1
|
Wang Y, Li W, Ha C. A large-scale causal analysis of gut microbiota and endometriosis associated infertility: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37383. [PMID: 38518021 PMCID: PMC10956985 DOI: 10.1097/md.0000000000037383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024] Open
Abstract
Endometriosis is a prevalent condition with notable impacts on fertility. Recent studies have implicated gut microbiota in the development of endometriosis associated infertility (EAI). This study employs Mendelian randomization (MR) to elucidate the causal relationship between specific gut microbes and EAI. Using MR, we selected single nucleotide polymorphisms associated with 211 gut microbiota taxa from large-scale genome-wide association studies summary data. We applied statistical methods including inverse variance weighting, weighted median, and MR-Egger for analysis. Outliers were identified through the leave-one-out method. MR-Egger intercept tests were conducted to address horizontal pleiotropy, while Cochran Q and P values assessed heterogeneity. The false discovery rate method was used for multiple testing correction. Sensitivity analysis and F statistics evaluated the reliability and potential biases of our results. The inverse variance weighting method indicated a significant association of the genus Actinomyces (OR = 1.657, 95% CI: 1.187-2.312, P = .00298) with an increased risk of EAI. Conversely, genera Holdemania (OR = 0.630, 95% CI: 0.444-0.894, P = .00969) and Ruminococcaceae NK4A214 group (OR = 0.689, 95% CI: 0.481-0.999, P = .0439) appeared as protective factors. MR-PRESSO global test and MR-Egger regression indicated no significant horizontal pleiotropy (P > .05). Leave-one-out analysis confirmed the robustness of these findings. Our study provides evidence of a causal relationship between specific gut microbiome taxa and EAI. These findings offer novel insights and may guide the development of new preventive and therapeutic strategies for managing EAI.
Collapse
Affiliation(s)
- Yan Wang
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wangshu Li
- Dalian Women and Children’s Medical Center (Group), Dalian, China
| | - Chunfang Ha
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Xu L, Yang CS, Liu Y, Zhang X. Effective Regulation of Gut Microbiota With Probiotics and Prebiotics May Prevent or Alleviate COVID-19 Through the Gut-Lung Axis. Front Pharmacol 2022; 13:895193. [PMID: 35548347 PMCID: PMC9081431 DOI: 10.3389/fphar.2022.895193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can disrupt the gut microbiota balance, and patients usually have intestinal disorders. The intestine is the largest immune organ of the human body, and gut microbes can affect the immune function of the lungs through the gut-lung axis. Many lines of evidence support the role of beneficial bacteria in enhancing human immunity, preventing pathogen colonization, and thereby reducing the incidence and severity of infection. In this article, we review the possible approach of modulating microbiota to help prevent and treat respiratory tract infections, including COVID-19, and discuss the possibility of using probiotics and prebiotics for this purpose. We also discuss the mechanism by which intestinal micro-flora regulate immunity and the effects of probiotics on the intestinal micro-ecological balance. Based on this understanding, we propose the use of probiotics and prebiotics to modulate gut microbiota for the prevention or alleviation of COVID-19 through the gut-lung axis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- *Correspondence: Chung S. Yang, ; Xin Zhang,
| |
Collapse
|
3
|
Han N, Pan Z, Liu G, Yang R, Yujing B. Hypoxia: The "Invisible Pusher" of Gut Microbiota. Front Microbiol 2021; 12:690600. [PMID: 34367091 PMCID: PMC8339470 DOI: 10.3389/fmicb.2021.690600] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Oxygen is important to the human body. Cell survival and operations depend on oxygen. When the body becomes hypoxic, it affects the organs, tissues and cells and can cause irreversible damage. Hypoxia can occur under various conditions, including external environmental hypoxia and internal hypoxia. The gut microbiota plays different roles under hypoxic conditions, and its products and metabolites interact with susceptible tissues. This review was conducted to elucidate the complex relationship between hypoxia and the gut microbiota under different conditions. We describe the changes of intestinal microbiota under different hypoxic conditions: external environment and internal environment. For external environment, altitude was the mayor cause induced hypoxia. With the increase of altitude, hypoxia will become more serious, and meanwhile gut microbiota also changed obviously. Body internal environment also became hypoxia because of some diseases (such as cancer, neonatal necrotizing enterocolitis, even COVID-19). In addition to the disease itself, this hypoxia can also lead to changes of gut microbiota. The relationship between hypoxia and the gut microbiota are discussed under these conditions.
Collapse
Affiliation(s)
- Ni Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bi Yujing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
Liang ZJ, Liang JK, Chen YP, Chen Z, Wang Y. Primary liver actinomycosis in a pediatric patient: A case report and literature review. World J Clin Cases 2021; 9:5717-5723. [PMID: 34307630 PMCID: PMC8281436 DOI: 10.12998/wjcc.v9.i20.5717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary hepatic actinomycosis is a rare infection that can be clinically confused with hepatic pyogenic abscesses or neoproliferative processes. Only a few cases of primary hepatic actinomycosis in children have been reported in the English literature.
CASE SUMMARY We describe a pediatric patient with primary hepatic actinomycosis that involved the base of the right lung and anterior abdominal wall and skin. The patient was diagnosed via histological examination of spontaneously drained material. The patient was successfully treated with an exploratory laparotomy and right posterior segmentectomy of the liver, combined with antibiotic treatment. Following surgery, the patient remains in excellent condition, without evidence of recurrence at the time of drafting this report. To summarize the clinical manifestations, diagnosis, treatment, and outcomes of primary hepatic actinomycosis, 18 case reports in English were reviewed.
