1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Tumentemur G, Aygun EG, Yurtsever B, Cakirsoy D, Ovali E. Effect of amniotic fluid on hair follicle growth. J DERMATOL TREAT 2025; 36:2451389. [PMID: 39827901 DOI: 10.1080/09546634.2025.2451389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Purpose: Human amniotic fluid stem cells (hAFSCs) have shown significant regenerative potential in treating hair loss, wound healing, and tissue repair. This study aims to evaluate the effects of human amniotic fluid (hAF) on hair follicle (HF) regeneration and immune system modulation. Materials and Methods: The hAF used was pooled, acellular, and gamma-irradiated to standardize its contents and enhance its stability. Both irradiated (FAFI) and non-irradiated (FAF) hAF were assessed for their efficacy and safety in promoting hair growth and modulating immune responses in a rat model of hair loss. The study examined HF regeneration, transition to the anagen phase, and macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Results: Both FAF and FAFI treatments significantly increased HF density, with FAFI exhibiting enhanced effects. Histological analysis demonstrated improved HF regeneration, increased M2 macrophages, and reduced collagen fiber deposition in treated areas. Gamma irradiation likely improved the efficacy of FAFI by stabilizing active components and inhibiting protease activity. Conclusions: Irradiated hAF is a safe and effective therapeutic candidate for alopecia and HF growth disorders. These findings support further evaluation of hAF in clinical trials to validate its potential for hair regeneration therapies.
Collapse
Affiliation(s)
- Gamze Tumentemur
- Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Elif Ganime Aygun
- Department of Obstetrics and Gynecology, Acibadem Mehmet Ali Aydinlar University Atakent Hospital, Istanbul, Turkey
| | - Bulut Yurtsever
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Didem Cakirsoy
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| |
Collapse
|
3
|
Girase R, Gujarathi NA, Sukhia A, Kota SSN, Patil TS, Aher AA, Agrawal YO, Ojha S, Sharma C, Goyal SN. Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential. Drug Deliv 2025; 32:2459772. [PMID: 39891600 PMCID: PMC11789225 DOI: 10.1080/10717544.2025.2459772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.
Collapse
Affiliation(s)
- Rushikesh Girase
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Amey Sukhia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sri Sai Nikitha Kota
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| |
Collapse
|
4
|
Li D, Li S, He S, He H, Yuan G, Ma B, Zhang Y, Yuan C, Liu Z, Deng Z, Xu J. Restoring tendon microenvironment in tendinopathy: Macrophage modulation and tendon regeneration with injectable tendon hydrogel and tendon-derived stem cells exosomes. Bioact Mater 2025; 47:152-169. [PMID: 39906648 PMCID: PMC11791013 DOI: 10.1016/j.bioactmat.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tendinopathy is a common musculoskeletal disorder in which a significant number of patients do not attain effective therapeutic outcomes. The extent of the inflammatory response and the dynamics of collagen synthesis metabolism are critical factors that influence the intrinsic self-repair capacity of tendons. However, the poor microenvironment within the tendon significantly impedes the self-repair process in tendinopathy. In this study, an injectable tendon-derived decellularized extracellular matrix (tdECM) hydrogel was utilized to treat tendinopathy. This hydrogel provides a more cytocompatible microenvironment while retaining certain bioactive factors of native tendon extracellular matrix (ECM), compared to collagen hydrogel. Notably, it was discovered for the first time that the tdECM hydrogel promotes M2 macrophage polarization, thereby exerting an anti-inflammatory effect in vivo. Furthermore, utilizing tdECM as a carrier for the sustained release of tendon-derived stem cells exosomes (TDSCs-Exos), our findings from both in vitro and in vivo studies indicate that the tdECM hydrogel, in conjunction with exosomes, demonstrated a pronounced synergistic enhancement in modulating inflammation, promoting M2 macrophage polarization, and facilitating tendon regeneration and repair efficacy. These results suggest its potential as a promising therapeutic strategy for tendon disorders.
Collapse
Affiliation(s)
- Danmei Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shukun He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongpu He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guangxun Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Binbin Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yijun Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengjie Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhiqin Liu
- Department of Orthopaedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 412007, China
| | - Zhenhan Deng
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
5
|
Zhao H, Lv J, Chen B, He F, Wang Q, Xie D, Koyama H, Zhang C, Cheng J. RAGE deficiency obstructs high uric acid-induced oxidative stress and inflammatory response. Int Immunopharmacol 2025; 151:114316. [PMID: 39987631 DOI: 10.1016/j.intimp.2025.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Hyperuricemia is a metabolic disorder primarily associated with gout and implicated in various metabolic inflammatory diseases. While the role of monosodium urate crystals triggering inflammation has been well-documented, recent findings suggest that soluble high uric acid (HUA) also induces pro-inflammatory cytokine production in human monocytes. However, the comprehensive effects of HUA levels on macrophage dysfunction and the underlying mechanisms remain underexplored. This study employs urate oxidase knockout (UOX-KO) and receptor for advanced glycation end products deficiency (RAGE-/-) mouse models to elucidate macrophage function and its mechanistic pathways. Our results demonstrate that HUA promotes M1 polarization and migration of macrophages while impairing their phagocytic ability. This process is mediated through the high mobility group box 1 (HMGB1)-RAGE- ROS axis. Notably, RAGE deficiency in bone marrow-derived cells partially mediates these effects. Pathologically, elevated HMGB1 and monocyte chemoattractant protein 1 levels in pancreatic islets increases macrophage infiltration in UOX-KO mice. Treatment with the FPS-ZM1, as a pharmacological RAGE inhibitor, effectively decreases serum UA levels, ameliorates islet inflammation and insulin resistance. These findings suggest that soluble HUA serves as a pro-inflammatory trigger through the HMGB1-RAGE-ROS axis, and that RAGE inhibition may mitigate these effects by decreasing inflammatory macrophage infiltration in the islets. Additionally, the influence of UA on macrophages extends beyond gout, potentially contributing to the pathogenesis of other metabolic inflammatory conditions, such as atherosclerosis, non-alcoholic steatohepatitis, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
6
|
Li M, Ma J, Feng X, Zheng N, Li H, Chi X, Ma X, Tang Y, Li J, Liu Z. vB_Ent31 bacteriophage may combat Enterobacter cloacae infections with macrophage modulating activity. Virology 2025; 605:110463. [PMID: 40022945 DOI: 10.1016/j.virol.2025.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Multidrug-resistant organisms (MDRO), including MDR Enterobacter cloacae, may emerge due to the extensive usage of antibiotics and threaten the lives of millions of people around the world. Developing new antibiotic-free strategies to combat E. cloacae infections and curb the spread of drug-resistant genes is crucial. Bacteriophage therapy has garnered widespread attention as a promising approach to tackle bacterial infections. Herein, we isolated a specific bacteriophage (vB_Ent31) targeting E. cloacae from sewage using E. cloacae Ent31 as the host bacterium. vB_Ent31 is a tadpole-like phage with double-stranded DNA belonging to the Siphoviridae family. It exhibits narrow-spectrum activity against Enterobacter spp. and remains stable across a temperature range of 4-50 °C and pH 4 to 11. Significantly, vB_Ent31 prevents proliferation of Ent31 and inhibits inflammation, which further accelerate wound healing. Our findings suggest that bacteriophage therapy could offer an alternative to combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Jiayue Ma
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xiaoshuang Feng
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Naijin Zheng
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Hong Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China.
| | - Zhu Liu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China; Faculty of Animal Science and Technology, Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Daood U, Ilyas MS, Bashir S, Yousuf N, Rashid M, Kaur K, Bapat RA, Bijle MN, Pichika MR, Mak KK, Zhang S, Sheikh Z, Khan AS, Peters O, Matinlinna JP. Unravelling the Programmed Inflammation and Tissue Repair by a Multipotential Antimicrobial K21 Silane. Int Dent J 2025; 75:1277-1291. [PMID: 39322516 DOI: 10.1016/j.identj.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS AND OBJECTIVES To examine if a novel antimicrobial silane K21 can alter macrophage polarisation and affect fibroblast proliferation by deciphering the molecular pathways for programmed healing using a combined in vitro and in vivo (animal) burn model. MATERIALS AND METHODS An injectable silane-based antimicrobial aimed to modulate macrophage polarisation was manufactured. Experimental analysis included colorimetric cell migration assays on gingival fibroblasts, macrophage phagocytosis characterisation, immunofluorescence staining, triacylglycerol accumulation within macrophages by LCMS, cellular metabolic/proliferation assays, macrophage exposure quantification with morphology assessment using FE-SEM, Raman spectral analysis, RNA isolation for relative gene expression and animal study model to morphometrically and microscopically analyse partial thickness burn wound healing under QAS/K21. RESULTS M1 and M2 polarisation both appeared exaggerated under QAS/K21 treatment. The wounds treated with K21 had depicted accelerated healing as compared to control (P < .05) in dorsal skin of rabbits. Relative gene expression results demonstrate reduced cytokine and anti-inflammatory response under the influence of K21. While M1 expression, TG accumulation, and associated characterisations demonstrate the programmed inflammatory potential of K21. CONCLUSION the antimicrobial and reparative efficacy of K21 silane aids in programmed inflammation for enhanced tissue healing and repair.
