1
|
Zhao H, Ouyang N, Ou S, Lin H, Liao Z, Liu W, Chen H, Yuan P. Identification of novel variants and expansion of the phenotypic spectrum in PATL2, WEE2, and TUBB8 associated with human early embryonic arrest. J Assist Reprod Genet 2025:10.1007/s10815-025-03501-w. [PMID: 40399709 DOI: 10.1007/s10815-025-03501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/24/2025] [Indexed: 05/23/2025] Open
Abstract
PURPOSE This study aimed to identify the genetic variants associated with early embryonic developmental arrest (EDA) in infertile patients and to expand the genotypic and phenotypic spectrum of maternal-effect genes, including PATL2, WEE2, and TUBB8, which are critical for oocyte maturation arrest (OMA) and fertilization failure (FF) as previously reported. METHODS Whole-exome sequencing was performed on 84 unrelated patients who experienced multiple in vitro fertilization and embryo transfer failures due to EDA. The effects of the variants in arrested embryos were assessed by morphological observations. Variants in PATL2, WEE2, and TUBB8 were confirmed by Sanger sequencing, followed by bioinformatic analysis, structural modeling of proteins, and functional assays. RESULTS We identified seven variants in five patients, including five novel variants (PATL2: c.802G>C; WEE2: c.487T>A, c.1165_1168delAAAC; TUBB8: c.604A>T, c.848C>A) and two previously reported variants (PATL2: c.805C>A; TUBB8: c.322G>A). The variants were predicted to be deleterious, affecting amino acid residues that are highly conserved across species. In vitro experiments confirmed that the PATL2 missense mutation (p.Gln269Lys) resulted in elevated mRNA levels compared to the wild type in HEK293T cells, while the WEE2 variant (p.Tyr163Asn) showed a 20.97% reduction in enzymatic activity. The patients displayed a wide range of infertility phenotypes, including OMA, FF, cleavage failure, and EDA. A literature-based analysis further highlighted the broad and variable phenotype spectrum associated with variants in these genes, enhancing our understanding of genotype-phenotype correlations. CONCLUSIONS This study highlights the diverse phenotypic outcomes associated with variants in PATL2, WEE2, and TUBB8. The findings provide a clearer picture of the genetic and phenotypic spectrums in patients, contributing to the advancement of molecular diagnostics in infertility.
Collapse
Affiliation(s)
- Haijing Zhao
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Nengyong Ouyang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Songbang Ou
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Haiyan Lin
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Zaowen Liao
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Wenyi Liu
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Ping Yuan
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Li D, Yuan G, Wang X, Zhuang J, Wang L, Liu Y, Liu X, Han L, Dou H, Li B, Hao C. Three Novel Mutations in TUBB8 Cause Female Infertility Due to Multiple Morphological Abnormalities of the Oocyte and Early Embryo. Reprod Sci 2025:10.1007/s43032-025-01844-4. [PMID: 40246784 DOI: 10.1007/s43032-025-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Recent years have seen a global increase in infertility, affecting up to 17.5% of the population. For successful human reproduction, the proper development process of the oocyte, fertilization, and early embryo is required. Assisted reproductive technology (ART), which is the primary treatment for infertility, uses the morphology of oocytes and zygotes as parameters to predict ART outcomes. However, factors such as large perivitelline space (PVS), centrally located granular cytoplasm (CLGC), multi-pronuclei (MPN) formation, and final early embryonic development arrest often lead to repeated failure of ART treatment. Genetic analysis has identified various pathogenic genetic factors contributing to infertility, suggesting that genetic variation plays a significant role in recurrent ART treatment failure. However, maternal genes responsible for large PVS, CLGC, and MPN formation are rarely reported. In this study involving Whole Exome Sequencing (WES) and Sanger sequencing validation, three novel heterozygous missense mutations (p.M403V, p.R306H, p.H190Y) in TUBB8 were identified as being associated with large PVS, CLGC, MPN formation, and early embryonic development arrest. These mutant sites are evolutionarily conserved in different species. Additionally, in silico and in vitro experiments demonstrate that these variants disrupt the conformation, expression, and microtubule structures of the TUBB8 protein. Therefore, these findings contribute significantly to understanding TUBB8-related large PVS, CLGC, and MPN formation in the context of ARTs. This broadens our insight into the genetic connection in human reproduction and emphasizes the importance of comprehensive genetic screening and personalized intervention strategies for PVS, CLGC, and MPN formation.