CONCLUSION We conclude that actinomycosis clinically features a chronic onset, nonspecific symptoms, and a primarily histologic diagnosis. Prolonged antibiotic treatment combined with invasive intervention provides a good prognosis.
Collapse
Affiliation(s)
- Zi-Jian Liang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Jian-Kun Liang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yun-Pei Chen
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zhen Chen
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, Lu H, Zheng B, Zhang J, Yan R, Zhang H, Jiang H, Xu Q, Guo J, Gong Y, Tang L, Li L. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis 2021; 71:2669-2678. [PMID: 32497191 PMCID: PMC7314193 DOI: 10.1093/cid/ciaa709] [Citation(s) in RCA: 544] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is an emerging serious global health problem. Gastrointestinal symptoms are common in COVID-19 patients, and SARS-CoV-2 RNA has been detected in stool specimens. However, the relationship between the gut microbiome and disease remains to be established. Methods We conducted a cross-sectional study of 30 COVID-19 patients, 24 influenza A (H1N1) patients, and 30 matched healthy controls (HC) to identify differences in the gut microbiota by 16S ribosomal RNA (rRNA) gene V3-V4 region sequencing. Results Compared with HC, COVID-19 patients had significantly reduced bacterial diversity, a significantly higher relative abundance of opportunistic pathogens, such as Streptococcus, Rothia, Veillonella and Actinomyces, and a lower relative abundance of beneficial symbionts. Five biomarkers showed high accuracy for distinguishing COVID-19 patients from HC with an area under the curve (AUC) up to 0.89. Patients with H1N1 displayed lower diversity and different overall microbial composition compared with COVID-19 patients. Seven biomarkers were selected to distinguish the two cohorts with an AUC of 0.94. Conclusion The gut microbial signature of patients with COVID-19 was different from that of H1N1 patients and HC. Our study suggests the potential value of the gut microbiota as a diagnostic biomarker and therapeutic target for COVID-19, but further validation is needed.
Collapse
Affiliation(s)
- Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hainv Gao
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feifei Guo
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xuewu Zhang
- Department of Hematology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingling Tang
- Department of Infectious Diseases, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Chen L, Collij V, Jaeger M, van den Munckhof ICL, Vich Vila A, Kurilshikov A, Gacesa R, Sinha T, Oosting M, Joosten LAB, Rutten JHW, Riksen NP, Xavier RJ, Kuipers F, Wijmenga C, Zhernakova A, Netea MG, Weersma RK, Fu J. Gut microbial co-abundance networks show specificity in inflammatory bowel disease and obesity. Nat Commun 2020; 11:4018. [PMID: 32782301 PMCID: PMC7419557 DOI: 10.1038/s41467-020-17840-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome is an ecosystem that involves complex interactions. Currently, our knowledge about the role of the gut microbiome in health and disease relies mainly on differential microbial abundance, and little is known about the role of microbial interactions in the context of human disease. Here, we construct and compare microbial co-abundance networks using 2,379 metagenomes from four human cohorts: an inflammatory bowel disease (IBD) cohort, an obese cohort and two population-based cohorts. We find that the strengths of 38.6% of species co-abundances and 64.3% of pathway co-abundances vary significantly between cohorts, with 113 species and 1,050 pathway co-abundances showing IBD-specific effects and 281 pathway co-abundances showing obesity-specific effects. We can also replicate these IBD microbial co-abundances in longitudinal data from the IBD cohort of the integrative human microbiome (iHMP-IBD) project. Our study identifies several key species and pathways in IBD and obesity and provides evidence that altered microbial abundances in disease can influence their co-abundance relationship, which expands our current knowledge regarding microbial dysbiosis in disease.
Collapse
Affiliation(s)
- Lianmin Chen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Valerie Collij
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- University of Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Li J, Li Y, Zhou Y, Wang C, Wu B, Wan J. Actinomyces and Alimentary Tract Diseases: A Review of Its Biological Functions and Pathology. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3820215. [PMID: 30225251 PMCID: PMC6129341 DOI: 10.1155/2018/3820215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Actinomyces are nonmotile, filamentous, Gram-positive bacteria that cause actinomycosis in immunodeficiency patients. Although the prognosis of actinomycosis is good, the diagnosis of actinomycosis is quite difficult. Recent studies on actinomycosis have shown that Actinomyces play an important role in various biological and clinical processes, such as the formation of dental plaque and the degradation of organics in the gastrointestinal tract. Here, the distribution of Actinomyces in the digestive tract, and different biological effects of actinomycosis, and its clinical association with inflammatory diseases are discussed. Furthermore, an overview of the most commonly used treatment methods and drugs used to treat Actinomyces infected alimentary canal diseases is presented.
Collapse
Affiliation(s)
- Jun Li
- Department of Gastroenterology, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ying Li
- Department of Oncology, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yu Zhou
- Department of Nanlou Clinical Laboratory, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Changzheng Wang
- Department of Gastroenterology, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Benyan Wu
- Department of Gastroenterology, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jun Wan
- Department of Gastroenterology, General Hospital of PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| |
Collapse
|