1
|
Ma B, Wang W, Li Z, Zhong C, Zhou J, Yang B, Liu L, Wang Z, Yi X, Zheng Y, Wang Y. 4-Hydroxyderricin attenuates ischemic brain injury and neuroinflammation by upregulating haptoglobin expression in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156649. [PMID: 40117946 DOI: 10.1016/j.phymed.2025.156649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Angelica keiskei (Miq.) Koidz. is a traditional plant that is widely used in Asian countries because of its tonic, diuretic, and galactagogue properties. The chalcone compound 4-hydroxyderricin (4-HD), uniquely present in A. keiskei, has demonstrated inhibitory effects on inflammation in peripheral tissues. Nonetheless, its efficacy in central neuroinflammation and ischemic brain injury remains unclear. PURPOSE This study aims to assess the ability of 4-HD to alleviate acute ischemic brain injury and the associated inflammatory response, and to elucidate the underlying mechanisms. METHODS Mice underwent middle cerebral artery occlusion (MCAO) surgery to induce acute cerebral ischemic injury. The extent of brain injury was evaluated by TTC staining and neurological function scoring. Immunofluorescence was employed to observe glial cell activation, whereas ELISA and RT-PCR were used to quantify inflammatory cytokine expression in ischemic brain tissues. Oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation of BV2 microglial cells were conducted in vitro to examine the direct impact of 4-HD on microglial inflammation. ELISA and RT-PCR were carried out to quantify inflammatory cytokine expression in BV2 cells. Western blotting and immunofluorescence techniques were used to detect protein expression and localization, respectively. Additionally, alterations in gene expression were measured using RNA-seq analysis profiling following 4-HD treatment of BV2 cells. A short hairpin RNA (shRNA) was used to silence the Haptoglobin (Hp) gene to elucidate the relationship between drug effects and Hp protein levels. RESULTS 4-HD effectively reduced the infarct area and enhanced neurological function 24 h post-MCAO surgery by lowering inflammatory cytokine levels and inhibiting microglia activation in ischemic brain tissues. In OGD and LPS-stimulated BV2 microglia, 4-HD decreased the levels of inflammatory cytokines. Mechanistic research indicated that 4-HD enhanced Hp and reduced HMGB1 expression in BV2 cells. Moreover, the activation of the NF-κB and MAPK signaling pathways, two key pro-inflammatory pathways downstream of HMGB1, was inhibited by 4-HD treatment. In BV2 cells with Hp gene knockdown, the inhibitory effect of HMGB1 disappeared, and its anti-inflammatory effect was also significantly weakened. CONCLUSION 4-HD has the potential to mitigate brain injury and neuroinflammation resulting from MCAO-induced acute ischemic damage. This neuroprotective effect is linked to the suppression of microglial activation and the inhibition of HMGB1 pro-inflammatory signaling, facilitated by the increased expression of the Hp protein. This study revealed, for the first time, the protective effects and mechanisms of 4-HD on ischemic brain injury. Additionally, we present the Hp protein as a new target for a small-molecule compound to protect against ischemic brain injury, offering a novel strategy for developing new neuroprotective drugs.
Collapse
Affiliation(s)
- Biying Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Wenqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Zhongxia Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Chao Zhong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Jing Zhou
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Bo Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Liying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Zhanqiu Wang
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Xiangjiao Yi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Yiqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, PR China; Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
2
|
Tolochko C, Shiryaeva O, Alekseeva T, Dyachuk V. Amyotrophic Lateral Sclerosis: Pathophysiological Mechanisms and Treatment Strategies (Part 2). Int J Mol Sci 2025; 26:5240. [PMID: 40508048 PMCID: PMC12154316 DOI: 10.3390/ijms26115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/11/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease associated with damage to motor neurons and leading to severe muscle weakness and, eventually, death. Over the past decade, understanding of the key pathogenetic links of ALS, including glutamate-mediated excitotoxicity and oxidative stress, has significantly advanced. This review considers the recent evidence on molecular mechanisms of these processes, as well as the therapeutic strategies aimed at their modulation. Special attention is paid to antiglutamatergic and antioxidant drugs as approaches to the ALS pathogenetic therapy.
Collapse
Affiliation(s)
- Christina Tolochko
- V. A. Almazov Federal National Medical Research Centre, Saint Petersburg 197341, Russia;
| | - Olga Shiryaeva
- Research Laboratory of Neurogenesis and Neurodegenerative Diseases, V. A. Almazov Federal National Medical Research Centre, Saint Petersburg 197341, Russia;
| | - Tatiana Alekseeva
- V. A. Almazov Federal National Medical Research Centre, Saint Petersburg 197341, Russia;
| | - Vyacheslav Dyachuk
- Research Laboratory of Neurogenesis and Neurodegenerative Diseases, V. A. Almazov Federal National Medical Research Centre, Saint Petersburg 197341, Russia;
| |
Collapse
|
3
|
Mohan RD, Kulkarni NV. Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities. Mol Divers 2025; 29:1895-1910. [PMID: 39102113 DOI: 10.1007/s11030-024-10940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
4
|
Barati A, Moghimi S, Taghavi Zanjani K, Rohani M, Sohrabi Hesar M, Arfaie A, Ghezelche Khamsiyan M, Mahmoudi J, Sadigh-Eteghad S. Acute Administration of Edaravone Improves Cognitive Impairment in a Mouse Model of mPFC Ischemia: Crosstalk Between Necroptosis, Neuroinflammation, and Antioxidant Defense. Mol Neurobiol 2025; 62:4420-4434. [PMID: 39448519 DOI: 10.1007/s12035-024-04541-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Edaravone (Eda), a well-known free radical scavenger, has been reported as a possible therapeutic agent for ischemic stroke patients' recovery. This study aimed to investigate the effects of time-dependent treatment with Eda on medial prefrontal cortex (mPFC) ischemia. Mice were randomly allocated into six groups: control, sham, normal saline, Eda-I, Eda-II, and Eda-III. After induction of a photothrombotic ischemia in the mPFC region, Eda-I, Eda-II, and Eda-III groups received 3 mg/kg Eda intraperitoneally at the times of 0, 2, and 6 h post-surgery. After 1 day of recovery, the mice underwent behavioral tests (open field, novel object recognition, and T-maze). Next, necroptosis, NOD-like receptor protein 3 (NLRP3), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway-related protein levels were measured in the lesioned area using western blot analysis. For double confirmation, IL-1β and IL-18 were also assessed by immunofluorescence in the area. Further, histological evaluations were performed to measure tissue damage. The results showed that mPFC ischemia impaired recognition and spatial working memory without affecting locomotor activity, while immediate Eda administration improved cognitive impairments. Furthermore, acute Eda treatment reduced RIP1, RIP3, and MLKL levels, inhibited NLRP3 inflammasome proteins (NLRP3, ASC, and Cas1), decreased IL-1β and IL-18, upregulated Nrf2 and its targets (NQO-1 and HO-1), and diminished tissue damage. Our results highlighted the effects of acute administration of Eda post-stroke on improving cognitive impairments by suppressing necroptosis and NLRP3 inflammasome pathways and activating the Nrf2 antioxidant defense mechanism.
Collapse
Affiliation(s)
- Alireza Barati
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Moghimi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kiana Taghavi Zanjani
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mojde Rohani
- Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mehri Sohrabi Hesar
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Arian Arfaie
- Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Kimura S, Iwata M, Takase H, Lo EH, Arai K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J Cereb Blood Flow Metab 2025; 45:381-395. [PMID: 39663901 PMCID: PMC11635795 DOI: 10.1177/0271678x241305899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an important clinical condition characterized by a prolonged reduction in cerebral blood flow that contributes to several neurodegenerative diseases, including vascular dementia and Alzheimer's disease. A number of rodent models of CCH have been developed that mimic the human pathological conditions of reduced cerebral perfusion. These models have been instrumental in elucidating the molecular and cellular mechanisms involved in CCH-induced brain damage. Oxidative stress is induced by perturbations in cellular pathways caused by CCH, including mitochondrial dysfunction, ion pump dysfunction, and adenosine triphosphate (ATP) depletion. The deleterious stress leads to the accumulation of reactive oxygen species (ROS) and exacerbates damage to neuronal structures, significantly impairing cognitive function. Among the various therapeutic strategies being evaluated, edaravone, a potent antioxidant, is emerging as a promising drug due to its neuroprotective properties against oxidative stress. Initially approved for use in ischemic stroke, research using rodent CCH models has shown that edaravone has significant efficacy in scavenging free radicals and ameliorating oxidative stress-induced neuronal damage under CCH conditions. This mini-review summarizes the current literature on the rodent models of CCH and then discusses the therapeutic potential of edaravone to reduce neuronal and vascular damage caused by CCH-induced oxidative stress.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Maho Iwata
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Developmental Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Babu M, Rao RM, Babu A, Jerom JP, Gogoi A, Singh N, Seshadri M, Ray A, Shelley BP, Datta A. Antioxidant Effect of Naringin Demonstrated Through a Bayes' Theorem Driven Multidisciplinary Approach Reveals its Prophylactic Potential as a Dietary Supplement for Ischemic Stroke. Mol Neurobiol 2025; 62:3918-3933. [PMID: 39352635 DOI: 10.1007/s12035-024-04525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/23/2024] [Indexed: 01/03/2025]
Abstract
Naringin (NAR), a flavanone glycoside, occurs widely in citrus fruits, vegetables, and alcoholic beverages. Despite evidence of the neuroprotective effects of NAR on animal models of ischemic stroke, brain cell-type-specific data about the antioxidant efficacy of NAR and possible protein targets of such beneficial effects are limited. Here, we demonstrate the brain cell type-specific prophylactic role of NAR, an FDA-listed food additive, in an in vitro oxygen-glucose deprivation (OGD) model of cerebral ischemia using MTT and DCFDA assays. Using Bayes' theorem-based predictive model, we first ranked the top-10 protein targets (ALDH2, ACAT1, CTSB, FASN, LDHA, PTGS1, CTSD, LGALS1, TARDBP, and CDK1) from a curated list of 289 NAR-interacting proteins in neurons that might be mediating its antioxidant effect in the OGD model. When preincubated with NAR for 2 days, N2a and CTX-TNA2 cells could withstand up to 8 h of OGD without a noticeable decrease in cell viability. This cerebroprotective effect is partly mediated by reducing intracellular ROS production in the above two brain cell types. The antioxidant effect of NAR was comparable with the equimolar (50 µM) concentration of clinically used ROS-scavenger and neuroprotective edaravone. Molecular docking of NAR with the top-10 protein targets from Bayes' analysis showed the lowest binding energy for CDK1 (- 8.8 kcal/M). Molecular dynamics simulation analysis showed that NAR acts by inhibiting CDK1 by stably occupying its ATP-binding cavity. Considering diet has been listed as a risk factor for stroke, NAR may be explored as a component of functional food for stroke or related neurological disorders.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rajas M Rao
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Anju Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, MP, India
| | | | - Anaekshi Gogoi
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Meenakshi Seshadri
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Animikh Ray
- Father Muller Research Center, Father Muller Medical College, Mangalore, 575002, Karnataka, India
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
7
|
Tokumaru O, Higuchi A, Kawashima T, Ogata K, Ueno K, Inoue T, Miyamoto S. Antioxidative activity of a novel antioxidant resorcimoline. Free Radic Res 2025; 59:332-341. [PMID: 40269646 DOI: 10.1080/10715762.2025.2497040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
During the synthesis of a known drug, we synthesized a novel compound impromptu, which we have named resorcimoline. This compound exhibited significant antioxidative activity. In this report, we present the concentration-dependent free radical scavenging activity of resorcimoline against various free radical species. The scavenging activity of resorcimoline was evaluated against nine free radicals using electron spin resonance spectroscopy with a spin-trapping method. These free radicals were hydroxyl radical, superoxide anion, tert-butyl peroxyl radical, tert-butoxyl radical, ascorbyl free radical, singlet oxygen, nitric oxide, 2,2-diphenyl-1-picrylhydrazyl, and tyrosyl radical. Sigmoid concentration-response curves were fitted to estimate the reaction rate constants of resorcimoline for the free radicals, and these were compared with those of edaravone, the only current clinically approved free radical scavenger. The antioxidative activity of resorcimoline against lipid peroxidation within tissue was assessed using the thiobarbituric acid reactive substance (TBARS) assay. The cytotoxicity and stability of resorcimoline were also evaluated. Resorcimoline demonstrated significant concentration-dependent scavenging activity against all tested free radicals. Notably, the reaction rate constants for superoxide anion and nitric oxide were significantly higher than those of edaravone, while the rate constant for hydroxyl radical was significantly lower. The TBARS assay revealed that resorcimoline inhibited tissue lipid peroxidation in a concentration-dependent manner. Moreover, resorcimoline exhibited no cytotoxicity at concentrations up to 100 μM and remained stable at room temperature under ambient light for 7 d. These findings indicate that resorcimoline's direct free radical scavenging activity could contribute to its potential clinical antioxidative effects.