Collapse
Affiliation(s)
- Duan Li
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guanghui Yuan
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoxiao Wang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Jiao Zhuang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Lie Wang
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Yingxue Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Xiaowen Liu
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Linfang Han
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China
- College of Medicine, Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China.
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China.
- College of Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.
| | - Cuifang Hao
- Center for Reproductive Medicine, Women and Children's Hospital, Qingdao University, Qingdao, China.
- Branch of Shandong Provincial Clinical Research Center for Reproductive Health, Qingdao, China.
- College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Cui Y, Zhao S, Zhang C, Su W, Chen X, Wang Y, Yang B, Wu K, Chen ZJ, Zhang H, Zhao H. Infertile females with biallelic mutations in APC/C genes are characterized by oocyte or early embryo defects. J Assist Reprod Genet 2025:10.1007/s10815-025-03465-x. [PMID: 40238067 DOI: 10.1007/s10815-025-03465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
PURPOSE The objective of this study was to elucidate the role of anaphase promoting complex/cyclosome (APC/C)-related genes in cases of female infertility characterized by disturbances in oocyte maturation, failure of fertilization, and cessation of early embryonic growth among three distinct Chinese familial lineages. METHODS We conducted whole-exome sequencing of patients with female infertility from 639 unrelated Chinese families and three probands with APC/C gene mutations were screened. Structure modeling and in vitro experiments were performed to analyze the effects of CDC23 and APC13 variants. RESULTS We identified six rare missense variants in APC/C genes, including two compound heterozygous missense variants of CDC23 (c.A1277G, c.A833G, c.C182T and c.C301T) from case 1 and case 2 and one compound heterozygous variant of APC13 (c.C6A and c.116_126del) from case 3. These APC/C gene mutations all showed a recessive inheritance pattern. These mutations are conserved across different species. Mutation Taster, SIFT and PPH2 forecast that these variants are inclined towards exerting a deleterious effect. Structural analysis indicated that these mutations may result in changes in the chemical bonds between themselves and other APC/C subunits. In vitro experimental data suggested that mutations associated with CDC23 result in dysregulated protein expression, whereas missense mutation in APC13 is implicated in aberrant cellular localization patterns. CONCLUSION Our findings expand the genetic spectrum of APC/C genes, especially CDC23 and APC13 in female infertility, indicating that the significance of APC/C genes in female sterility should be emphasized in the future. And it provides a new diagnostic and therapeutic target for genetic counseling.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Shuai Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- Shandong Health Commission Key Laboratory of Major Gynaecological Disease Control, Jinan, Shandong Province, China
- Department of Obstetrics and Gynecology, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Changlong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Xiaolei Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Yang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Bohan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honghui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Li X, Zou Y, Geng B, Liu P, Cao L, Zhang Z, Hu S, Wang C, Zhao Y, Wu Q, Tan J. Transcriptome analysis reveals that defects in cell cycle regulation contribute to preimplantation embryo arrest. Genomics 2024; 116:110946. [PMID: 39326642 DOI: 10.1016/j.ygeno.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Patients with preimplantation embryo arrest (PREMBA) often experience assisted reproductive failure primarily due to the lack of transferable embryos, and the molecular mechanisms underlying PREMBA remain unclear. In our study, the embryos from five women with recurrent preimplantation embryo arrest and three women with tubal factor infertility were used for single-embryo transcriptome sequencing. Meanwhile, the transcriptomes of normal human preimplantation embryos obtained from GSE36552 were utilized to perform a comparative analysis with the transcriptomes of PREMBA embryos. Our results showed dysregulation of the cell cycle phase transition might be a potential pathogenic factor contributing to PREMBA. Through integrated analysis of the differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), we identified a number of hub genes using the protein-protein interaction network. The top 5 hub genes were as follows: CCNB2, BUB1B, CDC25A, CCNB3, and PLK3. The expression of hub genes was validated in PREMBA embryos and donated embryos using RT-qPCR. The knockdown of Ccnb2 in mouse zygotes led to an increase in embryo fragmentation, a rise in apoptosis, and a reduction in blastocyst formation. Furthermore, silencing the expression of CDC25A in HEK293T cells resulted in a decrease in cell proliferation and an increase in apoptosis, providing further support for our findings. Our findings could predict the development outcomes of preimplantation embryos and be used as potential therapeutic targets to prevent recurrent failures of IVF/ICSI attempts.
