1
|
Acar Halıcı C, Göker H, Kütük Ö, Çelik İ, Altuntaş TG. Design, synthesis, and biological evaluation of novel amidoxime or amidine analogues of some 4-anilino-6,7-dimethoxyquinazolines with a potent EGFR inhibitory effect. Bioorg Chem 2025; 158:108345. [PMID: 40073592 DOI: 10.1016/j.bioorg.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
A series of 6,7-dimethoxy-4-anilinoquinazoline derivatives, which have amidine (4a-4d, 5a-5c, 6a-6d) and amidoxime (4e, 5d, 6e) moieties, were synthesized and evaluated their anticancer activity on various cancerous cell lines (H1975, HCC827, and H23). Among the synthesized compounds, 4c was found to be the most potent inhibitor of EGFR, comparable to erlotinib, with higher than 10 μM EC50 values for H1975 and H23 and 0.16 μM EC50 value for HCC827 cells. 4c activated mitochondrial apoptosis signaling and suppresses EGFR downstream signaling, such as ERK1/2 and PI3K/Akt pathways in HCC827 NSCLC cells (EGFR Del19) as erlotinib. Molecular docking and molecular dynamics simulations studies were performed to evaluate the interaction and binding energies of all synthesized compounds against EGFR wild type, EGFR T790M/L858R, EGFR L858R, and EGFR exon-19 deletion mutant (del-747-749). 4c showed a similar binding profile with erlotinib as stable binding interaction values. Also, 4c formed additional hydrogen bonds via the amidine group in its structure, potentially increasing its affinity and stability within the binding pocket. Hence, 4c was selected as a lead compound for further pharmacomodulation.
Collapse
Affiliation(s)
- Cemre Acar Halıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye; Graduate School of Health Sciences, Ankara University, Dışkapı, Ankara, Türkiye
| | - Hakan Göker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye
| | - Özgür Kütük
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Tuzla, Istanbul, Türkiye
| | - İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Türkiye
| | - Tunca Gül Altuntaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye.
| |
Collapse
|
2
|
Nomura K, Takada K, Kinoshita F, Muto S, Matsubara T, Kouki Y, Katsumata S, Hamada A, Haratake N, Fujino K, Yoshikawa M, Suzawa K, Shien K, Suda K, Ohara S, Fukuda S, Suzuki H, Okamoto T, Hirai F, Aokage K, Shiono S, Soh J, Tsuboi M, Shimokawa M, Ohde Y. Prognostic impact of PD-L1 expression in surgically resected EGFR-mutant lung adenocarcinoma: A real-world database study in Japan (CReGYT-01 EGFR study). Int J Cancer 2025; 156:1480-1491. [PMID: 39569608 DOI: 10.1002/ijc.35270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The expression of programmed cell death-ligand 1 (PD-L1) and mutation in epidermal growth factor receptor (EGFR) are biomarkers used for perioperative treatment of lung adenocarcinoma. However, the clinical significance of PD-L1 expression in surgically resected EGFR-mutant lung adenocarcinoma remains unclear. We conducted a real-world database of patients with surgically resected lung adenocarcinoma from 2015 to 2018 was constructed across 21 centers in Japan. The association among PD-L1 expression, EGFR mutations, and prognosis was evaluated. Among 847 patients, PD-L1 expression was negative (tumor proportion score [TPS] < 1%) in 429 (51%), weakly positive (TPS = 1%-49%) in 275 (32%), and strongly positive (TPS ≥50%) in 143 (17%) patients. EGFR mutations were detected in 331 (39%) patients. PD-L1 expression was associated with poor recurrence-free survival (RFS) (p < .001) in both EGFR-mutant and wild-type patients. However, in EGFR-mutant patients, PD-L1 expression was not associated with overall survival (OS) (p = .506). Multivariable analysis confirmed an association between PD-L1 expression and RFS but not OS. Furthermore, in EGFR-mutant patients treated with EGFR-tyrosine kinase inhibitor (EGFR-TKI) treatment post-relapse, PD-L1 expression was not associated with overall response rate (p = .714), disease control rate (p = .554), or progression-free survival (p = .660). In conclusion, PD-L1 expression predicted poor RFS-independent EGFR status but did not show any association with OS in EGFR-mutant patients. The efficacy of post-relapse EGFR-TKI treatment was independent of PD-L1 expression. The significance of PD-L1 expression in perioperative EGFR-TKI therapy should be evaluated.
Collapse
Affiliation(s)
- Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Taichi Matsubara
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Yasunobu Kouki
- Center for Clinical Research, Yamaguchi University Hospital, Ube, Japan
| | - Shinya Katsumata
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akira Hamada
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Fujino
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mao Yoshikawa
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Ken Suzawa
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Ohara
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shota Fukuda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Fumihiko Hirai
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Satoshi Shiono
- Department of Surgery II, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junichi Soh
- Department of Thoracic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
3
|
Ismail NZ, Khairuddean M, Abubakar S, Arsad H. Network pharmacology, molecular docking and molecular dynamics simulation of chalcone scaffold-based compounds targeting breast cancer receptors. J Biomol Struct Dyn 2025; 43:3242-3257. [PMID: 38149857 DOI: 10.1080/07391102.2023.2296606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Compounds with a chalcone scaffold-based structure have demonstrated promising anticancer biological activity. However, the molecular interactions between chalcone scaffold-based compounds and breast cancer-associated proteins remain unclear. Through network pharmacology, molecular docking, and molecular dynamics (MD) simulation analyses, compounds with a chalcone scaffold-based structure were evaluated for their interaction with potential breast cancer targets. The compounds were retrieved from the ASINEX database, resulting in 575,302 compounds. A total of 342 compounds with chalcone scaffold-based structures were discovered. From the 342 compounds that was analysed, ten were chosen due to their adherence to Lipinski's rule, having an appropriate range of lipophilicity (LOGP), and topological polar surface area (TPSA), and absence of any toxicity. Based on target intersection, 50 target genes were found and subjected to protein-protein interaction (PPI), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Four target genes were found to be involved in the breast cancer pathway. Consequently, molecular docking was utilised to analyse the molecular interactions between the compounds and four target protein receptors. Compound 211 exhibited the highest binding affinities for the epidermal growth factor receptor (EGFR), fibroblast growth factor receptor 1 (FGFR1), oestrogen receptor (ESR1), and cyclin dependent kinase 6 (CDK6) with values of -8.95 kcal/mol, -8.60 kcal/mol, -10.33 kcal/mol, and -9.90 kcal/mol, respectively. During MD simulation, compound 211 and its respective proteins were stable, compact, and had minimal flexibility. The findings provide foundations for future studies into the interaction underlying the anti-breast cancer potential of compounds with chalcone-based scaffold structures.
Collapse
Affiliation(s)
| | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Sadiq Abubakar
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Pure and Industrial Chemistry, Bayero University Kano, Kano, Nigeria
| | - Hasni Arsad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
4
|
Wang KY, Chang SC, Wei YF, Hung JC, Chen CY, Chang CY. Unraveling Survival Determinants in Patients with Advanced Non-Small-Cell Lung Cancer with EGFR Exon 20 Insertions. Curr Oncol 2025; 32:174. [PMID: 40136378 PMCID: PMC11941682 DOI: 10.3390/curroncol32030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in Taiwan. It is often associated with mutations in the epidermal growth factor receptor (EGFR) gene, with common mutations accounting for approximately 85% of all EGFR-related cases. However, the remaining 15% are caused by uncommon mutations in EGFR, mainly insertions in exon 20 (about 4%). The response to EGFR tyrosine kinase inhibitors (TKIs) can vary markedly with exon 20 insertions. However, few prior large-scale studies have examined patients with these EGFR mutations. METHODS This study combines the databases of several large hospitals in Taiwan to analyze the effects and clinical significance of rare EGFR mutations on responses to EGFR-TKIs, considering the changes in medication. RESULTS This study enrolled 38 patients with non-small-cell lung cancer and EGFR exon 20 insertions. It assessed the correlations of various predictors with progression-free survival (PFS) and overall survival (OS). It showed that among those with EGFR exon 20 insertions, the median PFS was 5.15 months, and OS reached 13 months. The median PFS was 5.4 months for afatinib, 5.7 months for chemotherapy, and 4.3 months for first-generation EGFR-TKIs. CONCLUSIONS EGFR-TKIs may be considered as an alternative treatment option for patients with EGFR exon 20 insertions in cases where the currently recommended therapies, such as chemotherapy with or without amivantamab, are either unavailable or intolerable. The potential use of afatinib for specific patients in this context depends on the precise characteristics of their mutation and remains to be determined.
Collapse
Affiliation(s)
- Kung-Yang Wang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; (K.-Y.W.); (J.-C.H.)
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Yi-Lan 260, Taiwan;
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Jui-Chi Hung
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; (K.-Y.W.); (J.-C.H.)
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County 640, Taiwan
| | - Cheng-Yu Chang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan; (K.-Y.W.); (J.-C.H.)
- Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320, Taiwan
| |
Collapse
|
5
|
Li M, Soo RA. Will "Sun"-WUKONG, the monkey king, conquer EGFR exon 20 insertion mutation positive non-small cell lung cancer? Transl Lung Cancer Res 2025; 14:323-327. [PMID: 40114957 PMCID: PMC11921394 DOI: 10.21037/tlcr-24-854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Molly Li
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Mitsudomi T. Sunvozertinib: shining light on lung cancer's exon 20 fight. Transl Lung Cancer Res 2025; 14:334-340. [PMID: 40114954 PMCID: PMC11921407 DOI: 10.21037/tlcr-24-907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Tetsuya Mitsudomi
- Izumi City General Hospital, Izumi, Osaka, Japan
- Department of Innovative Medicine, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
7
|
Milgram BC, Borrelli DR, Brooijmans N, Henderson JA, Hilbert BJ, Huff MR, Ito T, Jackson EL, Jonsson P, Ladd B, O’Hearn EL, Pagliarini RA, Roberts SA, Ronseaux S, Stuart DD, Wang W, Guzman-Perez A. Discovery of STX-721, a Covalent, Potent, and Highly Mutant-Selective EGFR/HER2 Exon20 Insertion Inhibitor for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2025; 68:2403-2421. [PMID: 39824516 PMCID: PMC11831596 DOI: 10.1021/acs.jmedchem.4c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
After L858R and ex19del epidermal growth factor receptor (EGFR) mutations, ex20ins mutations are the third most common class of driver-mutations in non-small cell lung cancer (NSCLC). Unfortunately, first-, second-, and third-generation EGFR tyrosine kinase inhibitors (TKIs) are generally ineffective for ex20ins patients due to insufficient mutant activity and selectivity over wild-type EGFR, leading to dose-limiting toxicities. While significant advances in recent years have been made toward identifying potent EGFR ex20ins mutant inhibitors, mutant vs wild-type EGFR selectivity remains a significant challenge. STX-721 (53) is a potent, irreversible inhibitor of the majority of EGFR/HER2 ex20ins mutants and demonstrates excellent mutant vs wild-type selectivity both in vitro and in vivo. STX-721 is currently in phase 1/2 clinical trials for EGFR/HER2 ex20ins-driven NSCLC.
