1
|
Patte C, Pommier RM, Ferrari A, Fei-Lei Chung F, Ouzounova M, Moullé P, Richaud M, Khoueiry R, Hervieu M, Breusa S, Allio M, Rama N, Gérard L, Hervieu V, Poncet G, Fenouil T, Cahais V, Sertier AS, Boland A, Bacq-Daian D, Ducarouge B, Marie JC, Deleuze JF, Viari A, Scoazec JY, Roche C, Mehlen P, Walter T, Gibert B. Comprehensive molecular portrait reveals genetic diversity and distinct molecular subtypes of small intestinal neuroendocrine tumors. Nat Commun 2025; 16:2197. [PMID: 40038310 DOI: 10.1038/s41467-025-57305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Small intestinal neuroendocrine tumors (siNETs) are rare bowel tumors arising from malignant enteroendocrine cells, which normally regulate digestion throughout the intestine. Though infrequent, their incidence is rising through better diagnosis, fostering research into their origin and treatment. To date, siNETs are considered to be a single entity and are clinically treated as such. Here, by performing a multi-omics analysis of siNETs, we unveil four distinct molecular groups with strong clinical relevance and provide a resource to study their origin and clinical features. Transcriptomic, genetic and DNA methylation profiles identify two groups linked to distinct enteroendocrine differentiation patterns, another with a strong immune phenotype, and the last with mesenchymal properties. This latter subtype displays the worst prognosis and resistance to treatments in line with infiltration of cancer-associated fibroblasts. These data provide insights into the origin and diversity of these rare diseases, in the hope of improving clinical research into their management.
Collapse
Affiliation(s)
- Céline Patte
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Roxane M Pommier
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Anthony Ferrari
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Maria Ouzounova
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Pauline Moullé
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Mathieu Richaud
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Maëva Hervieu
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Silvia Breusa
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Marion Allio
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Laura Gérard
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Gastroentérologie et d'Oncologie Digestive, Lyon, cedex 03, France
| | - Valérie Hervieu
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Institut de Pathologie Multi-sites, Groupement Hospitalier Est, Bron, France
| | - Gilles Poncet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Chirurgie Digestive, Lyon, France
| | - Tanguy Fenouil
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Institut de Pathologie Multi-sites, Groupement Hospitalier Est, Bron, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Anne-Sophie Sertier
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | | | - Julien C Marie
- TGF-beta and Immune Response (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Equipe labellisée Ligue nationale contre le cancer, Cancer Research Center of Lyon, Lyon, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Alain Viari
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Jean-Yves Scoazec
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Colette Roche
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Thomas Walter
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France.
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Gastroentérologie et d'Oncologie Digestive, Lyon, cedex 03, France.
| | - Benjamin Gibert
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France.
| |
Collapse
|
2
|
Chouchane A, Bräutigam K, Perren A. [Neuroendocrine tumors]. PATHOLOGIE (HEIDELBERG, GERMANY) 2025; 46:127-136. [PMID: 39969551 PMCID: PMC11861404 DOI: 10.1007/s00292-025-01415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of neoplasms that originate from neuroendocrine cells throughout the body. Diagnosing NETs presents unique challenges due to their varied presentation, morphology, and biological behavior. This article provides an overview of the key diagnostic principles relevant to general pathologists, emphasizing the importance of a multidisciplinary approach that integrates clinical, radiological, histopathological, and immunohistochemical data. The emergence of new markers as well as recent advances in molecular pathology and the application of grading systems are discussed, highlighting their impact on prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Aziz Chouchane
- Institut für Gewebemedizin und Pathologie, Universität Bern, Bern, Schweiz.
| | - Konstantin Bräutigam
- Institut für Gewebemedizin und Pathologie, Universität Bern, Bern, Schweiz
- Centre for Evolution and Cancer, Institute of Cancer Research, London, Großbritannien
| | - Aurel Perren
- Institut für Gewebemedizin und Pathologie, Universität Bern, Bern, Schweiz
| |
Collapse
|
3
|
Luchini C. Diagnostic Pearls and Pitfalls in the Evaluation of Biopsies of the Pancreas. Arch Pathol Lab Med 2025; 149:e54-e62. [PMID: 38387616 DOI: 10.5858/arpa.2023-0426-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/24/2024]
Abstract
CONTEXT.— The examination of small pancreatic biopsies is a difficult task for pathologists. This is due to the scant and fragmented material often obtained from diagnostic procedures as well as the significant overlap between different neoplastic and nonneoplastic entities. In the upcoming neoadjuvant era, biopsies could become even more important, representing the only possibility to look at the real histomorphology of tumors before chemotherapy-induced modifications. OBJECTIVES.— To summarize and discuss the state-of-the-art diagnostic workflow for small pancreatic biopsies, including the most important morphologic and immunohistochemical features and molecular alterations. The main diagnostic pearls and pitfalls of this challenging scenario are also discussed. The most important topics of this review are represented by: (1) pancreatic ductal adenocarcinoma, along with its main differential diagnoses, including autoimmune pancreatitis; (2) solid hypercellular neoplasms, including neuroendocrine neoplasms, acinar cell carcinoma, pancreatoblastoma, and solid pseudopapillary neoplasms; and (3) cystic lesions. Real-world considerations will also be presented and discussed. DATA SOURCES.— Sources included a literature review of published studies and the author's own work. CONCLUSIONS.— The correct diagnosis of pancreatic lesions is a crucial step in the therapeutic journey of patients. It should be based on robust, standardized, and reliable hallmarks. As presented and discussed here, the integration of morphology with immunohistochemistry, and, in selected cases, with molecular analysis, represents a decisive step in this complex scenario.
Collapse
Affiliation(s)
- Claudio Luchini
- From the Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; and the ARC-Net Research Center, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Melhorn P, Spitzer J, Adel T, Wolff L, Mazal P, Raderer M, Kiesewetter B. Patterns and outcomes of current antitumor therapy for high-grade neuroendocrine neoplasms: perspective of a tertiary referral center. J Cancer Res Clin Oncol 2025; 151:86. [PMID: 39971811 PMCID: PMC11839849 DOI: 10.1007/s00432-025-06126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE Patients with metastatic high-grade neuroendocrine neoplasms (NEN) have an unfavorable prognosis. Treatment patterns and therapy outcome are scarcely evidenced, especially considering the WHO classification updates since 2017, and were thus investigated in this study. METHODS This retrospective single-center analysis evaluated patients with neuroendocrine tumors grade 3 (NET G3) or neuroendocrine carcinomas (NEC) treated at the Medical University of Vienna since 2010. The primary endpoints were progression-free survival (PFS) and overall survival (OS) following first-line treatment. RESULTS A total of 80 patients were included, 53 (66%) had NEC and 27 (34%) NET G3. Thirty patients had pancreatic NEN (38%), 29 gastrointestinal NEN (36%), 20 an unknown primary (25%), and one gall bladder NEC. All patients had metastatic disease, and all but four received systemic therapy. Platinum/etoposide was the most frequent palliative first-line treatment in NEC (41/47, 87%) and capecitabine/temozolomide (CAPTEM) in NET G3 (14/27, 52%). Overall, the median PFS and OS from first line start were 16.1 and 43.9 months for NET G3 and 6.1 and 12.7 months for NEC, respectively. Median PFS for platin/etoposide in NEC was 6.1 months (overall response rate [ORR] 56%) and for CAPTEM in NET G3 16.9 months (ORR 46%). Irrespective of the limited sample size (n = 4-11), second-line median PFS was short in NEC (FOLFIRI 2.8, FOLFOX 2.6, CAPTEM 5.4, other 2.6 months) and longer in NET G3 (8.2-11.1 months). CONCLUSIONS The present data from a large European NET center show that multiple treatment strategies are used in NEN and highlight the varying outcomes between NET G3 and NEC.
Collapse
Affiliation(s)
- Philipp Melhorn
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Julia Spitzer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Adel
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ladislaia Wolff
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Peter Mazal
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| |
Collapse
|
5
|
Lamberti G, Campana D. Reply to 'The need for a better classification system for gastric neoplasms'. Nat Rev Dis Primers 2025; 11:7. [PMID: 39848965 DOI: 10.1038/s41572-024-00591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- Giuseppe Lamberti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - Universtà di Bologna, Bologna, Italy
| | - Davide Campana
- Department of Medical and Surgical Sciences, Alma Mater Studiorum - Universtà di Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Ahn B, Kim D, Kim MJ, Jeong SR, Song IH, Kim JY, Hong SA, Jun SY, Cho H, Park YS, Escorcia FE, Chung JY, Hong SM. Prognostic significance of tertiary lymphoid structures in gastric neuroendocrine carcinoma with association to delta-like ligand 3 and neuroendocrine expressions. Gastric Cancer 2025; 28:27-40. [PMID: 39352632 DOI: 10.1007/s10120-024-01557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/21/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Gastric neuroendocrine carcinomas (NECs) are rare cancers with highly aggressive behavior. Although tertiary lymphoid structures (TLSs) are well-known prognostic factors in various cancers, their role in gastric NECs remain unexplored. Unique immunohistochemical subtypes of pulmonary NECs have been discovered, however, their feasibility in gastric NECs is unknown. METHODS The presence and maturation of TLSs (lymphoid aggregates, primary and secondary follicles) were assessed in 48 surgically resected gastric NECs and were compared with immunohistochemical subtypes, using a panel of ASCL1, NeuroD1, POU2F3, YAP1, and DLL3 with three neuroendocrine (NE) markers. RESULTS Patients with secondary follicles had significantly better overall survival (OS) and recurrence-free survival (RFS; both, p = 0.004) than those without them. Based on the hierarchical clustering, gastric NECs were classified into all low/negative (31%), high-YAP1 (19%), high-DLL3/low-NE (29%), and high-NE (21%) expression groups. The high-DLL3/low-NE group was associated with absent TLSs (p = 0.026) and showed the worst OS (p = 0.026). Distant metastasis and a lack of secondary follicles were poor independent prognostic factors of OS and RFS. CONCLUSION The assessment of TLSs is a feasible and potent biomarker for gastric NECs, thus enabling better prognosis and more effective immunotherapy. Furthermore, gastric NECs can be categorized as four immunohistochemically distinct groups, of which the high-DLL3/low-NE group has the worst OS with lack of TLSs.