Collapse
Affiliation(s)
- Osamu Tokumaru
- Department of Physiology, Faculty of Welfare and Health Sciences, Oita University, Oita, Oita Pref, Japan
| | - Akihiro Higuchi
- Frontier Science and Social Co-creation Initiative, Kanazawa University, Kanazawa, Ishikawa Pref, Japan
| | - Takayuki Kawashima
- Department of Cardiovascular Surgery, Oita University Faculty of Medicine, Oita, Oita Pref, Japan
| | - Kazue Ogata
- Department of Physiology, Faculty of Welfare and Health Sciences, Oita University, Oita, Oita Pref, Japan
| | - Kazuhiro Ueno
- Department of Cardiovascular Surgery, Oita University Faculty of Medicine, Oita, Oita Pref, Japan
| | - Takanori Inoue
- Division of Applied Chemistry, Faculty of Science and Technology, Oita University, Oita, Oita Pref, Japan
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University Faculty of Medicine, Oita, Oita Pref, Japan
| |
Collapse
|
8
|
Li S, Wu L, Xie J, Zhou G, Wen X, Deng L, Lin S, Liu G, Chen S, Xiao Z. Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats. ACS Chem Neurosci 2025; 16:479-489. [PMID: 39791183 DOI: 10.1021/acschemneuro.4c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects. However, the specific role and molecular mechanisms of EDA in the treatment of BPRA remain to be fully elucidated. The present study used a rat model of BPRA, following avulsion of the fifth, sixth and seventh cervical (C5, C6 and C7) anterior roots. Notably, C6 was replanted following a subcutaneous injection of either saline or 30 mg/kg/day EDA for seven continuous days. Subsequently, behavioral, histochemical, Western blot and reverse transcription-quantitative PCR (RT-PCR) analyses were conducted. Results of the present study revealed that treatment with EDA improves motor dysfunction, indicated by the increased Grooming test score, usage of the affected limb, and Irvine, Beatties and Bresnahan (IBB) score, following BPRA. In addition, EDA reduced the death of motoneurons (MNs), indicated by the increased number of Nissl-positive neuron, at the site of the affected limb, inhibited neuroinflammation and cellular pyroptosis, indicated by the decreased expression levels of IL-1β, IL-6, TNF-α, IL-18, p-p65, NLRP3, GSDMD and Caspase-1, improved the morphology of the abnormal myocutaneous nerve fibers, promoted axon remyelination, indicated by increased mRNA expression levels of remyelination-associated genes, including egr2, GAP-43, hmgcr, L1CAM, mpz, pmp22 and prx and demyelination-associated genes, including ngfr, notch1, pou3f1 and sox2, and alleviated muscle atrophy, indicated by the increased weight and volume of biceps brachii muscle, and the decreased number of fibroblasts and increased diameters in the fibers. Collectively, results of the present study suggested that EDA may support axonal remyelination and inhibit pyroptosis-associated neuroinflammation, enhancing MN survival and facilitating functional motor recovery. Thus, the present study may provide a novel theoretical basis for the use of EDA in the treatment of BPRA.
Collapse
Affiliation(s)
- Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lin Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, People's Republic of China
| | - Juan Xie
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Emergency, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, People's Republic of China
| | - Guijuan Zhou
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuanwei Wen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Limin Deng
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shudong Lin
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guozhi Liu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuangxi Chen
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
9
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
10
|
Ogawa Y, Akiyama H, Horii T, Mihara K. Association between edaravone use and activities of daily living in older patients with atherothrombotic stroke: an observational study using Japanese real-world data. BMC Geriatr 2025; 25:31. [PMID: 39815168 PMCID: PMC11734552 DOI: 10.1186/s12877-024-05666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Edaravone is marketed in nine countries, although only Japan has approved edaravone for improvement of neurological symptom, disability of activities of daily living (ADL), and functional disability associated with acute stroke. This study aimed to elucidate the association of edaravone use with ADL using real-world data of older patients with atherothrombotic stroke. METHODS This retrospective observational research using the Medical Data Vision database in Japan included patients aged 65 years and older who had acute ischemic stroke of the atherothrombotic subtype. Primary outcome was ADL improvement defined as change in Barthel Index from admission to discharge of greater than zero points. The major secondary outcome was good functional outcome (Barthel Index ≥ 90 or modified Rankin Scale 0-2 at discharge). Multivariate logistic regression analyses were conducted to calculate odds ratios with 95% confidence intervals for the outcomes. We further compared the change in Barthel Index from admission to discharge and in-hospital death rate between the edaravone- and non-edaravone- treated patients. RESULTS A total of 5,576 patients were included in this study, and were divided into edaravone group (n = 3,825) and non-edaravone group (n = 1,751). The median age of this cohort was 79 years, and median Barthel Index at admission was 30 points. Edaravone use was associated with improved ADL with an adjusted odds ratio of 1.18 (95% confidence interval: 1.01‒1.37). However, no significant association was observed between edaravone use and good functional outcome. The edaravone group had significantly greater change in Barthel Index from admission to discharge than the non-edaravone group, with a difference of 5 points. The in-hospital death rate was comparable between the two groups. CONCLUSIONS Edaravone use may contribute to improve ADL at discharge in patients aged 65 years and older with atherothrombotic stroke.
Collapse
Affiliation(s)
- Yukari Ogawa
- Department of Pharmacy, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-Shi, Tokyo, 202-8585, Japan.
| | - Hiroko Akiyama
- Department of Pharmacy, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-Shi, Tokyo, 202-8585, Japan
| | - Takeshi Horii
- Department of Pharmacy, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-Shi, Tokyo, 202-8585, Japan
| | - Kiyoshi Mihara
- Department of Pharmacy, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-Shi, Tokyo, 202-8585, Japan
| |
Collapse
|
11
|
Lee JS, Kang HG, Ahn SH, Song TJ, Shin DI, Bae HJ, Kim CH, Heo SH, Cha JK, Lee YB, Kim EG, Park MS, Park HK, Kim J, Yu S, Mo H, Sohn SI, Kwon JH, Kim JG, Kim YS, Choi JC, Hwang YH, Jung KH, Kim SK, Seo WK, Seo JH, Yoo J, Chang JY, Park M, Lee JS, San An C, Gwag BJ, Choi DW, Kwon SU. Nelonemdaz and Patients With Acute Ischemic Stroke and Mechanical Reperfusion: The RODIN Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2456535. [PMID: 39874036 PMCID: PMC11775734 DOI: 10.1001/jamanetworkopen.2024.56535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Importance Nelonemdaz selectively antagonizes the 2B subunit of the N-methyl-d-aspartate glutamate receptor and scavenges free radical species. Objective To evaluate whether nelonemdaz enhances the clinical outcomes of patients with acute ischemic stroke undergoing emergent reperfusion therapy. Design, Setting, and Participants This multicenter double-blind placebo-controlled randomized phase 3 trial (December 25, 2021, to June 30, 2023, in South Korea) recruited patients with acute ischemic stroke who met the following criteria: National Institutes of Health Stroke Scale score greater than or equal to 8, Alberta Stroke Program Early Computed Tomography score greater than or equal to 4, and endovascular thrombectomy within 12 hours after stroke onset. Intervention Patients were assigned in a 1:1 ratio to receive intravenous infusions of nelonemdaz twice a day for 5 days or a matching placebo. Main Outcomes and Measures The primary end point was a favorable shift in the modified Rankin scale (mRS) 12 weeks after stroke onset. The secondary end points included various composites of the mRS at 5 and 12 weeks, symptomatic intracranial hemorrhage, and infarct volume. Both intention-to-treat and per-protocol analyses were conducted. Results A total of 496 patients were enrolled across 24 Korean stroke centers, of whom 39 dropped out (254 men [55.6%]; mean [SD] age, 72.9 [12.1] years). Baseline characteristics of study participants did not significantly differ. For the primary end point, the distribution of the mRS scores at 12 weeks did not significantly differ between the nelonemdaz and placebo groups (common odds ratio, 0.95; 95% CI, 0.69-1.31). For the secondary end points, a median of mRS at 5 weeks (3 vs 3) and mRS 0 at 12 weeks (18.1% vs 18.2%) did not differ substantially between groups. The occurrence of symptomatic intracranial hemorrhage (2.7% vs 0.9%) and infarct volume within 24 hours of the last trial drug infusion (42 vs 38 mL) did not differ significantly between groups. No serious adverse events were reported regarding the trial drug and placebo. Conclusions and Relevance In this randomized clinical trial, nelonemdaz did not meet the primary efficacy end point compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT05041010.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Hyun Goo Kang
- Department of Neurology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Woman’s University College of Medicine, Seoul, Republic of Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chang Hun Kim
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwan Cha
- Department of Neurology, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Yeong Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eung Gyu Kim
- Department of Neurology, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Man Seok Park
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hee-Kwon Park
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Sungwook Yu
- Department of Neurology, Korea University Anam Hospital, Korea University Medicine, Seoul, Republic of Korea
| | - Heejung Mo
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Sung Il Sohn
- Department of Neurology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jee Hyun Kwon
- Department of Neurology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jae Guk Kim
- Department of Neurology, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Wonkwang University Hospital, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Jay Chol Choi
- Department of Neurology, Jeju National University Hospital, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Keun Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Kyoung Kim
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Woo Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Hwa Seo
- Department of Neurology, Dong-A University Hospital, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Joonsang Yoo
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jun Young Chang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mooseok Park
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Woman’s University College of Medicine, Seoul, Republic of Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chun San An
- GNT Pharma Co Ltd, Yongin, Republic of Korea
| | | | - Dennis W. Choi
- Department of Neurology, Stony Brook University School of Medicine, New York, New York
| | - Sun U. Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lee KH, Kim UJ, Lee BH, Cha M. Safeguarding the brain from oxidative damage. Free Radic Biol Med 2025; 226:143-157. [PMID: 39547523 DOI: 10.1016/j.freeradbiomed.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Oxidative stress imposes a substantial cellular burden on the brain and contributes to diverse neurodegenerative diseases. Various antioxidant signaling pathways have been implicated in oxidative stress and have a protective effect on brain cells by increasing the release of numerous enzymes and through anti-inflammatory responses to oxidative damage caused by abnormal levels of reactive oxygen species (ROS). Although many molecules evaluated as antioxidants have shown therapeutic potentials in preclinical studies, the results of clinical trials have been less than satisfactory. This review focuses on several signaling pathways involved in oxidative stress that are associated with antioxidants. These pathways have a protective effect against stressors by increasing the release of various enzymes and also exert anti-inflammatory responses against oxidative damage. There is no doubt that oxidative stress is a crucial therapeutic target in the treatment of neurological diseases. Therefore, it is essential to understand the discovery of multiple routes that can efficiently repair the damage caused by ROS and prevent neurodegenerative disorders. This paper aims to provide a concise and objective review of the oxidative and antioxidant pathways and their potential therapeutic applications in treating oxidative injury in the brain.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, South Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Medical Science, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
13
|
Dutczak R, Pietrucha-Dutczak M. Effects of Selected Antioxidants on Electroretinography in Rodent Diabetic Retinopathy. Antioxidants (Basel) 2024; 14:21. [PMID: 39857355 PMCID: PMC11762402 DOI: 10.3390/antiox14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Electroretinography (ERG) is a non-invasive technique for evaluating the retinal function in various ocular diseases. Its results are useful for diagnosing ocular disorders and assessing disease progression or treatment effectiveness. Since numerous studies are based on animal models, validating the ERG results from animals is pivotal. The first part of this paper presents basic information on the types of ERG tests used on rodents, and the second part describes the recorded functional changes in rodents' retinas when various antioxidant treatments for diabetic retinopathy were used. Our study showed that among the tests for diabetic retinopathy diagnosis in rodents, full-field ERG is accurate and the most commonly used, and pattern ERG and the photopic negative response of the flash ERG tests are rarely chosen. Furthermore, antioxidants generally protect retinas from functional losses. Their beneficial influence is expressed in the preserved amplitudes of the a- and b-waves and the oscillatory potentials. However, prolonging the drug exposure showed that the antioxidants could delay the onset of adverse changes but did not stop them. Future studies should concentrate on how long-term antioxidant supplementation affects the retinal function.