Collapse
Affiliation(s)
- Benjamin C. Milgram
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Deanna R. Borrelli
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Natasja Brooijmans
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Jack A. Henderson
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Brendan J. Hilbert
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Michael R. Huff
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Takahiro Ito
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Erica L. Jackson
- Scorpion
Therapeutics, South San Francisco, California 94080, United States
| | - Philip Jonsson
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Brendon Ladd
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Erin L. O’Hearn
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Raymond A. Pagliarini
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Simon A. Roberts
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Sébastien Ronseaux
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Darrin D. Stuart
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Weixue Wang
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| | - Angel Guzman-Perez
- Scorpion
Therapeutics, 1 Winthrop
Square, Boston, Massachusetts 02110, United States
| |
Collapse
|
8
|
Zhang J, Li W. Real-world pharmacovigilance analysis unveils the toxicity profile of amivantamab targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. BMC Pulm Med 2025; 25:63. [PMID: 39915804 PMCID: PMC11800505 DOI: 10.1186/s12890-025-03509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND While clinical trials have demonstrated enduring responses to amivantamab among advanced non-small cell lung cancer (NSCLC) patients bearing EGFR exon 20 insertion mutations, the associated toxicity profile in real-world scenarios remains elusive. METHODS This pharmacovigilance study analyzed data from the FDA Adverse Event Reporting System (FAERS) to investigate adverse events associated with amivantamab over the period from September 2021 to December 2023. A comprehensive disproportionality analysis was performed, employing the reporting odds ratio (ROR), proportional reporting ratio (PRR), Empirical Bayes Geometric Mean (EBGM), and the Bayesian confidence propagation neural network to calculate information components (ICs), to identify statistically significant adverse events. RESULTS A significant proportion of adverse events (AEs) was attributable to injury, poisoning, and procedural complications, cutaneous disorders, respiratory ailments, infections, as well as vascular and lymphatic system disturbances. There were noteworthy incidences of AEs including infusion-related reactions, rash, dyspnea, pneumonitis, paronychia, pulmonary embolism, thrombocytopenia, nausea, acneiform dermatitis, deep vein thrombosis, febrile neutropenia, peripheral edema, hypokalemia, and neutropenia. Furthermore, the majority of AEs occurred within the first month following the initiation of amivantamab treatment, accounting for 51.74% of cases. CONCLUSION The reversibility of amivantamab-related toxicities suggests its promising utility in patients with EGFR exon 20 insertion mutations NSCLC.
Collapse
Affiliation(s)
- Jing Zhang
- The Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, 801 Heqing Road, Shanghai, China.
| | - Wenjie Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
9
|
Piotrowska Z. Making Progress Along the Challenging Road of Drug Development for Patients With EGFR Exon 20 Insertion-Positive Non-Small Cell Lung Cancer. J Clin Oncol 2025:JCO2402656. [PMID: 39908471 DOI: 10.1200/jco-24-02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025] Open
Affiliation(s)
- Zofia Piotrowska
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
10
|
Lei Q, Zhou X, Li Y, Zhao S, Yang N, Xiao Z, Song C, Yu Q, Deng H. Image-Based Phenotypic Profiling Enables Rapid and Accurate Assessment of EGFR-Activating Mutations in Tissues from Lung Cancer Patients. J Am Chem Soc 2025; 147:4552-4570. [PMID: 39745025 DOI: 10.1021/jacs.4c16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase. We also show that the probe enables distinguishing EGFR mutant tumor-bearing mice from wild-type tumor-bearing mice via fluorescence-intensity-based imaging with high signal contrast. More interestingly, the image-based phenotypic approach can be used to predict EGFR mutations in tumors from lung cancer patients with an accuracy of 94%. Notably, when immunohistochemistry analysis is integrated, an improved accuracy of 98% is achieved. These data delineate a drug-based phenotypic imaging approach for in-biopsy visualization and define functional groups of EGFR mutants that can effectively guide EGFR-TKI therapeutic decision-making besides gene mutation analysis.
Collapse
Affiliation(s)
- Qian Lei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xinglong Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Shuang Zhao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Na Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhaolin Xiao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chao Song
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Quanwei Yu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hui Deng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Zhu W, Pei J, Lu X. A patent review of small molecular inhibitors targeting EGFR exon 20 insertion (Ex20ins) (2019-present). Expert Opin Ther Pat 2025; 35:91-110. [PMID: 39708287 DOI: 10.1080/13543776.2024.2446220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/24/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Mutations in epidermal growth factor receptor (EGFR) kinase domain consistently activate downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/RAF/MEK, thereby promoting tumor growth. Although the majority of non-small cell lung cancer (NSCLC) patients harboring EGFR mutations are sensitive to existing EGFR tyrosine kinase inhibitors (EGFR-TKIs), there remains an unmet clinical need for effective therapies targeting EGFR Ex20ins mutations, making direct targeting EGFR Ex20ins mutations a promising therapeutic strategy. AREAS COVERED This review covers the progress of clinical studies targeting EGFR Ex20ins inhibitors and summarizes recent (1 January 2019 - 30 April 2024) patents disclosing EGFR Ex20ins inhibitors available in the Espacenet and CAS SciFinder databases. EXPERT OPINION An increasing number of EGFR Ex20ins inhibitors are being developed and reported. Existing inhibitors are focused on enhancing the efficacy of EGFR Ex20ins inhibitors and addressing the challenge of targeted resistance by optimizing the second - or third-generation EGFR inhibitors and developing innovative skeleton molecules. Moreover, the development of targeted protein degraders, allosteric inhibitors, and combination therapies provide additional approaches to address EGFR Ex20ins mutations. However, bypass resistance, selectivity, and drug sensitivity still pose challenges in this field.
Collapse
Affiliation(s)
- Wenjian Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Junping Pei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Berg JM, Kobayashi TA, Costa DB. How to select between osimertinib or afatinib in P-loop and αC-helix compressing (G719X, S768I) or classical-like (L861Q) EGFR mutations: what preclinical models and clinical data have taught us in the early 2020s. Transl Cancer Res 2025; 14:16-23. [PMID: 39974392 PMCID: PMC11833374 DOI: 10.21037/tcr-24-1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/06/2024] [Indexed: 02/21/2025]
Affiliation(s)
- Julia M Berg
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Toshiki A Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
14
|
Cuan X, Yang X, Wang J, Sheng J, Wang X, Huang Y. Discovery of flavonoid-containing compound Lupalbigenin as anti-NSCLC cancer agents via suppression of EGFR and ERK1/2 pathway. Bioorg Chem 2024; 153:107808. [PMID: 39288634 DOI: 10.1016/j.bioorg.2024.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Epidermal growth factor receptor exon 20 insertions (EGFR Ex20ins) driver mutations in non-small cell lung cancer (NSCLC) is insensitive to EGFR tyrosine kinase inhibitors (TKIs). Therefore, it is necessary to develop more novel strategy to address the limitations of existing therapies targeting EGFR-mutated NSCLC. Lupalbigenin (LB), a flavonoid compound extracted from Derris scandens, has shown preclinical activity in lung cancer. However, the activity of LB in Ex20ins-driven tumors has not yet been elucidated. In this study, a series of stable BaF/3 cell-line that contains a high proportion (>90 %) of EGFR-eGFP Ex20ins were generated using an IL3-deprivation method. Ba/F3 cell models harboring dissimilar Ex20ins were used to characterize the antineoplastic mechanism of LB. Molecular docking confirmed that the LB could effectively bind to key target EGFR. The in vitro anticancer activity of LB was investigated in engineered Ba/F3 cells bearing diverse uncommon EGFR mutations. LB was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines. Mechanistic studies disclosed that LB repressed EGFR phosphorylation and downstream survival pathways in Ba/F3 cells expressing EGFR Ex20ins, resulting in caspase activation by activating the intrinsic apoptotic pathway. Further analyses showed that LB significantly induced G0/G1 cell cycle arrest and apoptosis in cells. LB also reduced the protein expression levels of CDK4, CDK6, CDK8, cyclin D1, cyclin A2, and Bcl2 and promoted the expression of cytochrome C, p27, and p53. In summary, we explored the possible potential targets of LB through network pharmacology and verified the target using in vitro experiments. Furthermore, our results demonstrated that LB showed potential anti-Ex20ins cancer activity through suppression of the EGFR and ERK1/2 signaling pathway in Ba/F3 cells bearing two to three amino acid insertion mutations. These findings suggested that LB might be valuable for further investigation as a potential candidate in the treatment of associated diseases.
Collapse
Affiliation(s)
- Xiangdan Cuan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Sanmenxia Polytechnic, Sanmenxia, China
| | - Xingying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinxian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
15
|
Ćeriman Krstić V, Soldatović I, Samardžić N, Gajić M, Kontić M, Reljić A, Savić M, Roksandić Milenković M, Jovanović D. Long-Term Outcomes in Patients with EGFR Positive Lung Adenocarcinoma and Subgroup Analysis Based on Presence of Liver Metastases. Curr Issues Mol Biol 2024; 46:13431-13442. [PMID: 39727929 PMCID: PMC11727537 DOI: 10.3390/cimb46120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Lung cancer represents the most common cause of cancer related death. Patients with non-small cell lung cancer (NSCLC) and liver metastases (LM) have worse prognosis with an overall survival (OS) of three to six months. The aim of this study was to investigate long-term outcomes in patients with EGFR mutated (EGFRmut) lung adenocarcinoma as well as the presence of LM. (A total of 105 patients were included in the analysis). They were divided into two groups based on the presence of LM. OS was 13 months for the whole group and also 13 months for patients with and without LM. The 9-year survival rate for patients with and without LM was 12.5% and 3.4%, respectively. Further, the 9-year survival rate for the whole group of patients was 4.8%. There are few data about survival rates beyond 5 years for patients with locally advanced and metastatic EGFRmut NSCLC, mainly because patients with lung cancer rarely live for such a long time. Regarding patients with liver metastases, the results of our study showed similar outcomes compared to patients without LM. As these patients represent a significant number of patients, we need a wider range of therapeutic options. It might be that combination therapies represent a better therapeutic option.
Collapse
Affiliation(s)
- Vesna Ćeriman Krstić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Ivan Soldatović
- Institute of Medical Statistics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natalija Samardžić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milija Gajić
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Milica Kontić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Pulmonology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (N.S.); (M.G.)
| | - Aleksandar Reljić
- Clinic for Ortopedics, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milan Savić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.K.); (M.S.)