Collapse
Affiliation(s)
- Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Mi-Ju Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Seo-Rin Jeong
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Joo Young Kim
- Department of Pathology, Chung‑Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, Chung‑Ang University Hospital, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sun-Young Jun
- Department of Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - HyungJun Cho
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Pathology, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Chen X, Wang K, Liao X, Zheng X, Yang S, Han C, Lu C, Wang X, Jin L, Kang H, Han Y, Wei J, Fan L, Zhang Z, Kong W. Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Small-Cell Neuroendocrine Carcinoma of the Cervix. J Med Virol 2025; 97:e70183. [PMID: 39831355 DOI: 10.1002/jmv.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Small-cell neuroendocrine cancer (SCNEC) of the uterine cervix is an exceedingly rare, highly aggressive tumor with an extremely poor prognosis. The cellular heterogeneity, origin, and tumorigenesis trajectories of SCNEC of the cervix remain largely unclear. We performed single-cell RNA sequencing and whole-exome sequencing on tumor tissues and adjacent normal cervical tissues from two patients diagnosed with SCNEC of the cervix. Here, we provide the first comprehensive insights into the cellular composition, HPV infection-related features, and gene expression profiles of SCNEC of the cervix at single-cell resolution. Correlation analyses suggested that SCNEC of the cervix may originate from squamous epithelial cells, and this observation was validated with bulk RNA-seq data from external cervical neuroendocrine cancer. Furthermore, sex-determining region Y-box 2 (SOX2), a key transcription factor that functions in direct neural differentiation, was located in the copy number gain region and highly expressed in neuroendocrine tumor cells from both patients. Notable, the distributions of the HPV-infected epithelium and SOX2 highly expressed epithelium were consistent with each other. Therefore, we supposed that high-risk HPV infection and amplification of SOX2 in the squamous epithelium may contribute to the progression of small-cell neuroendocrine tumorigenesis in the cervix.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Kunyu Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xingyu Liao
- Familial & Hereditary Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xingzheng Zheng
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Shuli Yang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chao Han
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Xiaodan Wang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Lingge Jin
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Haili Kang
- Department of Gynecology Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yiding Han
- Department of Pathology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jiacong Wei
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Linyuan Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Zhan Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Weimin Kong
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| |
Collapse
|
8
|
Pavlidis ET, Galanis IN, Pavlidis TE. Critical considerations for the management of gastrointestinal mixed neuroendocrine non-neuroendocrine neoplasms and pure neuroendocrine carcinomas. World J Gastrointest Oncol 2024; 16:4559-4564. [PMID: 39678788 PMCID: PMC11577359 DOI: 10.4251/wjgo.v16.i12.4559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
Mixed neuroendocrine non-neuroendocrine neoplasms constitute rare tumors that are located mainly in the gastrointestinal (GI) tract and have high degrees of malignancy, and the frequency of these tumors has been increasing. They consist of a neuroendocrine neoplastic component with another component of adenocarcinoma usually and have a dismal prognosis. The rare GI pure neuroendocrine carcinoma is highly aggressive and requires complex and extensive management since a genetic distinction exists between it and GI non-neuroendocrine neoplasms, which are generally slow-growing lesions. The most common GI-mixed neuroendocrine non-neuroendocrine neoplasms are colorectal, followed by gastric, mainly in the gastroesophageal junction. Current imaging modalities of nuclear medicine and radiology play important roles in the accuracy of diagnosis. Liquid biopsy may contribute to early detection and timely diagnosis. Ultrasonography, either endoscopic or abdominal, is a technique that contributes to a diagnosis; additionally, contrast-enhanced ultrasonography is very helpful in follow-up appointments. Histopathology establishes a definite diagnosis and stage by evaluating the cell differentiation grade and the cell proliferation index Ki67. The genetic profile can be valuable in diagnosis and gene therapy. Surgical resection with wide lymphadenectomy, whenever possible, and adjuvant chemotherapy constitute the main therapeutic management strategies. Targeted therapy and immunotherapy achieve encouraging results.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- The 2nd Department of Propaedeutic Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Ioannis N Galanis
- The 2nd Department of Propaedeutic Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- The 2nd Department of Propaedeutic Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
9
|
Loree JM, Chan D, Lim J, Stuart H, Fidelman N, Koea J, Posavad J, Cummins M, Doucette S, Myrehaug S, Naraev B, Bailey DL, Bellizzi A, Laidley D, Boyle V, Goodwin R, Del Rivero J, Michael M, Pasieka J, Singh S. Biomarkers to Inform Prognosis and Treatment for Unresectable or Metastatic GEP-NENs. JAMA Oncol 2024; 10:1707-1720. [PMID: 39361298 DOI: 10.1001/jamaoncol.2024.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Importance Evidence-based treatment decisions for advanced gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) require individualized patient-centered decision-making that accounts for patient and cancer characteristics. Objective To create an accessible guidance document to educate clinicians and patients on biomarkers informing prognosis and treatment in unresectable or metastatic GEP-NENs. Methods A multidisciplinary panel in-person workshop was convened to define methods. English language articles published from January 2016 to January 2023 in PubMed (MEDLINE) and relevant conference abstracts were reviewed to investigate prognostic and treatment-informing features in unresectable or metastatic GEP-NENs. Data from included studies were used to form evidence-based recommendations. Quality of evidence and strength of recommendations were determined using the Grading of Recommendations, Assessment, Development and Evaluations framework. Consensus was reached via electronic survey following a modified Delphi method. Findings A total of 131 publications were identified, including 8 systematic reviews and meta-analyses, 6 randomized clinical trials, 29 prospective studies, and 88 retrospective cohort studies. After 2 rounds of surveys, 24 recommendations and 5 good clinical practice statements were developed, with full consensus among panelists. Recommendations focused on tumor and functional imaging characteristics, blood-based biomarkers, and carcinoid heart disease. A single strong recommendation was made for symptomatic carcinoid syndrome informing treatment in midgut neuroendocrine tumors. Conditional recommendations were made to use grade, morphology, primary site, and urinary 5-hydroxyindoleacetic levels to inform treatment. The guidance document was endorsed by the Commonwealth Neuroendocrine Tumour Collaboration and the North American Neuroendocrine Tumor Society. Conclusions and Relevance The study results suggest that select factors have sufficient evidence to inform care in GEP-NENs, but the evidence for most biomarkers is weak. This article may help guide management and identify gaps for future research to advance personalized medicine and improve outcomes for patients with GEP-NENs.
Collapse
Affiliation(s)
- Jonathan M Loree
- BC Cancer, Vancouver Centre, Vancouver, British Columbia, Canada
| | - David Chan
- Northern Clinical School, University of Sydney, Sydney, Australia
- ENETS Centre of Excellence, Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Jennifer Lim
- St George Hospital, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Heather Stuart
- University of British Columbia and BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Jonathan Koea
- Te Whatu Ora Waitemata and the University of Auckland, Auckland, New Zealand
| | - Jason Posavad
- Canadian Neuroendocrine Tumours Society, Cornwall, Ontario, Canada
| | | | | | - Sten Myrehaug
- Odette Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Boris Naraev
- Tampa General Hospital Cancer Institute, Tampa, Florida
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - David Laidley
- Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Veronica Boyle
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Oncology, Auckland City Hospital, Te Whatu Ora Tamaki Makaurau, Auckland, New Zealand
| | - Rachel Goodwin
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaydi Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Michael
- NET Unit and ENETS Centre of Excellence, Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Janice Pasieka
- Section of General Surgery, Division of Endocrine Surgery and Surgical Oncology, Department of Surgery and Oncology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Simron Singh
- University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Melhorn P, Raderer M, Mazal P, Berchtold L, Beer L, Kiesewetter B. Liver metastases in high-grade neuroendocrine neoplasms: A comparative study of hepatic tumor volume and biochemical findings in NET G3 versus NEC. J Neuroendocrinol 2024; 36:e13454. [PMID: 39402903 DOI: 10.1111/jne.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 12/17/2024]
Abstract
Abnormal liver blood tests and liver tumor burden are known prognostic factors in neuroendocrine neoplasms (NEN). However, the relationship between biochemical liver parameters and hepatic tumor load is largely unknown in NEN and in high-grade NEN (G3) specifically. The primary objective of this study was to correlate the biochemical parameters and liver tumor volume of patients with neuroendocrine tumors grade 3 (NET G3) or neuroendocrine carcinomas (NEC). We wanted to investigate whether patients with NET G3 with extensive liver involvement had less severely elevated laboratory liver parameters than NEC patients. In total, 46 patients with NEN were included, 31 had NEC and 15 NET G3. All patients had distant metastatic disease, with liver metastases being the most common (n = 39). Both laboratory results and semiautomatic volumetric measurements of liver tumor burden were obtainable for 34 patients at baseline and 26 patients at follow-up. Alkaline phosphatase (AP), gamma-GT (gGT), and lactate dehydrogenase (LDH) increased significantly between the two time periods (p < .01). In a regression model, liver tumor burden significantly affected several blood parameters, for example, increasing AP, gGT, LDH, and aspartate aminotransferase (ASAT) by a factor of 1.02-1.04 per unit increase (1% tumor burden; all p < .001). AP, gGT, and LDH were significantly lower in NET G3 (factor of 0.43-0.68) than in NEC. Here, we found that liver chemistries changed over the NEN disease course, correlated with hepatic tumor burden, and differed by histologic subtype. The current data can potentially guide treatment decisions, for example, with regard to integration of liver-directed therapies.
Collapse
Affiliation(s)
- Philipp Melhorn
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Markus Raderer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Mazal
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Center for Medical Data Science, Institute of Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Machine Learning Driven Precision Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Barbara Kiesewetter
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Joseph NM, Umetsu SE, Kim GE, Terry M, Perry A, Bergsland E, Kakar S. Progression of Low-Grade Neuroendocrine Tumors (NET) to High-Grade Neoplasms Harboring the NEC-Like Co-alteration of RB1 and TP53. Endocr Pathol 2024; 35:325-337. [PMID: 39556303 DOI: 10.1007/s12022-024-09835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
High-grade or grade 3 epithelial neuroendocrine neoplasms (G3 NEN) are now divided into grade 3 well-differentiated neuroendocrine tumor (G3 NET) and neuroendocrine carcinoma (NEC), both defined by Ki-67 > 20% and/or > 20 mitoses per 2 mm2. NET and NEC are thought to be distinct tumors with different genetic profiles: NEC classically harbors co-alteration of TP53 and RB1, whereas NET genetics are site-dependent with frequent alterations in MEN1, ATRX, DAXX, and TSC1/2 in pancreatic NETs. Progression from NET to NEC is considered rare and is not well described. While both TP53 and RB1 alterations were initially thought to be rare in NET, recent work has demonstrated the former in up to 35% of high-grade G3 NET and the latter in rare high-grade NEN that progressed from NET. Here, we describe the clinical, pathologic, and molecular features associated with tumor evolution in a series of five patients that had low-grade NET that progressed to high-grade NEN with co-alteration of RB1 and TP53, similar to NEC. Morphology of the high-grade neoplasms remained well-differentiated in some cases despite RB1/TP53 co-alteration and had some NEC-like features in other cases. All five patients died of disease, with a mean overall survival of 41 months from the first metastatic disease and 12 months from acquisition of RB1/TP53 co-alteration. Our data demonstrate that low-grade NET can progress via the acquisition of both TP53 and RB1 alteration, similar to NEC, but whether this represents a transformation from NET to NEC remains unclear.
