms and can excellently complement other disease characteristics. Only a few molecular biomarkers have so far been routinely used in clinical practice as their validation and transfer take a long time. This review describes the characteristics that an ideal MS biomarker should have and the challenges of establishing new biomarkers. In addition, clinically relevant and promising biomarkers from the blood and cerebrospinal fluid are presented which are useful for MS diagnosis and prognosis as well as for the assessment of therapy response and side effects.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany.
| | - Katja Akgün
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| |
Collapse
|