- Clinic for Thoracic Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | | | | |
Collapse
|
16
|
Suay G, Martín-Martorell P, Aparisi F, Arnal M, Guirado M, Azkárate A, Garde-Noguera J, Cumplido-Burón JD, Insa A, González-Muñoz JF, Palanca S, Díaz M, Sánchez-Hernández A, Juan-Vidal Ó. A real‑world study of clinical characteristics, treatment sequence and outcomes of patients with non-small cell lung cancer and EGFR exon 20 insertion mutations. Clin Transl Oncol 2024:10.1007/s12094-024-03776-y. [PMID: 39499485 DOI: 10.1007/s12094-024-03776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVES EGFR exon 20 insertion (EGFRex20ins) mutations are found in up to 4% of all patients with non-small cell lung cancer (NSCLC). These patients are often insensitive to EGFR-tyrosine kinase inhibitors (TKIs) and have worse prognosis than patients with more common EGFR mutations. In this multicenter, retrospective, real-world study, we sought to determine whether the administration of recently approved treatments that specifically target EGFRex20ins mutations could significantly improve outcomes in this patient population. MATERIALS AND METHODS We evaluated the clinical features of 41 patients diagnosed with NSCLC and EGFRex20ins mutations, their evolution, and response to treatments received across 7 hospitals in the Valencian Community, Spain, between 31st December 2012 and 31st December 2022. RESULTS 32 patients (72%) developed metastatic disease, and 29 (71%) of them received oncological treatment. We found that administering a targeted therapy against EGFRex20ins mutations (amivantamab, mobocertinib and/or sunvozertinib) at some point during the course of treatment, significantly increased the median OS of metastatic patients from 8 months (95% CI 0-21.7) to 30 months (95% CI 11.1-48.8; Hazard ratio = 0.297, p = 0.02). CONCLUSION Our findings contribute to the evolving standard of care for this specific population and highlight the clinical benefits of targeted cancer therapies.
Collapse
Affiliation(s)
- Guillermo Suay
- Medical Oncology Department, Biomarker and Precision Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | | | - Francisco Aparisi
- Medical Oncology Investigator, Biomarker and Precision Medicine Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - María Arnal
- Medical Oncology Department, Provincial Hospital Consortium, Castellón, Spain
| | - María Guirado
- Medical Oncology Department, General University Hospital of Elche, Alicante, Spain
| | - Aitor Azkárate
- Medical Oncology Department, Son Espases University Hospital, Palma, Spain
| | | | | | - Amelia Insa
- Medical Oncology Department, University Clinical Hospital, Valencia, Spain
| | | | - Sarai Palanca
- Clinical Analysis Department, Molecular Biology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - María Díaz
- Clinical Analysis Department, Castellón University General Hospital, Castellón de La Plana, Spain
| | | | - Óscar Juan-Vidal
- Medical Oncology Department, Biomarker and Precision Medicine Unit, La Fe University and Polytechnic Hospital, Valencia, Spain.
| |
Collapse
|
17
|
Zhao H, Beyett TS, Jiang J, Rana JK, Schaeffner IK, Santana J, Jänne PA, Eck MJ. Biochemical analysis of EGFR exon20 insertion variants insASV and insSVD and their inhibitor sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2417144121. [PMID: 39471218 PMCID: PMC11551396 DOI: 10.1073/pnas.2417144121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Somatic mutations in the epidermal growth factor receptor (EGFR) are a major cause of non-small cell lung cancer. Among these structurally diverse alterations, exon 20 insertions represent a unique subset that rarely respond to EGFR tyrosine kinase inhibitors (TKIs). Therefore, there is a significant need to develop inhibitors that are active against this class of activating mutations. Here, we conducted biochemical analysis of the two most frequent exon 20 insertion variants, V769_D770insASV (insASV) and D770_N771insSVD (insSVD) to better understand their drug sensitivity and resistance. From kinetic studies, we found that EGFR insASV and insSVD are similarly active, but have lower Km, ATP values compared to the L858R variant, which contributes to their lack of sensitivity to 1st-3rd generation EGFR TKIs. Biochemical, structural, and cellular studies of a diverse panel of EGFR inhibitors revealed that the more recently developed compounds BAY-568, TAS6417, and TAK-788 inhibit EGFR insASV and insSVD in a mutant-selective manner, with BAY-568 being the most potent and selective versus wild-type (WT) EGFR. Cocrystal structures with WT EGFR reveal the binding modes of each of these inhibitors and of poziotinib, a potent but not mutantselective inhibitor, and together they define interactions shared by the mutant-selective agents. Collectively, our results show that these exon20 insertion variants are not inherently inhibitor resistant, rather they differ in their drug sensitivity from WT EGFR. However, they are similar to each other, indicating that a single inhibitor should be effective for several of the diverse exon 20 insertion variants.
Collapse
Affiliation(s)
- Hanchen Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Jie Jiang
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Jaimin K. Rana
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Jhasmer Santana
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
18
|
de Jager VD, Plomp P, Paats MS, van Helvert S, Elst AT, van den Berg A, Dubbink HJ, van Geffen WH, Zhang L, Hendriks LEL, Hiltermann TJN, Hiddinga BI, Hijmering-Kappelle LBM, Jalving M, Kluiver J, Koopman B, van Kruchten M, van der Logt EMJ, Piet B, van Putten J, Reitsma BH, Rutgers SR, de Vries M, Stigt JA, Groves MR, Timens W, Willems SM, van Kempen LC, Schuuring E, van der Wekken AJ. Molecular Tumor Board of the University Medical Center Groningen (UMCG-MTB): outcome of patients with rare or complex mutational profiles receiving MTB-advised targeted therapy. ESMO Open 2024; 9:103966. [PMID: 39500140 PMCID: PMC11570463 DOI: 10.1016/j.esmoop.2024.103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 11/21/2024] Open
Abstract
PURPOSE Molecular tumor boards (MTBs) are considered beneficial for treatment decision making for patients with cancer with uncommon, rare, or complex mutational profiles. The lack of international MTB guidelines results in significant variation in practices and recommendations. Therefore, periodic follow-up is necessary to assess and govern MTB functioning. The objective of this study was to determine the effectiveness of MTB treatment recommendations for patients with rare and complex mutational profiles as implemented in the MTB of the University Medical Center Groningen (UMCG-MTB) in 2019-2020. PATIENTS AND METHODS A retrospective follow-up study was carried out to determine the clinical outcome of patients with uncommon or rare (combinations of) molecular aberrations for whom targeted therapy was recommended as the next line of treatment by the UMCG-MTB in 2019 and 2020. RESULTS The UMCG-MTB recommended targeted therapy as the next line of treatment in 132 of 327 patients: 37 in clinical trials, 67 in the on-label setting, and 28 in the off-label setting. For on- and off-label treatment recommendations, congruence of recommended and received treatment was 85% in patients with available follow-up (67/79). Treatment with on-label therapy resulted in a response rate of 50% (21/42), a median progression-free survival (PFS) of 6.3 months [interquartile range (IQR) 2.9-14.9 months], and median overall survival (OS) of 15.8 months (IQR 6.4-34.2 months). Treatment with off-label therapy resulted in a response rate of 53% (8/15), a median PFS of 5.1 months (IQR 1.9-7.3 months), and a median OS of 17.7 months (IQR 5.1-23.7 months). CONCLUSION Treatment with MTB-recommended next-line targeted therapy for patients with often heavily pretreated cancer with rare and complex mutational profiles resulted in positive overall responses in over half of patients. Off-label use of targeted therapies, for which there is sufficient rationale as determined by an MTB, is an effective treatment strategy. This study underlines the relevance of discussing patients with rare and complex mutational profiles in an MTB.
Collapse
Affiliation(s)
- V D de Jager
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - P Plomp
- Department of Respiratory Medicine, Isala Hospital, Zwolle, the Netherlands
| | - M S Paats
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - S van Helvert
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - A van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - W H van Geffen
- Department of Pulmonary Diseases, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | - L Zhang
- Structural Biology in Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - L E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T J N Hiltermann
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B I Hiddinga
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - L B M Hijmering-Kappelle
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - B Koopman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M van Kruchten
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E M J van der Logt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Molecular Diagnostics, Pathology Friesland, Leeuwarden, the Netherlands
| | - B Piet
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J van Putten
- Department of Pulmonary Diseases, Martini Hospital, Groningen, the Netherlands
| | - B H Reitsma
- Department of Pulmonology, Nij Smellinghe, Drachten, the Netherlands
| | - S R Rutgers
- Department of Pulmonology, Treant Hospital Group, Scheper Hospital, Emmen, the Netherlands
| | - M de Vries
- Department of Pulmonology, Tjongerschans, Heerenveen, the Netherlands
| | - J A Stigt
- Department of Respiratory Medicine, Isala Hospital, Zwolle, the Netherlands
| | - M R Groves
- Structural Biology in Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - W Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S M Willems
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - L C van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - E Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - A J van der Wekken
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
19
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
20
|
Saini H, Gupta PK, Mahapatra AK, Rajagopala S, Tripathi R, Nesari T. Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective. Sci Rep 2024; 14:23795. [PMID: 39394443 PMCID: PMC11479599 DOI: 10.1038/s41598-024-75059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Breast Cancer (BC) is the most common cause of cancer-associated deaths in females worldwide. Despite advancements in BC treatment driven by extensive characterization of its molecular hallmarks, challenges such as drug resistance, tumor relapse, and metastasis persist. Therefore, there is an urgent need for alternative treatment approaches with multi-modal efficacy to overcome these hurdles. In this context, natural bioactives are increasingly recognized for their pivotal role as anti-cancer compounds. This study focuses on predicting molecular targets for key herbal phytoconstituents-gallic acid, piperine, quercetin, resveratrol, and beta-sitosterol-present in the polyherbal formulation, Krishnadi Churna. Using an in-silico network pharmacology model, key genes were identified and docked against these marker compounds and controls. Mammary carcinoma emerged as the most significant phenotype of the putative targets. Analysis of an online database revealed that out of 135 predicted targets, 134 were mutated in breast cancer patients. Notably, ESR1, CYP19A1, and EGFR were identified as key genes which are known to regulate the BC progression. Docking studies demonstrated that the herbal phytoconstituents had similar or better docking scores than positive controls for these key genes, with convincing protein-ligand interactions confirmed by molecular dynamics simulations, MM/GBSA and free energy landscape (FEL) analysis. Overall, this study highlights the predictive potential of herbal phytoconstituents in targeting BC genes, suggesting their promise as a basis for developing new therapeutic formulations for BC.