Collapse
Affiliation(s)
- Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia; School of Dentistry, The University of Queensland, Herston, Queensland, Australia.
| | | | - Sehar Bashir
- Histopathology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Neelofar Yousuf
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Maryam Rashid
- Pharmacology, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Kanwardeep Kaur
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Kit-Kay Mak
- School of Pharmacy, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shiming Zhang
- Interdisciplinary Institute of Life Medicine, Hunan University, Changsha, Hunan Province, China
| | - Zeeshan Sheikh
- Biomaterials & Applied Oral Sciences (BAOS), Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
| | - Ove Peters
- Department of Endodontics, Arthur A Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA; School of Dentistry, The University of Queensland, Herston, Queensland, Australia
| | - Jukka P Matinlinna
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Biomaterials Science, Division of Dentistry, School of Medical Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Xu Q, Chen X, Ma Z, Zhong H, Feng G, Gu S. Exosomal ETV4 Derived From M2 Macrophages Induces Growth, Glycolysis and Stemness in Hepatocellular Carcinoma by UpRegulating SULT2B1 Expression. Liver Int 2025; 45:e16197. [PMID: 39639836 DOI: 10.1111/liv.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND M2 macrophage-derived exosomes have been identified to modulate hepatocellular carcinoma (HCC) progression. E-twenty-six (ETS) variant transcription factor 4 (ETV4) shows protumoral effects in HCC. Here, we aimed to probe whether ETV4 performed oncogenic effects on HCC by macrophage-derived exosomes and its associated mechanism. METHODS Exosomes were isolated from macrophages and co-cultured with HCC cells. qRT-PCR and western blotting were utilised for the detection of mRNA and protein. Cell survival was evaluated using EdU assay and flow cytometry. Glycolysis was determined by measuring the glucose uptake, lactate production, and ATP levels. Cell stemness was assessed by sphere formation and flow cytometry. The interaction between ETV4 and SULT2B1 (sulfotransferase family 2B member 1) was determined by a dual-luciferase reporter and chromatin immunoprecipitation assays. In vivo assay was performed by establishing mouse xenograft models. RESULTS ETV4 was highly expressed in the exosomes of M2 macrophages and could be internalised by HCC cells. ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness in vitro, and enhanced HCC growth in nude mice. Mechanistically, ETV4 interacted with SULT2B1 and promoted it transcription. SULT2B1 silencing suppressed HCC cell proliferation, glycolysis and stemness. In addition, exosomal ETV4 derived from M2 macrophage performed its effects by modulating SULT2B1. CONCLUSION ETV4 derived from M2 macrophage exosomes promoted HCC cell proliferation, glycolysis and stemness by interacting with SULT2B1, suggesting a novel insight into developing exosome-based therapy for HCC.
Collapse
Affiliation(s)
- Qiaodong Xu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Xinyue Chen
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Zhiyan Ma
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Haibin Zhong
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Gengren Feng
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| | - Songgang Gu
- Department of Hepatopancreatobiliary Surgery, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong, China
| |
Collapse
|
9
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Chen Y, Wu J, Cai K, Xiao X, Chen Y, Zhang X, Deng S, Pei C, Chen Y, Xie Z, Li P, Liao Q. Bifidobacterium longum subsp. longum XZ01 delays the progression of colon cancer in mice through the interaction between the microbial spatial distribution and tumour immunity. Int Immunopharmacol 2025; 150:114283. [PMID: 39955918 DOI: 10.1016/j.intimp.2025.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Studies have shown that the colonisation of active microorganisms is more conducive to the development of tumour immunotherapy, but intuitive evidence regarding shaping of the tumour immune microenvironment is lacking. In this study, we used Bifidobacterium longum subsp. longum (XZ01) to intervene in a colon cancer mouse model and found that its mechanism may be related to the interaction between the spatial distribution of microorganisms and tumour immunity. Through the visualisation method we established, for the first time, we showed that harmful active bacteria such as Streptococcus and Rhodococcus specifically accumulate in the middle and upper layers of tumour tissue. These bacteria likely participate in signalling pathways that affect macrophages by directly contacting or invading the macrophages, leading to a nondifferentiated state in macrophages and the loss of some immune functions. Furthermore, the accumulation of Streptococcus and Rhodococcus fragments in the deep layer of tumour tissue likely upregulates the expression of IL-10 in tumour tissue and inhibits other immune cells, such as CD8+ T cells, DC and NK cells. In contrast, XZ01 can specifically compete for the growth sites of Streptococcus and Rhodococcus in the middle and upper layers of tumour tissue and probably protects macrophages from being invaded by harmful bacteria. XZ01 directly regulates the polarisation of M0 macrophages towards the M1 phenotype by upregulating IFN-γ, thus activating tumour immunity to inhibit the growth of tumour cells. This study revealed that the influence of active microorganisms on the tumour immune microenvironment is crucial for effective immunotherapy intervention, potentially offering new targets for improving patient prognosis.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Pharmaceutical Sciences, Guangdong Yunfu Vocational College of Chinese Medicine, Yunfu 527300, China
| | - Jinyun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
11
|
Zhang H, Jiang N, Xu M, Jing D, Dong T, Liu Q, Lv Q, Huo R, Chen P, Li L, Wang X. M2 macrophage derived exosomal miR-20a-5p ameliorates trophoblast pyroptosis and placental injuries in obstetric antiphospholipid syndrome via the TXNIP/NLRP3 axis. Life Sci 2025; 370:123561. [PMID: 40127859 DOI: 10.1016/j.lfs.2025.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
AIM Obstetric antiphospholipid syndrome (OAPS) is a pregnancy-related complication characterized by trophoblast pyroptosis and placental injury induced by antiphospholipid antibodies (aPLs). M2-polarized macrophage-derived exosomes (M2-exos) exert anti-inflammatory, immunomodulatory, and growth-promoting effects in various autoimmune diseases and tumors. However, their role in OAPS is not yet clear. Therefore, in this study, we isolated M2-exos from M2 macrophages and investigated their effects on trophoblast proliferation, death, migration, invasion, and pyroptosis following stimulation using aPLs. MAIN METHODS First, we established an animal model of OAPS and thereafter treated the OAPS mice with exogenous M2-exos via injection through the tail vein. Then to clarify the roles of miR-20a-5p and thioredoxin-interacting protein (TXNIP) in OAPS, we performed gain- or loss-of-function assays, and used GraphPad Prism software to analyze the collected data with statistical significance set at P < 0.05. KEY FINDINGS MicroRNAs (miRNAs) sequencing revealed the enrichment of miR-20a-5p in M2-exos, and these M2-exos significantly alleviated aPLs-induced trophoblast dysfunction. Our results also indicated that M2-exos delivered miR-20a-5p to trophoblast cells directly targeted thioredoxin-interacting protein (TXNIP), and thus suppressed the TXNIP/NLRP3 pathway, reduced pyroptosis and inflammation in trophoblast cells, and improved placental function and fetal development. SIGNIFICANCE M2-exos improve pregnancy outcomes in OAPS via the miR-20a-5p/TXNIP/NLRP3 axis, and thus represent as a novel therapeutic approach for aPLs-induced OAPS.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China
| | - Ning Jiang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Mingyang Xu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Die Jing
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Tingting Dong
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Feixian County People's Hospital, Linyi 273400, Shandong, China
| | - Qingfeng Lv
- The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, Shandong, China
| | - Ruiheng Huo
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.
| | - Lei Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan 250117, Shandong, China.
| |
Collapse
|
12
|
Diao S, Li L, Zhang J, Ji M, Sun L, Shen W, Wu S, Chen Z, Huang C, Li J. Macrophage-derived CCL1 targets CCR8 receptor in hepatic stellate cells to promote liver fibrosis through JAk/STAT pathway. Biochem Pharmacol 2025:116884. [PMID: 40122149 DOI: 10.1016/j.bcp.2025.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Liver fibrosis is caused by liver injury resulting from the wound healing response. According to recent research, the primary factor responsible for liver fibrosis is the activation of hepatic stellate cells (HSCs). C-C motif chemokine ligand 1 (CCL1) is one of several chemokine genes clustered on chromosome 17, which is involved in immune regulation and inflammatory processes. However, the role of CCL1 in liver fibrosis has not been reported. We found that CCL1 secreted by macrophages can target and activate the receptor protein C-C motif chemokine receptor 8 (CCR8) of HSCs, accelerating liver fibrosis progression by activating the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway. This suggested that the CCL1-mediated regulation of CCR8 is an important event in liver fibrosis progression. In conclusion, this study identified a novel signalling axis, the CCL1/CCR8/JAK/STAT pathway, which regulates the activation and apoptosis of HSCs, thus providing a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Jintong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Minglu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Wenwen Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China
| | - Zixiang Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, PR China; Institute for Liver Diseases of Anhui Medical University, PR China.