Collapse
Affiliation(s)
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| |
Collapse
|
14
|
Batino LKJ, Escabillas CG, Navarro JC. Edaravone's Safety Profile in Acute Ischemic Stroke. Brain Behav 2024; 14:e70158. [PMID: 39682061 PMCID: PMC11649582 DOI: 10.1002/brb3.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND We aimed to evaluate the safety of intravenous edaravone for the treatment of acute ischemic stroke among Filipino patients. The study, categorized as Phase IV, spans from December 2022 to November 2023. The primary objective is to document side effects and serious adverse events during the 14-day edaravone infusion period. METHODS The protocol gained approval from the Institutional Review Board, and participants provided written consent. Inclusion criteria involved patients aged 18-70 with acute ischemic stroke within 24 h. Exclusion criteria included extremes of age, pregnancy, severe hepatic impairment, and participation in other clinical trials. Edaravone was administered for 14 days, underwent continuous monitoring, and adverse events were actively recorded. FINDINGS Out of 64 enrolled patients, 58 completed the treatment, while 4 did not finish, and 2 dropped out. The majority were male (n = 35), median age of 53.5 years, and 81.03% exhibited moderate stroke severity. Two patients reported headaches, and one reported dizziness. No serious adverse events or other untoward effects were documented. Dropouts, attributed to a low ejection fraction, showed normal laboratory results and no side effects during edaravone infusion. Thrombolytic therapy was given to 37.93% of patients. DISCUSSION Our study contributes insights into edaravone's safety, revealing a favorable profile with mild side effects, aligning with existing literature. Notably, no serious adverse events occurred, emphasizing edaravone's tolerability. Headache and dizziness, which were the common side effects in our case, did not lead to treatment discontinuation. The findings support the growing evidence of edaravone's safety in acute ischemic stroke treatment. Overall, edaravone demonstrates promise in stroke management, necessitating vigilant monitoring, especially considering individual cardiovascular health.
Collapse
Affiliation(s)
- Laurence K. J. Batino
- Department of Neurology, Zeenat Qureshi Stroke InstituteJose R. Reyes Memorial Medical CenterManilaPhilippines
| | - Cyrus G. Escabillas
- Department of Neurology, Zeenat Qureshi Stroke InstituteJose R. Reyes Memorial Medical CenterManilaPhilippines
| | - Jose C. Navarro
- Department of Neurology, Zeenat Qureshi Stroke InstituteJose R. Reyes Memorial Medical CenterManilaPhilippines
| |
Collapse
|
15
|
Li M, Huo X, Chang Q, Liu X, Zhang J, Mao Z. Efficacy analysis of neuroprotective drugs in patients with acute ischemic stroke based on network meta-analysis. Front Pharmacol 2024; 15:1475021. [PMID: 39575393 PMCID: PMC11578817 DOI: 10.3389/fphar.2024.1475021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Objective This network meta-analysis aims to explore the efficacy and safety of neuroprotective agents in patients with ischemic stroke and attempts to identify which drug is the most effective in improving outcomes for patients with acute ischemic stroke (AIS) through a ranking method. Methods We comprehensively searched the PubMed, Medline, Embase, Web of Science, and Cochrane library databases from their establishment to 30 June 2024. Data were extracted from the studies identified, and their quality was assessed using the Cochrane risk-of-bias tool or the Newcastle-Ottawa Scale (NOS). The outcome measures were for a favorable prognosis, based on the modified Rankin Scale score (mRS) or National Institutes of Health Stroker Scale (NIHSS) score, mortality, and adverse effect with different drug regimens. We utilized Stata version 16.0 and Review Manager (RevMan) version 5.3.0 for statistical analysis. Results A total of 35 studies were included: 25 randomized control trials, eight retrospective studies, and two prospective studies. The total sample size was 18,423 cases and included nine interventions: citicoline, edaravone (EDV), edaravone dexborneol, cinepazide maleate, cerebrolysin, minocycline, ginkgolide, ginkgo diterpene lactone meglumine (GDLM), and conventional (CON) treatment. Our analysis revealed that, except for edaravone dexborneol, the ginkgolide, EDV, cinepazide maleate, citicoline, cerebrolysin, minocycline, and GDLM treatment schemes reduced the mortality of patients with AIS compared with CON. Each drug regimen significantly improved the neural function of these patients compared with CON, which from highest to lowest was citicoline + vinpocetine, GDLM, citicoline, edaravone dexborneol, cinepazide maleate, ginkgolide, EDV, and CON. Moreover, we also found that, except for citicoline, the ginkgolide, EDV, edaravone dexborneol, GDLM, and cinepazide maleate treatment schemes had a high total treatment effective rate in these patients, the order from highest to lowest being ginkgolide, EDV, edaravone dexborneol, GDLM, cinepazide maleate, CON, and citicoline. In terms of the ineffective rate, we found that, compared with CON, the edaravone dexborneol, EDV, citicoline, GDLM, ginkgolide, and cinepazide maleate treatment schemes all had a lower ineffective rate. Finally, our analysis revealed that, except for cinepazide maleate and ginkgolide, the EDV, minocycline, edaravone dexborneol, GDLM, citicoline, and cerebrolysin schemes all had a higher rate of adverse effect on patients compared to CON. Based on the impact of the adverse effect with different surgical interventions, we further analyzed the effect of these drug treatments by the total treatment effective rate combined with adverse effect, revealing that EDV, ginkgolide, and edaravone dexborneol were the safest and most effective treatments. Conclusion In patients with AIS, ginkgolide, EDV, cinepazide maleate, citicoline, cerebrolysin, minocycline, and GDLM were associated with a reduction in mortality rate. Moreover, ginkgolide, EDV, edaravone dexborneol, and GDLM treatment schemes revealed not only a high total treatment effective rate but also a low rate of treatment inefficacy. When considering the combination of the total treatment effective rate with adverse effect, EDV, ginkgolide, and edaravone dexborneol were revealed as the safest and most effective.