Collapse
Affiliation(s)
- Heena Saini
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India.
| | - Prashant Kumar Gupta
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Arun Kumar Mahapatra
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Shrikrishna Rajagopala
- Ayurinformatics Laboratory, Department of Kaumarabhritya (Pediatrics), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Richa Tripathi
- Integrated Translational Molecular Biology Unit (ITMBU), Department of Rog Nidan Evam Vikriti Vigyan (Pathology), All India Institute of Ayurveda, New Delhi, 110076, India
| | - Tanuja Nesari
- Department of DravyaGuna (Materia Medica & Pharmacology), All India Institute of Ayurveda, New Delhi, 110076, India.
| |
Collapse
|
21
|
Michal M, Kuruc J, Hájková V, Michalová K, Klubíčková N. S100 and CD34 positive spindle cell tumors of the uterine cervix with EGFR mutation: a hitherto unrecognized neoplasm phenotypically and epigenetically overlapping with "NTRK-rearranged spindle cell neoplasms" of the uterus. Virchows Arch 2024:10.1007/s00428-024-03936-z. [PMID: 39387892 DOI: 10.1007/s00428-024-03936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
NTRK-rearranged spindle cell neoplasm represents an emerging entity included in the latest 5th edition of WHO classification of both soft tissue and female genital tumors. By immunohistochemistry, they are commonly positive for CD34, S100 protein, and CD30 and typically harbor fusions of kinase genes such as NTRK1/2/3, RET, and BRAF. In the gynecological tract, they typically affect the uterine cervix or uterine body. Most of the reported cases had fibrosarcoma-like morphology, occasionally showing perivascular and stromal hyalinization with only a few cases showing a less cellular spindle cell proliferation. Except for one case with RET fusion, all other gynecological cases harbored exclusively NTRK1/2/3 fusions. Besides kinase gene fusions, the analogous tumors in soft tissues may also harbor activating EGFR or BRAF point mutations, but no such case has been described in the uterus. Herein we are reporting two cases from the uterine cervix showing morphology and molecular features previously unreported at this anatomic site. The patients were 46 and 34 years old and clinically presented with unremarkable cervical polyps each measuring 8 mm in diameter. Histologically, both cases had a rounded polypoid outline and were composed of hypocellular proliferation of bland spindle cells lacking mitotic activity and growing in a fibrotic stroma which was punctuated by prominent small vessels with thick hyalinized walls. Immunohistochemically, both showed a diffuse expression of CD34, CD30, and S100 protein, whereas SOX10 was negative. Both cases harbored exon 20 EGFR mutation and did not reveal any fusions or significant copy number changes. The patient in case 1 was treated by hysterectomy with salpingectomy with no other residual tumor detected, and she was alive and well 27 months after the diagnosis. The patient in case 2 had no other known tumors at the time of diagnosis, but no follow-up is available. We believe the reported cases represent a hitherto unrecognized variant of "NTRK-rearranged spindle cell neoplasms" of the uterine cervix with novel EGFR mutations.
Collapse
Affiliation(s)
- Michael Michal
- Bioptical Laboratory, Ltd., Pilsen, Czech Republic.
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic.
| | | | | | - Květoslava Michalová
- Bioptical Laboratory, Ltd., Pilsen, Czech Republic
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Natálie Klubíčková
- Bioptical Laboratory, Ltd., Pilsen, Czech Republic
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| |
Collapse
|
22
|
Anghel SA, Dinu-Pirvu CE, Costache MA, Voiculescu AM, Ghica MV, Anuța V, Popa L. Receptor Pharmacogenomics: Deciphering Genetic Influence on Drug Response. Int J Mol Sci 2024; 25:9371. [PMID: 39273318 PMCID: PMC11395000 DOI: 10.3390/ijms25179371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The paradigm "one drug fits all" or "one dose fits all" will soon be challenged by pharmacogenetics research and application. Drug response-efficacy or safety-depends on interindividual variability. The current clinical practice does not include genetic screening as a routine procedure and does not account for genetic variation. Patients with the same illness receive the same treatment, yielding different responses. Integrating pharmacogenomics in therapy would provide critical information about how a patient will respond to a certain drug. Worldwide, great efforts are being made to achieve a personalized therapy-based approach. Nevertheless, a global harmonized guideline is still needed. Plasma membrane proteins, like receptor tyrosine kinase (RTK) and G protein-coupled receptors (GPCRs), are ubiquitously expressed, being involved in a diverse array of physiopathological processes. Over 30% of drugs approved by the FDA target GPCRs, reflecting the importance of assessing the genetic variability among individuals who are treated with these drugs. Pharmacogenomics of transmembrane protein receptors is a dynamic field with profound implications for precision medicine. Understanding genetic variations in these receptors provides a framework for optimizing drug therapies, minimizing adverse reactions, and advancing the paradigm of personalized healthcare.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cristina-Elena Dinu-Pirvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Mihaela-Andreea Costache
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Ana Maria Voiculescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", 6 Traian Vuia Str., 020956 Bucharest, Romania
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
23
|
Shi Y, Xu Y, Wang M. Current clinical practice and physicians' insights on Chinese patients with advanced non-small cell lung cancer habouring epidermal growth factor receptor 20 insertion mutation. BMC Cancer 2024; 24:1043. [PMID: 39179992 PMCID: PMC11342509 DOI: 10.1186/s12885-024-12797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND The present study aimed to investigate physicians' perspectives on the diagnosis and treatment decisions for patients with non-small cell lung cancer (NSCLC) harbouring epidermal growth factor receptor (EGFR) exon 20 insertion (exon20ins) mutations in a real-world setting in China using an online questionnaire. METHODS This study was performed via the CAPTRA-Lung collaboration between December 9, 2022 and March 6, 2023. The questionnaire was distributed digitally to physicians around China and was comprised of three sections: basic characteristics of surveyed physicians, diagnosis and treatment status of NSCLC patients with the EGFR exon20ins-mutation, and physicians' perspectives on treatment options. Physicians who treat more than 10 patients with advanced NSCLC every month and who have treated patients with advanced EGFR exon20ins-mutant NSCLC in the past six months were involved in this study. RESULTS A total of 53,729 questionnaires were distributed and 390 valid ones were collected. The EGFR mutation test was performed in 80.9% and 59.9% of patients receiving first-line or second-line therapy and beyond (hereinafter "second-line")therapy, respectively. In terms of treatment options, chemotherapy plus antiangiogenic therapy was the most common treatment option (30.0% of patients in first-line settings; 25.0% of patients in second-line settings), and a certain proportion of patients received novel EGFR exon20ins-targeted agents (including tyrosine kinase inhibitors [TKIs] and bispecific antibodies) in first- or second-line settings, which accounted for 11.9% and 15.7% of all treated patients, respectively. Additionally, physicians reported the highest satisfaction score for the efficacy and safety of targeted agents. Most physicians believed that EGFR exon20ins-targeted TKIs represented the most promising treatment option (80.2% in first-line treatment and 73.3% in second-line treatment). Among several novel agents under study, sunvozertinib has received the highest recognition for efficacy and safety. CONCLUSIONS This study investigated the current diagnosis and treatment status and physicians' perspective, of patients with EGFR exon20ins-mutant NSCLC. The results highlight significant unmet clinical needs in this subgroup of patients. EGFR exon20ins-targeted TKIs were recognized as the most promising treatment regimen and may benefit more patients considering their awareness and acceptance of targeted therapy.
Collapse
Affiliation(s)
- Yuequan Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
TIAN M, WANG N, DOU Z, SONG X, ZHANG X. [EGFR Exon 20 Insertion Mutation: Research Status and New Treatment Strategies]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:579-592. [PMID: 39318251 PMCID: PMC11425684 DOI: 10.3779/j.issn.1009-3419.2024.106.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 09/26/2024]
Abstract
In non-small cell lung cancer (NSCLC), as an improtant oncogenic driver gene, epidermal growth factor receptor exon 20 insertion (EGFR ex20ins) has a unique protein structure and is primarily drug-resistant to traditional EGFR-tyrosine kinase inhibitors (EGFR-TKIs). In recent years, exploration of targeted therapy for EGFR ex20ins has never stopped. Firstly Mobocertinib and Amivantamab obtained approval from U.S. Food and Drug Administration (FDA) for EGFR ex20ins mutant NSCLC patients, then other drugs, such as Sunvozertinib, made breakthroughs and combination therapies also obtained gains. Multi-pronged measures are hopeful to overcome EGFR ex20ins drug resistance. As mentioned above, it's definitely important to gain deeper understanding of molecular mechanism of EGFR ex20ins and assess effect and difference between novel drugs. This review is devoted to make a summary about newest achievement so to provide valuable reference about precise therapy for patients with EGFR ex20ins.
.
Collapse
|
25
|
Kim YJ, Kim S, Kim TM, Suh KJ, Kim M, Kim SH, Keam B, Kim DW, Lee JS, Heo DS. A phase II study of osimertinib in patients with NSCLC harboring EGFR exon 20 insertion: A multicenter trial of the Korean Cancer Study Group (LU17-19). Lung Cancer 2024; 194:107870. [PMID: 38986212 DOI: 10.1016/j.lungcan.2024.107870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) exon 20 insertions account for up to 10% of all EGFR mutations. Clinical outcomes in patients receiving approved EGFR exon 20 insertion-specific inhibitors have been variable. Although osimertinib has demonstrated antitumor activity in clinical trials, its clinical efficacy and translational potential remain to be determined in non-small cell lung carcinoma (NSCLC) with EGFR exon 20 insertion. METHODS In this multicenter phase II study, patients with advanced NSCLC harboring EGFR exon 20 insertions for whom the standard chemotherapy failed received 80 mg osimertinib once daily. The primary endpoint was the investigator-assessed objective response rate (ORR) as defined by Response Evaluation Criteria in Solid Tumors version 1.1. The secondary endpoints were progression-free survival (PFS), overall survival (OS), and safety profile. RESULTS Among 15 patients enrolled at stage 1, the best response was most commonly disease stabilization (73.3 %), which did not meet the stage 1 threshold (objective response ≥ 2/15). As of data cutoff, two patients remained on the treatment. The median PFS and OS were 3.8 (95 % confidence interval [CI] = 1.7-5.5) months and 6.5 (95 % CI = 3.9-not reached) months, respectively. Adverse events (≥grade 3) were anemia, hypercalcemia, and pneumonia (13.3 % each), and asthenia, femur fracture, increased alkaline phosphate, hyperkalemia, bone pain, and azotemia (6.7 % each). Pre-existing EGFR C797S mutation detected in plasma limited the efficacy of osimertinib. CONCLUSION Osimertinib at 80 mg once daily had limited efficacy and mostly showed disease stabilization with an acceptable safety profile in advanced NSCLC harboring EGFR exon 20 insertions. CLINICALTRIALS govIdentifier: NCT03414814.
