1
|
Pérez-Escurza O, Flores-Montero J, Óskarsson JÞ, Sanoja-Flores L, Del Pozo J, Lecrevisse Q, Martín S, Reed ER, Hákonardóttir GK, Harding S, Þorsteinsdóttir S, Rögnvaldsson S, Love TJ, Durie B, Kristinsson SY, Orfao A. Immunophenotypic assessment of clonal plasma cells and B-cells in bone marrow and blood in the diagnostic classification of early stage monoclonal gammopathies: an iSTOPMM study. Blood Cancer J 2023; 13:182. [PMID: 38072838 PMCID: PMC10711003 DOI: 10.1038/s41408-023-00944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Monoclonal gammopathy of undetermined significance (MGUS) is the earliest discernible stage of multiple myeloma (MM) and Waldenström's macroglobulinemia (WM). Early diagnosis of MG may be compromised by the low-level infiltration, undetectable to low-sensitive methodologies. Here, we investigated the prevalence and immunophenotypic profile of clonal (c) plasma cells (PC) and/or cB-lymphocytes in bone marrow (BM) and blood of subjects with a serum M-component from the iSTOPMM program, using high-sensitive next-generation flow cytometry (NGF), and its utility in the diagnostic classification of early-stage MG. We studied 164 paired BM and blood samples from 82 subjects, focusing the analysis on: 55 MGUS, 12 smoldering MM (SMM) and 8 smoldering WM (SWM). cPC were detected in 84% of the BM samples and cB-lymphocytes in 45%, coexisting in 39% of cases. In 29% of patients, the phenotypic features of cPC and/or cB-lymphocytes allowed a more accurate disease classification, including: 19/55 (35%) MGUS, 1/12 (8%) SMM and 2/8 (25%) SWM. Blood samples were informative in 49% of the BM-positive cases. We demonstrated the utility of NGF for a more accurate diagnostic classification of early-stage MG.
Collapse
Affiliation(s)
- Oihane Pérez-Escurza
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
| | - Juan Flores-Montero
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | | | - Luzalba Sanoja-Flores
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of Seville, Department of Hematology, University Hospital Virgen del Rocío of the Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Seville, Spain
| | - Julio Del Pozo
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
| | - Quentin Lecrevisse
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Martín
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain
| | - Elín Ruth Reed
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | | | - Sigrún Þorsteinsdóttir
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Rigshospitalet, Copenhagen, Denmark
| | - Sæmundur Rögnvaldsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Science, Landspitali University Hospital, Reykjavík, Iceland
| | - Thorvardur Jon Love
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Science, Landspitali University Hospital, Reykjavík, Iceland
| | - Brian Durie
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sigurður Yngvi Kristinsson
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Science, Landspitali University Hospital, Reykjavík, Iceland
| | - Alberto Orfao
- Translational and Clinical Research Program, Cancer Research Center (IBMCC, CSIC-University of Salamanca); Cytometry Service, NUCLEUS; Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
- Department of Medicine, University of Salamanca (Universidad de Salamanca), Salamanca, Spain.
- Biomedical Research Networking Centre Consortium of Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Czeti Á, Szalóki G, Varga G, Szita VR, Komlósi ZI, Takács F, Márk Á, Timár B, Matolcsy A, Barna G. Limitations of VS38c labeling in the detection of plasma cell myeloma by flow cytometry. Cytometry A 2021; 101:159-166. [PMID: 34296508 DOI: 10.1002/cyto.a.24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022]
Abstract
Plasma cell myeloma (multiple myeloma [MM]) is a malignant neoplasm originating from the plasma cells. Besides other methods, flow cytometric analysis of the patient's bone marrow aspirate has an important role in the diagnosis and also in the response assessment. Since the cell surface markers, used for identifying abnormal plasma cells, are expressed diversely and the treatment can also alter the phenotype of the plasma cells, there is an increasing demand for new plasma cell markers. VS38c is a monoclonal antibody that recognizes the CLIMP-63 protein in the membrane of the endoplasmic reticulum. CLIMP-63 is known to be expressed at high levels in normal and pathologic plasma cells in the bone marrow, thus VS38c antibody can be used to identify them. Although VS38c staining of plasma cells is reported to be constant and strong even in myeloma, we were wondering whether sample preparation can affect the staining. We have investigated the effect of different permeabilization agents and washing of the cells on the quality of the VS38c staining and found that in many cases the staining is inadequate to identify the plasma cells. We measured the VS38c staining of the bone marrow aspirates of 196 MM patients and observed that almost all cases showed bright staining with VS38c. However, permeabilization with mild detergent resulted in the appearance of a significant VS38cdim subpopulation, which showed increased sensitivity to mechanical stress (centrifugation). Our results indicate that VS38cdim MM cells can appear due to the improper permeabilization of the endoplasmic reticulum and this finding raises the possibility of the existence of a plasma cell subpopulation with different membrane properties. The significance of this population is unclear yet, but these cells can be easily missed with VS38c staining and can be lost due to centrifugation-induced lysis during sample preparation.