| |
Collapse
|
13
|
Wang Q, Peng X, Gao X, Qin Y, Li W, Wu Z, Lao Z, Gao A, Mao Z, Xu Y, Chu PK, Zhao X, Geng D, Wang H. Peptide-Oligonucleotide Nanohybrids Designed for Precise Gene Therapy of Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500883. [PMID: 40103484 DOI: 10.1002/adma.202500883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by excessive inflammation, pathological bone resorption, and systemic osteoporosis. It lacks effective treatment due to the complex pathogenesis. Gene therapy, especially targeted oligonucleotide (ON) delivery therapy, offers a new prospect for the precise treatment of RA. Nevertheless, the clinical application of ON delivery therapy still faces various challenges such as the rapid enzymolysis by RNAse, the lack of tissue targeting ability, difficulty in cell membrane penetration, and the incapability of endolysosomal escape. To address these issues, a novel kind of engineered peptide and oligonucleotide (PON) nanohybrids are designed and fabricated, which provide various advantages including good biosafety, inflammatory region-targeted delivery, cell membrane penetration, reactive oxygen species (ROS) scavenging, and endolysosomal escape. The PON nanohybrids produce promising effects in suppressing inflammatory responses and osteoclastogenesis of macrophages via multiple signaling pathways. In vivo administration of PON nanohybrids not only ameliorates local joint bone destruction and systemic osteoporosis in the pathological state, but also demonstrates good prophylactic effects against the rapid progression of RA disease. In conclusion, the study presents a promising strategy for precise RA treatment and broadens the biomedical applications of gene therapy based on delivery system.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Qin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zebin Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zhiqi Lao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziyan Mao
- United World College of the Atlantic, St Donat's Castle Vale of Glamorgan, Llantwit Major, CF61 1WF, UK
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen, 518055, China
| |
Collapse
|
14
|
Chen Y, Luo Y, Liu Y, Qiu X, Luo D, Liu A. Mediation of macrophage M1 polarization dynamics change by ubiquitin-autophagy-pathway regulated NLRP3 inflammasomes in PD-1 inhibitor-related myocardial inflammatory injury. Inflamm Res 2025; 74:56. [PMID: 40097836 DOI: 10.1007/s00011-024-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE AND DESIGN Immune checkpoint inhibitors (ICIs)-induced cardiac injury is a life-threatening immune-related adverse events (irAEs). However, the current understanding of its pathogenesis and therapeutic options is relatively limited. We aimed to provide a comprehensive overview of the myocardial inflammatory injury process and underlying mechanisms associated with ICIs. MATERIAL OR SUBJECTS We conducted a descriptive analysis of lung cancer patients with ICIs-induced myocarditis at our institution and validated our clinical findings using single-cell sequencing (scRNA-seq) data. Furthermore, we established animal and cellular models to investigate the underlying mechanisms. RESULTS Our findings revealed that lung cancer patients with ICIs-induced myocarditis exhibit an early increase in peripheral blood monocytes, which migrate to the heart and differentiate into macrophages, ultimately leading to myocardial inflammation. Mechanistically, programmed death-1 (PD-1) inhibition triggers myocardial inflammation through the activation of the signal transducer and activator of transcription 1 (STAT1)/nuclear factor kappa-B (NF-κB)/oligomerization domain (NOD)-like receptor thermal protein domain-associated protein 3 (NLRP3) signaling pathway and drives the polarization of macrophages towards the M1 phenotype. However, the ubiquitin (Ub)-autophagy pathway degrades NLRP3 inflammasomes, resulting in the gradual resolution of inflammation and the transition of M1 macrophages to the M2 phenotype. Finally, mouse experiments confirmed that NLRP3 inhibition using MCC950 effectively alleviates myocardial inflammatory injury. CONCLUSIONS We recommend monitoring fluctuations in peripheral blood monocyte counts in lung cancer patients undergoing ICIs treatment. Additionally, MCC950 holds potential as a therapeutic agent for ICIs-induced cardiac inflammation injury.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yunwei Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xingpeng Qiu
- College of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
16
|
Cao M, Zhang X, Wang X, Zhao D, Shi M, Zou J, Li L, Jiang H. An Overview of Liquid-Liquid Phase Separation and Its Mechanisms in Sepsis. J Inflamm Res 2025; 18:3969-3980. [PMID: 40125078 PMCID: PMC11927582 DOI: 10.2147/jir.s513098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by the invasion of bacteria or pathogenic microorganisms into the human body, which may lead to a variety of serious complications and pose a serious threat to the patient's life and health. Liquid-liquid phase separation (LLPS) is a biomolecular process in which different biomolecules, such as proteins and nucleic acids, form liquid condensates through interactions, and these condensates play key roles in cellular physiological processes. LLPS may affect the development of sepsis through several pathways, such as modulation of inflammatory factors, immune responses, and cell death, by altering the function or activity of biomolecules, which, in turn, affect the cellular response to infection and inflammation. In this paper, we first discuss the mechanism of phase separation, then summarize the studies of LLPS in sepsis, and finally propose the potential application of LLPS in sepsis treatment strategies, while pointing out the limitations of the existing studies and the directions for future research.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xinyi Zhang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Xiaohan Wang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People’s Republic of China
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, People’s Republic of China
| |
Collapse
|
17
|
Reggio A, Fuoco C, Deodati R, Palma A. SPP1 macrophages across diseases: A call for reclassification? FASEB J 2025; 39:e70448. [PMID: 40047497 PMCID: PMC11884386 DOI: 10.1096/fj.202403227r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
SPP1+ macrophages, characterized by elevated expression of the osteopontin gene (secreted phosphoprotein 1, SPP1), have emerged as key players in various pathological contexts, including aging, chronic inflammatory diseases, and cancer. While frequently classified as a subclass of tumor-associated macrophages in oncological settings, their presence in noncancer conditions, such as aging-related disorders and muscular diseases, suggests a broader role beyond tumors. These macrophages share conserved traits, including fibrosis promotion, extracellular matrix remodeling, and immune modulation, often linked to poor clinical outcomes. This perspective explores the multifaceted roles of SPP1+ macrophages across diseases and advocates for their reclassification as a distinct macrophage subtype associated with chronic or prolonged inflammation. Recognizing their cross-disease relevance could reshape macrophage biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Reggio
- Saint Camillus International University of Health SciencesRomeItaly
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Claudia Fuoco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Rebecca Deodati
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | - Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of RomeRomeItaly
| |
Collapse
|
18
|
Wang Z, Li W, Li J, Jin T, Chen H, Liang F, Liu S, Jia J, Liu T, Liu Y, Yu L, Xue X, Zhao J, Huang T, Huang X, Wang H, Li Y, Luo B, Zhang Z. Neutrophil-modulated Dicer expression in macrophages influences inflammation resolution. Cell Mol Life Sci 2025; 82:114. [PMID: 40074991 PMCID: PMC11904050 DOI: 10.1007/s00018-025-05644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The precise molecular mechanisms through which neutrophils regulate macrophages in the progression and resolution of acute inflammation remain poorly understood. Here, we present new findings on the role of Dicer in regulating macrophage phenotypic transitions essential for proper inflammatory progression and resolution, influenced by neutrophils. Using a zymosan A (Zym A)-induced self-limited mouse peritonitis model, we observed that Dicer expression in macrophages was significantly reduced by neutrophil-derived IFN-γ during the progression phase, but gradually returned to normal levels during the resolution phase following the engulfment of apoptotic neutrophils. Our study on macrophage-specific Dicer1-depletion (Dicer1-CKO) mice demonstrated that inflammation in these mice was more severe during the progression phase, characterized by increased pro-inflammatory cytokines and enhanced neutrophil trafficking. Additionally, resolution was impaired in Dicer1-CKO mice, leading to the accumulation of uncleared apoptotic neutrophils. Specifically, the absence of Dicer in macrophages resulted in M1 polarization and heightened bactericidal activity, facilitating the progression of acute inflammation. Conversely, inducing Dicer expression promoted macrophage transition to M2 polarization, enhancing apoptotic cell clearance and expediting the resolution of inflammation. Our findings suggest that Dicer plays a central role in regulating the progression and resolution of acute inflammation, with implications for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhishang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Wenhua Li
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jia Li
- Department of Nephrology, Navy 971 Hospital, 22 Minjiang Road, Qingdao, Shandong, 266000, China
| | - Tianrong Jin
- Medical College of Chongqing University, Chongqing, 400030, China
| | - Hong Chen
- Department of Orthopedics, No. 903 Hospital of PLA Joint Logistic Support Force, 14 Lingyin Road, Lingyin Street, Xihu District, Hangzhou, Zhejiang, 310000, China
| | - Feihong Liang
- Department of Medical Science, Shunde Polytechnic, Foshan, China
| | - Shengran Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jialin Jia
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Tingting Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yu Liu
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Jikai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Tao Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Xinyi Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Bangwei Luo
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, 30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
19
|
Marcetteau J, Duarte P, Leitão AB, Sucena É. Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster. EMBO Rep 2025:10.1038/s44319-025-00366-z. [PMID: 40075235 DOI: 10.1038/s44319-025-00366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
Under homeostatic conditions, haematopoiesis in Drosophila larvae occurs in the lymph gland and sessile haemocyte clusters to produce two functionally and morphologically different cells: plasmatocytes and crystal cells. It is well-established that in the lymph gland both cell types stem from a binary decision of the medullary prohaemocyte precursors. However, in sessile clusters and dorsal vessel, crystal cells have been shown to originate from the transdifferentiation of plasmatocytes in a Notch/Serrate-dependent manner. We show that transdifferentiation occurs also in the lymph gland. In vivo phagocytosis assays confirm that cortical plasmatocytes are functionally differentiated phagocytic cells. We uncover a double-positive population in the cortical zone that lineage-tracing and long-term live imaging experiments show will differentiate into crystal cells. The reduction of Notch levels within the lymph gland plasmatocyte population reduces crystal cell number. This extension of a transdifferentiation mechanism reinforces the growing role of haematopoietic plasticity in maintaining homeostasis in Drosophila and vertebrate systems. Future work should test the regulation and relative contribution of these two processes under different immunological and/or metabolic conditions.