Collapse
Affiliation(s)
- Xin Li
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Yang Zou
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Baobao Geng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, SuZhou, Jiangsu Province, China
| | - Peipei Liu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Liyun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Zhiqin Zhang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Shaofeng Hu
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Changhua Wang
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Yan Zhao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China; JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China.
| |
Collapse
|
5
|
Ye Z, Li D, Niu X, Yang A, Pan Z, Yu R, Gu H, Shi R, Wu L, Xiang Y, Hao G, Kuang Y, Chen B, Wang L, Sang Q, Li L, Shi J, Li Q. Identification novel mutations and phenotypic spectrum expanding in PATL2 in infertile women with IVF/ICSI failure. J Assist Reprod Genet 2024; 41:1233-1243. [PMID: 38536595 PMCID: PMC11143103 DOI: 10.1007/s10815-024-03071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 06/01/2024] Open
Abstract
AIM Abnormalities in oocyte maturation, fertilization, and early embryonic development are major causes of primary infertility in women who are undergoing IVF/ICSI attempts. Although many genetic factors responsible for these abnormal phenotypes have been identified, there are more additional pathogenic genes and variants yet to be discovered. Previous studies confirmed that bi-allelic PATL2 deficiency is an important factor for female infertility. In this study, 935 infertile patients with IVF/ICSI failure were selected for whole-exome sequencing, and 18 probands carrying PATL2 variants with a recessive inheritance pattern were identified. METHODS We estimated that the prevalence contributed by PATL2 was 1.93% (18/935) in our study cohort. RESULTS 15 novel variants were found in those families, including c.1093C > T, c.1609dupA, c.1204C > T, c.643dupG, c.877-2A > G, c.1228C > G, c.925G > A, c.958G > A, c.4A > G, c.1258T > C, c.1337G > A, c.1264dupA, c.88G > T, c.1065-2A > G, and c.1271T > C. The amino acids altered by the corresponding variants were highly conserved in mammals, and in silico analysis and 3D molecular modeling suggested that the PATL2 mutants impaired the physiologic function of the resulting proteins. Diverse clinical phenotypes, including oocyte maturation defect, fertilization failure, and early embryonic arrest might result from different variants of PATL2. CONCLUSIONS These results expand the spectrum of PATL2 variants and provide an important reference for genetic counseling for female infertility, and they increase our understanding of the mechanisms of oocyte maturation arrest caused by PATL2 deficiency.
Collapse
Affiliation(s)
- Zhiqi Ye
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Da Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Xiangli Niu
- The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530029, China
| | - Aimin Yang
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Rong Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710000, Shaanxi, China
| | - Ling Wu
- The Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfang Xiang
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, Jiangxi, China
| | - Guimin Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanping Kuang
- The Department of Assisted Reproduction, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Center for Women and Children's Health, Shanghai, 200062, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, Jiangxi, China.
| | - Juanzi Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710000, Shaanxi, China.
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Zhang XY, Zhang XX, Wang L. Early embryonic failure caused by a novel mutation in the TUBB8 gene: A case report. World J Clin Cases 2024; 12:2092-2098. [PMID: 38680263 PMCID: PMC11045509 DOI: 10.12998/wjcc.v12.i12.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND This study aimed to explore the relationship between gene mutations and early embryonic development arrest and to provide more possibilities for the diagnosis and treatment of repeated implantation failure. CASE SUMMARY Here, we collected and described the clinical data of a patient with early embryonic development stagnation after repeated in vitro fertilization attempts for primary infertility at the Department Reproductive Center of Zaozhuang Maternal and Child Healthcare Hospital. We also detected the whole-exon gene of the patient's spouse and parents, and conducted bioinformatics analysis to determine the pathogenesis of the gene. CONCLUSION A novel mutant of the TUBB8 gene [c.602G>T(p.C201F)] was identified, and this mutant provided new data on the genotype-phenotype relationships of related diseases.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| | - Xing-Xing Zhang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| | - Lei Wang
- Department of Reproductive Center, Zaozhuang Maternal and Child Healthcare Hospital, Zaozhuang 277000, Shandong Province, China
| |
Collapse
|
7