Collapse
Affiliation(s)
- Nancy M Joseph
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA.
| | - Sarah E Umetsu
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Grace E Kim
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Merryl Terry
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| | - Emily Bergsland
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Sanjay Kakar
- Department of Pathology, University of California San Francisco (UCSF), 505 Parnassus Avenue, Room M-559, San Francisco, CA, 94143, USA
| |
Collapse
|
12
|
Sonnen AFP, Verschuur AVD, Brosens LAA. Diagnostic and prognostic biomarkers for pancreatic neuroendocrine neoplasms. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:74-82. [PMID: 39556246 DOI: 10.1007/s00292-024-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
This review examines the diagnostic and prognostic biomarkers for pancreatic neuroendocrine neoplasms (PanNENs), a heterogeneous group of tumors with expression of neuroendocrine markers. PanNENs include both well-differentiated pancreatic neuroendocrine tumors (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs). The diagnosis is confirmed through markers such as chromogranin A, synaptophysin, and INSM1, which establish neuroendocrine differentiation. The World Health Organization classification categorizes PanNENs based on tumor differentiation and proliferative activity (Ki-67 and/or mitotic index) into well-differentiated PanNETs (grade 1 to grade 3) and poorly differentiated PanNECs. In most cases, the morphology and proliferation index are sufficient to distinguish PanNETs from PanNECs. However, distinguishing grade 3 PanNETs from PanNECs can be challenging on the basis of morphology and proliferative activity alone. Additional key diagnostic markers for distinguishing grade 3 PanNET from PanNEC include SSTR2A expression and molecular immunohistochemical markers such as p53, Rb1, menin, ATRX, and DAXX. PanNECs are by definition high-grade tumors with highly aggressive clinical behavior, while PanNETs have a variable prognosis that is difficult to predict using current biomarkers such as tumor grade and size. Several studies have shown that ATRX or DAXX loss is strongly associated with a higher risk of PanNET metastasis and recurrence. They are therefore key prognostic markers in PanNETs. In addition, chromosomal copy number variations can further help assess PanNET aggressiveness and prognosis. Molecular profiling is increasingly important for improving the diagnosis, treatment, and prognosis of PanNENs.
Collapse
Affiliation(s)
- Andreas F-P Sonnen
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
14
|
De Jesus-Acosta A, Mohindroo C. Genomic Landscape of Pancreatic Neuroendocrine Tumors and Implications for Clinical Practice. JCO Precis Oncol 2024; 8:e2400221. [PMID: 39231376 DOI: 10.1200/po.24.00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are the second most prevalent neoplasms of the pancreas with variable prognosis and clinical course. Our knowledge of the genetic alterations in patients with pNETs has expanded in the past decade with the availability of whole-genome sequencing and germline testing. This review will focus on potential clinical applications of the genetic testing in patients with pNETs. For somatic testing, we discuss the commonly prevalent somatic mutations and their impact on prognosis and treatment of patients with pNET. We also highlight the relevant genomic biomarkers that predict response to specific treatments. Previously, germline testing was only recommended for high-risk patients with syndromic features (MEN1, VHL, TSC, and NF1), we review the evolving paradigm of germline testing in pNETs as recent studies have now shown that sporadic-appearing pNETs can also harbor germline variants.
Collapse
Affiliation(s)
- Ana De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirayu Mohindroo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Luchini C, Scarpa A. Neoplastic Progression in Neuroendocrine Neoplasms of the Pancreas. Arch Pathol Lab Med 2024; 148:975-979. [PMID: 36881771 DOI: 10.5858/arpa.2022-0417-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 03/09/2023]
Abstract
CONTEXT.— Pancreatic neuroendocrine neoplasms (PanNENs) represent a heterogeneous group of epithelial tumors of the pancreas showing neuroendocrine differentiation. These neoplasms are classified into well-differentiated pancreatic neuroendocrine tumors (PanNETs), which include G1, G2, and G3 tumors, and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs), which are G3 by definition. This classification mirrors clinical, histologic, and behavioral differences and is also supported by robust molecular evidence. OBJECTIVE.— To summarize and discuss the state of the art regarding neoplastic progression of PanNENs. A better comprehension of the mechanisms underpinning neoplastic evolution and progression of these neoplasms may open new horizons for expanding biologic knowledge and ultimately for addressing new therapeutic strategies for patients with PanNENs. DATA SOURCES.— Literature review of published studies and the authors' own work. CONCLUSIONS.— PanNETs can be seen as a unique category, where G1-G2 tumors may progress to G3 tumors mainly driven by DAXX/ATRX mutations and alternative lengthening of telomeres. Conversely, PanNECs display totally different histomolecular features more closely related to pancreatic ductal adenocarcinoma, including TP53 and Rb alterations. They seem to derive from a nonneuroendocrine cell of origin. Even the study of PanNEN precursor lesions corroborates the rationale of considering PanNETs and PanNECs as separate and distinct entities. Improving the knowledge regarding this dichotomous distinction, which guides tumor evolution and progression, will represent a critical basis for PanNEN precision oncology.
Collapse
Affiliation(s)
- Claudio Luchini
- From the Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- From the Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
16
|
Cubiella T, Celada L, San-Juan-Guardado J, Rodríguez-Aguilar R, Suárez-Priede Á, Poch M, Dominguez F, Fernández-Vega I, Montero-Pavón P, Fraga MF, Nakatani Y, Takata S, Yachida S, Valdés N, Chiara MD. PCDHGC3 hypermethylation as a potential biomarker of intestinal neuroendocrine carcinomas. J Pathol 2024; 263:418-428. [PMID: 38795318 DOI: 10.1002/path.6291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 05/27/2024]
Abstract
Neuroendocrine neoplasms (NENs) encompass tumors arising from neuroendocrine cells in various organs, including the gastrointestinal tract, pancreas, adrenal gland, and paraganglia. Despite advancements, accurately predicting the aggressiveness of gastroenteropancreatic (GEP) NENs based solely on pathological data remains challenging, thereby limiting optimal clinical management. Our previous research unveiled a crucial link between hypermethylation of the protocadherin PCDHGC3 gene and neuroendocrine tumors originating from the paraganglia and adrenal medulla. This epigenetic alteration was associated with increased metastatic potential and succinate dehydrogenase complex (SDH) dysfunction. Expanding upon this discovery, the current study explored PCDHGC3 gene methylation within the context of GEP-NENs in a cohort comprising 34 cases. We uncovered promoter hypermethylation of PCDHGC3 in 29% of GEP-NENs, with a significantly higher prevalence in gastrointestinal (GI) neuroendocrine carcinomas (NECs) compared with both pancreatic (Pan) NECs and neuroendocrine tumors (NETs) of GI and Pan origin. Importantly, these findings were validated in one of the largest multi-center GEP-NEN cohorts. Mechanistic analysis revealed that PCDHGC3 hypermethylation was not associated with SDH mutations or protein loss, indicating an SDH-independent epigenetic mechanism. Clinically, PCDHGC3 hypermethylation emerged as a significant prognostic factor, correlating with reduced overall survival rates in both patient cohorts. Significantly, whereas PCDHGC3 hypermethylation exhibited a strong correlation with TP53 somatic mutations, a hallmark of NEC, its predictive value surpassed that of TP53 mutations, with an area under the curve (AUC) of 0.95 (95% CI 0.83-1.0) for discriminating GI-NECs from GI-NETs, highlighting its superior predictive performance. In conclusion, our findings position PCDHGC3 methylation status as a promising molecular biomarker for effectively stratifying patients with GI-NENs. This discovery has the potential to advance patient care by enabling more precise risk assessments and tailored treatment strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tamara Cubiella
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Lucía Celada
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - Jaime San-Juan-Guardado
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | | | - Álvaro Suárez-Priede
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| | - María Poch
- Department of Pathology, Hospital Universitario de Cabueñes, Gijón, Spain
| | | | - Iván Fernández-Vega
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pedro Montero-Pavón
- Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mario F Fraga
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), El Entrego, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
| | - Yoichiro Nakatani
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - So Takata
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nuria Valdés
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain
- Hospital Universitario Cruces, Bizkaia, Spain
- Biobizkaia Health Research Institute, Bizkaia, Spain
- CIBERDEM (Network of Biomedical Research in Diabetes), Madrid, Spain
| | - María-Dolores Chiara
- Health Research Institute of the Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Oncology of the Principado de Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Angerilli V, Sabella G, Simbolo M, Lagano V, Centonze G, Gentili M, Mangogna A, Coppa J, Munari G, Businello G, Borga C, Schiavi F, Pusceddu S, Leporati R, Oldani S, Fassan M, Milione M. Comprehensive genomic and transcriptomic characterization of high-grade gastro-entero-pancreatic neoplasms. Br J Cancer 2024; 131:159-170. [PMID: 38729995 PMCID: PMC11231306 DOI: 10.1038/s41416-024-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High-grade gastro-entero-pancreatic neoplasms (HG GEP-NENs) can be stratified according to their morphology and Ki-67 values into three prognostic classes: neuroendocrine tumors grade 3 (NETs G3), neuroendocrine carcinomas with Ki-67 < 55% (NECs <55) and NECs with Ki-67 ≥ 55% (NECs ≥55). METHODS We analyzed a cohort of 49 HG GEP-NENs by targeted Next-Generation Sequencing (TrueSight Oncology 500), RNA-seq, and immunohistochemistry for p53, Rb1, SSTR-2A, and PD-L1. RESULTS Frequent genomic alterations affected TP53 (26%), APC (20%), KRAS and MEN1 (both 11%) genes. NET G3 were enriched in MEN1 (p = 0.02) mutations, while both NECs groups were enriched in TP53 (p = 0.001), APC (p = 0.002) and KRAS (p = 0.02) mutations and tumors with TMB ≥ 10 muts/Mb (p = 0.01). No differentially expressed (DE) gene was found between NECs <55% and NECs ≥55%, while 1129 DE genes were identified between NET G3 and NECs. A slight enrichment of CD4+ and CD8+ T cells in NECs and of cancer-associated fibroblasts and macrophages (M2-like) in NET G3. Multivariate analysis identified histologic type and Rb1 loss as independent prognostic factors for overall survival. CONCLUSIONS This study showed that GEP-NET G3 and GEP-NECs exhibit clear genomic and transcriptomic differences, differently from GEP-NECs <55% and GEP-NECs ≥55%, and provided molecular findings with prognostic and potentially predictive value.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Lagano
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gentili
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute of Pathological Anatomy, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Jorgelina Coppa
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Chiara Borga
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Sara Pusceddu
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Simone Oldani
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Massimo Milione
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
18
|
Kodama T, Tani A, Yamane H, Itoh T. A case of pancreatic ductal adenocarcinoma with enteroblastic, neuroendocrine, and squamous differentiation with p53 overexpression and loss of Rb expression. Int J Surg Case Rep 2024; 120:109854. [PMID: 38851063 PMCID: PMC11215098 DOI: 10.1016/j.ijscr.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
INTRODUCTION Herein we report a case of an extremely rare pancreatic adenocarcinoma with enteroblastic differentiation (AED), an underrecognized histological subtype. Moreover, the tumor was mixed with a neuroendocrine carcinoma (NEC), which is also a rare malignancy in the pancreas. CASE PRESENTATION The patient was an elderly male who was incidentally diagnosed with a 35 mm-sized pancreatic head tumor and underwent pancreatoduodenectomy. Histopathologically, the tumor was composed of four different types: conventional ductal adenocarcinoma, AED, NEC, and squamous cell carcinoma. Interestingly, p53 overexpression and loss of Rb expression, which are characteristic findings of NEC, were observed in all components. He had been received adjuvant chemotherapy after the surgery, however, he died of bath-related cardiac arrest 14 months after surgery. DISCUSSION In the stomach, AED, a carcinoma resembling fetal gut epithelium, is a rare but established subtype and is considered a related entity of hepatoid carcinoma (HAC). However, gastric AED and HAC differ to some extent. In contrast to the stomach, extragastric AED, including pancreatic AED, is extremely rare, and its biological features are unclear. A mixed tumor with NEC is a complex phenomenon, but it is occasionally reported in extragastric AED. The histogenesis of mixed AED-NEC can be resolved by determining p53 and Rb status. CONCLUSION Owing to their rare and novel nature, extragastric AED is under-recognized or confused with HAC. Further studies and the establishment of an extragastric AED classification are required.