Collapse
Affiliation(s)
- Julien Marcetteau
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016, Lisbon, Portugal.
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
20
|
Chen H, Cui Q, Yang W. NF-κB Activation Is Essential for Cervical Cell Proliferation and Malignant Transformation. Int J Mol Sci 2025; 26:2493. [PMID: 40141137 PMCID: PMC11942554 DOI: 10.3390/ijms26062493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
NF-κB, a multifunctional transcription factor, is linked to cancer initiation and progression. As a key immune mediator, it may play a crucial role in HPV-induced cervical carcinogenesis. However, consensus is lacking on the activation timing of NF-κB during the transition from cervical intraepithelial neoplasia (CIN) to cervical squamous cell carcinoma (CSCC). In this study, immunohistochemical analysis was performed to examine RELA, one of the important members of the NF-κB family, and phospho-RELA expression in different cervical lesions. Then, we analyzed NF-κB regulation of differentially expressed genes (DEGs) in cervical lesions vs. normal tissues. Gene enrichment identified oncogenic DEGs, followed by expression and survival analyses. The impact of NF-κB activation on cervical cell proliferation, migration, and oncogenic regulation, as well as the effects of inhibiting NF-κB, were examined. Our study showed that NF-κB activation starts in cervical simple hyperplasia and intensifies as CIN evolves to CSCC. NF-κB-regulated DEGs show stage-specific functions: immune regulation in CIN and cancer promotion in CSCC. Short-term NF-κB activation boosts cervical cell proliferation and migration, which is reversible by an NF-κB inhibitor. Long-term NF-κB activation promotes the expression of cancer-promoting genes in normal cells and also maintains them in cancer tissues, which is linked to poorer prognosis. Inhibiting NF-κB downregulates these genes in cancer cells and suppresses the oncogenic abilities of cervical cancer cells. Collectively, NF-κB activation initiates during the simple hyperplasia stage of cervical cells, stimulating proliferation, migration, and oncogene expression. Throughout the transition from CIN to CSCC, NF-κB activation progressively intensifies, and its long-term activation promotes carcinogenesis. Thus, NF-κB is crucial in mediating cervical oncogenic transformation.
Collapse
Affiliation(s)
- Hui Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.C.); (Q.C.)
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.C.); (Q.C.)
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.C.); (Q.C.)
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Raoufi A, Soleimani Samarkhazan H, Nouri S, Khaksari MN, Abbasi Sourki P, Sargazi Aval O, Baradaran B, Aghaei M. Macrophages in graft-versus-host disease (GVHD): dual roles as therapeutic tools and targets. Clin Exp Med 2025; 25:73. [PMID: 40048037 PMCID: PMC11885342 DOI: 10.1007/s10238-025-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Graft-versus-host disease remains one of the most formidable barriers to the complete success of hematopoietic stem cell transplantation that has emerged as the curative approach for many hematopoietic malignancies because it affects quality of life and overall survival. Macrophages are among the important members of the immune system, which perform dual roles in GVHD as both therapeutic tools and targets. This review epitomizes the multifunctional role of macrophages in the pathophysiology of both acute and chronic GVHD. Macrophages play an important role in the early phase of GVHD because of their recruitment and infiltration into target organs. Furthermore, they polarize into two functionally different phenotypes, including M1 and M2. In the case of acute GVHD, most macrophages express the M1 phenotype characterized by the production of pro-inflammatory cytokines that contribute to tissue damage. In contrast, in chronic GVHD, macrophages tend toward the M2 phenotype associated with the repair of tissues and fibrosis. A critical balance among these phenotypes is central to the course and severity of GVHD. Further interactions of macrophages with other lymphocytes such as T cells, B cells, and fibroblast further determine the course of GVHD. Macrophage interaction associated with alloreactive T cells promotes inflammation. This is therefore important in inducing injuries of tissues during acute GVHD. Interaction of macrophages, B cell, fibroblast, and CD4+ T cells promotes fibrosis during chronic GVHD and, hence, the subsequent dysfunction of organs. These are some insights, while several challenges remain. First, the impact of the dominant cytokines in GVHD on the polarization of macrophages is incompletely characterized and sometimes controversial. Second, the development of targeted therapies able to modulate macrophage function without systemic side effects remains an area of ongoing investigation. Future directions involve the exploration of macrophage-targeted therapies, including small molecules, antibodies, and nanotechnology, which modulate macrophage behavior and improve patient outcomes. This underlines the fact that a profound understanding of the dual role of macrophages in GVHD is essential for developing new and more effective therapeutic strategies. Targeting macrophages might represent one avenue for decreasing the incidence and severity of GVHD and improving the success and safety of HSCT.
Collapse
Affiliation(s)
- Atieh Raoufi
- Department of Immunology, Student Research Committee, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Hamed Soleimani Samarkhazan
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Nouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Navid Khaksari
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Abbasi Sourki
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Omolbanin Sargazi Aval
- Department of Hematology, Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
22
|
He H, Zhou Z, Zhang L, Lu Z, Li B, Li X. HIF1α/MIF/CD74 signaling mediated OSA-induced atrial fibrillation by promoting M1 macrophages polarization. Int Immunopharmacol 2025; 149:114248. [PMID: 39929098 DOI: 10.1016/j.intimp.2025.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is known to contribute to the occurrence and recurrence of atrial fibrillation (AF). However, the mechanism remains unknown. METHODS Chronic OSA rat model was established to elucidate the role of macrophages in OSA-induced AF. Moreover, to reveal the mechanisms underlying the abnormal polarization of macrophages induced by chronic OSA, co-culture cell model of macrophages and atrial myocytes was created. RESULTS Chronic OSA altered the pathological phenotype of atrial myocardial tissues, rendering it more susceptible to AF. Furthermore, chronic OSA promoted the polarization of M1 macrophages in the atrial tissue, and the AF susceptibility induced by chronic OSA was reversed upon clearance of macrophages. Then, we found that macrophages induced an atrial fibrillation-like phenotype in atrial myocytes, while atrial myocytes promoted M1 polarization of macrophages, under hypoxia/reoxygenation treatment. Moreover, hypoxia/reoxygenation upregulated the expression of hypoxia-inducible factor 1-α (HIF1α) in atrial myocytes, which subsequently promoted the expression of macrophage migration inhibitory factor (MIF) by binding to the promoter region. The increased expression of MIF further activated the expression of nuclear factor-kappa B (NF-κB) through interaction with CD74, ultimately leading to M1 macrophages polarization. CONCLUSIONS Increased polarization of M1-type macrophages was involved in the increased susceptibility to AF induced by OSA. In mechanism, OSA increased MIF expression by HIF1α in atrial myocytes. Then, MIF activated NF-κB expression by CD74 in macrophages, consequently driving the polarization of M1-type macrophages. Finally, M1 macrophages exacerbated atrial remodeling through the secretion of inflammatory cytokines, which contributed to the increased susceptibility to AF.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China; Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhen Zhou
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China.
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
23
|
Jin B, Miao Z, Pan J, Zhang Z, Yang Y, Zhou Y, Jin Y, Niu Z, Xu Q. The emerging role of glycolysis and immune evasion in ovarian cancer. Cancer Cell Int 2025; 25:78. [PMID: 40045411 PMCID: PMC11881340 DOI: 10.1186/s12935-025-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e., the "Warburg effect", which provides a large amount of energy and corresponding intermediary metabolites for their survival, reproduction and metastasis. Numerous studies have shown that targeted inhibition of aerobic glycolysis and lactate metabolism is a promising strategy to enhance the sensitivity of cancer cells to immunotherapy. Therefore, this review summarizes the metabolic features of glycolysis in OC cells and highlights how abnormal lactate concentration affects the differentiation, metabolism, and function of infiltrating immune cells, which contributes to immunosuppression, and how targeted inhibition of this phenomenon may be a potential strategy to enhance the therapeutic efficacy of OC.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Miao
- Dalian Medical University, Dalian, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidong Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanxiang Jin
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Deng Y, Jia X, Liu L, He Q, Liu L. The role of intestinal macrophage polarization in colitis-associated colon cancer. Front Immunol 2025; 16:1537631. [PMID: 40109347 PMCID: PMC11919874 DOI: 10.3389/fimmu.2025.1537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Chronic inflammation of the intestine is a significant risk factor in the development of colorectal cancer. The emergence of colitis and colorectal cancer is a complex, multifactorial process involving chronic inflammation, immune regulation, and tumor microenvironment remodeling. Macrophages represent one of the most prevalent cells in the colorectal cancer microenvironment and play a pivotal role in maintaining intestinal health and the development of colitis-associated colon cancer (CAC). Macrophages are activated mainly in two ways and resulted in three phenotypes: classically activated macrophages (M1), alternatively activated macrophages (M2). The most characteristic of these cells are the pro-inflammatory M1 and anti-inflammatory M2 types, which play different roles at different stages of the disease. During chronic inflammation progresses to cancer, the proportion of M2 macrophages gradually increases. The M2 macrophages secrete cytokines such as IL-10 and TGF-β, which promote angiogenesis and matrix remodeling, and create the favorable conditions for cancer cell proliferation, infiltration, and migration. Therefore, macrophage polarization has a dual effect on the progression of colitis to CAC. The combination of immunotherapy with reprogrammed macrophages and anti-tumor drugs may provide an effective means for enhancing the therapeutic effect. It may represent a promising avenue for developing novel treatments for CAC. In this review, we focus on the process of intestinal macrophage polarization in CAC and the role of intestinal macrophage polarization in the progression of colitis to colon cancer, and review the immunotherapy targets and relevant drugs targeting macrophages in CAC.