Collapse
Affiliation(s)
- Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
26
|
Park J, Lee B, Song JY, Sung M, Kwon MJ, Kim CR, Lee S, Shin YK, Choi YL. Detection of EGFR exon 20 insertion mutations in non-small cell lung cancer: implications for consistent nomenclature in precision medicine. Pathology 2024; 56:653-661. [PMID: 38811262 DOI: 10.1016/j.pathol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024]
Abstract
Epidermal growth factor receptor (EGFR) exon 20 insertion mutations (E20ins) are the third most frequent mutations observed in non-small cell lung cancer, accounting for approximately 1-10% of all EGFR mutations. In the era of precision medicine and targeted therapies, consistent naming of genetic alterations is crucial to avoid confusion and errors. However, the annotation of EGFR E20ins mutations has been inconsistent, leading to confusion in the scientific literature and product documentation. In this study, our primary objective was to investigate the usage of different annotation related to EGFR E20ins in independent studies. Additionally, we assessed the distribution of EGFR E20ins mutations and estimated the detection coverage expected from each available EGFR E20ins detection assay. A total of 1,418 EGFR E20ins mutations were collected from six studies (FoundationInsights, Geneseeq Technology Inc, mobocertinib phase I/II trial, poziotinib phase II trial, sunvozertinib phase I trial, and Samsung Medical Center) and reorganised according to Human Genome Variation Society (HGVS) nomenclature. Our analysis revealed that the majority of EGFR E20ins mutations requiring correction were 'insertion' or 'deletion-insertion', which should be appropriately designated as 'duplication'. Additionally, duplicated variants were reported using different annotations in each study, and furthermore, even identical variant sequences were annotated differently within the same study. In all six studies, p.A767_V769dup and p.S768_D770dup were the most frequently observed EGFR E20ins. The Oncomine Dx Target Test showed the highest patient coverage at 77.2%, followed by the Droplex EGFR Mutation Test v2 with a patient coverage of 70.5% for EGFR E20ins patients. To ensure comprehensive coverage in real-world settings, it is essential to standardise the annotations for each variant, for example using the HGVS nomenclature. The accurate classification and analysis of drug responsiveness in EGFR E20ins necessitate consideration of the nomenclature, particularly with respect to the locations where the actual mutations occur.
Collapse
Affiliation(s)
- Jieun Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Boram Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji-Young Song
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Minjung Sung
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, South Korea; BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Chae Rin Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Sangjin Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
27
|
[Chinese Expert Consensus on the Standardized Diagnosis and Treatment of
Non‑small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations (2024 Edition)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:485-494. [PMID: 39147702 PMCID: PMC11331255 DOI: 10.3779/j.issn.1009-3419.2024.102.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 08/17/2024]
Abstract
The standard clinical practice of managing the non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations was elaborated in Chinese expert consensus on non‑small cell lung cancer with EGFR exon 20 insertion mutations (2023 edition), and this rare subset has gradually attracted attention recently. With the deepening of treatment area exploration and the approval of new targeted drugs, there are more options for the diagnosis and treatment of EGFR ex20ins positive NSCLC patients. Therefore, based on the previous version of consensus, the expert panel has updated this consensus on the standardized clinical diagnosis and treatment of EGFR ex20ins mutation NSCLC through reference to literature and clinical data, and combined with the experts' own clinical experience. The updated recommendations includes disease congnition, testing methods, therapy and recent relevant clinical trials for NSCLC patients with EGFR ex20ins mutation, in order to provide better medication reference for clinical physicians.
.
Collapse
|
28
|
Jia G, Bashir S, Ye M, Li Y, Lai M, Cai L, Xu M. Furmonertinib and intrathecal pemetrexed chemotherapy rechallenges osimertinib-refractory leptomeningeal metastasis in a non-small cell lung cancer patient harboring EGFR20 R776S, C797S, and EGFR21 L858R compound EGFR mutations: a case report. Anticancer Drugs 2024; 35:542-547. [PMID: 38513197 DOI: 10.1097/cad.0000000000001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are considered the first-line treatment for advanced or metastatic non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, due to the rarity of cases, the response of EGFR-TKIs in patients harboring uncommon compound EGFR mutations still needs to be determined. Here, we demonstrated the case of a 47-year-old smoker diagnosed with leptomeningeal metastasis from NSCLC and had EGFR20 R776S, C797S, and EGFR21 L858R compound mutations. He was treated with furmonertinib combined with intrathecal pemetrexed chemotherapy following progression on osimertinib, which led to clinical improvement and successfully prolonged his survival by 3 months. Regrettably, the patient eventually died from heart disease. This report provides the first reported evidence for the use of furmonertinib and intrathecal pemetrexed chemotherapy in NSCLC patients harboring EGFR R776S/C797S/L858R mutations who progressed on previous EGFR-TKIs.
Collapse
Affiliation(s)
- Guoxia Jia
- Oncology Department, First Affiliated Hospital of Jinan University
| | - Shoaib Bashir
- Oncology Department, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Minting Ye
- Oncology Department, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Yin Li
- Oncology Department, First Affiliated Hospital of Jinan University
| | - Mingyao Lai
- Oncology Department, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Linbo Cai
- Oncology Department, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Meng Xu
- Oncology Department, First Affiliated Hospital of Jinan University
| |
Collapse
|
29
|
Ou SHI, Le X, Nagasaka M, Reungwetwattana T, Ahn MJ, Lim DWT, Santos ES, Shum E, Lau SCM, Lee JB, Calles A, Wu F, Lopes G, Sriuranpong V, Tanizaki J, Horinouchi H, Garassino MC, Popat S, Besse B, Rosell R, Soo RA. Top 20 EGFR+ NSCLC Clinical and Translational Science Papers That Shaped the 20 Years Since the Discovery of Activating EGFR Mutations in NSCLC. An Editor-in-Chief Expert Panel Consensus Survey. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:87-114. [PMID: 38938224 PMCID: PMC11208875 DOI: 10.2147/lctt.s463429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
The year 2024 is the 20th anniversary of the discovery of activating epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Since then, tremendous advances have been made in the treatment of NSCLC based on this discovery. Some of these studies have led to seismic changes in the concept of oncology research and spurred treatment advances beyond NSCLC, leading to a current true era of precision oncology for all solid tumors. We now routinely molecularly profile all tumor types and even plasma samples of patients with NSCLC for multiple actionable driver mutations, independent of patient clinical characteristics nor is profiling limited to the advanced incurable stage. We are increasingly monitoring treatment responses and detecting resistance to targeted therapy by using plasma genotyping. Furthermore, we are now profiling early-stage NSCLC for appropriate adjuvant targeted treatment leading to an eventual potential "cure" in early-stage EGFR+ NSCLC which have societal implication on implementing lung cancer screening in never-smokers as most EGFR+ NSCLC patients are never-smokers. All these advances were unfathomable in 2004 when the five papers that described "discoveries" of activating EGFR mutations (del19, L858R, exon 20 insertions, and "uncommon" mutations) were published. To commemorate this 20th anniversary, we assembled a global panel of thoracic medical oncology experts to select the top 20 papers (publications or congress presentation) from the 20 years since this seminal discovery with December 31, 2023 as the cutoff date for inclusion of papers to be voted on. Papers ranked 21 to 30 were considered "honorable mention" and also annotated. Our objective is that these 30 papers with their annotations about their impact and even all the ranked papers will serve as "syllabus" for the education of future thoracic oncology trainees. Finally, we mentioned potential practice-changing clinical trials to be reported. One of them, LAURA was published online on June 2, 2024 was not included in the list of papers to be voted on but will surely be highly ranked if this consensus survery is performed again on the 25th anniversay of the discovery EGFR mutations (i.e. top 25 papers on the 25 years since the discovery of activating EGFR mutations).
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Xiuning Le
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Myung-Ju Ahn
- Department of Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Darren W T Lim
- Duke-NUS School of medicine, National Cancer Center Singapore, Republic of Singapore
| | - Edgardo S Santos
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Elaine Shum
- NYU Langone Perlmutter Cancer Center, NY, NY, USA
| | | | - Jii Bum Lee
- Yonsei Cancer Center Yonsei University, Seoul, Republic of Korea
| | - Antonio Calles
- Department of Medicine, Division of Medical Oncology, Early Drug Development and Phase I Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Fengying Wu
- Shanghai Chest hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Gilberto Lopes
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center at the University of Miami and the Miller School of Medicine, Miami, FL, 33136, USA
| | - Virote Sriuranpong
- Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Junko Tanizaki
- Department of Medicine, Kindai University School of Medicine, Osaka, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital Tokyo, Tokyo, Japan
| | - Marina C Garassino
- Department of Medicine, Division of Medical Oncology-Hematology, University of Chicago Medicine, Chicago, IL, USA
| | - Sanjay Popat
- Royal Marsden Hospital, London, Imperial College, London, UK
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Orsay, France
| | - Rafael Rosell
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital Singapore, Republic of Singapore
| | - Ross A Soo
- IOR, Quirón-Dexeus University Institute; ICO, Catalan Institute of Oncology; IGTP, Germans Trias i Pujol Research Institute, Barcelona, Spain
| |
Collapse
|
30
|
Tóth LJ, Mokánszki A, Méhes G. The rapidly changing field of predictive biomarkers of non-small cell lung cancer. Pathol Oncol Res 2024; 30:1611733. [PMID: 38953007 PMCID: PMC11215025 DOI: 10.3389/pore.2024.1611733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Lung cancer is a leading cause of cancer-related death worldwide in both men and women, however mortality in the US and EU are recently declining in parallel with the gradual cut of smoking prevalence. Consequently, the relative frequency of adenocarcinoma increased while that of squamous and small cell carcinomas declined. During the last two decades a plethora of targeted drug therapies have appeared for the treatment of metastasizing non-small cell lung carcinomas (NSCLC). Personalized oncology aims to precisely match patients to treatments with the highest potential of success. Extensive research is done to introduce biomarkers which can predict the effectiveness of a specific targeted therapeutic approach. The EGFR signaling pathway includes several sufficient targets for the treatment of human cancers including NSCLC. Lung adenocarcinoma may harbor both activating and resistance mutations of the EGFR gene, and further, mutations of KRAS and BRAF oncogenes. Less frequent but targetable genetic alterations include ALK, ROS1, RET gene rearrangements, and various alterations of MET proto-oncogene. In addition, the importance of anti-tumor immunity and of tumor microenvironment has become evident recently. Accumulation of mutations generally trigger tumor specific immune defense, but immune protection may be upregulated as an aggressive feature. The blockade of immune checkpoints results in potential reactivation of tumor cell killing and induces significant tumor regression in various tumor types, such as lung carcinoma. Therapeutic responses to anti PD1-PD-L1 treatment may correlate with the expression of PD-L1 by tumor cells. Due to the wide range of diagnostic and predictive features in lung cancer a plenty of tests are required from a single small biopsy or cytology specimen, which is challenged by major issues of sample quantity and quality. Thus, the efficacy of biomarker testing should be warranted by standardized policy and optimal material usage. In this review we aim to discuss major targeted therapy-related biomarkers in NSCLC and testing possibilities comprehensively.