Collapse
Affiliation(s)
- Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Department of Diagnostic Pathology, Kobe University Hospital, Kobe 650-0017, Japan.
| | - Akiho Tani
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe 650-0017, Japan.
| | - Hisoka Yamane
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Hospital, Kobe 650-0017, Japan; Department of Surgery, Seirei Mikatahara General Hospital, Hamamatsu 433-8558, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe 650-0017, Japan.
| |
Collapse
|
19
|
Wang Z, Liu C, Zheng S, Yao Y, Wang S, Wang X, Yin E, Zeng Q, Zhang C, Zhang G, Tang W, Zheng B, Xue L, Wang Z, Feng X, Wang Y, Ying J, Xue Q, Sun N, He J. Molecular subtypes of neuroendocrine carcinomas: A cross-tissue classification framework based on five transcriptional regulators. Cancer Cell 2024; 42:1106-1125.e8. [PMID: 38788718 DOI: 10.1016/j.ccell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sihui Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P.R. China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| |
Collapse
|
20
|
Uccella S. Molecular Classification of Gastrointestinal and Pancreatic Neuroendocrine Neoplasms: Are We Ready for That? Endocr Pathol 2024; 35:91-106. [PMID: 38470548 PMCID: PMC11176254 DOI: 10.1007/s12022-024-09807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, the increasing availability of technologies for molecular analyses has allowed an insight in the genomic alterations of neuroendocrine neoplasms (NEN) of the gastrointestinal tract and pancreas. This knowledge has confirmed, supported, and informed the pathological classification of NEN, clarifying the differences between neuroendocrine carcinomas (NEC) and neuroendocrine tumors (NET) and helping to define the G3 NET category. At the same time, the identification genomic alterations, in terms of gene mutation, structural abnormalities, and epigenetic changes differentially involved in the pathogenesis of NEC and NET has identified potential molecular targets for precision therapy. This review critically recapitulates the available molecular features of digestive NEC and NET, highlighting their correlates with pathological aspects and clinical characteristics of these neoplasms and revising their role as predictive biomarkers for targeted therapy. In this context, the feasibility and applicability of a molecular classification of gastrointestinal and pancreatic NEN will be explored.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
21
|
Verschuur AVD, Hackeng WM, Westerbeke F, Benhamida JK, Basturk O, Selenica P, Raicu GM, Molenaar IQ, van Santvoort HC, Daamen LA, Klimstra DS, Yachida S, Luchini C, Singhi AD, Geisenberger C, Brosens LAA. DNA Methylation Profiling Enables Accurate Classification of Nonductal Primary Pancreatic Neoplasms. Clin Gastroenterol Hepatol 2024; 22:1245-1254.e10. [PMID: 38382726 DOI: 10.1016/j.cgh.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND & AIMS Cytologic and histopathologic diagnosis of non-ductal pancreatic neoplasms can be challenging in daily clinical practice, whereas it is crucial for therapy and prognosis. The cancer methylome is successfully used as a diagnostic tool in other cancer entities. Here, we investigate if methylation profiling can improve the diagnostic work-up of pancreatic neoplasms. METHODS DNA methylation data were obtained for 301 primary tumors spanning 6 primary pancreatic neoplasms and 20 normal pancreas controls. Neural Network, Random Forest, and extreme gradient boosting machine learning models were trained to distinguish between tumor types. Methylation data of 29 nonpancreatic neoplasms (n = 3708) were used to develop an algorithm capable of detecting neoplasms of non-pancreatic origin. RESULTS After benchmarking 3 state-of-the-art machine learning models, the random forest model emerged as the best classifier with 96.9% accuracy. All classifications received a probability score reflecting the confidence of the prediction. Increasing the score threshold improved the random forest classifier performance up to 100% with 87% of samples with scores surpassing the cutoff. Using a logistic regression model, detection of nonpancreatic neoplasms achieved an area under the curve of >0.99. Analysis of biopsy specimens showed concordant classification with their paired resection sample. CONCLUSIONS Pancreatic neoplasms can be classified with high accuracy based on DNA methylation signatures. Additionally, non-pancreatic neoplasms are identified with near perfect precision. In summary, methylation profiling can serve as a valuable adjunct in the diagnosis of pancreatic neoplasms with minimal risk for misdiagnosis, even in the pre-operative setting.
Collapse
Affiliation(s)
- Anna Vera D Verschuur
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Florine Westerbeke
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jamal K Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - G Mihaela Raicu
- Department of Pathology, St Antonius Hospital and Pathology DNA, Nieuwegein, The Netherlands
| | - I Quintus Molenaar
- Department of Pathology, St Antonius Hospital and Pathology DNA, Nieuwegein, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Lois A Daamen
- Department of Surgery, Regional Academic Cancer Center Utrecht, University Medical Center Utrecht Cancer Center and St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Andersen KØ, Detlefsen S, Brusgaard K, Christesen HT. Well-differentiated G1 and G2 pancreatic neuroendocrine tumors: a meta-analysis of published expanded DNA sequencing data. Front Endocrinol (Lausanne) 2024; 15:1351624. [PMID: 38868744 PMCID: PMC11167081 DOI: 10.3389/fendo.2024.1351624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Well-differentiated pancreatic neuroendocrine tumors (PNETs) can be non-functional or functional, e.g. insulinoma and glucagonoma. The majority of PNETs are sporadic, but PNETs also occur in hereditary syndromes, primarily multiple endocrine neoplasia type 1 (MEN1). The Knudson hypothesis stated a second, somatic hit in MEN1 as the cause of PNETs of MEN1 syndrome. In the recent years, reports on genetic somatic events in both sporadic and hereditary PNETs have emerged, providing a basis for a more detailed molecular understanding of the pathophysiology. In this systematic review and meta-analysis, we made a collation and statistical analysis of aggregated frequent genetic alterations and potential driver events in human grade G1/G2 PNETs. Methods A systematic search was performed in concordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) reporting guidelines of 2020. A search in Pubmed for published studies using whole exome, whole genome, or targeted gene panel (+400 genes) sequencing of human G1/G2 PNETs was conducted at the 25th of September 2023. Fourteen datasets from published studies were included with data on 221 patients and 225 G1/G2 PNETs, which were divided into sporadic tumors, and hereditary tumors with pre-disposing germline variants, and tumors with unknown germline status. Further, non-functioning and functioning PNETs were distinguished into two groups for pathway evaluation. The collated genetical analyses were conducted using the 'maftools' R-package. Results Sporadic PNETs accounted 72.0% (162/225), hereditary PNETs 13.3% (30/225), unknown germline status 14.7% (33/225). The most frequently altered gene was MEN1, with somatic variants and copy number variations in overall 42% (95/225); hereditary PNETs (germline variations in MEN1, VHL, CHEK2, BRCA2, PTEN, CDKN1B, and/or MUTYH) 57% (16/30); sporadic PNETs 36% (58/162); unknown germline status 64% (21/33). The MEN1 point mutations/indels were distributed throughout MEN1. Overall, DAXX (16%, 37/225) and ATRX-variants (12%, 27/225) were also abundant with missense mutations clustered in mutational hotspots associated with histone binding, and translocase activity, respectively. DAXX mutations occurred more frequently in PNETs with MEN1 mutations, p<0.05. While functioning PNETs shared few variated genes, non-functioning PNETs had more recurrent variations in genes associated with the Phosphoinositide 3-kinase, Wnt, NOTCH, and Receptor Tyrosine Kinase-Ras signaling onco-pathways. Discussion The somatic genetic alterations in G1/G2 PNETs are diverse, but with distinct differences between sporadic vs. hereditary, and functional vs. non-functional PNETs. Increased understanding of the genetic alterations may lead to identification of more drivers and driver hotspots in the tumorigenesis in well-differentiated PNETs, potentially giving a basis for the identification of new drug targets. (Funded by Novo Nordisk Foundation, grant number NNF19OC0057915).
Collapse
Affiliation(s)
- Kirstine Øster Andersen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense, Denmark
- Steno Diabetes Center Odense, Odense, Denmark
| |
Collapse
|
23
|
Esposito I, Häberle L, Yavas A. Neuroendokrine Neoplasien. DIE GASTROENTEROLOGIE 2024; 19:202-213. [DOI: 10.1007/s11377-024-00784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 01/06/2025]
|
24
|
Ye Z, Li Q, Hu Y, Hu H, Xu J, Guo M, Zhang W, Lou X, Wang Y, Gao H, Jing D, Fan G, Qin Y, Zhang Y, Chen X, Chen J, Xu X, Yu X, Liu M, Ji S. The stromal microenvironment endows pancreatic neuroendocrine tumors with spatially specific invasive and metastatic phenotypes. Cancer Lett 2024; 588:216769. [PMID: 38438098 DOI: 10.1016/j.canlet.2024.216769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-β expression in nearby tumor cells. Then, TGF-β promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.