Collapse
Affiliation(s)
- Yujie Deng
- Medical Research Center, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaobing Jia
- The First Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Liu Liu
- Department of Gastroenterology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Scie Technology of China, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Al-Omar A, Asadi M, Mert U, Muftuoglu C, Karakus HS, Goksel T, Caner A. Effects of Vinorelbine on M2 Macrophages in Non-Small Cell Lung Cancer. Int J Mol Sci 2025; 26:2252. [PMID: 40076874 PMCID: PMC11900078 DOI: 10.3390/ijms26052252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) significantly influence tumor progression and patient responses to conventional chemotherapy. However, the interplay between anti-cancer drugs, immune responses in the tumor microenvironment, and their implications for cancer treatment remains poorly understood. This study investigates the effects of vinorelbine on M2 macrophages in lung cancer and its capacity to modulate TAMs toward an M1 phenotype. Peripheral blood mononuclear cells (PBMCs) were polarized into M2 macrophages, and subsequent phenotype alterations upon vinorelbine treatment were assessed. Additionally, we evaluated vinorelbine's impact on gene and protein expression associated with cancer progression and cell invasion in non-small-cell lung cancer (NSCLC) cells indirectly co-cultured with M2 macrophages. Notably, vinorelbine, particularly at low concentrations, reprogrammed M2 macrophages to exhibit M1-like characteristics. While M2 macrophages enhanced cancer cell invasion, vinorelbine significantly mitigated this effect. M2 macrophages led to the overexpression of numerous genes linked to tumor growth, angiogenesis, invasion, and immune suppression in NSCLC cells, increasing the BCL2/BAX ratio and promoting cellular resistance to apoptosis. The anti-tumor efficacy of vinorelbine appears to be partly attributed to the reprogramming of M2 macrophages to the M1 phenotype, suggesting that low-dose vinorelbine may optimize therapeutic outcomes while minimizing toxicity in cancer patients.
Collapse
Affiliation(s)
- Ahmed Al-Omar
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Milad Asadi
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Ufuk Mert
- Atatürk Health Care Vocational School, Ege University, Bornova 35100, Izmir, Turkey;
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
| | - Can Muftuoglu
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
| | - Haydar Soydaner Karakus
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Tuncay Goksel
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| | - Ayse Caner
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Bornova 35100, Izmir, Turkey; (A.A.-O.); (M.A.); (C.M.)
- Translational Pulmonary Research Group (EGESAM), Ege University, Bornova 35100, Izmir, Turkey; (H.S.K.); (T.G.)
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova 35100, Izmir, Turkey
| |
Collapse
|
26
|
Cao Z, Zhang Y, Jia H, Sun X, Feng Y, Wu H, Xu B, Wei Z. Immune checkpoint inhibitors mediate myocarditis by promoting macrophage polarization via cGAS/STING pathway. Cytokine 2025; 187:156873. [PMID: 39884185 DOI: 10.1016/j.cyto.2025.156873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors has opened up new avenues for cancer treatment, but serious cardiac injury has emerged in their use. A large number of data have shown that abnormal activation of cytosolic DNA-sensing cyclic GMP-AMP synthase-interferon gene activator pathway is closely related to cardiovascular inflammation and autoimmune diseases. However, the pathophysiological function of the cGAS-STING cascade in myocarditis induced by Immune checkpoint inhibitors is unclear. METHODS In order to establish a Immune checkpoint inhibitors-associated myocarditis model, BALB/c mice were injected with mouse cardiac troponin I peptide and anti-mouse programmed death 1 antibody. Echocardiography and HE staining were then performed to assess cardiac function and inflammation. Macrophages and damaged DNA in mouse heart tissue were detected by immunofluorescence. The mitochondrial damage of macrophages was observed by electron microscope. In vitro experiments, RAW264.7 was used to detect macrophage polarization after anti-PD-1 antibody induction and STING inhibition by qPCR and flow cytometry. Mitochondrial damage was detected by immunofluorescence, and activation of the cGAS-STING signaling pathway was evaluated by protein imprinting analysis. RESULTS In the Immune checkpoint inhibitors-associated myocarditis model, DNA damage was found to activate the cGAS-STING pathway and macrophages were polarized to M1 type. In vitro experiments, anti-PD-1 antibody activate the cGAS-STING pathway through the release of damaged DNA from macrophage mitochondrial damage, causing macrophage polarization into a pro-inflammatory phenotype leading to autoimmune myocarditis. CONCLUSION Our results suggested that the cGAS-STING pathway played a key role in myocarditis caused by immune checkpoint inhibitors. It provided a new possibility for Immune checkpoint inhibitors to be widely used in clinic.
Collapse
Affiliation(s)
- Zhenzhu Cao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yu Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Huihui Jia
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China
| | - Han Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China.
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 358 Zhongshan Road, 210008 Nanjing, China; Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 358 Zhongshan Road, 210008 Nanjing, China.
| |
Collapse
|
27
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
28
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
29
|
Vizcaino-Castro A, Chen S, Hoogeboom BN, Boerma A, Daemen T, Oyarce C. Effect of repurposed metabolic drugs on human macrophage polarization and antitumoral activity. Clin Immunol 2025; 272:110440. [PMID: 39889896 DOI: 10.1016/j.clim.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
AIM This study aimed to investigate whether the polarization of monocyte-derived macrophages towards an anti-inflammatory phenotype could be hindered by modulating cellular metabolism. Several metabolic drugs were selected: Perhexiline (PerHx) and Nitazoxanide (NTZ) targeting fatty acid oxidation, CB839 (Telaglenastat) targeting glutaminolysis and Metformin (Metf) targeting the mitochondrial electron transport chain. RESULTS Our findings demonstrate that the presence of PerHx, NTZ, and CB839 during IL-4-mediated macrophages polarization impaired the acquisition of full anti-inflammatory phenotype, as evidenced by reduced expression of CD163 and CD209 and decreased secretion of CCL17 chemokine. Besides, CB839 induced tumoricidal activity in macrophages, comparable to that observed in macrophages activated by LPS and IFNγ. CONCLUSION This study reveals that targeting glutamine metabolism with CB839 effectively blocks the IL-4-induced anti-inflammatory phenotype in macrophages and enhances their tumor-killing capability. Our results provide a compelling rationale for repurposing metabolic drugs to create a pro-inflammatory tumor microenvironment, thereby potentially enhancing the efficacy of current immunotherapies.
Collapse
Affiliation(s)
- Ana Vizcaino-Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Shipeng Chen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Baukje Nynke Hoogeboom
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Annemarie Boerma
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
30
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Kobatake T, Miyamoto Y, Fujihara Y, Saijo H, Hoshi K, Hikita A. Small extracellular vesicles derived from auricular chondrocytes promote secretion of interleukin 10 in bone marrow M1-like macrophages. Regen Ther 2025; 28:421-430. [PMID: 39925964 PMCID: PMC11804269 DOI: 10.1016/j.reth.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Elucidation of the paracrine interaction between chondrocytes and macrophages is useful for understanding the mechanisms of cartilage regeneration. Extracellular vesicles are granular substances with a diameter of approximately 150 nm, surrounded by a phospholipid bilayer membrane. In recent years, research has been conducted on clinical applications of extracellular vesicles. It has been shown that macrophages promote cartilage maturation, and macrophages acquire anti-inflammatory properties through cartilage, but the detailed mechanism of paracrine action involving extracellular vesicles remains unclear. Therefore, we focused on the effect of chondrocyte-derived extracellular vesicles on changes in macrophage characteristics. Methods Macrophages induced with granulocyte-macrophage colony stimulating factor (M1-like macrophages) and auricular chondrocytes were co-cultured using cell culture inserts and exosome inhibitors, and the expression of macrophage markers were analyzed. Next, extracellular vesicles separated from auricular chondrocytes were added to in vitro macrophage culture medium, and time-lapse observations of macrophage uptake of auricular chondrocyte-derived extracellular vesicles were performed. In addition, the effects of extracellular vesicles on the expression of macrophage markers were also analyzed. Results The expression of CD206, an M2 macrophage marker, was increased in macrophages due to the paracrine effect of chondrocytes, and CD206 expression was further increased by pharmacological inhibition of chondrocyte-derived exosomes. It was shown that chondrocyte-derived extracellular vesicles were taken up by macrophages and promoted the production of interleukin-10, an anti-inflammatory cytokine while reducing CD206 expression. Conclusions Auricular chondrocyte-derived extracellular vesicles promoted the production of interleukin-10 in bone marrow M1-like macrophages but reduced CD206 expression.