Collapse
Affiliation(s)
- Ágnes Czeti
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szalóki
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Varga
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Virág Réka Szita
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt István Komlósi
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Takács
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Botond Timár
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Barna
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Chopra S, Dunham T, Syrbu SI, Karandikar NJ, Darbro BW, Holman CJ. Utility of Flow Cytometry and Fluorescence In Situ Hybridization in Follow-up Monitoring of Plasma Cell Myeloma. Am J Clin Pathol 2021; 156:198-204. [PMID: 33437993 DOI: 10.1093/ajcp/aqaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES We sought to investigate the clinical utility of flow cytometry (FC) and fluorescence in situ hybridization (FISH) in the workup of myeloma. METHODS We retrospectively reviewed the reports of bone marrow biopsies received for myeloma evaluation between October 2015 and January 2019. RESULTS A total of 1,708 biopsy specimens from 469 myeloma patients (mean age, 64.5 years [SD, 9.3]; female, 41.4%) were reviewed. Both FC and FISH had comparable detection rates at the time of initial diagnosis (97.6% vs 98.8%) and for follow-up cases (28.6% vs 28.2%). FC and FISH results were concordant in 98.8% of the initial diagnosis cases and 89.6% of the follow-up cases. The FISH-positive (FISH+)/FC-negative (FC-) discordance and FISH-/FC+ discordance occurred among 81 (5.0%) and 87 (5.4%) follow-up cases. In comparison with all concordant cases, FISH+/FC- discordant cases were more likely to have received treatment with daratumumab (P < .05). CONCLUSIONS Plasma cell-enriched FISH and FC have comparable abnormal plasma cell detection rates, and approximately 10% of the follow-up cases have discordant FISH and FC results in which residual disease is detected by only one of these modalities. FISH testing should be considered for cases with negative FC, especially in patients who have received treatment with daratumumab or in cases in which there is concern about specimen adequacy.
Collapse
Affiliation(s)
| | - Timothy Dunham
- Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City
| | | | | | - Benjamin W Darbro
- Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City
| | | |
Collapse
|
4
|
Tian M, Liu Z, Han M, Liu H, Xiang C, Mi F, Deng L, Meng N, Fu R. Malignant plasmacytes in bone marrow detected by flow cytometry as a predictor for the risk stratification system of multiple myeloma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 102:44-49. [PMID: 34057806 DOI: 10.1002/cyto.b.22024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a clonal disorder characterized by the proliferation of plasma cells and their accumulation within the bone marrow (BM). The flow cytometric analysis is an essential method for the hematological diseases because of high sensitivity. AIMS This study evaluates the indication role of malignant plasmacytes (PCs) in BM detected by flow cytometry for the risk stratification of MM. METHODS Whole BM samples from 92 newly diagnosed MM patients were included in the study. We collected 106 cells each sample by flow cytometry. Then we analyzed the correlation between the malignant PCs in BM and the characteristics of patients. RESULTS In this study, patients were stratified according to different baseline characteristics and the median ratio of the malignant PCs were compared. The significant statistical differences (p < 0.05) were: Hb < 100 g/L versus ≥100 g/L; β2-microglobulin <3.5 mg/dL versus 3.5-5.5 mg/dL versus >5.5 mg/dL; LDH > 250 U/L versus LDH 250 U/L; ISS I versus ISS II versus ISS III; R-ISS I versus II versus III. The detailed data are showed in Table 2. The significant correlations were observed between the malignant PCs in BM and (Figure 1): plasma cell of biopsy, hemoglobin, β2-microglobulin, lactate dehydrogenase (LDH), creatinine. "Double hit" or "triple hit" are defined as containing any two or three of the high risk cytogenetic abnormalities (t(4;14), t(14;16), t(14;20); del17q; TP53 mutation; 1q21 gain) by mSMAR. "Double or triple hit" had independently unfavorable significance for overall survival. As expected, the malignant PCs of "double or triple hit" group is significantly higher than the group B (one high risk genetic factor) and the group A (normal cytogenetic) (p < 0.0001 and p < 0.019). CONCLUSION Multiparametric flow cytometry is a highly sensitive method to identify and quantify malignant PCs. And the ratio of malignant PCs detected by MFC showed strongly correlation with the severity of the pathology of MM. Malignant PCs in BM detected by flow cytometry could be regarded as a predictor for the risk stratification system of MM. Thus, it should be considered applying in the routine evaluation of MM at diagnosis and after therapy.