Collapse
Affiliation(s)
- Mei Li
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qing Chang
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaozhuo Liu
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, China
| | - Jianning Zhang
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Jiang X, Chen L, Wang J, Fang J, Ma M, Zhou M, Zheng H, Hu F, Zhou D, He L. Combined Selective Endovascular Brain Hypothermia with Edaravone Dexborneol versus Edaravone Dexborneol Alone for Endovascular Treatment in Acute Ischemic Stroke (SHE): Protocol for a Multicenter, Single-Blind, Randomized Controlled Study. Cerebrovasc Dis 2024:1-7. [PMID: 39427648 DOI: 10.1159/000542011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Selective endovascular brain hypothermia has been proposed as a potential neuroprotective strategy; however, its effectiveness is still not well established. The primary objective of this trial is to investigate the efficacy and safety of selective endovascular brain hypothermia with edaravone dexborneol for endovascular treatment in acute ischemic stroke (AIS). METHODS The SHE study is a multicenter, single-blind, randomized controlled clinical trial. Patients with acute anterior circulation ischemic stroke who received endovascular treatment within 24 h after stroke onset and achieved successful recanalization will be enrolled and centrally randomized into combined selective endovascular brain hypothermia with edaravone dexborneol or edaravone dexborneol alone groups in a 1:1 ratio (n = 564). Patients allocated to the hypothermia group will receive 300 mL cool saline at 4°C through guiding catheter (30 mL/min) into target vessel within 3 min after recanalization and then receive edaravone dexborneol (edaravone dexborneol 15 mL + NS 100 mL ivgtt bid for 10-14 days) within 24 h after admission. The control group will receive 300 mL 37°C saline (30 mL/min) infused into target vessel through guiding catheter and then receive edaravone dexborneol. All patients enrolled will receive standard care according to current guidelines for stroke management. The primary outcome is the proportion of functional independence, defined as a mRS score of 0-2 at 90 days after randomization. CONCLUSION This is a randomized clinical trial with a large sample size to compare combined selective endovascular brain hypothermia and edaravone dexborneol with edaravone dexborneol alone in patients with acute anterior ischemic stroke. The SHE trial aims to provide further evidence of the benefit of selective endovascular brain hypothermia in AIS patients who received endovascular treatment.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lizhang Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinghuan Fang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Muke Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Zheng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fayun Hu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wang Z, Wang M, Zhao H. Acupuncture and its role in the treatment of ischemic stroke: A review. Medicine (Baltimore) 2024; 103:e39820. [PMID: 39465714 PMCID: PMC11460937 DOI: 10.1097/md.0000000000039820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/29/2024] Open
Abstract
Acupuncture is a traditional Chinese medicine therapy that is treatment by placing a needle or pressure in a specific position on the patient's skin. Although used in the treatment of various diseases, acupuncture is effective in the treatment of ischemic stroke (IS), and has made some progress in the mechanism of action of the treatment of this disease. IS is difficult to treat, and there is a high rate of disability. Drug therapy is usually the first line of treatment, but adjuvant therapy has outstanding efficacy in promoting the rehabilitation of the disease and preventing sequelae. Among them, acupuncture is getting more and more attention as a more popular treatment method. Therefore, this study excavates the high-quality randomized controlled trials and meta-analysis of acupuncture for IS in recent years to further summarize the efficacy of acupuncture for IS. In this review, we provide an overview of the current understanding of acupuncture and IS, and the current studies investigating the effectiveness of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Zuoshan Wang
- Helen Hospital of Traditional Chinese Medicine, Suihua City, Heilongjiang Province, China
| | - Manya Wang
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| | - Haishen Zhao
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| |
Collapse
|
18
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
19
|
Rahmati-Dehkordi F, Khanifar H, Zare-Hoseinabadi A, Dadgostar E, Jafarpour H, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Potential of Edaravone Dexborneol in the treatment of cerebral ischemia: focus on cell death-related signaling pathways. Mol Biol Rep 2024; 51:1007. [PMID: 39312062 DOI: 10.1007/s11033-024-09952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 02/06/2025]
Abstract
Cerebral ischemia has the highest global rate of morbidity and mortality. It occurs when a sudden occlusion develops in the arterial system, and consequently some parts of the brain are deprived from glucose and oxygen due to the cessation of blood flow. The ensuing reperfusion of the ischemic area results in a cascade of pathological alternations like neuronal apoptosis by producing excessive reactive oxygen species (ROS), oxidative stress and neuroinflammation. Edaravone Dexborneol is a novel agent, comprised of Edaravone and Dexborneol in a 4:1 ratio. It has documented neuroprotective effects against cerebral ischemia injury. Edaravone Dexborneol improves neurobehavioral and sensorimotor function, cognitive function, brain edema, and blood-brain barrier (BBB) integrity in experimental models. It at dosages ranging between 0.375 and 15 mg/kg (from immediately after ischemia until the 28th post-ischemic days) has shown neuroprotective effects in experimental models of cerebral ischemia by inhibiting cell death-signaling pathways. For example, it inhibits apoptosis by increasing Bcl2, and reducing Bax and caspase-3 expression. Edaravone Dexborneol also inhibits pyroptosis by attenuating NF-κB/NLRP3/GSDMD signaling, as well as ferroptosis by activating the Nrf-2/HO-1/GPX4 signaling pathway. It also inhibits autophagy by targeting PI3K/Akt/mTOR signaling pathway. Here, we provide a review on the impacts of Edaravone Dexborneol on cerebral ischemia.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Islamic Republic of Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Hamed Jafarpour
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Omid Reza Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
20
|
Pawluk H, Tafelska-Kaczmarek A, Sopońska M, Porzych M, Modrzejewska M, Pawluk M, Kurhaluk N, Tkaczenko H, Kołodziejska R. The Influence of Oxidative Stress Markers in Patients with Ischemic Stroke. Biomolecules 2024; 14:1130. [PMID: 39334896 PMCID: PMC11430825 DOI: 10.3390/biom14091130] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Stroke is the second leading cause of death worldwide, and its incidence is rising rapidly. Acute ischemic stroke is a subtype of stroke that accounts for the majority of stroke cases and has a high mortality rate. An effective treatment for stroke is to minimize damage to the brain's neural tissue by restoring blood flow to decreased perfusion areas of the brain. Many reports have concluded that both oxidative stress and excitotoxicity are the main pathological processes associated with ischemic stroke. Current measures to protect the brain against serious damage caused by stroke are insufficient. For this reason, it is important to investigate oxidative and antioxidant strategies to reduce oxidative damage. This review focuses on studies assessing the concentration of oxidative stress biomarkers and the level of antioxidants (enzymatic and non-enzymatic) and their impact on the clinical prognosis of patients after stroke. Mechanisms related to the production of ROS/RNS and the role of oxidative stress in the pathogenesis of ischemic stroke are presented, as well as new therapeutic strategies aimed at reducing the effects of ischemia and reperfusion.
Collapse
Affiliation(s)
- Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Agnieszka Tafelska-Kaczmarek
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun, Poland
| | - Małgorzata Sopońska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Marta Porzych
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Mateusz Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Slupsk, Arciszewski 22B, 76-200 Slupsk, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Karlowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
21
|
Yang W, Lei X, Liu F, Sui X, Yang Y, Xiao Z, Cui Z, Sun Y, Yang J, Yang X, Lin X, Bao Z, Li W, Ma Y, Wang Y, Luo Y. Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury. J Transl Med 2024; 22:771. [PMID: 39148053 PMCID: PMC11325598 DOI: 10.1186/s12967-024-05222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3β signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.
Collapse
Affiliation(s)
- Weijie Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiuxing Lei
- Lu'An Hospital of Traditional Chinese Medicine, Anhui, China
| | - Fengying Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ziqi Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yangyang Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyi Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xueyang Lin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhenghao Bao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Weidong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yingkai Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
22
|
Zhang Y, Zhang P, Zhang X, Liu Y. HH-A, a modified honokiol, protects against cerebral ischemia/reperfusion induced brain injury in rodent via Nrf2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3389-3402. [PMID: 37955691 DOI: 10.1007/s00210-023-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
Honokiol, a bioactive component found in Magnolia officinalis, has shown in protecting against ischemic stroke in animal models. However, its poor water solubility has limited its clinical applications. In this study, we introduced a hydrophilic building block on the aromatic ring of honokiol, resulting in the synthesis of four new compounds (HH-A, -B, -C and -D) with significantly improved water solubility. We then investigated the neuroprotective effects of these compounds in mouse and rat models of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) brain injury. Among the compounds tested, HH-A, also known as (S)-6-((3',5-diallyl-2,4'-dihydroxy-[1,1'-biphenyl]-3-yl)amino)-6-oxohexane-1,5-diaminium chloride, showed the most promising results. HH-A was found to significantly reduced the infarct volume and brain edema in mice. It also outperformed the other three compounds and honokiol, even surpassing the effects of edaravone dexborneol. Additionally, HH-A demonstrated dose-dependent improvements in body weight, neurological deficits, and infarct volume. Further analysis in tMCAO/R rat model revealed that HH-A treatment led to significant upregulations of Nrf2 and HO-1 in the brain. HH-A also significantly reduced the expression of HNE, and exhibited anti-apoptotic effects by decreasing the expression of Bax and increasing the expression of Bcl-2. This was further supported by a decrease in the number of TUNEL positive cells. Taken together, the neuroprotective effects of HH-A may be attributed to its ability to target the Nrf2/HO-1 signaling pathway, leading to reduced oxidative stress and apoptosis in the brain. These findings suggest that HH-A has potential as a therapeutic agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Pingping Zhang
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China.
| | - Ye Liu
- Beijing Honghui Meditech Co., Ltd, No. 50 Huatuo Road, CBP Daxing, Beijing, 102600, China.
| |
Collapse
|
23
|
Sen S, Nagao Y, Inatomi Y, Nakajima M, Yonehara T. Stent Retriever Angioplasty for Acute Restenosis of the Middle Cerebral Artery: A Case Report. Cureus 2024; 16:e59696. [PMID: 38841041 PMCID: PMC11150170 DOI: 10.7759/cureus.59696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
We present a case of ischemic stroke treated by stent retriever angioplasty for restenosis during mechanical thrombectomy. An 85-year-old man was admitted to our hospital because of left hemiplegia and left-sided hemispatial neglect caused by an occlusion at the origin of the right middle cerebral artery. Although mechanical thrombectomy transiently resulted in recanalization of the occluded lesion, restenosis immediately occurred and recurred repeatedly. On an angiogram, the stent retriever appeared poorly dilated at the stenosis and showed a contrast deficit. We concluded that restenosis was due to a secondary thrombus resulting from a ruptured atherosclerotic plaque. The stent retriever was kept deployed for 15 minutes. After the stent was retrieved, restenosis did not occur. Stent retriever angioplasty may be effective for determining the cause of restenosis after mechanical thrombectomy as well as for the treatment of restenosis.
Collapse
Affiliation(s)
- Shoei Sen
- Neurology, Saiseikai Kumamoto Hospital, Kumamoto, JPN
- Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, JPN
| | | | | | - Makoto Nakajima
- Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, JPN
| | | |
Collapse
|
24
|
Xu C, Mei Y, Yang R, Luo Q, Zhang J, Kou X, Hu J, Wang Y, Li Y, Chen R, Zhang Z, Yao Y, Sima J. Edaravone Dexborneol mitigates pathology in animal and cell culture models of Alzheimer's disease by inhibiting neuroinflammation and neuronal necroptosis. Cell Biosci 2024; 14:55. [PMID: 38678262 PMCID: PMC11056062 DOI: 10.1186/s13578-024-01230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited disease-modifying treatments. Drug repositioning strategy has now emerged as a promising approach for anti-AD drug discovery. Using 5×FAD mice and Aβ-treated neurons in culture, we tested the efficacy of Y-2, a compounded drug containing the antioxidant Edaravone (Eda), a pyrazolone and (+)-Borneol, an anti-inflammatory diterpenoid from cinnamon, approved for use in amyotrophic lateral sclerosis patients. RESULTS We examined effects of Y-2 versus Eda alone by i.p. administered in 8-week-old 5×FAD mice (females) for 4 months by comparing cognitive function, Aβ pathologies, neuronal necroptosis and neuroinflammation. Using primary neurons and astrocytes, as well as neuronal and astrocytic cell lines, we elucidated the molecular mechanisms of Y-2 by examining neuronal injury, astrocyte-mediated inflammation and necroptosis. Here, we find that Y-2 improves cognitive function in AD mice. Histopathological data show that Y-2, better than Eda alone, markedly ameliorates Aβ pathologies including Aβ burden, astrogliosis/microgliosis, and Tau phosphorylation. In addition, Y-2 reduces Aβ-induced neuronal injury including neurite damage, mitochondrial impairment, reactive oxygen species production and NAD+ depletion. Notably, Y-2 inhibits astrocyte-mediated neuroinflammation and attenuates TNF-α-triggered neuronal necroptosis in cell cultures and AD mice. RNA-seq further demonstrates that Y-2, compared to Eda, indeed upregulates anti-inflammation pathways in astrocytes. CONCLUSIONS Our findings infer that Y-2, better than Eda alone, mitigates AD pathology and may provide a potential drug candidate for AD treatment.