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Abbaali I, Truong D, Day SD, Mushayeed F, Ganesh B, Haro-Ramirez N, Isles J, Nag H, Pham C, Shah P, Tomar I, Manel-Romero C, Morrissette NS. The tubulin database: Linking mutations, modifications, ligands and local interactions. PLoS One 2023; 18:e0295279. [PMID: 38064432 PMCID: PMC10707541 DOI: 10.1371/journal.pone.0295279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Microtubules are polymeric filaments, constructed of α-β tubulin heterodimers that underlie critical subcellular structures in eukaryotic organisms. Four homologous proteins (γ-, δ-, ε- and ζ-tubulin) additionally contribute to specialized microtubule functions. Although there is an immense volume of publicly available data pertaining to tubulins, it is difficult to assimilate all potentially relevant information across diverse organisms, isotypes, and categories of data. We previously assembled an extensive web-based catalogue of published missense mutations to tubulins with >1,500 entries that each document a specific substitution to a discrete tubulin, the species where the mutation was described and the associated phenotype with hyperlinks to the amino acid sequence and citation(s) for research. This report describes a significant update and expansion of our online resource (TubulinDB.bio.uci.edu) to nearly 18,000 entries. It now encompasses a cross-referenced catalog of post-translational modifications (PTMs) to tubulin drawn from public datasets, primary literature, and predictive algorithms. In addition, tubulin protein structures were used to define local interactions with bound ligands (GTP, GDP and diverse microtubule-targeting agents) and amino acids at the intradimer interface, within the microtubule lattice and with associated proteins. To effectively cross-reference these datasets, we established a universal tubulin numbering system to map entries into a common framework that accommodates specific insertions and deletions to tubulins. Indexing and cross-referencing permitted us to discern previously unappreciated patterns. We describe previously unlinked observations of loss of PTM sites in the context of cancer cells and tubulinopathies. Similarly, we expanded the set of clinical substitutions that may compromise MAP or microtubule-motor interactions by collecting tubulin missense mutations that alter amino acids at the interface with dynein and doublecortin. By expanding the database as a curated resource, we hope to relate model organism data to clinical findings of pathogenic tubulin variants. Ultimately, we aim to aid researchers in hypothesis generation and design of studies to dissect tubulin function.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Danny Truong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Shania Deon Day
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Faliha Mushayeed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhargavi Ganesh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Nancy Haro-Ramirez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Juliet Isles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Hindol Nag
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Catherine Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Priya Shah
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Ishaan Tomar
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Carolina Manel-Romero
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| |
Collapse
|
9
|
Hu T, Li C, Qiao S, Liu W, Han W, Li W, Shi R, Xue X, Shi J, Huang G, Lin T. Novel variants in TUBB8 gene cause multiple phenotypic abnormalities in human oocytes and early embryos. J Ovarian Res 2023; 16:228. [PMID: 38007525 PMCID: PMC10675859 DOI: 10.1186/s13048-023-01274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/03/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The genotype-phenotype relationships between TUBB8 variants and female infertility are difficult to clearly define due to the complex inheritance patterns and the highly heterogeneous phenotypes. This study aims to identify novel TUBB8 variants and relevant phenotypes in more infertile females. METHODS A total of 35 females with primary infertility were recruited from two reproductive centers and investigated for identifying variants in TUBB8. Pedigree analysis, in-silico analysis and molecular remodeling were performed to assess their clinical significance. The effects of the variants on human oocytes and embryos as well as HeLa cells were analyzed by morphological observations, immunostaining and Western blot. RESULTS We totally identified five novel variants (p.G13R, p.Y50C, p.T136I, p.F265V and p.T366A) and five previously reported variants (p.I4L, p.L42V, p.Q134*, p.V255M and p.V349I) in TUBB8 from 9 unrelated females with primary infertility. These variants were rare and highly conserved among different species, and were inherited in autosomal dominant/recessive patterns, or occurred de novo. In vitro functional assays in HeLa cells revealed that exogenous expression of mutant TUBB8 proteins caused different degrees of microtubule structural disruption. The existence of these pathogenic TUBB8 variants finally induced oocyte maturation arrest or morphological abnormalities, fertilization failure, cleavage failure, embryonic development defects and implantation failure in the affected females. CONCLUSION These findings enriched the variant spectrum of TUBB8 gene and could contribute to optimize genetic counselling and clinical management of females with primary infertility.