Collapse
Affiliation(s)
- MengYue Tian
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - ZhaoYun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Han
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenhuan Xiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu Mi
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Deng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nanhao Meng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Hupp MM, Bashleben C, Cardinali JL, Dorfman DM, Karlon W, Keeney M, Leith C, Long T, Murphy CE, Pillai V, Rosado FN, Seegmiller AC, Linden MA. Participation in the College of American Pathologists Laboratory Accreditation Program Decreases Variability in B-Lymphoblastic Leukemia and Plasma Cell Myeloma Flow Cytometric Minimal Residual Disease Testing: A Follow-up Survey. Arch Pathol Lab Med 2021; 145:336-342. [PMID: 32886757 DOI: 10.5858/arpa.2019-0493-cp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Minimal residual disease (MRD) testing by flow cytometry is ubiquitous in hematolymphoid neoplasm monitoring, especially B-lymphoblastic leukemia (B-ALL), for which it provides predictive information and guides management. Major heterogeneity was identified in 2014. Subsequently, new Flow Cytometry Checklist items required documentation of the sensitivity determination method and required lower level of detection (LLOD) inclusion in final reports. This study assesses Laboratory Accreditation Program (LAP) participation and new checklist items' impact on flow cytometry MRD testing. OBJECTIVES.— To survey flow cytometry laboratories about MRD testing for B-ALL and plasma cell myeloma. In particular, enumerate the laboratories performing MRD testing, the proportion performing assays with very low LLODs, and implementation of new checklist items. DESIGN.— Supplemental questions were distributed in the 2017-A mailing to 548 flow cytometry laboratories subscribed to the College of American Pathologists FL3 Proficiency Testing Survey (Flow Cytometry-Immunophenotypic Characterization of Leukemia/Lymphoma). RESULTS.— The percentage of laboratories performing MRD studies has significantly decreased since 2014. Wide ranges of LLOD and collection event numbers were reported for B-ALL and plasma cell myeloma. Most laboratories determine LLOD by using dilutional studies and include it in final reports; a higher proportion of LAP participants used these practices than nonparticipants. CONCLUSIONS.— Several MRD testing aspects vary among laboratories receiving FL3 Proficiency Testing materials. After the survey in 2014, new checklist items were implemented. As compared to 2014, fewer laboratories are performing MRD studies. While LLOD remains heterogeneous, a high proportion of LAP subscribers follow the new checklist requirements and, overall, target LLOD recommendations from disease-specific working groups are met.
Collapse
Affiliation(s)
- Meghan M Hupp
- From the Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis (Hupp, Linden)
| | | | - Jolene L Cardinali
- Special Hematology, Hartford Hospital, Hartford, Connecticut (Cardinali)
| | - David M Dorfman
- The Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Dorfman)
| | - William Karlon
- The Departments of Pathology and Laboratory Medicine, University of California, San Francisco (Karlon)
| | - Michael Keeney
- London Health Sciences Centre, Lawson Health Research Institute, London, Ontario, Canada (Keeney)
| | - Catherine Leith
- The Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison (Leith)
| | - Thomas Long
- College of American Pathologists, Northfield, Illinois (Bashleben, Long)
| | | | - Vinodh Pillai
- the Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Pillai)
| | - Flavia N Rosado
- The Department of Pathology and Laboratory Services, University of Texas Southwestern Medical Center, Dallas (Rosado)
| | - Adam C Seegmiller
- The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee (Seegmiller)
| | - Michael A Linden
- From the Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis (Hupp, Linden)
| |
Collapse
|
6
|
Bayly E, Nguyen V, Binek A, Piggin A, Baldwin K, Westerman D, Came N. Validation of a modified pre-lysis sample preparation technique for flow cytometric minimal residual disease assessment in multiple myeloma, chronic lymphocytic leukemia, and B-non Hodgkin lymphoma. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:385-398. [PMID: 32530574 DOI: 10.1002/cyto.b.