Collapse
Affiliation(s)
- László József Tóth
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
31
|
Man X, Sun X, Chen C, Xiang Y, Zhang J, Yang L. The current landscape, advancements, and prospects in the treatment of patients with EGFR exon 20 insertion mutations warrant scientific elucidation. Front Oncol 2024; 14:1367204. [PMID: 38919530 PMCID: PMC11196869 DOI: 10.3389/fonc.2024.1367204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations are the third most prevalent mutation in non-small cell lung cancer (NSCLC), following the 19del and L858R mutations. The unique nature of the EGFR ex20ins mutation poses challenges for the effectiveness of first- and second-generation EGFR tyrosine kinase inhibitors (TKIs). As a result, chemotherapy remains the primary and more effective treatment approach. However, with advancements in time and technology, numerous experimental studies have revealed the potential of novel drugs and therapies to have stronger inhibitory effects on EGFR ex20ins mutations. In this comprehensive review, we provide an overview of the current treatment landscape, recent advancements, and the prospects for patients with advanced NSCLC characterized by EGFR ex20ins mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Favorito V, Ricciotti I, De Giglio A, Fabbri L, Seminerio R, Di Federico A, Gariazzo E, Costabile S, Metro G. Non-small cell lung cancer: an update on emerging EGFR-targeted therapies. Expert Opin Emerg Drugs 2024; 29:139-154. [PMID: 38572595 DOI: 10.1080/14728214.2024.2331139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Current research in EGFR-mutated NSCLC focuses on the management of drug resistance and uncommon mutations, as well as on the opportunity to extend targeted therapies' field of action to earlier stages of disease. AREAS COVERED We conducted a review analyzing literature from the PubMed database with the aim to describe the current state of art in the management of EGFR-mutated NSCLC, but also to explore new strategies under investigation. To this purpose, we collected recruiting phase II-III trials registered on Clinicaltrials.govand conducted on EGFR-mutated NSCLC both in early and advanced stage. EXPERT OPINION With this review, we want to provide an exhaustive overview of current and new potential treatments in EGFR-mutated NSCLC, with emphasis on the most promising newly investigated strategies, such as association therapies in the first-line setting involving EGFR-TKIs and chemotherapy (FLAURA2) or drugs targeting different driver pathways (MARIPOSA). We also aimed at unearthing challenges to achieve in this field, specifically the need to fully exploit already available compounds while developing new ones, the management of new emerging toxicities and the necessity to improve our biological understanding of the disease to design trials with a solid scientific rationale and to allow treatment personalization such in case of uncommon mutations.
Collapse
Affiliation(s)
- Valentina Favorito
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Fabbri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Renata Seminerio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Gariazzo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Costabile
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
33
|
Xu Y, Jia L, Zhang L, Wang H, Jiang L, Feng X, Wei R, Yao Q, Ren M, Xue T, Li Y, Zhu X, Zhou X, Bai Q. Comprehensive analysis of next generation sequencing and ARMS-PCR for detecting EGFR exon 20 insertion (ex20ins) mutations in Chinese non-small cell lung cancer patients. Transl Lung Cancer Res 2024; 13:986-997. [PMID: 38854943 PMCID: PMC11157361 DOI: 10.21037/tlcr-23-848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Background Amivantamab (JNJ-372) and mobocertinib (TAK-788) have been reported to have favorable therapeutic effect for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations. Thus, accurate detection of EGFR ex20ins mutations is crucial for subsequent individualized therapy. The aim of this study was to compare the two common methods of next generation sequencing (NGS) and amplification refractory mutation system polymerase chain reaction (ARMS-PCR) for detecting EGFR ex20ins mutations in Chinese NSCLC patients. Methods We retrospectively analyzed EGFR mutations, especially for ex20ins, in 3,606 NSCLC patients detected by NGS and 1,785 patients by ARMS. Results Among the 3,606 NGS patients, a total of 2,077 EGFR mutations and 95 EGFR ex20ins were identified, accounting for 57.6% and 2.6%, respectively. While 48.4% of EGFR mutations and 1.1% of ex20ins were detected in 1,785 ARMS patients, which were significantly lower than those of NGS (P<0.01). Thirty-four unique ex20ins variants were identified by NGS, and eight of them was reported for the first time. However, ARMS was designed to detect only several known EGFR ex20ins variants, and even did not include the most common variants in Chinese NSCLC patients. Conclusions NGS is more advantageous and strongly recommended for the detection of EGFR ex20ins mutations. Considering the fast and cost-effective ARMS detection method, it is suggested that the primers design should be updated according to the characteristics of EGFR ex20ins mutations in Chinese NSCLC patients.
Collapse
Affiliation(s)
- Yuyin Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Liqing Jia
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ling Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Haochen Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Lin Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xu Feng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoli Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Seo D, Lim JH. Targeted Therapies for EGFR Exon 20 Insertion Mutation in Non-Small-Cell Lung Cancer. Int J Mol Sci 2024; 25:5917. [PMID: 38892105 PMCID: PMC11172945 DOI: 10.3390/ijms25115917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) frequently harbors mutations in the epidermal growth factor receptor (EGFR), with exon 20 insertions comprising 1-10% of these mutations. EGFR exon 20 insertions are less responsive to conventional tyrosine kinase inhibitors (TKIs), leading to the development of targeted agents. This review explores key therapeutic agents, such as Amivantamab, Mobocertinib, Poziotinib, Zipalertinib, and Sunvozertinib, which have shown promise in treating NSCLC with EGFR exon 20 insertions. Amivantamab, a bispecific antibody-targeting EGFR and c-MET, demonstrates significant efficacy, particularly when combined with chemotherapy. Mobocertinib, a TKI, selectively targets EGFR exon 20 mutations but faces limitations in efficacy. Poziotinib, another oral TKI, shows mixed results due to mutation-specific responses. Zipalertinib and Sunvozertinib have emerged as potent TKIs with promising clinical data. Despite these advances, challenges in overcoming resistance mutations and improving central nervous system penetration remain. Future research should focus on optimizing first-line combination therapies and enhancing diagnostic strategies for comprehensive mutation profiling.
Collapse
Affiliation(s)
- Donghyun Seo
- Department of Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Jun Hyeok Lim
- Division of Pulmonology, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
35
|
Zeng L, Song L, Liu L, Wu F, Xu Q, Yan H, Lin S, Jiang W, Wang Z, Deng L, Qin H, Zhang X, Xiao J, Liu M, Liu Z, Zhang L, Zhou C, Xiong Y, Wang Y, Zhang Y, Yang N. First-in-human phase I study of BEBT-109 in previously treated EGFR exon 20 insertion-mutated advanced non-small cell lung cancer. MED 2024; 5:445-458.e3. [PMID: 38521070 DOI: 10.1016/j.medj.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/14/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND BEBT-109 is an oral pan-mutant-selective inhibitor of epidermal growth factor receptor (EGFR) that demonstrated promising antitumor potency in preclinical models. METHODS This first-in-human study was a single-arm, open-label, two-stage study. Phase Ia dose-escalation study evaluated the safety and pharmacokinetics of BEBT-109 in 11 patients with EGFR T790M-mutated advanced non-small cell lung cancer (aNSCLC). Phase Ib dose-expansion study evaluated the safety and efficacy of BEBT-109 in 18 patients with EGFR exon 20 insertion (ex20ins)-mutated treatment-refractory aNSCLC. The primary outcomes were adverse events and antitumor activity. Clinical trial registration number CTR20192575. FINDINGS The phase Ia study demonstrated no dose-limiting toxicity, no observation of the maximum tolerated dose, and no new safety signals with BEBT-109 in the dose range of 20-180 mg/d, suggesting that BEBT-109 had an acceptable safety profile among patients with EGFR T790M-mutated aNSCLC. Plasma pharmacokinetics of BEBT-109 showed a dose-proportional increase in the area under the curve and maximal concentration, with no significant drug accumulation. The dose-expansion study demonstrated that BEBT-109 treatment was tolerable across the three dose levels. The three most common treatment-related adverse events were diarrhea (100%; 22.2% ≥Grade 3), rash (66.7%; 5.6% ≥Grade 3), and anemia (61.1%; 0% ≥Grade 3). The objective response rate was 44.4% (8 of 18). Median progression-free survival was 8.0 months (95% confidence intervals, 1.33-14.67). CONCLUSION Preliminary findings showed that BEBT-109 had an acceptable safety profile and favorable antitumor activity in patients with refractory EGFR ex20ins-mutated aNSCLC. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lianxi Song
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Liu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Fang Wu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Huan Yan
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 20025, China
| | - Shaoding Lin
- Department of Medical Oncology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xing Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiwen Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Huaihua, Huaihua 418000, China
| | - Min Liu
- Department of Medical Oncology, The Central Hospital of Zhuzhou, Zhuzhou 418012, China
| | - Zhaoyi Liu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Lin Zhang
- Department of Radiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chunhua Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi Xiong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ya Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
36
|
Hu M, Zhong C, Wang J, Chen J, Zhou T. Current status and breakthroughs in treating advanced non-small cell lung cancer with EGFR exon 20 insertion mutations. Front Immunol 2024; 15:1399975. [PMID: 38774882 PMCID: PMC11106363 DOI: 10.3389/fimmu.2024.1399975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.
Collapse
Affiliation(s)
- Meng Hu
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Congying Zhong
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jiabing Wang
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - JinQin Chen
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Zhou
- Department of Chinese and Western Medicine Oncology, Jiangxi Provincial People’s Hospital, Nanchang, China
| |
Collapse
|
37
|
Okahisa M, Udagawa H, Matsumoto S, Kato T, Yokouchi H, Furuya N, Kanemaru R, Toyozawa R, Nishiyama A, Ohashi K, Miyamoto S, Nishino K, Nakamura A, Iwama E, Niho S, Oi H, Sakai T, Shibata Y, Izumi H, Sugiyama E, Nosaki K, Umemura S, Zenke Y, Yoh K, Kah Mun Low G, Zhuo J, Goto K. Clinical outcomes in patients with non-small cell lung cancer harboring EGFR Exon20 in-frame insertions in the near-loop and far-loop: Results from LC-SCRUM-Asia. Lung Cancer 2024; 191:107798. [PMID: 38669727 DOI: 10.1016/j.lungcan.2024.107798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES In this study, we explored the clinical outcomes of non-small cell lung cancer (NSCLC) patients with EGFR Exon20 in-frame insertions (Exon20ins), and the impact of the location of Exon20ins on these clinical outcomes. MATERIALS AND METHODS The efficacies of current systemic therapies in NSCLC patients harboring Exon20ins were investigated using a large-scale clinico-genomic database of LC-SCRUM-Asia, and compared with that of amivantamab in the CHRYSALIS trial. RESULTS Of the 11,397 patients enrolled in LC-SCRUM-Asia, Exon20ins were detected in 189 patients (1.7 %). Treatment with classical EGFR tyrosine-kinase inhibitors (classical TKIs) was associated with a significantly shorter progression-free survival (PFS) in NSCLC patients with Exon20ins as compared with Exon19 deletions and L858R. Post platinum-based chemotherapy, classical TKIs and immune checkpoint inhibitors (ICIs) were associated with a shorter PFS than with docetaxel in patients with Exon20ins (HR [95 % CI]; TKIs vs docetaxel, 2.16 [1.35-3.46]; ICIs vs docetaxel, 1.49 [1.21-1.84]). Patients treated with amivantamab in the CHRYSALIS trial showed a risk reduction in PFS and overall survival as compared with LC-SCRUM-Asia patients treated with docetaxel, classical TKIs, or ICIs. Among the 189 patients, Exon20ins were classified as near-loop or far-loop insertions in 115 (61 %) and 56 (30 %) patients, respectively. Treatment with osimertinib was associated with a longer PFS in patients with Exon20ins in near-loop as compared with far-loop (median, 5.6 vs. 2.0 months; HR [95 % CI], 0.22 [0.07-0.64]). CONCLUSIONS After platinum-based chemotherapy, classical TKIs and ICIs are less effective in NSCLC patients with Exon20ins, and amivantamab may be a promising targeted therapy. There is a possibility that the location of Exon20ins has an impact on the efficacy of TKIs.