Collapse
Affiliation(s)
- Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Yuheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Haifeng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Muzi Guo
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yue Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xuemin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Kartik A, Armstrong VL, Stucky CC, Wasif N, Fong ZV. Contemporary Approaches to the Surgical Management of Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2024; 16:1501. [PMID: 38672582 PMCID: PMC11048062 DOI: 10.3390/cancers16081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of pancreatic neuroendocrine tumors (PNETs) is on the rise primarily due to the increasing use of cross-sectional imaging. Most of these incidentally detected lesions are non-functional PNETs with a small proportion of lesions being hormone-secreting, functional neoplasms. With recent advances in surgical approaches and systemic therapies, the management of PNETs have undergone a paradigm shift towards a more individualized approach. In this manuscript, we review the histologic classification and diagnostic approaches to both functional and non-functional PNETs. Additionally, we detail multidisciplinary approaches and surgical considerations tailored to the tumor's biology, location, and functionality based on recent evidence. We also discuss the complexities of metastatic disease, exploring liver-directed therapies and the evolving landscape of minimally invasive surgical techniques.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Ven Fong
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| |
Collapse
|
26
|
Lamberti G, Panzuto F, Pavel M, O'Toole D, Ambrosini V, Falconi M, Garcia-Carbonero R, Riechelmann RP, Rindi G, Campana D. Gastric neuroendocrine neoplasms. Nat Rev Dis Primers 2024; 10:25. [PMID: 38605021 DOI: 10.1038/s41572-024-00508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Gastric neuroendocrine neoplasms (gNENs) display peculiar site-specific features among all NENs. Their incidence and prevalence have been rising in the past few decades. gNENs comprise gastric neuroendocrine carcinomas (gNECs) and gastric neuroendocrine tumours (gNETs), the latter further classified into three types. Type I anatype II gNETs are gastrin-dependent and develop in chronic atrophic gastritis and as part of Zollinger-Ellison syndrome within a multiple endocrine neoplasia type 1 syndrome (MEN1), respectively. Type III or sporadic gNETs develop in the absence of hypergastrinaemia and in the context of a near-normal or inflamed gastric mucosa. gNECs can also develop in the context of variable atrophic, relatively normal or inflamed gastric mucosa. Each gNEN type has different clinical characteristics and requires a different multidisciplinary approach in expert dedicated centres. Type I gNETs are managed mainly by endoscopy or surgery, whereas the treatment of type II gNETs largely depends on the management of the concomitant MEN1. Type III gNETs may require both locoregional approaches and systemic treatments; NECs are often metastatic and therefore require systemic treatment. Specific data regarding the systemic treatment of gNENs are lacking and are derived from the treatment of intestinal NETs and NECs. An enhanced understanding of molecular and clinical pathophysiology is needed to improve the management and outcomes of patients' gNETs.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Digestive Disease Unit, Sant'Andrea University Hospital, ENETS Center of Excellence, Rome, Italy
| | - Marianne Pavel
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dermot O'Toole
- National Centre for Neuroendocrine Tumours, ENETS Centre of Excellence, St. Vincent's University Hospital, Dublin, Ireland
- Trinity College Dublin, St. James Hospital, Dublin, Ireland
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimo Falconi
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Rocio Garcia-Carbonero
- Medicine Department, Universidad Complutense de Madrid, Madrid, Spain
- Oncology Department, Hospital Universitario 12 de Octubre, Imas12, Madrid, Spain
| | | | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman and Child Health Sciences and Public Health, Anatomic Pathology Unit, Fondazione Policlinico Universitario A. Gemelli - IRCCS, ENETS Center of Excellence, Rome, Italy
| | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
27
|
Murakami M, Hirahata K, Fujimori N, Yamamoto T, Oda Y, Kozono S, Ueda K, Ito T, Nakamura M, Ogawa Y. Two cases of pancreatic neuroendocrine tumors with ectopic ACTH syndrome during their disease course. Clin J Gastroenterol 2024; 17:363-370. [PMID: 38244178 DOI: 10.1007/s12328-023-01908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are rare malignant tumors that occur in the pancreas. They are divided into functioning and non-functioning tumors based on the presence or absence of their specific hormonal hyper-expression symptoms. Adrenocorticotropic hormone (ACTH)-producing PanNETs are rare, functional tumors, and their clinical characteristics and outcomes have not been well reported.Here, we report the cases of two patients with PanNETs who presented with ectopic ACTH syndrome (EAS) during the course of their disease. Case 1 involved a non-functioning PanNET at the time of surgery. During treatment for recurrent liver metastases, the patient presented with EAS and tumor-associated hypercalcemia, probably due to ACTH and parathyroid hormone-related peptide (PTHrP) production from the liver tumor. Case 2 was a gastrinoma, and similar to Case 1, this patient presented with EAS during the treatment of recurrent liver metastases.It is not uncommon for patients with PanNETs to have multiple hormones and develop secondary hormone secretion during their disease course, although tumor phenotypes differ between primary and metastatic sites. In patients with functioning PanNETs, symptom control with anti-hormonal therapy is essential, in addition to anti-tumor therapy, especially for EAS, which is an endocrine emergency disease that requires prompt diagnosis and treatment.
Collapse
Affiliation(s)
- Masatoshi Murakami
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keisuke Hirahata
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Kozono
- Department of Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Keijiro Ueda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Testuhide Ito
- Neuroendocrine Tumor Centre, Fukuoka Sanno Hospital, Fukuoka, Japan
- Department of Gastroenterology, Graduate School of Medical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
28
|
Jiang Y, Dong YH, Zhao SW, Liu DY, Zhang JY, Xu XY, Chen H, Chen H, Jin JB. Multiregion WES of metastatic pancreatic neuroendocrine tumors revealed heterogeneity in genomic alterations, immune microenvironment and evolutionary patterns. Cell Commun Signal 2024; 22:164. [PMID: 38448900 PMCID: PMC10916270 DOI: 10.1186/s12964-024-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs), though uncommon, have a high likelihood of spreading to other body parts. Previously, the genetic diversity and evolutionary patterns in metastatic PanNETs were not well understood. To investigate this, we performed multiregion sampling whole-exome sequencing (MRS-WES) on samples from 10 patients who had not received prior treatment for metastatic PanNETs. This included 29 primary tumor samples, 31 lymph node metastases, and 15 liver metastases. We used the MSK-MET dataset for survival analysis and validation of our findings. Our research indicates that mutations in the MEN1/DAXX genes might trigger the early stages of PanNET development. We categorized the patients based on the presence (MEN1/DAXXmut, n = 7) or absence (MEN1/DAXXwild, n = 3) of these mutations. Notable differences were observed between the two groups in terms of genetic alterations and clinically relevant mutations, confirmed using the MSK-MET dataset. Notably, patients with mutations in MEN1/DAXX/ATRX genes had a significantly longer median overall survival compared to those without these mutations (median not reached vs. 43.63 months, p = 0.047). Multiplex immunohistochemistry (mIHC) analysis showed a more prominent immunosuppressive environment in metastatic tumors, especially in patients with MEN1/DAXX mutations. These findings imply that MEN1/DAXX mutations lead PanNETs through a unique evolutionary path. The disease's progression pattern indicates that PanNETs can spread early, even before clinical detection, highlighting the importance of identifying biomarkers related to metastasis to guide personalized treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yi-Han Dong
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Shi-Wei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China
| | - Dong-Yu Liu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Ji-Yang Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Xiao-Ya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, 201114, People's Republic of China
| | - Hao Chen
- Bioinformatics Department, JMDNA Inc., Building 23, 500 Furonghua Road, Shanghai, 201203, People's Republic of China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Jia-Bin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijn 2nd Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
29
|
Masuda M, Iida K, Iwabuchi S, Tanaka M, Kubota S, Uematsu H, Onuma K, Kukita Y, Kato K, Kamiura S, Nakajima A, Coppo R, Kanda M, Yoshino K, Ueda Y, Morii E, Kimura T, Kondo J, Okada-Hatakeyama M, Hashimoto S, Inoue M. Clonal Origin and Lineage Ambiguity in Mixed Neuroendocrine Carcinoma of the Uterine Cervix. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:415-429. [PMID: 38103888 DOI: 10.1016/j.ajpath.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Small-cell neuroendocrine carcinoma (SCNEC) of the cervix is a rare disease characterized by a high incidence of mixed tumors with other types of cancer. The mechanism underlying this mixed phenotype is not well understood. This study established a panel of organoid lines from patients with SCNEC of the cervix and ultimately focused on one line, which retained a mixed tumor phenotype, both in vitro and in vivo. Histologically, both organoids and xenograft tumors showed distinct differentiation into either SCNEC or adenocarcinoma in some regions and ambiguous differentiation in others. Tracking single cells indicated the existence of cells with bipotential differentiation toward SCNEC and adenocarcinomas. Single-cell transcriptional analysis identified three distinct clusters: SCNEC-like, adenocarcinoma-like, and a cluster lacking specific differentiation markers. The expression of neuroendocrine markers was enriched in the SCNEC-like cluster but not exclusively. Human papillomavirus 18 E6 was enriched in the SCNEC-like cluster, which showed higher proliferation and lower levels of the p53 pathway. After treatment with anticancer drugs, the expression of adenocarcinoma markers increased, whereas that of SCNEC decreased. Using a reporter system for keratin 19 expression, changes in the differentiation of each cell were shown to be associated with the shift in differentiation induced by drug treatment. These data suggest that mixed SCNEC/cervical tumors have a clonal origin and are characterized by an ambiguous and flexible differentiation state.
Collapse
Affiliation(s)
- Masamune Masuda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keita Iida
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mie Tanaka
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Kubota
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Kikuya Kato
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Shoji Kamiura
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Kanda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | | | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
30
|
Zhang J, Chen H, Zhang J, Wang S, Guan Y, Gu W, Li J, Zhang X, Li J, Wang X, Lu Z, Zhou J, Peng Z, Sun Y, Shao Y, Shen L, Zhuo M, Lu M. Molecular features of gastroenteropancreatic neuroendocrine carcinoma: A comparative analysis with lung neuroendocrine carcinoma and digestive adenocarcinomas. Chin J Cancer Res 2024; 36:90-102. [PMID: 38455367 PMCID: PMC10915635 DOI: 10.21147/j.issn.1000-9604.2024.01.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Objective There is an ongoing debate about whether the management of gastroenteropancreatic (GEP) neuroendocrine carcinoma (NEC) should follow the guidelines of small-cell lung cancer (SCLC). We aim to identify the genetic differences of GEPNEC and its counterpart. Methods We recruited GEPNEC patients as the main cohort, with lung NEC and digestive adenocarcinomas as comparative cohorts. All patients undergone next-generation sequencing (NGS). Different gene alterations were compared and analyzed between GEPNEC and lung NEC (LNEC), GEPNEC and adenocarcinoma to yield the remarkable genes. Results We recruited 257 patients, including 99 GEPNEC, 57 LNEC, and 101 digestive adenocarcinomas. Among the mutations, KRAS, RB1, TERT, IL7R, and CTNNB1 were found to have different gene alterations between GEPNEC and LNEC samples. Specific genes for each site were revealed: gastric NEC ( TERT amplification), colorectal NEC ( KRAS mutation), and bile tract NEC ( ARID1A mutation). The gene disparities between small-cell NEC (SCNEC) and large-cell NEC (LCNEC) were KEAP1 and CDH1. Digestive adenocarcinoma was also compared with GEPNEC and suggested RB1, APC, and KRAS as significant genes. The TP53/ RB1 mutation pattern was associated with first-line effectiveness. Putative targetable genes and biomarkers in GEPNEC were identified in 22.2% of the patients, and they had longer progression-free survival (PFS) upon targetable treatment [12.5 months vs. 3.0 months, HR=0.40 (0.21-0.75), P=0.006]. Conclusions This work demonstrated striking gene distinctions in GEPNEC compared with LNEC and adenocarcinoma and their clinical utility.