Collapse
Affiliation(s)
- Tetsuya Kobatake
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshiyuki Miyamoto
- Division of Dentistry and Oral Surgery, Mitsui Memorial Hospital, Kanda-Izumi-cho 1, Chiyoda-ku, Tokyo, 101-8643, Japan
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Fujihara
- Department of Dentistry and Oral Surgery, Tokyo Teishin Hospital, 2-14-23 Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan
| | - Hideto Saijo
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Advanced Therapeutics Course, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Clinical Stem Cell Biology, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
32
|
Chen Y, Zhao H, Cao S, Xie H, Huang J, Chen X, Cui Z. Molecular characterization of large yellow croaker (Larimichthys crocea) coagulation factor Ⅶ-like and its function on macrophage proliferation and polarization. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110174. [PMID: 39914795 DOI: 10.1016/j.fsi.2025.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The coagulation system is a mechanism for wound healing after injury, but it also participates in host early immune defense. The coagulation factor Ⅶ (FⅦ) can initiate extrinsic pathway and play an important role in the coagulation process. However, studies of the immune function of FVII are scarce, especially in fish. In this study, we cloned and characterized an FⅦ-like gene from large yellow croaker (Larimichthys crocea) (LcFⅦL). The open reading frame of LcFⅦL consists of 1437 base pairs and encodes 478 amino acid residues. LcFⅦL contains conserved domains that are present in other vertebrate FⅦs or FⅦLs, including a prepropeptide, a gamma-carboxy glutamic acid domain, two epidermal growth factor-like domains, and a serine protease domain. LcFⅦL was highly expressed in the liver and brain, but its expression was low in the other tested tissues. At the cellular level, LcFⅦL was highly expressed in macrophages, and its expression was induced by exposure to Pseudomonas plecoglossicida. We produced the recombinant LcFⅦL light chain (rLcFⅦL-LC), and found that it had obvious antibacterial effects against Gram-positive bacteria but low against Gram-negative bacteria. The rLcFⅦL-LC promoted the proliferation of macrophages. It also significantly induced the expression of proinflammatory factor (IL-1β and IL-6) and increased reactive oxygen species activity in large yellow croaker macrophages, while inhibited the expression of anti-inflammatory factor (TGF-β), suggesting that rLcFⅦL-LC may promote polarization of macrophages towards the M1 type. Taken together, these findings provide insight into the function of fish FⅦ, and advance our understanding of the role of the coagulation system in host defense.
Collapse
Affiliation(s)
- Yueming Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Han Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuangshuang Cao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongjun Xie
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| | - Zhengwei Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
33
|
Wen L, Lin X, Hu D, Li J, Xie K, Li S, Su S, Duan X, Zhong G, Lin Y, Chen Y, Xu T, Zeng Q. Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway. Atherosclerosis 2025; 402:119109. [PMID: 39952076 DOI: 10.1016/j.atherosclerosis.2025.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/24/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization. METHODS In vitro, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. In vivo, the influence of IRAK-M on CAVD development was verified using Irak-m-/- mice. RESULT Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. In vitro, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). In vivo experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD). CONCLUSION TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.
Collapse
Affiliation(s)
- Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiangjie Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaolin Duan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Tianyu Xu
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
34
|
Wang J, Gao S, Fu S, Li Y, Su L, Li X, Wu G, Jiang J, Zhao Z, Yang C, Wang X, Cui K, Sun X, Qi X, Wang C, Sun H, Shao S, Tian Y, Gong T, Luo J, Zheng J, Cui S, Liao F, Liu F, Wang D, Wong CCL, Yi M, Wan Y. Irisin reprograms microglia through activation of STAT6 and prevents cognitive dysfunction after surgery in mice. Brain Behav Immun 2025; 125:68-91. [PMID: 39701329 DOI: 10.1016/j.bbi.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is common in the aged population and associated with poor clinical outcomes. Irisin, an endogenous molecule that mediates the beneficial effects of exercise, has shown neuroprotective potential in several models of neurological diseases. Here we show that preoperative serum level of irisin is reduced in dementia patients over the age of 70. Comprehensive proteomics analysis reveals that deletion of irisin affects the nervous and immune systems, and reduces the expression of complement proteins. Systemically administered irisin penetrates the blood-brain barrier in mice, targets the microglial integrin αVβ5 receptor, activates signal transducer and activator of transcription 6 (STAT6), induces microglia reprogramming to the M2 phenotype, and improves immune microenvironment in LPS-induced neuroinflammatory mice. Finally, prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction. Our findings provide new insights into the direct regulation of the immune microenvironment by irisin, and reveal that recombinant irisin holds great promise as a novel therapy for preventing POCD and other neuroinflammatory disorders. SUMMARY: Our findings reveal molecular and cellular mechanisms of irisin on neuroinflammation, and show that prophylactic administration of irisin prevents POCD-like behavior, particularly early cognitive dysfunction.
Collapse
Affiliation(s)
- Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuaixin Gao
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China; Human Nutrition Program, Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yawei Li
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China
| | - Li Su
- Peking University Medical and Health Analysis Center, Peking University, Beijing 10034, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiankuo Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zifang Zhao
- Department of Pain Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xiaoyi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Beijing Life Science Academy, Beijing 102209, China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Cheng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Changping Laboratory, Beijing 102206, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Yue Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Tingting Gong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Feifei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China.
| | - Dongxin Wang
- Department of Anesthesiology, Peking University First Hospital, Beijing 10034, China.
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, 100191, China; Medical Innovation Center (Taizhou) of Peking University, Taizhou 225316, China.
| |
Collapse
|
35
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
36
|
Li M, Zhang T, Li P, Luan Z, Liu J, Wang Y, Zhang Y, Liu Y, Wang Y. IL-4-primed human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate recovery in spinal cord injury via the miR-21-5p/PDCD4-mediated shifting of macrophage M1/M2 polarization. Life Sci 2025; 364:123441. [PMID: 39909387 DOI: 10.1016/j.lfs.2025.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Spinal cord injury (SCI) represents a significant neurological disorder that profoundly impacts human life. Transplantation of extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUC-MSCs) has emerged as a promising therapeutic strategy. microRNA (miRNA) containing EVs serve as crucial mediators of intercellular communication, playing vital roles in physiological and pathological processes. Research indicates that EVs from hUC-MSCs could attenuate inflammation and facilitate recovery from SCI. Nevertheless, their application in clinical treatment necessitates further investigation. We are actively pursuing an effective approach to modulate the intensity of the inflammatory response, thereby addressing secondary SCI. Initially, we activated hUC-MSCs with interleukin-4 (IL-4) and subsequently harvested their EVs. We investigated the influences of A-hUC-MSCs-EVs compared to routinely acquired EVs on macrophage polarization phenotypes both in vitro and in vivo. Our results show that EVs originating from A-hUC-MSCs are more effective at promoting macrophage polarization from the M1 phenotype to the M2 phenotype than those derived from hUC-MSCs. Notably, we found that A-hUC-MSCs-derived EVs had a superior impact on motor function recovery in mice with SCI. Importantly, we observed that IL-4 activation significantly upregulated the expression of miR-21-5p within these EVs. More specifically, our data demonstrate that A-hUC-MSCs-EVs depend on miR-21-5p to inhibit the effects of PDCD4 on macrophage polarization. This mechanism regulates inflammatory responses while simultaneously reducing apoptosis. In summary, EVs derived from IL-4 primed hUC-MSCs are enriched with miR-21-5p, which exerts a pivotal influence in shifting macrophage polarization, alleviating inflammatory responses following SCI, and facilitating recovery.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Orthopedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Orthopedic Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Li
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zhiwei Luan
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yangyang Wang
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yubo Zhang
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yishu Liu
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yansong Wang
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Ishikawa N, Watanabe Y, Maeda Y, Yoshida T, Kimura N, Abe H, Sakamaki A, Kamimura H, Yokoo T, Kamimura K, Tsuchiya A, Terai S. Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells. Regen Ther 2025; 28:509-516. [PMID: 39991509 PMCID: PMC11846928 DOI: 10.1016/j.reth.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/06/2025] [Accepted: 01/19/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Cirrhosis is a disease with poor prognosis that requires the development of a novel therapeutic approach alternative to liver transplantation. In this study, we focused on the placenta and aimed to clarify the effects of human placental extract (HPE) on cirrhosis. Methods A mouse model of carbon tetrachloride-induced cirrhosis was used to evaluate the effect of HPE administration subcutaneously and compared with the control group (n = 8 for each group). In vitro and in vivo, real time-PCR and immunostaining were performed for HPE mechanistic analysis. Spatial transcriptomics was also performed for detailed analysis of the effect of HPE on cirrhosis. Results HPE administration improved serum ALT levels compared to control mice. Furthermore, there was a decrease in the number of senescent cells in the liver and the mRNA levels of secrete senescence-associated secretory phenotype factors and Cdkn2a (p16). In vitro, HPE induced macrophage polarization to the anti-inflammatory M2 phenotype. Spatial transcriptomics was also performed to analyze the underlying anti-inflammatory mechanism. The results showed that HPE strongly polarized macrophages to the M2 phenotype, especially in macrophage-rich regions in the liver. Gene expression pathway analysis using spatial transcriptomics also revealed the possibility of improving senescent cell-derived inflammation via mitochondrial function. Conclusions HPE improves serum ALT levels via anti-inflammatory mechanisms in macrophages and senescent cells. HPE serves as a novel agent for cirrhosis treatment.