Collapse
Affiliation(s)
- Masanobu Okahisa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; Cancer Medicine, Cooperative Graduate School, The Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroshi Yokouchi
- Department of Respiratory Medicine, Hokkaido Cancer Center, Sapporo, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ryota Kanemaru
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Akihiro Nishiyama
- Divisions of Medical Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Japan
| | - Hajime Oi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eri Sugiyama
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Grace Kah Mun Low
- Medical Affairs, Janssen Asia Pacific, a division of Johnson & Johnson International (Singapore) Pte. Ltd, Singapore
| | - Jianmin Zhuo
- Statistics and Decision Science, Janssen China Research & Development, China
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
38
|
Zavaleta-Monestel E, García-Montero J, Arguedas-Chacón S, Quesada-Villaseñor R, Barrantes-López M, Arroyo-Solís R, Zuñiga-Orlich CE. Amivantamab: A Novel Advance in the Treatment of Non-small Cell Lung Cancer. Cureus 2024; 16:e60851. [PMID: 38910714 PMCID: PMC11191844 DOI: 10.7759/cureus.60851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Amivantamab is a fully human bispecific monoclonal antibody indicated for treating patients with specifically large cell lung cancer. Its dosage is based on the patient's initial body weight and is administered via intravenous infusion after dilution. Therefore, this drug is given as a strategy due to the great need for a molecule targeting epidermal growth factor receptor (EGFR) and the mesenchymal-epithelial transition factor (MET), as acquired resistance to tyrosine kinase inhibitors (TKIs) was observed in the treatment of large cell lung cancer. This article encompasses a review of the benefits of amivantamab for patients with non-small cell lung cancer (NSCLC). This drug is the first therapy directed against this specific mutation, and unlike others, it could bind to two genetic receptors, whereas antibodies, in general, are directed toward a single receptor.
Collapse
|
39
|
Zhang MS, Yeh YC, Huang HN, Lin LW, Huang YL, Wang LC, Yao LJ, Hung TC, Tseng YF, Lee YH, Liao WY, Shih JY, Hsieh MS. The association of EGFR amplification with aberrant exon 20 insertion report using the cobas EGFR Mutation Test v2. PLoS One 2024; 19:e0301120. [PMID: 38687753 PMCID: PMC11060574 DOI: 10.1371/journal.pone.0301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Determining the exact type of epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutation in lung cancer has become important. We found that not all ex20ins mutations reported by cobas EGFR test v2 could be validated by Sanger sequencing even using surgical specimens with high tumor contents. This study aimed to validate the ex20ins results reported by the cobas test and to determine whether there were clinicopathological factors associated with aberrant cobas ex20ins report. In total, 123 cobas-reported cases with ex20ins were retrospectively collected and validated by Sanger sequencing and Idylla assay. Clinicopathological features between ex20ins cobas+/Sanger+ group (n = 71) and cobas+/Sanger- group (n = 52) were compared. The Idylla assay detected ex20ins in 82.6% of cobas+/Sanger+ cases but only in 4.9% of cobas+/Sanger- cases. The cobas+/Sanger- group was significantly associated with higher tumor contents, poorly differentiated patterns, tumor necrosis, and a lower internal control cycle threshold value reported by the Idylla which suggesting the presence of increased EGFR gene copy numbers. EGFR fluorescence in situ hybridization (FISH) revealed the majority of cobas+/Sanger- group had EGFR high copy number gain (16%) or amplification (76%) according to the Colorado criteria. Among cases reported to have concomitant classic EGFR and ex20ins mutations by the cobas, the classic EGFR mutations were all detected by Sanger sequencing and Idylla, while the ex20ins mutations were undetected by Sanger sequencing (0%) or rarely reported by Idylla assay (3%). FISH revealed high EGFR copy number gain (17.9%) and amplification (79.5%) in cases reported having concomitant classic EGFR and ex20ins mutations by the cobas. This study demonstrated an unusually high frequency of EGFR amplification in cases with aberrant cobas ex20ins report which could not be validated by Sanger sequencing or Idylla assay. Ex20ins reported by the cobas test should be validated using other methods especially those reported having concomitant ex20ins and classic EGFR mutations.
Collapse
Affiliation(s)
- Man-San Zhang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsien-Neng Huang
- Department of Pathology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Long-Wei Lin
- Department of Pathology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Lei-Chi Wang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lai-Jin Yao
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tze-Chun Hung
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Fen Tseng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Yu Liao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Yuan Shih
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
40
|
Cheng L, Chen L, Shi Y, Gu W, Ding W, Zheng X, Liu Y, Jiang J, Zheng Z. Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: a real-world comparison. Mol Cancer 2024; 23:77. [PMID: 38627681 PMCID: PMC11020943 DOI: 10.1186/s12943-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Linyan Cheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weidong Ding
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
41
|
Yang L, Li Y, Du Y, Guo Y, Guo Z, Liu B, Liu J, Liu Y, Niu H, Sun Y, Yan H, Yang Y, Yu S, Zhang Y, Zhang Y, Zheng K, Zheng N, Zhang X, Zhang Q, Hu L. Discovery of Novel 5,6-Dihydro-4 H-pyrido[2,3,4- de]quinazoline Irreversible Inhibitors Targeting Both Wild-Type and A775_G776insYVMA Mutated HER2 Kinases. J Med Chem 2024; 67:5662-5682. [PMID: 38518121 DOI: 10.1021/acs.jmedchem.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
HER2 mutations were seen in 4% of non-small-cell lung cancer (NSCLC) patients. Most of these mutations (90%) occur as an insertion mutation within the exon 20 frame, leading to the downstream activation of the PI3K-AKT and RAS/MAPK pathways. However, no targeted therapies have yet been approved worldwide. Here a novel series of highly potent HER2 inhibitors with a pyrido[2,3,4-de]quinazoline core were designed and developed. The derivatives with the pyrido[2,3,4-de]quinazoline core displayed superior efficacy of antiproliferation in BaF3 cells harboring HER2insYVMA mutation compared with afatinib and neratinib. Rat studies showed that 8a and 9a with the newly developed core have good pharmacokinetic properties with an oral bioavailability of 41.7 and 42.0%, respectively. Oral administration of 4a and 10e (30 mg/kg, QD) displayed significant antitumor efficacy in an in vivo xenograft model. We proposed promising strategies for the development of HER2insYVMA mutant inhibitors in this study.
Collapse
Affiliation(s)
- Leifu Yang
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yaxin Li
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yunling Du
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yan Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Zhenke Guo
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Baoxiu Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Jianglin Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yanfei Liu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Hongdan Niu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yueming Sun
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Henglin Yan
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yajuan Yang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Shannan Yu
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yifan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Yuan Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Kun Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Nanqiao Zheng
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Xiaoqing Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Qiang Zhang
- . . Beijing Scitech MQ Pharmaceuticals Ltd., Beijing 101320, China
| | - Liming Hu
- . College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
- . Beijing Key Laboratory of Environmental and Viral Oncology, Beijing 100124, China
| |
Collapse
|
42
|
Hu S, Ming H, He Q, Ding M, Ding H, Li C. A study of high dose furmonertinib in EGFR exon 20 insertion mutation-positive advanced non-small cell lung cancer. Front Oncol 2024; 14:1314301. [PMID: 38651148 PMCID: PMC11033419 DOI: 10.3389/fonc.2024.1314301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background The epidermal growth factor receptor (EGFR) ex20ins mutation, as a rare subtype of mutation, has gradually attracted attention. Its heterogeneity is high, its prognosis is extremely poor, and the efficacy of existing traditional treatment plans is limited. In this study, we aimed to evaluate efficacy of high dose furmonertinib as a first-line treatment for EGFR ex20ins-positive NSCLC. Methods This is a retrospective, multi-center, non-interventional study. From May 2021 to March 2023, 9 NSCLC patients with EGFR ex20ins were enrolled. Efficacy and safety of 160 mg furmonertinib were evaluated. Objective response rate (ORR), disease control rate (DCR), median progression-free survival (PFS) and treatment related adverse events (TRAEs) were assessed. Results Of the evaluated patients, six patients experienced partial remission (PR), two patients experienced stable disease (SD) and one patient experienced progress disease (PD). Data indicated 66.7% ORR and 88.9% DCR. The median progression free survival (PFS) was 7.2 months (95% CI: 6.616 - 7.784). Besides, a longgest PFS with 18 months was found in one patient with p.H773_V774insGTNPH mutation. No ≥ level 3 adverse events have been found. Conclusions The study proved the potential efficacy of 160mg furmonertinib in patients with advanced NSCLC with EGFR ex20ins. Meanwhile, 160mg furmonertinib had a good safety profile.