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Minimal residual disease (MRD) assessment of hematopoietic neoplasia below 10-4 requires more leukocytes than is usually attainable by post-lysis preparation. However, not all laboratories are resourced for consensus Euroflow pre-lysis methodology. Our study aim was to validate a modified pre-lysis protocol against our standard post-lysis method for MRD detection of multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and B-non Hodgkin lymphoma (B-NHL), to meet demand for deeper MRD assessment by flow cytometry. METHOD Clinical samples for MRD assessment of MM, CLL, and B-NHL (50, 30, and 30 cases, respectively) were prepared in parallel by pre and post-lysis methods for the initial validation. Total leukocytes, MRD, and median fluorescence intensity of antigen expression were compared as measures of sensitivity and antigen stability. Lymphocyte and granulocyte composition were compared, assessing relative sample processing stability. Sensitivity of the pre-lysis assay was monitored post validation for a further 18 months. RESULTS Pre-lysis achieved at least 10-4 sensitivity in 85% MM, 81% CLL, and 90% B-NHL samples versus 24%, 48%, and 26% by post-lysis, respectively, with stable antigen expression and leukocyte composition. Post validation over 18 months with technical expertise improving, pre-lysis permitted 10-5 MRD assessment in 69%, 86%, and 82% of the respective patient groups. CONCLUSION This modified pre-lysis procedure provides a sensitive, robust, time efficient, and relatively cost-effective alternative for MRD testing by MFC at 10-5 , facilitating clinically meaningful deeper response assessment for MM, CLL, and B-NHL. This method adaptation may facilitate more widespread adoption of highly sensitive flow cytometry-based MRD assessment.
Collapse
Affiliation(s)
- Emma Bayly
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Clinical Haematology, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Vuong Nguyen
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Adrian Binek
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anna Piggin
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Clinical Haematology, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia
| | - Kylie Baldwin
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David Westerman
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Clinical Haematology, Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil Came
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Wang G, Ning FY, Wang JH, Yan HM, Kong HW, Zhang YT, Shen Q. Expression of interleukin-32 in bone marrow of patients with myeloma and its prognostic significance. World J Clin Cases 2019; 7:4234-4244. [PMID: 31911904 PMCID: PMC6940335 DOI: 10.12998/wjcc.v7.i24.4234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The guiding effect of prognostic stratification in multiple myeloma (MM) for treatment has been increasingly emphasized in recent years. The stratification of risk factors based on the International Staging System (ISS), Durie-Salmon (DS) staging and related indicators is affected by the renal function of patients, resulting in poor performance. This study assesses the relationship between interleukin-32 (IL-32) and related risk factors in 67 patients with MM and their clinical outcomes.
AIM To investigate the feasibility of IL-32 in evaluating prognosis in patients with MM and the factors influencing prognosis.
METHODS This was a pragmatic, prospective observational study of patients with MM at a single center. According to IL-32 level, patients were divided into two groups. The variables under consideration included age, blood β2-microglobulin, albumin, C-reactive protein, serum calcium, serum creatinine, lactate dehydrogenase, M protein type, ISS stage, DS stage, and IL-32 levels and minimal residual disease (MRD) after induction treatment. The main outcomes were progression-free survival (PFS) and overall survival (OS).
RESULTS IL-32 was an important factor affecting PFS and OS in patients with MM. Compared with patients with IL-32 levels ≥ 856.4 pg/mL, patients with IL-32 levels < 856.4 pg/mL had longer PFS (P = 0.0387) and OS (P = 0.0379); Univariate analysis showed that IL-32 level and MRD were significantly associated with OS and PFS (P < 0.05). Multivariate analysis showed that IL-32 levels ≥ 856.4 pg/mL and MRD positive were still independent risk factors for OS and PFS (P < 0.05).
CONCLUSION IL-32 is valuable for assessing the prognosis of MM patients. IL-32 level combined with MRD may be a useful routine evaluation index for MM patients after treatment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hematology, Quzhou People’s Hospital, Quzhou 324000, Zhejiang Province, China
| | - Fang-Ying Ning
- Department of Hematology, People’s Hospital of Hangzhou Medical College, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Jia-Heng Wang
- Department of Hematology, Quzhou People’s Hospital, Quzhou 324000, Zhejiang Province, China
| | - Hai-Meng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Wei Kong
- Department of Hematology, Quzhou People’s Hospital, Quzhou 324000, Zhejiang Province, China
| | - Yu-Ting Zhang
- Adicon Clinical Laboratories Inc., Hangzhou 310023, Zhejiang Province, China
| | - Qiang Shen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|