Collapse
Affiliation(s)
- Natsuki Ishikawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Yuichirou Maeda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
38
|
Xue C, Liu W, Li Y, Yin Y, Tang B, Zhu J, Dong Y, Liu H, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by facilitating M2 polarization via CCL2/CCR2 axis and further inducing formation of regulatory CCR2 + CD4 + T cells. Stem Cell Res Ther 2025; 16:108. [PMID: 40025564 PMCID: PMC11872334 DOI: 10.1186/s13287-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) can secrete large amounts of the chemokine CCL2 under inflammatory conditions and alleviate idiopathic pneumonia syndrome (IPS) by promoting regulatory CCR2 + CD4 + T-cell formation through the CCL2‒CCR2 axis. Given the abundance of macrophages in lung tissue, how these macrophages are regulated by MSC-based prophylaxis via IPS and their interactions with T cells in lung tissue during allo-HSCT are still not fully understood. METHODS An IPS mouse model was established, and MSC-based prophylaxis was administered. In vitro coculture systems and an IPS model were used to study the interactions among MSCs, macrophages and T cells. RESULTS Prophylactic administration of MSCs induced M2 polarization and alleviated acute graft-versus-host disease (aGVHD) and lung injury in an IPS mouse model. In vitro coculture studies revealed that M2 polarization was induced by MSC-released CCL2 and that these M2 macrophages promoted the formation of regulatory CCR2 + CD4 + T cells. Blocking the CCL2-CCR2 interaction in vitro reversed MSC-induced M2 polarization and abolished the induction of CCR2 + CD4 + T-cell formation. Additionally, in vivo administration of a CCL2 or CCR2 antagonist in the IPS mouse model exacerbated aGVHD and lung injury, accompanied by a reduction in M2 macrophages and reduced formation of regulatory CCR2 + CD4 + T cells in lung tissue. CONCLUSIONS MSCs alleviate IPS by facilitating M2 polarization via the CCL2‒CCR2 axis and further inducing the formation of regulatory CCR2 + CD4 + T cells.
Collapse
Affiliation(s)
- Chao Xue
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Jinye Zhu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| |
Collapse
|
39
|
Wang Z, Sun X, Lin Y, Fu Y, Yi Z. Stealth in non-tuberculous mycobacteria: clever challengers to the immune system. Microbiol Res 2025; 292:128039. [PMID: 39752805 DOI: 10.1016/j.micres.2024.128039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent. Currently, there is a lack of effective treatments and preventive measures for NTM infections. This article aims to deepen the comprehension of the pathogenic mechanisms linked to NTM and to formulate new intervention strategies by synthesizing current research and detailing the different tactics used by NTM to avoid elimination by the host's immune response. These intricate mechanisms not only affect the innate immune response but also successfully oppose the adaptive immune response, establishing persistent infections within the host. This includes effects on the functions of macrophages, neutrophils, dendritic cells, and T lymphocytes, as well as modulation of cytokine production. The article particularly emphasizes the survival strategies of NTM within macrophages, such as inhibiting phagosome maturation and acidification, resisting intracellular killing mechanisms, and interfering with autophagy and cell death pathways. This review aims to deepen the understanding of NTM's immune evasion mechanisms, thereby facilitating efforts to inhibit its proliferation and spread within the host, ultimately providing new methods and strategies for NTM-related treatments.
Collapse
Affiliation(s)
- Zhenghao Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiurong Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yuli Lin
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China
| | - Yurong Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
40
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
41
|
Ge Y, Jiang L, Dong Q, Xu Y, Yam JWP, Zhong X. Exosome-mediated Crosstalk in the Tumor Immune Microenvironment: Critical Drivers of Hepatocellular Carcinoma Progression. J Clin Transl Hepatol 2025; 13:143-161. [PMID: 39917466 PMCID: PMC11797817 DOI: 10.14218/jcth.2024.00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, ranking as the sixth most prevalent malignancy and the fourth leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, mortality rates for HCC remain high. The tumor immune microenvironment (TIME) plays a vital role in HCC progression by influencing tumor cell survival and growth. Recent studies highlight the essential role of exosomes in mediating intercellular communication within the TIME, particularly in interactions among tumor cells, immune cells, and fibroblasts. These interactions drive critical aspects of tumor development, including immune escape, angiogenesis, drug resistance, and metastasis. A detailed understanding of the molecular mechanisms by which exosomes modulate the TIME is essential for developing targeted therapies. This review systematically evaluated the roles and regulatory mechanisms of exosomes within the TIME of HCC, examining the impact of both HCC-derived and non-HCC-derived exosomes on various cellular components within the TIME. It emphasized their regulatory effects on cell phenotypes and functions, as well as their roles in HCC progression. The review also explored the potential applications of exosome-based immunotherapies, offering new insights into improving therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Zhuang AB, Xi Z, Cheng YX, Zhang CH, Li WG. Current status and future perspectives of immunotherapy for abdominal liposarcoma: From basic research to clinical practice. Shijie Huaren Xiaohua Zazhi 2025; 33:81-88. [DOI: 10.11569/wcjd.v33.i2.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
Liposarcoma is a highly heterogeneous type of soft tissue sarcoma originating from adipose tissue, characterized by complex biological behavior and invasiveness. Traditional treatments have shown limited efficacy in high-grade and metastatic liposarcoma, with unsatisfactory patient outcomes. In recent years, the breakthroughs of immunotherapy in various solid tumors have sparked interest in its potential application to liposarcoma. This review systematically examines the progress in basic research and clinical practice of immunotherapy for liposarcoma, discussing the tumor immune microenvironment, mechanisms of immune evasion, the application of immune checkpoint inhibitors, combination therapy strategies, the challenges faced, as well as the future direction, with an aim to provide a theoretical basis for personalized treatment of liposarcoma, promote the development of novel immunotherapy strategies, and ultimately improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Ao-Bo Zhuang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Zhe Xi
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Ying-Xue Cheng
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chen-He Zhang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Wen-Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China
- Cancer Research Center of Xiamen University, Xiamen 361005, Fujian Province, China
| |
Collapse
|
43
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
44
|
Ye Q, Zhang M, Li Q, Jia L, Gao Y, Yuan H, Li J. Regulation of the diabetic immune microenvironment by metformin-loaded strontium-doped mesoporous bioactive glass facilitates bone regeneration. J Mater Chem B 2025; 13:3114-3127. [PMID: 39903083 DOI: 10.1039/d4tb01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chronic inflammation and oxidative stress in the diabetic microenvironment often hinder the healing of bone defects. Metformin (MET), the first-line diabetes medication, was shown to alter macrophage polarization toward an anti-inflammatory M2 phenotype, while simultaneously suppressing excessive reactive oxygen species (ROS) generation. Strontium-doped mesoporous bioactive glasses (SrMBG) also showed promising benefits in promoting bone regeneration. Aiming to improve the diabetic immune microenvironment within bone defects, in this study we loaded SrMBG mesopores with increasing amounts of MET. MET-loaded SrMBG (MET/SrMBG) extracts promoted macrophage differentiation toward the M2 phenotype and reduced ROS production in vitro. The possibility of facilitating osteogenic differentiation of bone marrow stromal cells (BMSCs) in vivo led us to develop 3D-printed MET/SrMBG scaffolds. Experiments utilizing a critical-size calvarium defect model in diabetic rats confirmed that implanting the MET/SrMBG scaffold enhanced bone repair owing to the effects of MET regulating M2 type macrophage polarization and mitigating oxidative stress to improve the inflammatory microenvironment.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, Sichuan, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianrui Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingling Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuan Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - He Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiyao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
45
|
Khizar H, Ali K, Wang J. From silent partners to potential therapeutic targets: macrophages in colorectal cancer. Cancer Immunol Immunother 2025; 74:121. [PMID: 39998578 PMCID: PMC11861851 DOI: 10.1007/s00262-025-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Cancer cells grow and survive in the tumor microenvironment, which is a complicated process. As a key part of how colorectal cancer (CRC) progresses, tumor-associated macrophages (TAMs) exhibit a double role. Through angiogenesis, this TAM can promote the growth of cancers. Although being able to modify and adjust immune cells is a great advantage, these cells can also exhibit anti-cancer properties including direct killing of cancer cells, presenting antigens, and aiding T cell-mediated responses. The delicate regulatory mechanisms between the immune system and tumors are composed of a complex network of pathways regulated by several factors including hypoxia, metabolic reprogramming, cytokine/chemokine signaling, and cell interactions. Decoding and figuring out these complex systems become significant in building targeted treatment programs. Targeting TAMs in CRC involves disrupting chemokine signaling or adhesion molecules, reprogramming them to an anti-tumor phenotype using TLR agonists, CD40 agonists, or metabolic modulation, and selectively removing TAM subsets that promote tumor growth. Multi-drug resistance, the absence of an accurate biomarker, and drug non-specificity are also major problems. Combining macrophage-targeted therapies with chemotherapy and immunotherapy may revolutionize treatment. Macrophage studies will advance with new technology and multi-omics methodologies to help us understand CRC and build specific and efficient treatments.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kamran Ali
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jianwei Wang
- Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 2nd Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
| |
Collapse
|
46
|
Abe T. Isoschaftoside in Fig Leaf Tea Alleviates Nonalcoholic Fatty Liver Disease in Mice via the Regulation of Macrophage Polarity. Nutrients 2025; 17:757. [PMID: 40077628 PMCID: PMC11902273 DOI: 10.3390/nu17050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a subset of fatty liver disease that is not caused by alcohol or viruses, and its increasing incidence presents a major global health concern. As few pharmacotherapies are available for NAFLD, lifestyle modifications, including diet and exercise, serve as the foundation for treatment. Therefore, NAFLD prevention is more important than cure, emphasizing the need for drugs with excellent safety and long-term efficacy. Fig leaf tea contains rutin and isoschaftoside (ISS), which may possess anti-inflammatory properties. Therefore, the aim of this murine-model-based study was to investigate the potential benefits of fig leaf tea in alleviating NAFLD and to determine the underlying mechanism by gene expression analysis. RESULTS We found that in mice with NAFLD induced by a high-fat diet, the administration of high concentration fig leaf tea or 50 µM ISS significantly ameliorated lobule inflammation. In contrast, low concentration fig leaf tea containing 75 µM ISS did not improve inflammation. The balance between the NAFLD-promoting component of fig leaf tea and the inhibitory effect of ISS was thought to be affected. Gene expression analysis of the liver showed that high concentration fig leaf tea or ISS significantly suppressed the expression of M1 macrophage markers such as CD antigens, toll-like receptors (TLR), chemokines, and cytokines. Further, ISS suppressed the amount of TNF-α released during the M1 polarization of macrophage cells upon lipopolysaccharide (LPS) stimulation. CONCLUSIONS Overall, these results suggest that controlling macrophage polarization may improve NAFLD. Furthermore, these findings highlight the potential clinical applicability of ISS.