Collapse
Affiliation(s)
- Chong Xu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yilan Mei
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruihan Yang
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiudan Luo
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jienian Zhang
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaolin Kou
- Department of Pharmacology, NeuroDawn Pharmaceutical Co., Ltd, Nanjing, 211199, China
| | - Jianfeng Hu
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacology, NeuroDawn Pharmaceutical Co., Ltd, Nanjing, 211199, China
| | - Yujie Wang
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Li
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong Chen
- Department of Pharmacology, NeuroDawn Pharmaceutical Co., Ltd, Nanjing, 211199, China
| | - Zhengping Zhang
- Department of Pharmacology, NeuroDawn Pharmaceutical Co., Ltd, Nanjing, 211199, China.
| | - Yuyuan Yao
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jian Sima
- Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Yan M, Wu J, Wang L, Wang K, Li L, Sun T, Zhang H, Zhang M, Zou L, Yang S, Liu J. Ginkgolide injections in meglumine, combined with edaravone, significantly increases the efficacy in acute ischemic stroke: A meta-analysis. Front Pharmacol 2024; 14:1236684. [PMID: 38726464 PMCID: PMC11079130 DOI: 10.3389/fphar.2023.1236684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 05/12/2024] Open
Abstract
Objective This study aimed to evaluate the efficacy of combining diterpene ginkgolide meglumine injection (DGMI) with edaravone for the treatment of acute ischemic stroke. This is particularly relevant because Western drugs, excluding intravenous thrombolysis, have shown limited success. Methods A comprehensive search was conducted using multiple databases, including PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure WanFang, VIP, and Chinese Biomedical Database (CBM) until June 2023. The data were analyzed using fixed-effects and random-effects models in Review Manager. The mean difference with 95% confidence interval was calculated for each outcome. Results Eighteen studies involving 1,636 participants were included in the analysis. The DGMI group showed significant reductions in the National Institutes of Health Stroke Scale (NIHSS) score, modified Rankin Scale (mRS) score, and C-reactive protein (CRP) level, compared to the control group. Furthermore, the DGMI group showed a significant improvement in superoxide dismutase (SOD) levels and a reduction in malondialdehyde (MDA) levels. The combination of DGMI and edaravone was more effective in reducing neuron-specific enolase (NSE) levels following brain tissue injury than edaravone alone. Additionally, DGMI complemented edaravone in reducing rheological parameters associated with ischemic stroke, including hematocrit, plasma viscosity, platelet adhesion rate, and erythrocyte deformation index. Conclusion The combination of DGMI and edaravone significantly improved the therapeutic efficacy in patients with acute ischemic stroke. However, more extensive and high-quality clinical trials are required to validate these underlying mechanisms. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=260215, identifier: PROSPERO (CRD42021260215).
Collapse
Affiliation(s)
- Mingyuan Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wu
- Dongzhimen Hospital, University of Chinese Medicine, Beijing, China
| | - Le Wang
- Encephalopathy Department I, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lili Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Tianye Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Han Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zou
- Beijing University of Chinese Medicine, Beijing, China
| | - Songyi Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinmin Liu
- Encephalopathy Department I, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Wang H, Liu L, Zhou X, Guan Y, Li Y, Chen P, Duan R, Yang W, Rong X, Wu C, Yang J, Yang M, Jia Y, Hu J, Zhu X, Peng Y. Efficacy and safety of short-term edaravone or nerve growth factor add-on therapy for alcohol-related brain damage: A multi-centre randomised control trial. Addiction 2024; 119:717-729. [PMID: 38049955 DOI: 10.1111/add.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/24/2023] [Indexed: 12/06/2023]
Abstract
AIMS To measure the therapeutic effect of an anti-oxidant, edaravone (EDV), or neurotrophic treatment with nerve growth factor (NGF) as an add-on treatment for alcohol-related brain damage (ARBD). DESIGN Multi-centre, randomised, single-blinded, comparative clinical trial. SETTING AND PARTICIPANTS One hundred and twenty-two inpatients recruited from seven hospitals in different regions of China, all diagnosed with ARBD and aged 18 to 65 years old; among them, only two were female. INTERVENTION AND COMPARATOR Patients were randomly assigned to receive one of three treatments for 2 weeks: 40 patients, treatment as usual (TAU: a combination of intramuscular injections of thiamine, intravenous infusions of other B vitamins with vitamin C and oral medication with vitamin E per day); 40, EDV add-on treatment to TAU (intravenous infusion with 30 mg of EDV twice per day); and 42, NGF add-on treatment to TAU (intramuscular injection of 20 μg of NGF per day). The patients underwent follow-up for 24 weeks. MEASUREMENTS The primary outcome was the composite score of executive cognitive function in the 2nd week after treatment, which was measured as the mean of the Z scores of the assessments, including the digit symbol substitute test (DSST), digit span memory test-forward (DST-F), digit span memory test-reverse (DST-R) and space span memory test (SSMT). The secondary outcomes were the composite scores at later follow-ups, the score for each component of cognitive function, global cognitive function measured by the Montreal Cognitive Assessment (MoCA), craving for alcohol and the safety of the therapies. FINDINGS EDV add-on treatment improved the composite score of executive cognitive function better than TAU in the 2nd week (adjusted mean difference: 0.24, 95% confidence interval 0.06 to 0.41; P = 0.008), but NGF add-on treatment did not (adjusted mean difference: 0.07, 95% confidence interval -0.09 to 0.24; P = 0.502). During the follow-up to 24 weeks, EDV add-on treatment improved the composite score of executive cognitive function and DST-R score better than TAU (both P < 0.01). Craving for alcohol was relieved in all three groups. No severe adverse events were observed. CONCLUSION The short-term addition of edaravone to supplementary therapy treatment for alcohol-related brain damage (ARBD) improved executive cognitive function in patients with ARBD.
Collapse
Affiliation(s)
- Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Liu
- Mental Health Centre, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuhui Zhou
- Hunan Provincial Brain Hospital, Changsha, China
| | - Yanzhong Guan
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peiyun Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weibian Yang
- Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengji Wu
- First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jianzhong Yang
- Department of Psychiatry, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Yang
- Addiction Medicine Department, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Hu
- Mental Health Centre, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofeng Zhu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
You F, Nicco C, Harakawa Y, Yoshikawa T, Inufusa H. The Potential of Twendee X ® as a Safe Antioxidant Treatment for Systemic Sclerosis. Int J Mol Sci 2024; 25:3064. [PMID: 38474309 DOI: 10.3390/ijms25053064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by systemic skin hardening, which combines Raynaud's phenomenon and other vascular disorders, skin and internal organ fibrosis, immune disorders, and a variety of other abnormalities. Symptoms vary widely among individuals, and personalized treatment is sought for each patient. Since there is no fundamental cure for SSc, it is designated as an intractable disease with patients receiving government subsidies for medical expenses in Japan. Oxidative stress (OS) has been reported to play an important role in the cause and symptoms of SSc. HOCl-induced SSc mouse models are known to exhibit skin and visceral fibrosis, vascular damage, and autoimmune-like symptoms observed in human SSc. The antioxidant combination Twendee X® (TwX) is a dietary supplement consisting of vitamins, amino acids, and CoQ10. TwX has been proven to prevent dementia in humans with mild cognitive impairment and significantly improve cognitive impairment in an Alzheimer's disease mouse model by regulating OS through a strong antioxidant capacity that cannot be achieved with a single antioxidant ingredient. We evaluated the effectiveness of TwX on various symptoms of HOCl-induced SSc mice. TwX-treated HOCl-induced SSc mice showed significantly reduced lung and skin fibrosis compared to untreated HOCl-induced SSc mice. TwX also significantly reduced highly oxidized protein products (AOPP) in serum and suppressed Col-1 gene expression and activation of B cells involved in autoimmunity. These findings suggest that TwX has the potential to be a new antioxidant treatment for SSc without side effects.
Collapse
Affiliation(s)
- Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| | - Carole Nicco
- Université Paris Cité, 45 Rue des Saints-Pères, 75006 Paris, France
| | - Yoshiaki Harakawa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
| | - Toshikazu Yoshikawa
- Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
- School of Medicine, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanakamonzen-cho 103-5, Sa-kyo-ku, Kyoto 606-8225, Japan
| |
Collapse
|
28
|
Yamashita T, Abe K. Update on Antioxidant Therapy with Edaravone: Expanding Applications in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2945. [PMID: 38474192 PMCID: PMC10932469 DOI: 10.3390/ijms25052945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| |
Collapse
|
29
|
Fu Y, Tang R, Chen R, Wang A, Ren J, Zhu S, Feng X, Fan D. Efficacy and safety of Y-2 sublingual tablet for patients with acute ischaemic stroke: protocol of a phase III randomised double-blind placebo-controlled multicentre trial. Stroke Vasc Neurol 2024; 9:90-95. [PMID: 37308251 PMCID: PMC10956111 DOI: 10.1136/svn-2022-002014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/02/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Clinical studies have demonstrated that edaravone dexborneol can improve the functional outcomes in patients with acute ischaemic stroke (AIS). The present clinical trial aimed at testing the efficacy and safety of Y-2 sublingual tablet on 90-day functional outcome in patients with AIS. METHODS AND DESIGN This is a randomised, double-blind, placebo-controlled, multicentre, parallel-group trial of Y-2 sublingual tablet on patients with AIS.An estimated 914 patients at age of 18-80 years with AIS within 48 hours after symptom onset from 40 hospitals will be randomly assigned to receive Y-2 sublingual tablet or placebo for 14 days. Patients are at score 6-20 points on National Institutes of Health Stroke Scale (NIHSS) and had a modified Rankin Scale (mRS) ≤1 before this stroke, except mechanical thrombectomy and neuroprotective agents treatment. STUDY OUTCOMES The primary outcome is the proportion of patients with mRS ≤1 on day 90 after randomisation. Secondary efficacy outcomes include mRS score on day 90, the proportion of patients with mRS ≤2 on day 90; the change of NIHSS score from baseline to day 14 and the proportion of patients with NIHSS score ≤1 at the days 14, 30 and 90. DISCUSSION This trial will provide valuable evidence for the efficacy and safety of Y-2 sublingual table for improving 90 days the functional outcomes in patients with AIS. TRIAL REGISTRATION NUMBER NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co., Ltd, Nanjing, Jiangsu, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, China
- Simcere Pharmaceutical Group Limited, Nanjing, Jiangsu, China
| | - Dongsheng Fan
- Deparment of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Anderson CS, Song L. Promising Efforts to Define a Novel Approach to Neuroprotection for Acute Ischemic Stroke. JAMA Neurol 2024:2815108. [PMID: 38372982 DOI: 10.1001/jamaneurol.2023.5727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Craig S Anderson
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute China, Beijing, China
| | - Lili Song
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute China, Beijing, China
| |
Collapse
|
31
|
Fu Y, Wang A, Tang R, Li S, Tian X, Xia X, Ren J, Yang S, Chen R, Zhu S, Feng X, Yao J, Wei Y, Dong X, Ling Y, Yi F, Deng Q, Guo C, Sui Y, Han S, Wen G, Li C, Dong A, Sun X, Wang Z, Shi X, Liu B, Fan D. Sublingual Edaravone Dexborneol for the Treatment of Acute Ischemic Stroke: The TASTE-SL Randomized Clinical Trial. JAMA Neurol 2024; 81:2815107. [PMID: 38372981 PMCID: PMC10877503 DOI: 10.1001/jamaneurol.2023.5716] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Importance Sublingual edaravone dexborneol, which can rapidly diffuse and be absorbed through the oral mucosa after sublingual exposure, is a multitarget brain cytoprotection composed of antioxidant and anti-inflammatory ingredients edaravone and dexborneol. Objective To investigate the efficacy and safety of sublingual edaravone dexborneol on 90-day functional outcome in patients with acute ischemic stroke (AIS). Design, Setting, and Participants This was a double-blind, placebo-controlled, multicenter, parallel-group, phase 3 randomized clinical trial conducted from June 28, 2021, to August 10, 2022, with 90-day follow-up. Participants were recruited from 33 centers in China. Patients randomly assigned to treatment groups were aged 18 to 80 years and had a National Institutes of Health Stroke Scale score between 6 and 20, a total motor deficit score of the upper and lower limbs of 2 or greater, a clinically diagnosed AIS symptom within 48 hours, and a modified Rankin Scale (mRS) score of 1 or less before stroke. Patients who did not meet the eligibility criteria or declined to participate were excluded. Intervention Patients were assigned, in a 1:1 ratio, to receive sublingual edaravone dexborneol (edaravone, 30 mg; dexborneol, 6 mg) or placebo (edaravone, 0 mg; dexborneol, 60 μg) twice daily for 14 days and were followed up until 90 days. Main Outcomes and Measures The primary efficacy outcome was the proportion of patients with mRS score of 1 or less on day 90 after randomization. Results Of 956 patients, 42 were excluded. A total of 914 patients (median [IQR] age, 64.0 [56.0-70.0] years; 608 male [66.5%]) were randomly allocated to the edaravone dexborneol group (450 [49.2%]) or placebo group (464 [50.8%]). The edaravone dexborneol group showed a significantly higher proportion of patients experiencing good functional outcomes on day 90 after randomization compared with the placebo group (290 [64.4%] vs 254 [54.7%]; risk difference, 9.70%; 95% CI, 3.37%-16.03%; odds ratio, 1.50; 95% CI, 1.15-1.95, P = .003). The rate of adverse events was similar between the 2 groups (89.8% [405 of 450] vs 90.1% [418 of 464]). Conclusion and Relevance Among patients with AIS within 48 hours, sublingual edaravone dexborneol could improve the proportion of those achieving a favorable functional outcome at 90 days compared with placebo. Trial Registration ClinicalTrials.gov Identifier: NCT04950920.