Collapse
Affiliation(s)
- Song Hu
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Ming
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian He
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ming Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hao Ding
- Division of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chong Li
- Department of Respiratory and Critical Care Medicine, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
43
|
Zhang J, Liu X, Sa N, Zhang JH, Cai YS, Wang KM, Xu W, Jiang CS, Zhu KK. Synthesis and biological evaluation of 1-phenyl-tetrahydro-β-carboline-based first dual PRMT5/EGFR inhibitors as potential anticancer agents. Eur J Med Chem 2024; 269:116341. [PMID: 38518523 DOI: 10.1016/j.ejmech.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Protein arginine methyltransferase 5 (PRMT5) and epidermal growth factor receptor (EGFR) are both involved in the regulation of various cancer-related processes, and their dysregulation or overexpression has been observed in many types of tumors. In this study, we designed and synthesized a series of 1-phenyl-tetrahydro-β-carboline (THβC) derivatives as the first class of dual PRMT5/EGFR inhibitors. Among the synthesized compounds, 10p showed the most potent dual PRMT5/EGFR inhibitory activity, with IC50 values of 15.47 ± 1.31 and 19.31 ± 2.14 μM, respectively. Compound 10p also exhibited promising antiproliferative activity against A549, MCF7, HeLa, and MDA-MB-231 cell lines, with IC50 values below 10 μM. Molecular docking studies suggested that 10p could bind to PRMT5 and EGFR through hydrophobic, π-π, and cation-π interactions. Furthermore, 10p displayed favorable pharmacokinetic properties and oral bioavailability (F = 30.6%) in rats, and administrated orally 10p could significantly inhibit the growth of MCF7 orthotopic xenograft tumors. These results indicate that compound 10p is a promising hit compound for the development of novel and effective dual PRMT5/EGFR inhibitors as potential anticancer agents.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China; School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xuliang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Na Sa
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jin-He Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yong-Si Cai
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250012, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
44
|
Ferro A, Marinato GM, Mulargiu C, Marino M, Pasello G, Guarneri V, Bonanno L. The study of primary and acquired resistance to first-line osimertinib to improve the outcome of EGFR-mutated advanced Non-small cell lung cancer patients: the challenge is open for new therapeutic strategies. Crit Rev Oncol Hematol 2024; 196:104295. [PMID: 38382773 DOI: 10.1016/j.critrevonc.2024.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
The development of targeted therapy in epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) patients has radically changed their clinical perspectives. Current first-line standard treatment for advanced disease is commonly considered third-generation tyrosine kinase inhibitors (TKI), osimertinib. The study of primary and acquired resistance to front-line osimertinib is one of the main burning issues to further improve patients' outcome. Great heterogeneity has been depicted in terms of duration of clinical benefit and pattern of progression and this might be related to molecular factors including subtypes of EGFR mutations and concomitant genetic alterations. Acquired resistance can be categorized into two main classes: EGFR-dependent and EGFR-independent mechanisms and specific pattern of progression to first-line osimertinib have been demonstrated. The purpose of the manuscript is to provide a comprehensive overview of literature about molecular resistance mechanisms to first-line osimertinib, from a clinical perspective and therefore in relationship to emerging therapeutic approaches.
Collapse
Affiliation(s)
- Alessandra Ferro
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Gian Marco Marinato
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Cristiana Mulargiu
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Monica Marino
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Valentina Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Laura Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy.
| |
Collapse
|
45
|
Iyer RS, Needham SR, Galdadas I, Davis BM, Roberts SK, Man RCH, Zanetti-Domingues LC, Clarke DT, Fruhwirth GO, Parker PJ, Rolfe DJ, Gervasio FL, Martin-Fernandez ML. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers. Nat Commun 2024; 15:2130. [PMID: 38503739 PMCID: PMC10951324 DOI: 10.1038/s41467-024-46284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently found to be mutated in non-small cell lung cancer. Oncogenic EGFR has been successfully targeted by tyrosine kinase inhibitors, but acquired drug resistance eventually overcomes the efficacy of these treatments. Attempts to surmount this therapeutic challenge are hindered by a poor understanding of how and why cancer mutations specifically amplify ligand-independent EGFR auto-phosphorylation signals to enhance cell survival and how this amplification is related to ligand-dependent cell proliferation. Here we show that drug-resistant EGFR mutations manipulate the assembly of ligand-free, kinase-active oligomers to promote and stabilize the assembly of oligomer-obligate active dimer sub-units and circumvent the need for ligand binding. We reveal the structure and assembly mechanisms of these ligand-free, kinase-active oligomers, uncovering oncogenic functions for hitherto orphan transmembrane and kinase interfaces, and for the ectodomain tethered conformation of EGFR. Importantly, we find that the active dimer sub-units within ligand-free oligomers are the high affinity binding sites competent to bind physiological ligand concentrations and thus drive tumor growth, revealing a link with tumor proliferation. Our findings provide a framework for future drug discovery directed at tackling oncogenic EGFR mutations by disabling oligomer-assembling interactions.
Collapse
Affiliation(s)
- R Sumanth Iyer
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
- Immunocore Limited, 92 Park Drive, Milton Park, Abingdon, UK
| | - Sarah R Needham
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Ioannis Galdadas
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- ISPSO, University of Geneva, Geneva, Switzerland
| | - Benjamin M Davis
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Selene K Roberts
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Rico C H Man
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | | | - David T Clarke
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Gilbert O Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, Guy's Campus, King's College London, London, UK
| | - Daniel J Rolfe
- Central Laser Facility, UKRI-STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK.
| | - Francesco L Gervasio
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
- ISPSO, University of Geneva, Geneva, Switzerland.
- Chemistry Department, University College London, London, UK.
- Swiss Institute of Bioinformatics, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
46
|
Liang F, Zhang Y, Xue Q, Yao N. Exploring inter-ethnic and inter-patient variability and optimal dosing of osimertinib: a physiologically based pharmacokinetic modeling approach. Front Pharmacol 2024; 15:1363259. [PMID: 38500771 PMCID: PMC10946252 DOI: 10.3389/fphar.2024.1363259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was also utilized to investigate inter-ethnic and inter-patient differences in OSI pharmacokinetics (PK) and determine optimal dosing regimens. Methods: Population PBPK models of OSI for healthy and disease populations were developed using physicochemical and biochemical properties of OSI and physiological parameters of different groups. And then the PBPK models were validated using the multiple clinical PK and drug-drug interaction (DDI) study data. Results: The model demonstrated good consistency with the observed data, with most of prediction-to-observation ratios of 0.8-1.25 for AUC, Cmax, and Ctrough. The PBPK model revealed that plasma exposure of OSI was approximately 2-fold higher in patients compared to healthy individuals, and higher exposure observed in Caucasians compared to other ethnic groups. This was primarily attributed to a lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key factors influencing PK and EGFRm+ inhibition differences included genetic polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup), albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK variability was most influenced by CYP3A4 variants, fup, and albumin level. The PBPK simulations indicated that the optimal dosing regimen for patients across the three populations of European, Japanese, and Chinese ancestry was OSI 80 mg once daily (OD) to achieve the desired range of plasma Ctrough (328-677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary EGFRm+ inhibition (>80%). Conclusion: In conclusion, this study's PBPK simulations highlighted potential ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between Caucasian, Japanese, and Chinese populations, while also providing insights into optimal dosing regimens of OSI.
Collapse
Affiliation(s)
| | | | | | - Na Yao
- Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
47
|
Liu J, Xiang Y, Fang T, Zeng L, Sun A, Lin Y, Lu K. Advances in the Diagnosis and Treatment of Advanced Non-Small-Cell Lung Cancer With EGFR Exon 20 Insertion Mutation. Clin Lung Cancer 2024; 25:100-108. [PMID: 38172024 DOI: 10.1016/j.cllc.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations has greatly changed the clinical outlook for patients with advanced non-small-cell lung cancer (NSCLC). Unlike the most common EGFR mutations, such as exon 19 deletion (del19) and exon 21 L858R point mutation, EGFR exon 20 insertion mutation (EGFR ex20ins) is a rare mutation of EGFR. Due to its structural specificity, it exhibits primary resistance to traditional epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), leading to poor overall survival prognosis for patients. In recent years, there has been continuous progress in the development of new drugs targeting EGFR ex20ins, bringing new hope for the treatment of this patient population. In this regard, we conducted a systematic review of the molecular characteristics, diagnostic advances, and treatment status of EGFR ex20ins. We summarized the latest data on relevant drug development and clinical research, aiming to provide reference for clinical diagnosis, treatment, and drug development.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingwen Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lulin Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yixiang Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
48
|
Hayashi H. Sunvozertinib: the next candidate of TKI for NSCLC. THE LANCET. RESPIRATORY MEDICINE 2024; 12:185-186. [PMID: 38101435 DOI: 10.1016/s2213-2600(23)00419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan.
| |
Collapse
|
49
|
Dorta-Suárez M, de Miguel M, Amor-Carro O, Calderón JM, González-Ortega MC, Rodríguez-Abreu D. The state of the art of EGFR exon 20 insertions in non-small cell lung cancer: Diagnosis and future perspectives. Cancer Treat Rev 2024; 124:102671. [PMID: 38281403 DOI: 10.1016/j.ctrv.2023.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Insertions in the epidermal growth factor receptor (EGFR) exon 20 (Ex20Ins) are the third most incident mutations in non-small cell lung cancer (NSCLC). The hypervariable nature of these driver mutations hinders their identification by traditional polymerase chain reaction (PCR)-based methods, requiring a comprehensive sequencing approach to detect all possible insertions. The prognosis of patients with EGFR Ex20Ins is similar to those with wild-type NSCLC, since no targeted drugs are approved in the first-line setting, and platinum-based chemotherapy is currently the front-line treatment. However, the new generation of drugs currently being tested in first and post-platinum settings will likely change the management of this entity. Here, we summarize the latest data on EGFR Ex20Ins molecular characteristics, patient profile, identification challenges, and emerging therapies to help lung clinicians face a growing treatment landscape.
Collapse
Affiliation(s)
- Miriam Dorta-Suárez
- Unit of Thoracic and CNS Tumors, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | | | | | | | | | - Delvys Rodríguez-Abreu
- Complejo Hospitalario Universitario Insular-Materno Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
50
|
Hanley MJ, Camidge DR, Fram RJ, Gupta N. Mobocertinib: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13766. [PMID: 38511563 PMCID: PMC10955621 DOI: 10.1111/cts.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations represent ~6%-12% of all EGFR-mutated non-small cell lung cancer (NSCLC) cases. First-, second-, and third-generation tyrosine kinase inhibitors (TKIs) have limited clinical activity against EGFR ex20ins mutations. Mobocertinib is a first-in-class oral EGFR TKI that selectively targets in-frame EGFR ex20ins mutations in NSCLC; accelerated approval in the United States was granted for the treatment of adult patients with locally advanced or metastatic NSCLC with EGFR ex20ins mutations whose disease has progressed on or after platinum-based chemotherapy. Accelerated approval was based on the results from the three-part, open-label, multicenter, pivotal phase I/II nonrandomized clinical trial (NCT02716116) that enrolled 114 patients with locally advanced or metastatic EGFR ex20ins mutation-positive NSCLC who were previously treated with platinum-based chemotherapy and received mobocertinib at the recommended dosage of 160 mg once daily. At the November 1, 2021, data cutoff date, the confirmed objective response rate per independent review committee (IRC) was 28%, median duration of response was 15.8 months, median progression-free survival per IRC was 7.3 months, and median overall survival was 20.2 months. The most common treatment-emergent adverse events were gastrointestinal- and skin-related. The phase III EXCLAIM-2 study evaluated mobocertinib versus chemotherapy as first-line therapy for locally advanced or metastatic EGFR ex20ins-positive NSCLC; however, the primary end point was not met, resulting in initiating voluntary withdrawal of mobocertinib worldwide. This mini-review article summarizes the mechanism of action, pharmacokinetic characteristics, key clinical trials, and clinical efficacy and safety data for mobocertinib.
Collapse
Affiliation(s)
| | | | - Robert J. Fram
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Neeraj Gupta
- Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| |
Collapse
|