Collapse
Affiliation(s)
- Jianwei Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Department of Radiation Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Junli Zhang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | - Sha Wang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | | | | | - Jie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yu Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing 210061, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ming Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
31
|
Fujii M, Sekine S, Sato T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 2024; 24:141-158. [PMID: 38135758 DOI: 10.1038/s41568-023-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
32
|
Kinowaki Y, Fukumura Y, Kawade G, Sugita K, Kinowaki K, Akahoshi K, Kobayashi M, Ono H, Kudo A, Tanabe M, Akashi T, Ohashi K, Kurata M. Gene expression profiling of pancreatic neuroendocrine carcinoma and mixed neuroendocrine-non-neuroendocrine neoplasm. Gene 2024; 893:147916. [PMID: 37866661 DOI: 10.1016/j.gene.2023.147916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic neuroendocrine carcinoma (NEC) and mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) are rare pancreatic malignant tumors, and comprehensive gene analyses are scarce. In this study, six NECs and six MiNENs were collected, immunohistochemistry for synaptophysin, chromogranin A, INSM1, Ki-67, and Rb was conducted, and KRAS mutational status was examined. Among these cases, comprehensive gene expression analysis of oncogene pathways using nCounter® were performed with six NECs and four MiNENs, and those data were compared with that of three pancreatic ductal adenocarcinomas (PDACs), with that of three normal pancreatic ducts, and with each other. By dividing NEC and MiNEN cases into KRAS-mutated group and KRAS-wild group, the difference of clinicopathological data and gene expression profiling data were examined between the two groups. Compared to the data of normal pancreatic epithelium, all 13 cancer-related pathways were upregulated in PDAC, MiNEN, and NEC group with more upregulation in this order. Compared to the data of PDAC, genes of DNA Damage repair pathway was most upregulated both in NECs and MiNENs. Regarding the difference between KRAS-mutated and KRAS-wild groups, several genes were differentially expressed between the two, where MMP7 was the upregulated gene with highest p-value and NKD1 was the downregulated gene with highest p-value in KRAS-mutated group. From the extent of upregulation of 13 pathways, MiNEN was considered more progressed stage than PDAC, and NEC was considered more progressed than MiNEN. From the comparison of KRAS-mutated and KRAS-wild NECs and MiNENs, several differentially expressed genes were identified in this study.
Collapse
Affiliation(s)
- Yuko Kinowaki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yuki Fukumura
- Department of Human Pathology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Genji Kawade
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Keisuke Sugita
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan; Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, Japan
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masanori Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Ono
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takumi Akashi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
33
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
34
|
Lin Z, Chen YY, Liu CH, Panzuto F, Ramirez RA, Lang M, Kim H, Ding ZY. Comparison of clinicopathological features and survival analysis between esophageal neuroendocrine carcinoma and esophageal squamous cell carcinoma based on the SEER database, alongside nomogram analysis for esophageal neuroendocrine carcinoma. J Gastrointest Oncol 2023; 14:2309-2323. [PMID: 38196527 PMCID: PMC10772701 DOI: 10.21037/jgo-23-905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Background Esophageal neuroendocrine carcinoma (ENEC) is a rare subtype of esophageal cancer (EC). It presents distinctive clinical and pathological features in comparison to esophageal squamous cell carcinoma (ESCC). To better elucidate the disparities between the two and establish a prognostic prediction model for ENEC, we conducted this study. Methods Data of ENEC and ESCC patients (1975 to 2016) were extracted from the Surveillance, Epidemiology and End Results (SEER) database. Patients with a confirmed pathological diagnosis of ENEC and ESCC were enrolled in the study. The Chi-square test was employed to compare categorical variables, and the median survival time was analyzed using the Kaplan-Meier curve. Training and validation groups were randomly assigned at a ratio of 7:3. Factors with a significance level of <0.05 in the multifactor regression model as well as age were integrated into the nomogram model. Concordance index (C-index), calibration curves, and decision curve analyses (DCA) were generated for model validation. Results This study encompassed a total of 737 ENEC patients and 29,420 ESCC. Compared to ESCC, ENEC patients had higher probability of liver metastasis (13.8% vs. 1.9%, P<0.001), poor differentiation (68.0% vs. 37.1%, P<0.001), and late SEER stage (52.8% vs. 26.9%, P<0.001). Patients who received either surgery, radiotherapy (RT), or chemotherapy had a significantly longer disease-specific survival (DSS) and overall survival (OS) (all P<0.001). After propensity score matching (PSM), ENEC patients were associated with shorter DSS (7.0 months vs. not reached, P<0.0001) and OS (7.0 vs. 12.0 months, P<0.0001) compared to ESCC. Race, SEER stage, surgery, RT, and chemotherapy were identified as predictors of DSS and were incorporated into the nomogram model together with age. The validation of the model using C-index (0.751 and 0.706, respectively) and calibration curves reflected the better discrimination power of the model. In addition, DCA supported the favorable potential clinical effect of the predictive model. Lastly, a risk classification based on the nomogram also verified the reliability of the model. Conclusions ENEC and ESCC exhibit distinct clinicopathological features. Patients with ENEC experience significantly poorer survival outcomes compared to those with ESCC. Surgical intervention, radiation therapy, and chemotherapy significantly improve OS and DSS for ENEC patients. The nomogram prediction model, constructed based on age, race, stage, and treatment regimen, demonstrates accurate and effective predictive capabilities for prognostic factors in ENEC patients.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue-Yun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Hua Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Francesco Panzuto
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Digestive Disease Unit, Sant’ Andrea University Hospital, ENETS Center of Excellence, Rome, Italy
| | - Robert A. Ramirez
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthias Lang
- Department of General, Visceral and Transplantation Surgery, University Hospital, Heidelberg, Germany
| | - Hyunchul Kim
- Department of Pathology, CHA Ilsan Medical Center, Goyang, Republic of Korea
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
36
|
Ozono Y, Kawakami H, Uchiyama N, Hatada H, Ogawa S. Current status and issues in genomic analysis using EUS-FNA/FNB specimens in hepatobiliary-pancreatic cancers. J Gastroenterol 2023; 58:1081-1093. [PMID: 37698719 PMCID: PMC10590314 DOI: 10.1007/s00535-023-02037-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Comprehensive genomic profiling based on next-generation sequencing has recently been used to provide precision medicine for various advanced cancers. Endoscopic ultrasound (EUS)-guided fine-needle aspiration (EUS-FNA) and EUS-guided fine-needle biopsy (EUS-FNB) play essential roles in the diagnosis of abdominal masses, mainly pancreatic cancers. In recent years, CGP analysis using EUS-FNA/FNB specimens for hepatobiliary-pancreatic cancers has increased; however, the success rate of CGP analysis is not clinically satisfactory, and many issues need to be resolved to improve the success rate of CGP analysis. In this article, we review the transition from EUS-FNA to FNB, compare each test, and discuss the current status and issues in genomic analysis of hepatobiliary-pancreatic cancers using EUS-FNA/FNB specimens.
Collapse
Affiliation(s)
- Yoshinori Ozono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroshi Kawakami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| | - Naomi Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hiroshi Hatada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Souichiro Ogawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| |
Collapse
|
37
|
Pokhrel A, Wu R, Wang JC. Review of Merkel cell carcinoma with solitary pancreatic metastases mimicking primary neuroendocrine tumor of the pancreas. Clin J Gastroenterol 2023; 16:641-662. [PMID: 37421584 DOI: 10.1007/s12328-023-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVE/BACKGROUND Merkel cell carcinoma (MCC) but metastases to the pancreas are very rare. There are only a few cases of isolated metastases of MCC to the pancreas. Because of this rarity, it can be wrongly diagnosed as a neuroendocrine tumor of the pancreas(pNET), especially the poorly differentiated neuroendocrine carcinoma (PNEC) subtype, in which the treatment is vastly different than that of MCC with isolated metastases of the pancreas. METHODS An electronic search of the PubMed and google scholar databases was performed to obtain the literature on MCC with pancreatic metastases, using the following search terms: Merkel cell carcinoma, pancreas, and metastases. Results are limited to the following available article types: case reports and case series. We identified 45 cases of MCC with pancreatic metastases from the PubMed and Google Scholar database search and examined their potential relevance. Only 22 cases with isolated pancreatic metastases were taken for review including one case that we encountered. RESULTS The results from our review of cases of isolated pancreatic metastases of MCC were compared to the characteristics of the poorly differentiated pancreatic neuroendocrine tumor (PNEC). We found the following: (a) MCC with isolated pancreatic metastases occurred at an older age than PNEC and with male gender predominance (b) Most of the metastases occurred within 2 years of initial diagnosis of MCC (c) Resection of pancreatic mass was the first line treatment in case of resectable PNECs whereas resection of metastases was infrequently performed in MCC with pancreatic metastases.
Collapse
Affiliation(s)
- Akriti Pokhrel
- Department of Internal Medicine, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Richard Wu
- Department of Pathology, Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Jen Chin Wang
- Department of Pathology, Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA.