Collapse
Affiliation(s)
- Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Anxin Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Shuya Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Clinical Epidemiology and Clinical Trial, Capital Medical University, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinsheng Ren
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Shibao Yang
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Rong Chen
- Neurodawn Pharmaceutical Co Ltd, Nanjing, China
| | - Shunwei Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | - Xiaofei Feng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Simcere Pharmaceutical Group Limited, Nanjing, China
| | | | - Yan Wei
- Harrision International Peace Hospital, Hengshui, China
| | | | - Yun Ling
- Nanshi Hospital of Nanyang, Nanyang, China
| | - Fei Yi
- Pingxiang People’s Hospital, Pingxiang, China
| | - Qian Deng
- The First Affiliated Hospital of Nanyang Medical College, Nanyang, China
| | - Cunju Guo
- Liaocheng People’s Hospital, Liaocheng, China
| | - Yi Sui
- The First People’s Hospital of Shenyang, Shenyang, China
| | - Shugen Han
- Mei He Kou Central Hospital, Jilin, China
| | | | | | | | - Xin Sun
- The First Hospital of Jilin University, Jilin, China
| | - Zhimin Wang
- Taizhou First People’s Hospital, Zhejiang, China
| | | | - Bo Liu
- The First Affiliated Hospital Baotou Medical College, Baotou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
32
|
Kubota H, Tsutsui M, Kuniyoshi K, Yamashita H, Shimokawa H, Sugahara K, Kakinohana M. Alleviated cerebral infarction in male mice lacking all nitric oxide synthase isoforms after middle cerebral artery occlusion. J Anesth 2024; 38:44-56. [PMID: 37910301 DOI: 10.1007/s00540-023-03271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE The role of the nitric oxide synthases (NOSs) system in cerebral infarction has been examined in pharmacological studies with non-selective NOSs inhibitors. However, due to the non-specificity of the non-selective NOSs inhibitors, its role remains to be fully elucidated. We addressed this issue in mice in which neuronal, inducible, and endothelial NOS isoforms were completely disrupted. METHODS AND RESULTS We newly generated mice lacking all three NOSs by crossbreeding each single NOS-/- mouse. In the male, cerebral infarct size at 24 h after middle cerebral artery occlusion (MCAO) was significantly smaller in the triple n/i/eNOSs-/- genotype as compared with wild-type genotype. Neurological deficit score and mortality rate were also significantly lower in the triple n/i/eNOSs-/- than in the WT genotype. In contrast, in the female, there was no significant difference in the cerebral infarct size in the two genotypes. In the male triple n/i/eNOSs-/- genotype, orchiectomy significantly increased the cerebral infarct size, and in the orchiectomized male triple n/i/eNOSs-/- genotype, treatment with testosterone significantly reduced it. Cyclopaedic and quantitative comparisons of mRNA expression levels in cerebral infarct lesions between the male wild-type and triple n/i/eNOSs-/- genotypes at 1 h after MCAO revealed significant involvements of decreased oxidative stress and mitigated mitochondrial dysfunction in the alleviated cerebral infarction in the male triple n/i/eNOSs-/- genotype. CONCLUSIONS These results provide the first evidence that the NOSs system exerts a deleterious effect against acute ischemic brain injury in the male.
Collapse
Affiliation(s)
- Haruaki Kubota
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| | - Kanako Kuniyoshi
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hirotaka Yamashita
- Department of Pharmacology, Graduate School of Medicine, University the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School, International University of Health and Welfare, Narita, Japan
| | - Kazuhiro Sugahara
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| | - Manabu Kakinohana
- Department of Anesthesiology, Graduate School of Medicine, University the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
33
|
Sudarshana KA, Sarma MJ, Radhakrishnan M, Chakravarty S, Srihari P, Mehta G. A protocol for directly accessing geminal C-4 diarylated pyrazol-5(4 H)-ones via tandem C-H aryne insertion and their inceptive neurobiological evaluation. Org Biomol Chem 2024; 22:714-719. [PMID: 38165701 DOI: 10.1039/d3ob01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Geminal C-4 diarylation of substituted pyrazol-5(4H)-ones with in situ generated arynes as the aryl source has been achieved in a one-flask operation. All the newly accessed C4-gem-diarylated pyrazolone entities were found to be non-cytotoxic with varying AChE enzyme inhibitory activities and BBB permeability attributes that augur well for further advancement towards CNS therapeutics for untreatable disorders.
Collapse
Affiliation(s)
- K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas Jyoti Sarma
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
34
|
Goel D, Shangari S, Mittal M, Bhat A. Endogenous defense mechanism-based neuroprotection in large-vessel acute ischemic stroke: A hope for future. Brain Circ 2024; 10:51-59. [PMID: 38655439 PMCID: PMC11034449 DOI: 10.4103/bc.bc_56_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide and a leading cause of disability. None of the neuroprotective agents have been approved internationally except edaravone in Japanese guidelines in acute ischemic stroke. We here discuss that there are two types of endogenous defense mechanisms (EDMs) after acute stroke for neuromodulation and neuroregeneration, and if both can be activated simultaneously, then we can have better recovery in stroke. AIMS AND OBJECTIVES We aimed to study the effect of combination of neuroprotection therapies acting on the two wings of EDM in acute large-vessel middle cerebral artery (LMCA) ischemic stroke. METHODS Sixty patients of LMCA stroke were enrolled and randomized within 72 h into two groups of 30 patients each. The control group received standard medical care without any neuroprotective agents while the intervention group received standard medical care combined with oral citicoline with vinpocetine for 3 months with initial 1 week intravenous and edaravone and cerebrolysin injection, started within 72 h of onset of stroke. Patients were assessed on the basis of the National Institutes of Health Stroke Scale, Fugl-Meyer Assessment Score, Glasgow Coma Scale, and Mini-Mental Status Examination at admission, discharge, and after 90 days. RESULTS The intervention group showed significant and early improvements in motor as well as cognitive recovery. CONCLUSION Combination therapy for neuroprotection which is acting on two pathways of EDM can be useful in functional recovery after acute ischemic stroke.
Collapse
Affiliation(s)
- Deepak Goel
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Sushant Shangari
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Manish Mittal
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Ashwani Bhat
- Department of Neurology, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| |
Collapse
|
35
|
Shchukin IA, Koltsov IA, Fidler MS, Glukhareva AP. [Neurocytoprotection advances in reperfusion therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:75-88. [PMID: 39831366 DOI: 10.17116/jnevro202412412275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Acute stroke is the second leading cause of death and the third leading cause of disability in the world. Ischemic stroke (IS) the most common type of stroke. In acute cerebral ischemia, damage to the brain tissue is complex and includes blood-brain barrier (BBB) dysfunction, neuroinflammation, oxidative stress, activation of intracellular and extracellular signaling pathways, expression of neurotoxic agents, excitotoxicity, and apoptosis. In acute IS, reperfusion therapy (RT), is one of the most prominent treatment options. Most of the randomized clinical trials demonstrated the efficacy and safety of RT. The use of novel neuroimaging techniques (CT-perfusion and new MRI modalities) significantly expanded the RT selection criteria in patients with IS. One of the possible ways to further expand the RT is to combine it with neurocytoprotection. According to many researchers, this could potentially significantly improve the efficacy and safety of RT. This opinion is based on the concept of preserving brain tissue in the ischemic penumbra region. The aim of this review was to analyze the current trials of neurocytoprotection in combination with RT in IS patients.
Collapse
Affiliation(s)
- I A Shchukin
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - I A Koltsov
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - M S Fidler
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - A P Glukhareva
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| |
Collapse
|
36
|
Zhang Y, Jiang M, Gao Y, Zhao W, Wu C, Li C, Li M, Wu D, Wang W, Ji X. "No-reflow" phenomenon in acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:19-37. [PMID: 37855115 PMCID: PMC10905637 DOI: 10.1177/0271678x231208476] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Acute ischemic stroke (AIS) afflicts millions of individuals worldwide. Despite the advancements in thrombolysis and thrombectomy facilitating proximal large artery recanalization, the resultant distal hypoperfusion, referred to "no-reflow" phenomenon, often impedes the neurological function restoration in patients. Over half a century of scientific inquiry has validated the existence of cerebral "no-reflow" in both animal models and human subjects. Furthermore, the correlation between "no-reflow" and adverse clinical outcomes underscores the necessity to address this phenomenon as a pivotal strategy for enhancing AIS prognoses. The underlying mechanisms of "no-reflow" are multifaceted, encompassing the formation of microemboli, microvascular compression and contraction. Moreover, a myriad of complex mechanisms warrant further investigation. Insights gleaned from mechanistic exploration have prompted advancements in "no-reflow" treatment, including microthrombosis therapy, which has demonstrated clinical efficacy in improving patient prognoses. The stagnation in current "no-reflow" diagnostic methods imposes limitations on the timely application of combined therapy on "no-reflow" post-recanalization. This narrative review will traverse the historical journey of the "no-reflow" phenomenon, delve into its underpinnings in AIS, and elucidate potential therapeutic and diagnostic strategies. Our aim is to equip readers with a swift comprehension of the "no-reflow" phenomenon and highlight critical points for future research endeavors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Escobar-Peso A, Martínez-Alonso E, Masjuan J, Alcázar A. Development of Pharmacological Strategies with Therapeutic Potential in Ischemic Stroke. Antioxidants (Basel) 2023; 12:2102. [PMID: 38136221 PMCID: PMC10740896 DOI: 10.3390/antiox12122102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Acute ischemic stroke constitutes a health challenge with great social impact due to its high incidence, with the social dependency that it generates being an important source of inequality. The lack of treatments serving as effective neuroprotective therapies beyond thrombolysis and thrombectomy is presented as a need. With this goal in mind, our research group's collaborative studies into cerebral ischemia and subsequent reperfusion concluded that there is a need to develop compounds with antioxidant and radical scavenger features. In this review, we summarize the path taken toward the identification of lead compounds as potential candidates for the treatment of acute ischemic stroke. Evaluations of the antioxidant capacity, neuroprotection of primary neuronal cultures and in vivo experimental models of cerebral ischemia, including neurological deficit score assessments, are conducted to characterize the biological efficacy of the various neuroprotective compounds developed. Moreover, the initial results in preclinical development, including dose-response studies, the therapeutic window, the long-term neuroprotective effect and in vivo antioxidant evaluation, are reported. The results prompt these compounds for clinical trials and are encouraging regarding new drug developments aimed at a successful therapy for ischemic stroke.