Collapse
Affiliation(s)
- Tatsuya Abe
- Toyo Institute of Food Technology, 23-2, 4-chome, Minami-Hanayashiki, Kawanishi 666-0026, Hyogo, Japan
| |
Collapse
|
47
|
Rong B, Jiang H, Zhu W, Yang G, Zhou X, Lyu Z, Li X, Zhang J. Unraveling the role of macrophages in diabetes: Impaired phagocytic function and therapeutic prospects. Medicine (Baltimore) 2025; 104:e41613. [PMID: 39993124 PMCID: PMC11856964 DOI: 10.1097/md.0000000000041613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
The rising aging population and changing lifestyles have led to a global increase in diabetes and its complications, making it one of the most prevalent diseases worldwide. Chronic inflammation is a key pathogenic feature of diabetes and its complications, yet the precise mechanisms remain unclear, impeding the development of targeted therapies. Recent studies have highlighted the β cell-macrophage crosstalk pathway as a crucial factor in chronic low-grade inflammation and glucose homeostasis imbalance in both type 1 and type 2 diabetes. Furthermore, impaired macrophage phagocytic functions, including pathogen phagocytosis, efferocytosis, and autophagy, play a significant role in diabetes complications. Given their high plasticity, macrophages represent a promising research target. This review summarizes recent findings on macrophage phagocytic dysfunction in diabetes and its complications, and explores emerging therapies targeting macrophage phagocytic function. We also discuss the current challenges in translating basic research to clinical practice, aiming to guide researchers in developing targeted treatments to regulate macrophage status and phagocytic function, thus preventing and treating metabolic inflammatory diseases.
Collapse
Affiliation(s)
- Bing Rong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Xuancheng Zhou
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongxi Lyu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangyi Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
48
|
Tavares LP, Libreros S, Bitounis D, Nshimiyimana R, Demokritou P, Serhan CN, Levy BD. SiO 2 nanoparticles as disruptors of endogenous resolution mechanisms of inflammatory responses that exacerbate pneumonia. Sci Rep 2025; 15:6398. [PMID: 39984537 PMCID: PMC11845501 DOI: 10.1038/s41598-025-89700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Occupational exposure to engineered nanomaterials (ENMs) is increasing in the workplace and can impact human health. Amorphous silicon dioxide nanoparticles (SiO2 NPs) are widely produced respirable ENMs used in commercial products. We have investigated their impact on lung inflammation resolution and bacterial defense. Mice exposed to SiO2 NPs, followed by bacteria, exhibited increased lung inflammation, bacterial proliferation, and lung damage compared to mice not exposed to NPs. SiO2 NPs increased human macrophage production of pro-inflammatory mediators and disrupted phagocytosis of bacteria and efferocytosis of apoptotic neutrophils - pivotal responses for host defense and inflammation resolution. A pro-resolving mediator, resolvin D5 (RvD5), restored macrophage phagocytosis of bacteria and partially controlled excess lung inflammation after SiO2 NPs. These findings demonstrate that SiO2 NPs disrupt endogenous resolution processes to give rise to heightened lung inflammation and infection. RvD5 reduced inflammation and partially restored endogenous resolution cellular processes, suggesting that RvD5 can reduce ENP disruption of resolution.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, USA
| | - Dimitrios Bitounis
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Science Institute, Rutgers Biomedical Health Sciences, Piscataway, NJ, 08854, USA
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Sanofi US., Cambridge, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Science Institute, Rutgers Biomedical Health Sciences, Piscataway, NJ, 08854, USA
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Tan Q, Xiang C, Zhang H, Yuan Y, Gong S, Zheng Z, Wang X, Liu X, Chen Y, Tan C. YAP promotes fibrosis by regulating macrophage to myofibroblast transdifferentiation and M2 polarization in chronic pancreatitis. Int Immunopharmacol 2025; 148:114087. [PMID: 39818090 DOI: 10.1016/j.intimp.2025.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Chronic pancreatitis (CP) is a clinical entity characterized by progressive inflammation and irreversible fibrosis of the pancreas, which ultimately leads to exocrine and/or endocrine insufficiency as well as an increased risk of pancreatic cancer. Currently, there are no specific or effective approved therapies for CP. Herein, we show that macrophage to myofibroblast transdifferentiation (MMT) and M2 macrophage polarization are associated with both human CP and CP experimental mouse models. In addition, we show YAP is activated in macrophages during CP. Furthermore, we used the YAP agonist XMU-MP-1 (XMU) and the YAP inhibitor Verteporfin (VP) to modulate YAP expression levels. In vitro experiments revealed that XMU upregulated YAP expression, thereby promoting MMT and enhancing M2 macrophage polarization; conversely, VP downregulated YAP expression, inhibiting these effects. In vivo studies indicated that XMU exacerbated acinar cell atrophy and interstitial fibrosis in caerulein-induced mouse models of CP, while VP mitigated these adverse effects associated with CP. These findings provide new insights into the pathogenic mechanisms underlying CP, and offer potential therapeutic targets for CP.
Collapse
Affiliation(s)
- Qingquan Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Chengzhi Xiang
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Haoqi Zhang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Yuan Yuan
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Songlin Gong
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zürich, Zurich, Switzerland
| | - Zhenjiang Zheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Xing Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China
| | - Yonghua Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China.
| | - Chunlu Tan
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan CN 610041, China.
| |
Collapse
|
50
|
Wang Z, Ren Y, Li Y, Zhang Y, Bai S, Hou W, Zhang W, Yao Y, Zhao H, Wang M, Luo Y, Pang G, Du J. MiR-186-5p carried by M2 macrophage-derived exosomes downregulates TRPP2 expression in airway smooth muscle to alleviate asthma progression. Int Immunopharmacol 2025; 148:114107. [PMID: 39884080 DOI: 10.1016/j.intimp.2025.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Bronchial asthma (asthma) is a chronic inflammatory disease of the airways that remains an unresolved problem. Reportedly M2 macrophages and exosomes play a role in inflammation, including asthma. We investigated the roles of M2 macrophage-derived exosomes (M2-Exos) effect in asthmatic progression by using ovalbumin (OVA) induced asthmatic mice model. M2-Exos significantly ameliorated the pulmonary inflammatory response and airway hyperresponsiveness in asthmatic mice and suppressed aberrant proliferation and transient receptor potential polycystic protein 2(TRPP2) expression in LPS-stimulated primary airway smooth muscle cells (ASMCs). Then, we found that miR-186-5p of M2-Exos could target TRPP2 through online database analysis. However, miR-186-5p downregulation by miR-186-5p inhibitors decreased the protective effect of M2-Exos in asthmatic mouse and cellular models. miR-186-5p was identified and selectively combined with the polycystin-2 gene encoding TRPP2 protein, inhibited TRPP2 protein production, and downregulated TRPP2 expression. A reduction in the number of TRPP2 calcium (Ca) channels formed on the cell membrane leads to a decreased intracellular Ca2+ concentration ([Ca2+] i), causing reduced ASMC contraction and proliferation, thereby improving airway hyperresponsiveness and airway remodeling in asthma. Collectively, we conclude that M2 exosomal miR-186-5p to alleviate asthma progression and airway hyperresponsiveness though downregulating TRPP2 expression. These results may offer a novel insight to the treatment and drug delivery of asthma.
Collapse
Affiliation(s)
- Zunyun Wang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China
| | - Yan Ren
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yicong Li
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yuxin Zhang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Suwen Bai
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Wenxuan Hou
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Wenjun Zhang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yanheng Yao
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Hongxian Zhao
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China
| | - Minghua Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yumei Luo
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Gang Pang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China.
| |
Collapse
|