- Department of Hematology and Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
38
|
Andreatos N, McGarrah PW, Sonbol MB, Starr JS, Capdevila J, Sorbye H, Halfdanarson TR. Managing Metastatic Extrapulmonary Neuroendocrine Carcinoma After First-Line Treatment. Curr Oncol Rep 2023; 25:1127-1139. [PMID: 37606874 DOI: 10.1007/s11912-023-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW Extrapulmonary neuroendocrine carcinoma (EP-NEC) is a rare, aggressive malignancy that can arise from any organ and frequently presents with distant metastases. Advanced disease has a poor prognosis with median overall survival (OS) rarely exceeding 1 year even with systemic therapy. The management paradigm of advanced/metastatic EP-NEC has been extrapolated from small cell lung cancer (SCLC) and commonly consists of 1st line therapy with etoposide and platinum (cisplatin or carboplatin), followed by alternative cytotoxic regimens at the time of progression. Only a minority of patients are able to receive 2nd line therapy, and cytotoxics derived from the SCLC paradigm such as topotecan or lurbinectedin have very limited activity. We aimed to evaluate emerging therapeutic options in the 2nd and later lines and survey potential future developments in this space. RECENT FINDINGS After a long period of stagnation in treatment options and outcomes, more promising regimens are gradually being utilized in the 2nd line setting including systemic therapy combinations such as FOLFIRI, FOLFOX, modified FOLFIRINOX, CAPTEM, and, more recently, novel checkpoint inhibitors such as nivolumab and ipilimumab. Simultaneously, advances in the understanding of disease biology are helping to refine patient selection and identify commonalities between NEC and their sites of origin which may eventually lead to additional targeted therapy options. While many questions remain, contemporary developments give grounds for optimism that improved outcomes for EP-NEC will soon be within reach.
Collapse
Affiliation(s)
- Nikolaos Andreatos
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Patrick W McGarrah
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Jason S Starr
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jaume Capdevila
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
39
|
Liu M, Li N, Tang H, Chen L, Liu X, Wang Y, Lin Y, Luo Y, Wei S, Wen W, Chen M, Wang J, Zhang N, Chen J. The Mutational, Prognostic, and Therapeutic Landscape of Neuroendocrine Neoplasms. Oncologist 2023; 28:e723-e736. [PMID: 37086484 PMCID: PMC10485279 DOI: 10.1093/oncolo/oyad093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/11/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Neuroendocrine neoplasms (NENs) represent clinically and genetically heterogeneous malignancies, thus a comprehensive understanding of underlying molecular characteristics, prognostic signatures, and potential therapeutic targets is urgently needed. METHODS Next-generation sequencing (NGS) and immunohistochemistry were applied to acquire genomic and immune profiles of NENs from 47 patients. RESULTS Difference was distinguished based on differentiation grade and primary localization. Poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumors (NETs) harbored distinct molecular features; we observed that tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were significantly higher in NECs versus NETs. Notably, we identified a 7-gene panel (MLH3, NACA, NOTCH1, NPAP1, RANBP17, TSC2, and ZFHX4) as a novel prognostic signature in NENs; patients who carried mutations in any of the 7 genes exhibited significantly poorer survival. Furthermore, loss of heterozygosity (LOH) and germline homogeneity in human leukocyte antigen (HLA) are common in NENs, accounting for 39% and 36%, respectively. Notably, HLA LOH was an important prognostic biomarker for a subgroup of NEN patients. Finally, we analyzed clinically actionable targets in NENs, revealing that TMB high (TMB-H) or gene mutations in TP53, KRAS, and HRAS were the most frequently observed therapeutic indicators, which granted eligibility to immune checkpoint blockade (ICB) and targeted therapy. CONCLUSION Our study revealed heterogeneity of NENs, and identified novel prognostic signatures and potential therapeutic targets, which directing improvements of clinical management for NEN patients in the foreseeable future.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Na Li
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Hongzhen Tang
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaozhen Wei
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Wenli Wen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiaqian Wang
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Sugawara T, Rodriguez Franco S, Franklin O, Kirsch MJ, Colborn KL, Del Chiaro M, Schulick RD. Management of Localized Small- and Large-Cell Pancreatic Neuroendocrine Carcinoma in the National Cancer Database. J Am Coll Surg 2023; 237:515-524. [PMID: 37146214 DOI: 10.1097/xcs.0000000000000735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND The role of curative-intent resection and perioperative chemotherapy for nonmetastatic pancreatic neuroendocrine carcinoma (PanNEC) remains unclear due to their biological aggressiveness and rarity. This study aimed to evaluate the association of resection and perioperative chemotherapy with overall survival for nonmetastatic PanNEC. STUDY DESIGN Patients with localized (cT1-3, M0), small- and large-cell PanNEC were identified in the National Cancer Database from 2004 to 2017. The changing trends in terms of the annual proportions of resection and adjuvant chemotherapy were assessed. The survival of patients who received resection and those who received adjuvant chemotherapy were investigated using Kaplan-Meier estimates and Cox regression models. RESULTS In total, 199 patients with localized small- and large-cell PanNEC were identified; 50.3% of those were resected, and 45.0% of the resected patients received adjuvant chemotherapy. Rate of resection and adjuvant treatment has trended upward since 2011. The resected group was younger, was more often treated at academic institutions, had more distal tumors, and had a lower number of small-cell PanNEC. The median overall survival was longer in the resected group compared to the unresected group (29.4 months vs 8.6 months, p < 0.001). Resection was associated with improved survival in a multivariable Cox regression model adjusting for preoperative factors (adjusted hazard ratio 0.58, 95% CI 0.37 to 0.92), while adjuvant therapy was not. CONCLUSIONS This nationwide retrospective study suggests that resection is associated with improved survival in patients with localized PanNEC. The role of adjuvant chemotherapy needs more investigation.
Collapse
Affiliation(s)
- Toshitaka Sugawara
- From the Division of Surgical Oncology, Department of Surgery (Sugawara, Rodriguez Franco, Franklin, Colborn, Del Chairo), University of Colorado School of Medicine, Aurora, Colorado
- the Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Sugawara)
| | - Salvador Rodriguez Franco
- From the Division of Surgical Oncology, Department of Surgery (Sugawara, Rodriguez Franco, Franklin, Colborn, Del Chairo), University of Colorado School of Medicine, Aurora, Colorado
| | - Oskar Franklin
- From the Division of Surgical Oncology, Department of Surgery (Sugawara, Rodriguez Franco, Franklin, Colborn, Del Chairo), University of Colorado School of Medicine, Aurora, Colorado
- the Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden (Franklin)
| | - Michael J Kirsch
- the Department of Surgery (Kirsch, Schulick), University of Colorado School of Medicine, Aurora, Colorado
| | - Kathryn L Colborn
- From the Division of Surgical Oncology, Department of Surgery (Sugawara, Rodriguez Franco, Franklin, Colborn, Del Chairo), University of Colorado School of Medicine, Aurora, Colorado
- the Department of Biostatistics and Informatics (Colborn), University of Colorado School of Medicine, Aurora, Colorado
- the Surgical Outcomes and Applied Research Program (Colborn), University of Colorado School of Medicine, Aurora, Colorado
| | - Marco Del Chiaro
- From the Division of Surgical Oncology, Department of Surgery (Sugawara, Rodriguez Franco, Franklin, Colborn, Del Chairo), University of Colorado School of Medicine, Aurora, Colorado
- the University of Colorado Cancer Center (Del Chiaro, Schulick), University of Colorado School of Medicine, Aurora, Colorado
| | - Richard D Schulick
- the Department of Surgery (Kirsch, Schulick), University of Colorado School of Medicine, Aurora, Colorado
- the University of Colorado Cancer Center (Del Chiaro, Schulick), University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
41
|
Ikegame K, Hatakeyama K, Terashima M, Sugino T, Aizawa D, Furukawa K, Fujiya K, Tanizawa Y, Bando E, Yamaguchi K. Molecular profiling of gastric neuroendocrine carcinomas. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106987. [PMID: 37463826 DOI: 10.1016/j.ejso.2023.106987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Gastric neuroendocrine carcinoma (G-NEC) usually has NEC and adenocarcinoma components and is considered to have a common origin in gastric adenocarcinoma because common pathogenic mutations are shared. However, G-NEC without adenocarcinoma also exists, and it may have a different mechanism of tumorigenesis. We aimed to elucidate the tumorigenesis of G-NEC by focusing on the proportion of NEC components. Thirteen patients with G-NEC were included in this study. Comprehensive genetic analysis using whole-exome sequencing was performed. G-NEC without an adenocarcinoma component was defined as pure NEC. TP53 was detected as the most frequent gene mutation (85% of the patients), independent of classification. RB1, KMT2C, LTBP1, and RYR2 mutations were identified in two of three pure NEC patients but were not detected in other G-NEC patients. Pure NEC has different somatic mutation profile than other NECs. This study provides insights into the mechanism of tumorigenesis in G-NEC.
Collapse
Affiliation(s)
- Ko Ikegame
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Daisuke Aizawa
- Division of Pathology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichiro Furukawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
42
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
43
|
Algarin-Perneth S, Suleiman R, Abeykoon JP, Halfdanarson T, Fuentes-Bayne HE, Yi JE, Peikert T, McGarrah PW. Deep and Repeated Response to Trastuzumab Deruxtecan in a Patient With Human Epidermal Growth Factor Receptor 2-Amplified Large-Cell Neuroendocrine Carcinoma With Brain Metastases: A Case Report. JCO Precis Oncol 2023; 7:e2300242. [PMID: 37883722 DOI: 10.1200/po.23.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023] Open
Abstract
Metastatic CUP is complex, especially NCUP. Precision oncology is crucial for rare, aggressive cancers. A 54-year-old had HER2+ neuroendocrine carcinoma of unknown origin. T-DXd treatment, response, re-challenge show importance of genomics and caution.
Collapse
Affiliation(s)
- Sandra Algarin-Perneth
- Mayo Clinic, Knowledge and Evaluation Research Unit, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Rochester, MN
| | - Riham Suleiman
- Mayo Clinic, Division of Medical Oncology, Rochester, MN
| | | | | | | | - Joanne E Yi
- Mayo Clinic, Division of Anatomic Pathology, Rochester, MN
| | - Tobias Peikert
- Mayo Clinic, Division of Pulmonology and Critical Care Medicine, Rochester, MN
| | | |
Collapse
|
44
|
Eads JR, Halfdanarson TR, Asmis T, Bellizzi AM, Bergsland EK, Dasari A, El-Haddad G, Frumovitz M, Meyer J, Mittra E, Myrehaug S, Nakakura E, Raj N, Soares HP, Untch B, Vijayvergia N, Chan JA. Expert Consensus Practice Recommendations of the North American Neuroendocrine Tumor Society for the management of high grade gastroenteropancreatic and gynecologic neuroendocrine neoplasms. Endocr Relat Cancer 2023; 30:e220206. [PMID: 37184955 PMCID: PMC10388681 DOI: 10.1530/erc-22-0206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023]
Abstract
High-grade neuroendocrine neoplasms are a rare disease entity and account for approximately 10% of all neuroendocrine neoplasms. Because of their rarity, there is an overall lack of prospectively collected data available to advise practitioners as to how best to manage these patients. As a result, best practices are largely based on expert opinion. Recently, a distinction was made between well-differentiated high-grade (G3) neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas, and with this, pathologic details, appropriate imaging practices and treatment have become more complex. In an effort to provide practitioners with the best guidance for the management of patients with high-grade neuroendocrine neoplasms of the gastrointestinal tract, pancreas, and gynecologic system, the North American Neuroendocrine Tumor Society convened a panel of experts to develop a set of recommendations and a treatment algorithm that may be used by practitioners for the care of these patients. Here, we provide consensus recommendations from the panel on pathology, imaging practices, management of localized disease, management of metastatic disease and surveillance and draw key distinctions as to the approach that should be utilized in patients with well-differentiated G3 neuroendocrine tumors vs poorly differentiated neuroendocrine carcinomas.