Collapse
Affiliation(s)
- Alejandro Escobar-Peso
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Emma Martínez-Alonso
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| | - Jaime Masjuan
- Department of Neurology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Department of Neurology, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Alberto Alcázar
- Department of Research, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain;
| |
Collapse
|
38
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
39
|
Xi Y, Ma J, Lu S. Favorable neuroprotective effect of intra-arterial application of edaravone dexborneol in ischemic stroke rats. J Stroke Cerebrovasc Dis 2023; 32:107356. [PMID: 37740991 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the neuroprotective effects of intra-arterial administration of edaravone dexborneol in rats with acute ischemic stroke and determine the optimal dose. MATERIALS AND METHODS Firstly, 120 male Sprague-Dawley rats (265-300 g) were selected to establish ischemic stroke models and were randomly divided into groups of sham-operation (Sham group), cerebral ischemia-reperfusion (IS group), permanent focal ischemia (PI group) and treatment (2MG group: 2 mg/kg, 4MG group: 4 mg/kg, 6MG group: 6 mg/kg) groups. There are 20 rats in each group, and ten rats in each group were randomly selected for Longa score and 2,3,5-triphenyl tetrazolium chloride staining to observe the changes in neurological function and the proportion of cerebral infarct volume in each group. Secondly, the remaining ten rats in each group were scored for Longa and tested for free radicals (hydroxyl radical; peroxynitrite; nitric oxide) and pro-inflammatory cytokines (interleukin 6; interleukin-1β; tumor necrosis factor-α). We monitored changes in the indicators in each group of rats. RESULTS There were no significant differences among the enrolled Sprague-Dawley rats concerning age, sex, and feeding conditions. Edaravone dexborneol could significantly reduce the cerebral levels of hydroxyl radical, interleukin 6, interleukin-1β, tumor necrosis factor-α, and their behavioral scores of acute ischemic stroke rats after a single dose in the carotid artery. The results suggested that 4 mg/kg might be an appropriate dose. CONCLUSIONS A single intra-arterial administration of edaravone dexborneol can improve neurobehavioral function and alleviate cerebral injury in acute ischemic stroke rats through anti-inflammatory and free radical scavenging effects.
Collapse
Affiliation(s)
- Yalin Xi
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China
| | - Jingxia Ma
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China
| | - Shujun Lu
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, China.
| |
Collapse
|
40
|
Maragakis NJ, de Carvalho M, Weiss MD. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture. Ann Clin Transl Neurol 2023; 10:1948-1971. [PMID: 37641443 PMCID: PMC10647018 DOI: 10.1002/acn3.51887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Numerous potential amyotrophic lateral sclerosis (ALS)-relevant pathways have been hypothesized and studied preclinically, with subsequent translation to clinical trial. However, few successes have been observed with only modest effects. Along with an improved but incomplete understanding of ALS as a neurodegenerative disease is the evolution of more sophisticated and diverse in vitro and in vivo preclinical modeling platforms, as well as clinical trial designs. We highlight proposed pathological pathways that have been major therapeutic targets for investigational compounds. It is likely that the failures of so many of these therapeutic compounds may not have occurred because of lack of efficacy but rather because of a lack of preclinical modeling that would help define an appropriate disease pathway, as well as a failure to establish target engagement. These challenges are compounded by shortcomings in clinical trial design, including lack of biomarkers that could predict clinical success and studies that are underpowered. Although research investments have provided abundant insights into new ALS-relevant pathways, most have not yet been developed more fully to result in clinical study. In this review, we detail some of the important, well-established pathways, the therapeutics targeting them, and the subsequent clinical design. With an understanding of some of the shortcomings in translational efforts over the last three decades of ALS investigation, we propose that scientists and clinicians may choose to revisit some of these therapeutic pathways reviewed here with an eye toward improving preclinical modeling, biomarker development, and the investment in more sophisticated clinical trial designs.
Collapse
Affiliation(s)
| | - Mamede de Carvalho
- Faculdade de MedicinaInsqatituto de Medicina Molecular João Lobo Antunes, Centro Académico de Medicina de Lisboa, Universidade de LisboaLisbonPortugal
| | - Michael D. Weiss
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
41
|
Saito T, Sakakibara F, Uchida K, Yoshimura S, Sakai N, Imamura H, Yamagami H, Morimoto T. Effect of edaravone on symptomatic intracranial hemorrhage in patients with acute large vessel occlusion on apixaban for non-valvular atrial fibrillation. J Neurol Sci 2023; 453:120806. [PMID: 37717280 DOI: 10.1016/j.jns.2023.120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Edaravone administration was associated with lower incidence of symptomatic intracranial hemorrhage (sICH) in patients with acute large vessel occlusion (LVO). However, its protective effect on sICH in patients with LVO who receive direct oral anticoagulants for non-valvular atrial fibrillation (NVAF) is uncertain. OBJECTIVES To explore the effect of edaravone administration on the incidence of sICH in patients with acute LVO receiving apixaban for NVAF. METHODS A Japanese multicenter registry of apixaban on clinical outcome of the patients with LVO or stenosis (ALVO study) included patients who were admitted within 24 h after stroke onset and were received apixaban within 14 days of stroke onset. Patients were divided into two groups according to edaravone administration (Edaravone and No-Edaravone groups). The incidence of sICH within one year and infarct growth before apixaban administration were compared between these groups. RESULTS Of the 686 enrolled patients, 622 were included and edaravone was administered to 407 (65.4%). The incidences of sICH in Edaravone and No-Edaravone groups were 1.3% and 5.0%, respectively (p = 0.01). The inverse probability of treatment-weighting (IPTW) hazard ratio (HR) (95% confidence interval [CI]) of Edaravone group for sICH within one year was 0.36 (0.15-0.80) compared to No-Edaravone group. The incidences of infarct growth in Edaravone and No-Edaravone groups were 35.3% and 42.0%, respectively (p = 0.13). IPTW HR (95% CIs) for infarct growth was 0.76 (0.60-0.97). CONCLUSIONS Edaravone administration was associated with a lower incidence of sICH in patients with LVO and NVAF who administrated apixaban.
Collapse
Affiliation(s)
- Takuya Saito
- Department of Clinical Epidemiology, Hyogo Medical University, Nishinomiya, Japan; Department of Neurology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Fumihiro Sakakibara
- Department of Clinical Epidemiology, Hyogo Medical University, Nishinomiya, Japan; Department of Neurosurgery, Hyogo Medical University, Nishinomiya, Japan
| | - Kazutaka Uchida
- Department of Clinical Epidemiology, Hyogo Medical University, Nishinomiya, Japan; Department of Neurosurgery, Hyogo Medical University, Nishinomiya, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya, Japan
| | - Nobuyuki Sakai
- Neurovascular Research & Neuroendovascular Therapy, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hirotoshi Imamura
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroshi Yamagami
- Department of Stroke Neurology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo Medical University, Nishinomiya, Japan.
| |
Collapse
|
42
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
43
|
Yang L, Xu X, Wang L, Zeng KB, Wang XF. Edaravone administration and its potential association with a new clinical syndrome in cerebral infarction patients: Three case reports. World J Clin Cases 2023; 11:4648-4654. [PMID: 37469729 PMCID: PMC10353518 DOI: 10.12998/wjcc.v11.i19.4648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Edaravone is a widely used treatment for patients with cerebral infarction and, in most cases, edaravone-induced side effects are mild. However, edaravone-related adverse reactions have been receiving increasing attention.
CASE SUMMARY We treated three patients with acute cerebral infarction who died following treatment with edaravone. Edaravone is a widely used treatment for patients with cerebral infarction and, in most cases, edaravone-induced side effects are mild. However, edaravone-related adverse reactions have been receiving increasing attention.
CONCLUSION Our cases highlight the importance of educating clinicians regarding the new edaravone-induced clinical syndromes of cerebral infarction as potentially fatal adverse drug reactions. Considering that no laboratory or confirmatory test exists to diagnose edaravone-induced death from cerebral infarction, clinicians’ knowledge is the key element in recognizing this phenomenon.
Collapse
Affiliation(s)
- Liu Yang
- Department of Neurology, Central Hospital Affiliated to Chongqing University, Chongqing 400010, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Liang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ke-Bin Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
44
|
Deguchi I, Takahashi S. Pathophysiology and Optimal Treatment of Intracranial Branch Atheromatous Disease. J Atheroscler Thromb 2023; 30:701-709. [PMID: 37183021 PMCID: PMC10322737 DOI: 10.5551/jat.rv22003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Intracranial branch atheromatous disease (BAD) is a pathological condition characterized by the occlusion of a relatively large perforating branch (700-800 µm) near the orifice of a parent artery due to atherosclerotic plaque-based thrombus (microatheroma). BAD is refractory to treatment and follows a course of progressive exacerbation, especially motor paralysis. Uniform treatment for common atherothrombotic cerebral infarction or lacunar infarction does not prevent the progressive exacerbation of BAD, and consequently affects functional prognosis. To date, various combinations of treatments have been investigated and proposed to attenuate the worsening symptoms of BAD. However, no therapy with established efficacy is yet available for BAD. Since it is the most difficult condition to treat in the area of cerebral infarction, the establishment of optimal treatment methods for BAD is keenly awaited. This review presents an overview of the acute treatments available for BAD and discusses the prospects for optimal treatment.
Collapse
Affiliation(s)
- Ichiro Deguchi
- Department of Neurology and Cerebrovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shinichi Takahashi
- Department of Neurology and Cerebrovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
45
|
Fukuta T, Ikeda-Imafuku M, Iwao Y. Development of Edaravone Ionic Liquids and Their Application for the Treatment of Cerebral Ischemia/Reperfusion Injury. Mol Pharm 2023. [PMID: 37155370 DOI: 10.1021/acs.molpharmaceut.3c00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Preparation of the ionic liquid (IL) form of active pharmaceutical ingredients (APIs), termed API-IL, has attracted attention because it can improve upon certain disadvantages of APIs, such as poor water solubility and low stability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a clinically approved cerebroprotective agent against ischemic stroke and amyotrophic lateral sclerosis, while new formulations that enable improvement of its physicochemical properties and biodistribution are desired. Herein, we report a newly developed API-IL of edaravone (edaravone-IL), in which edaravone is used as an anionic molecule. We investigated the physicochemical properties of edaravone-IL and its therapeutic effect against cerebral ischemia/reperfusion (I/R) injury, a secondary injury after an ischemic stroke. Among the cationic molecules used for edaravone-IL preparation, the IL prepared with tetrabutylphosphonium cation existed as a liquid at room temperature, and significantly increased the water solubility of edaravone without decreasing its antioxidative activity. Importantly, edaravone-IL formed negatively charged nanoparticles upon suspension in water. Intravenous administration of edaravone-IL showed significantly higher blood circulation time and lower distribution in the kidney compared with edaravone solution. Moreover, edaravone-IL significantly suppressed brain cell damage and motor functional deficits in model rats of cerebral I/R injury and showed comparable cerebroprotective effect to edaravone. Taken together, these results suggest that edaravone-IL could be a new form of edaravone with superior physicochemical properties and could be useful for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Mayumi Ikeda-Imafuku
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| |
Collapse
|
46
|
Zhang P, Xu J, Cui Q, Lin G, Wang F, Ding X, You S, Sang N, Tan J, Xu W, Zhan C, Zhu Y, Zhang J. Multi-pathway neuroprotective effects of a novel salidroside derivative SHPL-49 against acute cerebral ischemic injury. Eur J Pharmacol 2023; 949:175716. [PMID: 37059375 DOI: 10.1016/j.ejphar.2023.175716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
SHPL-49 ((2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-(4-methoxyphenyl) butoxy) tetrahydro-2H-pyran-3,4,5-triol) is a novel glycoside derivative obtained from structural modification of salidroside, which is isolated from the medicinal plant Rhodiola rosea L. SHPL-49 was administered to rats with permanent middle cerebral artery occlusion (pMCAO) for 5 days, and it was found that SHPL-49 could alleviate the cerebral infarct volume and reduce the neurological deficit score. Moreover, the effective time window of SHPL-49 in the pMCAO model was from 0.5 to 8 h after embolization. In addition, the result of immunohistochemistry showed that SHPL-49 could increase the number of neurons in the brain tissue and reduce the occurrence of apoptosis. Morris water maze and Rota-rod experiments showed that SHPL-49 could improve neurological deficits, repair neurocognitive and motor dysfunction, and enhance learning and memory ability in the pMCAO model after 14 days of SHPL-49 treatment. Further in vitro experiments showed that SHPL-49 significantly reduced the calcium overload of PC-12 cells and the production of reactive oxygen species (ROS) induced by oxygen and glucose deprivation (OGD), and increased the levels of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), decreased the production of malondialdehyde (MDA). Furthermore, SHPL-49 could reduce cell apoptosis by increasing protein expression ratio of anti-apoptotic factor Bcl-2 to pro-apoptotic factor Bax in vitro. SHPL-49 also regulated the expression of Bcl-2 and Bax in ischemic brain tissue, and even inhibited the caspase cascade of pro-apoptotic proteins Cleaved-caspase 9 and Cleaved-caspase 3. Taken together, SHPL-49 exhibited neuroprotective effects against cerebral ischemic injury through multiple pathways, such as alleviating calcium overload, reducing oxidative stress damage, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianfei Cui
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nina Sang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junchao Tan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenwen Xu
- Shanghai Hutchison Pharmaceuticals Limited, Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Changsen Zhan
- Shanghai Hutchison Pharmaceuticals Limited, Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
47
|
Li LD, Zhou Y, Shi SF. Edaravone combined with Shuxuening versus edaravone alone in the treatment of acute cerebral infarction: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e32929. [PMID: 36862906 PMCID: PMC9981379 DOI: 10.1097/md.0000000000032929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Shuxuening injection (SXN) is a traditional Chinese medicine used in the treatment of cardiovascular diseases. Whether it can provide better outcomes when combined with edaravone injection (ERI) for the treatment of acute cerebral infarction is not well determined. Therefore, we evaluated the efficacy of ERI combined with SXN versus that of ERI alone in patients with acute cerebral infarction. METHODS PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang electronic databases were searched up to July 2022. Randomized controlled trials comparing the outcomes of efficacy rate, neurologic impairment, inflammatory factors, and hemorheology were included. Odds ratio or standard mean difference (SMD) with corresponding 95% confidence intervals (CIs) were used to present the overall estimates. The quality of the included trials was evaluated by the Cochrane risk of bias tool. The study was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses. RESULTS Seventeen randomized controlled trials were included consisting of 1607 patients. Compared to ERI alone, treatment with ERI plus SXN had a greater effective rate than ER alone (odds ratio = 3.94; 95% CI: 2.85, 5.44; I2 = 0%, P < .00001), a lower National Institute of Health Stroke Scale (SMD= -1.39; 95% CI: -1.73, -1.05; I2 = 71%, P < .00001), lower neural function defect score (SMD= -0.75; 95% CI: -1.06,-0.43; I2 = 67%, P < .00001), and lower level of neuron-specific enolase (SMD= -2.10; 95% CI: -2.85, -1.35; I2 = 85%, P < .00001). ERI plus SXN treatment provided significant improvements in whole blood high shear viscosity (SMD = -0.87; 95% CI: -1.17, -0.57; I2 = 0%, P < .00001), and whole blood low shear viscosity (SMD = -1.50; 95% CI: -1.65, -1.36; I2 = 0%, P < .00001) compared to ERI alone. CONCLUSION ERI plus SXN showed better efficacy than ERI alone for patients with acute cerebral infarction. Our study provides evidence supporting the application of ERI plus SXN for acute cerebral infarction.
Collapse
Affiliation(s)
- Liang-Da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
- * Correspondence: Liang-Da Li, Department of Neurology, The People’ s Hospital Affiliated to Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, Zhejiang Province 315040, China (e-mail: )
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| | - Shan-Fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
48
|
Morishima Y, Ueno Y, Satake A, Fukao T, Tsuchiya M, Hata T, Ogawa T, Oishi N, Nakajima S, Hirata S, Shindo K, Takiyama Y. Recurrent embolic stroke associated with adenomyosis: A single case report and literature review. Neurol Sci 2023:10.1007/s10072-023-06701-3. [PMID: 36820990 DOI: 10.1007/s10072-023-06701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Uterine adenomyosis is a benign disorder in which endometrial glands and stroma are present within the myometrium. There have been several case reports of cerebral infarction associated with adenomyosis, but their clinical characteristics, optimal treatment, and prognosis have not been systematically reviewed. METHODS A case of cerebral infarction with adenomyosis is reported, and a comprehensive systematic literature search using the PubMed database was conducted. RESULTS A 42-year-old woman, previously diagnosed with adenomyosis, developed multiple cerebral infarctions during menstruation. Her CA125 level was 293 U/mL, and treatment with edoxaban 30 mg was started. Seven days after hospital discharge, she had her subsequent menstrual period and then developed a recurrent stroke. Her CA125 level was 743 U/mL on readmission. A hysterectomy was performed, and the patient has had no further stroke recurrence. A systematic review identified 19 cases with cerebral infarction associated with adenomyosis, including the present case. The patients' clinical characteristics included young age (44.7 ± 6.2 years), stroke development during menstruation (85%), multiple infarctions affecting ≥ 3 vessel territories (39%), and high levels of CA125 and D-dimer (810.6 ± 888.4 U/mL, and 10.3 ± 18.6 μg/mL, respectively). Antithrombotic therapy was given to 14 patients, but recurrent stroke occurred in 5 (36%) patients. Hysterectomy was conducted in 5 and 4 patients with initial and recurrent stokes, respectively, and there were no further recurrences thereafter. CONCLUSION Cerebral infarction associated with adenomyosis has specific clinical characteristics. Antithrombotic therapy was insufficient, and hysterectomy should particularly be considered in cases of recurrent stroke.
Collapse
Affiliation(s)
- Yuto Morishima
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Yuji Ueno
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan.
| | - Akane Satake
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan.,Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| | - Toko Fukao
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan.,Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| | - Mai Tsuchiya
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Takanori Hata
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Tatsuyuki Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Naoki Oishi
- Department of Pathology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Sho Nakajima
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazumasa Shindo
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, 1110 Shimokato, Chuo-Shi, Yamanashi, 409-3898, Japan.,Department of Neurology, Fuefuki Central Hospital, Yamanashi, Japan
| |
Collapse
|
49
|
Guo S, Lei Q, Guo H, Yang Q, Xue Y, Chen R. Edaravone Attenuates Aβ 1-42-Induced Inflammatory Damage and Ferroptosis in HT22 Cells. Neurochem Res 2023; 48:570-578. [PMID: 36333599 DOI: 10.1007/s11064-022-03782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Ferroptosis and neuroinflammation play a crucial role in the pathogenesis of Alzheimer's disease (AD), and Edaravone (EDA) has been demonstrated to have anti-inflammatory, antioxidant and neuroprotective effects in neurodegenerative diseases. However, the relationship between EDA and ferroptosis in AD is unidentified. This research aimed to elucidate the mechanism of EDA in AD with Aβ 1-42-induced HT22 cells as in vitro cell model. The results showed that EDA could significantly reduce Aβ1-42-induced apoptosis of HT22 cells and formation of pro-inflammatory factors TNF-α, IL-1β and IL-6, prevent the activation of TLR4/NF-κB /NLRP3 signaling pathway, and inhibit ferroptosis and lipid peroxidation. Taken together, EDA contributes to inhibiting neuroinflammatory injury and ferroptosis in Aβ 1-42-induced HT22 cells, and thus may be a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Shenglong Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qi Lei
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Hena Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qian Yang
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yanli Xue
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ruili Chen
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
50
|
Pharmacological Strategies for Stroke Intervention: Assessment of Pathophysiological Relevance and Clinical Trials. Clin Neuropharmacol 2023; 46:17-30. [PMID: 36515293 DOI: 10.1097/wnf.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The present review describes stroke pathophysiology in brief and discusses the spectrum of available treatments with different promising interventions that are in clinical settings or are in clinical trials. METHODS Relevant articles were searched using Google Scholar, Cochrane Library, and PubMed. Keywords for the search included ischemic stroke, mechanisms, stroke interventions, clinical trials, and stem cell therapy. RESULTS AND CONCLUSION Stroke accounts to a high burden of mortality and morbidity around the globe. Time is an important factor in treating stroke. Treatment options are limited; however, agents with considerable efficacy and tolerability are being continuously explored. With the advances in stroke interventions, new therapies are being formulated with a hope that these may aid the ongoing protective and reparative processes. Such therapies may have an extended therapeutic time window in hours, days, weeks, or longer and may have the advantage to be accessible by a majority of the patients.
Collapse
|