Collapse
Affiliation(s)
- Jennifer R Eads
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Pennsylvania, USA
| | | | - Tim Asmis
- Division of Medical Oncology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Emily K Bergsland
- Department of Medicine, University of California, San Francisco, California, USA
| | - Arvind Dasari
- Division of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghassan El-Haddad
- Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael Frumovitz
- Division of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Erik Mittra
- Division of Molecular Imaging and Therapy, Oregon Health & Science University, Portland, Oregon, USA
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eric Nakakura
- Department of Surgery, University of California, San Francisco, California, USA
| | - Nitya Raj
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Heloisa P Soares
- Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Salt Lake City, Utah, USA
| | - Brian Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Namrata Vijayvergia
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jennifer A Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Raj N, Chan JA, Wang SJ, Aggarwal RR, Calabrese S, DeMore A, Fong L, Grabowsky J, Hope TA, Kolli KP, Mulvey CK, Munster PN, Perez K, Punn S, Reidy-Lagunes D, Von Fedak S, Zhang L, Bergsland EK. Pembrolizumab alone and pembrolizumab plus chemotherapy in previously treated, extrapulmonary poorly differentiated neuroendocrine carcinomas. Br J Cancer 2023; 129:291-300. [PMID: 37208512 PMCID: PMC10338510 DOI: 10.1038/s41416-023-02298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND To date, single-agent immune checkpoint inhibitor (CPI) therapy has proven to be ineffective against biomarker-unselected extrapulmonary poorly differentiated neuroendocrine carcinomas (EP-PDNECs). The efficacy of CPI in combination with chemotherapy remains under investigation. METHODS Patients with advanced, progressive EP-PDNECs were enrolled in a two-part study of pembrolizumab-based therapy. In Part A, patients received pembrolizumab alone. In Part B, patients received pembrolizumab plus chemotherapy. PRIMARY ENDPOINT objective response rate (ORR). Secondary endpoints: safety, progression-free survival (PFS) and overall survival (OS). Tumours were profiled for programmed death-ligand 1 expression, microsatellite-high/mismatch repair deficient status, mutational burden (TMB), genomic correlates. Tumour growth rate was evaluated. RESULTS Part A (N = 14): ORR (pembrolizumab alone) 7% (95% CI, 0.2-33.9%), median PFS 1.8 months (95% CI, 1.7-21.4), median OS 7.8 months (95% CI, 3.1-not reached); 14% of patients (N = 2) had grade 3/4 treatment-related adverse events (TRAEs). Part B (N = 22): ORR (pembrolizumab plus chemotherapy) 5% (95% CI, 0-22.8%), median PFS 2.0 months (95% CI, 1.9-3.4), median OS 4.8 months (95% CI, 4.1-8.2); 45% of patients (N = 10) had grade 3/4 TRAEs. The two patients with objective response had high-TMB tumours. DISCUSSION Treatment with pembrolizumab alone and pembrolizumab plus chemotherapy was ineffective in advanced, progressive EP-PDNECs. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT03136055.
Collapse
Affiliation(s)
- Nitya Raj
- Memorial Sloan Kettering (MSK) Cancer Center, New York, NY, USA.
| | | | - Stephanie J Wang
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Rahul R Aggarwal
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Susan Calabrese
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - April DeMore
- Memorial Sloan Kettering (MSK) Cancer Center, New York, NY, USA
| | - Lawrence Fong
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | | | - Thomas A Hope
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | | | - Claire K Mulvey
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Pamela N Munster
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | | | - Sippy Punn
- Memorial Sloan Kettering (MSK) Cancer Center, New York, NY, USA
| | | | | | - Li Zhang
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Emily K Bergsland
- University of California San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
46
|
Varghese DG, Del Rivero J, Bergsland E. Grade Progression and Intrapatient Tumor Heterogeneity as Potential Contributors to Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2023; 15:3712. [PMID: 37509373 PMCID: PMC10378410 DOI: 10.3390/cancers15143712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (NENs) are a heterogenous group of tumors that are incurable when metastatic, regardless of grade. The aim of this article is to understand tumor heterogeneity and grade progression as possible contributors to drug resistance in gastroentropancreatic neuroendocrine tumors (GEP-NETs). Heterogeneity has been observed in the genetic, pathological, and imaging features of these tumors at baseline. Diagnostic challenges related to tumor sampling and the potential for changes in grade over time further confound our ability to optimize therapy for patients. A better understanding of NEN biology and tumor heterogeneity at baseline and over time could lead to the development of new therapeutic avenues.
Collapse
Affiliation(s)
- Diana Grace Varghese
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 94158, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 94158, USA
| | - Emily Bergsland
- UCSF Helen Diller Family Comprehensive Cancer Center and Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| |
Collapse
|
47
|
Qiu MZ, Chen Q, Zheng DY, Zhao Q, Wu QN, Zhou ZW, Yang LQ, Luo QY, Sun YT, Lai MY, Yuan SS, Wang FH, Luo HY, Wang F, Li YH, Zhang HZ, Xu RH. Precise microdissection of gastric mixed adeno-neuroendocrine carcinoma dissects its genomic landscape and evolutionary clonal origins. Cell Rep 2023; 42:112576. [PMID: 37285266 DOI: 10.1016/j.celrep.2023.112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Gastric mixed adenoneuroendocrine carcinoma (MANEC) is a clinically aggressive and heterogeneous tumor composed of adenocarcinoma (ACA) and neuroendocrine carcinoma (NEC). The genomic properties and evolutionary clonal origins of MANEC remain unclear. We conduct whole-exome and multiregional sequencing on 101 samples from 33 patients to elucidate their evolutionary paths. We identify four significantly mutated genes, TP53, RB1, APC, and CTNNB1. MANEC resembles chromosomal instability stomach adenocarcinoma in that whole-genome doubling in MANEC is predominant and occurs earlier than most copy-number losses. All tumors are of monoclonal origin, and NEC components show more aggressive genomic properties than their ACA counterparts. The phylogenetic trees show two tumor divergence patterns, including sequential and parallel divergence. Furthermore, ACA-to-NEC rather than NEC-to-ACA transition is confirmed by immunohistochemistry on 6 biomarkers in ACA- and NEC-dominant regions. These results provide insights into the clonal origin and tumor differentiation of MANEC.
Collapse
Affiliation(s)
- Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qingjian Chen
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Dan-Yang Zheng
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Qi Zhao
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qi-Nian Wu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Zhi-Wei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Li-Qiong Yang
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Qiu-Yun Luo
- Department of Basic Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Yu-Ting Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Ming-Yu Lai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Sha-Sha Yuan
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Hui-Zhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, P.R. China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, P.R. China.
| |
Collapse
|
48
|
Saito-Adachi M, Hama N, Totoki Y, Nakamura H, Arai Y, Hosoda F, Rokutan H, Yachida S, Kato M, Fukagawa A, Shibata T. Oncogenic structural aberration landscape in gastric cancer genomes. Nat Commun 2023; 14:3688. [PMID: 37349325 PMCID: PMC10287692 DOI: 10.1038/s41467-023-39263-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Structural variants (SVs) are responsible for driver events in gastric cancer (GC); however, their patterns and processes remain poorly understood. Here, we examine 170 GC whole genomes to unravel the oncogenic structural aberration landscape in GC genomes and identify six rearrangement signatures (RSs). Non-random combinations of RSs elucidate distinctive GC subtypes comprising one or a few dominant RS that are associated with specific driver events (BRCA1/2 defects, mismatch repair deficiency, and TP53 mutation) and epidemiological backgrounds. Twenty-seven SV hotspots are identified as GC driver candidates. SV hotspots frequently constitute complexly clustered SVs involved in driver gene amplification, such as ERBB2, CCNE1, and FGFR2. Further deconstruction of the locally clustered SVs uncovers amplicon-generating profiles characterized by super-large SVs and intensive segmental amplifications, contributing to the extensive amplification of GC oncogenes. Comprehensive analyses using adjusted SV allele frequencies indicate the significant involvement of extra-chromosomal DNA in processes linked to specific RSs.
Collapse
Affiliation(s)
- Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Yachida
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
49
|
Griger J, Widholz SA, Jesinghaus M, de Andrade Krätzig N, Lange S, Engleitner T, Montero JJ, Zhigalova E, Öllinger R, Suresh V, Winkler W, Lier S, Baranov O, Trozzo R, Ben Khaled N, Chakraborty S, Yu J, Konukiewitz B, Steiger K, Pfarr N, Rajput A, Sailer D, Keller G, Schirmacher P, Röcken C, Fagerstedt KW, Mayerle J, Schmidt-Supprian M, Schneider G, Weichert W, Calado DP, Sommermann T, Klöppel G, Rajewsky K, Saur D, Rad R. An integrated cellular and molecular model of gastric neuroendocrine cancer evolution highlights therapeutic targets. Cancer Cell 2023:S1535-6108(23)00208-8. [PMID: 37352862 DOI: 10.1016/j.ccell.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.
Collapse
Affiliation(s)
- Joscha Griger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Sebastian A Widholz
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany; Institute of Pathology, Philipps University Marburg and University Hospital Marburg (UKGM), Marburg, Germany; Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Juan José Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ekaterina Zhigalova
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Veveeyan Suresh
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Wiebke Winkler
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Svenja Lier
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Riccardo Trozzo
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Najib Ben Khaled
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Jiakun Yu
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Björn Konukiewitz
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany; Institute of Pathology, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Ashish Rajput
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Gisela Keller
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Peter Schirmacher
- Institute of Pathology, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Christoph Röcken
- Institute of Pathology, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | | | - Julia Mayerle
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Dinis P Calado
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Immunity and Cancer, Francis Crick Institute, NW1 1AT London, UK
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Günter Klöppel
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany; Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
50
|
Bhamidipati D, Subbiah V. Lurbinectedin, a DNA minor groove inhibitor for neuroendocrine neoplasms beyond small cell lung cancer. Oncoscience 2023; 10:22-23. [PMID: 37324544 PMCID: PMC10266487 DOI: 10.18632/oncoscience.579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
| | - Vivek Subbiah
- Correspondence to:Vivek Subbiah, Sarah Cannon Research Institute, Nashville, TN 37203, USA email:
| |
Collapse
|