Collapse
Affiliation(s)
- Tingwenyi Hu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Sen Qiao
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Han
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China
| | - Wei Li
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Rong Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Xia Xue
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China
| | - Juanzi Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, 710003, Shaanxi, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, 400010, China.
| |
Collapse
|
10
|
Ebru H, Dahan MH, Sezer O, Başbuğ A, Kaan H, Güngör ND, Baltacı V, Tan SL, Şafak H. TUBB8 mutations as a cause of oocyte maturation abnormalities: presentation of oocyte and embryo profiles and novel mutations. Reprod Biomed Online 2023; 47:103257. [PMID: 37672871 DOI: 10.1016/j.rbmo.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 09/08/2023]
Abstract
RESEARCH QUESTION What are the embryonic profiles and oocyte maturation dynamics in patients with tubulin beta eight class VIII (TUBB8) mutations leading to oocyte maturation abnormalities (OMAS), and are pregnancies possible in this population? DESIGN A prospective cohort study was undertaken in a private fertility clinic between January 2019 and December 2022. Whole-exome genomic studies (WES) were performed to detect mutation types. In-vitro maturation (IVM) was compared in 18 subjects: nine with TUBB8 mutations, and nine without TUBB8 mutations to act as the control group. The distributions of oocyte maturation and embryonic development profiles were recorded. IVF and IVM outcomes of the 18 cases were evaluated. The primary outcomes were the embryonic profiles and maturation dynamics of oocytes derived from IVF or IVM in women as related to TUBB8 mutations. RESULTS Mutations were detected in 52 of 89 (58.4%) women who underwent WES analysis. Twelve TUBB8 mutations were detected in nine women (10.1%) with OMAS. Seven novel TUBB8 mutations were noted. Two pregnancies were obtained in women with c.535 G>A TUBB8 mutations. When comparing IVM outcomes between women with and without TUBB8 mutations, there were no differences in oocyte, embryo or pregnancy parameters (P>0.05 in all cases). CONCLUSIONS It is clear that further TUBB8 mutations which cause oocyte or embryonic arrest will be detected in future. Although biochemical or ectopic pregnancies may be possible in some of these women, no live births or ongoing pregnancies have been reported to date.
Collapse
Affiliation(s)
| | - Michael H Dahan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada; OriginElle Fertility Centre, OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | - Ozlem Sezer
- Department of Medical Genetics, Faculty of Medicine, Samsun University, Samsun, Turkey
| | - Alper Başbuğ
- Department of Obstetrics and Gynaecology, Düzce University, Düzce, Turkey
| | - Hatirnaz Kaan
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuzmayıs University, Samsun, Turkey
| | - Nur Dokuzeylül Güngör
- Department of Obstetrics and Gynaecology, BAU Medikalpark Göztepe Hospital, Istanbul, Turkey
| | - Volkan Baltacı
- Medical Genetics, School of Medicine, Yüksek Ihtisas University, Ankara, Turkey; Microgen Genetic Diagnosis Centre, Ankara, Turkey
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada; OriginElle Fertility Centre, OriginElle Fertility Clinic and Women's Health Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
11
|
Dou Q, Xu H, Ma L, Tan L, Tang W. Phenotypic variability in two female siblings with oocyte maturation arrest due to a TUBB8 variant. BMC Med Genomics 2023; 16:271. [PMID: 37904145 PMCID: PMC10614405 DOI: 10.1186/s12920-023-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Tubulin beta-8 (TUBB8) is expressed exclusively in the oocyte and early embryo, encoding a beta-tubulin polypeptide that participates in the assembly of microtubules. TUBB8 was first attributed to being responsible for oocyte MI arrest. Further studies have demonstrated that patients with different pathogenic variants have variable phenotypes. We report a TUBB8 variant (c.10 A > C) in two siblings who presented different clinical features of primary infertility. The younger sister showed severe oocyte maturation arrest with abnormal morphology, whereas a few mature oocytes and zygotes could be retrieved from the older sister, but no embryo was available for transfer. This variant was previously reported without in vitro functional assays. In the present study, RT‒qPCR and western blot analyses revealed that c.10 A > C reduces TUBB8 mRNA and protein levels; however, immunofluorescence demonstrated that this variant does not change the localization of the protein. These findings confirm the pathogenicity of the c.10 A > C variant and support the relationship between the variant and phenotype in the patients.
Collapse
Affiliation(s)
- Qian Dou
- Reproductive Medicine Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - HongEn Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - LiYing Ma
- Reproductive Medicine Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Tan
- Reproductive Medicine Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - WenXue Tang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Boroujeni PB, Rooney K, Alikhani M, Rahmati S, Feli G, Haratian K, Movaghar B, Meybodi AM. Evaluation of TUBB8 gene alterations in infertile women with oocyte maturation and cleavage arrest referred to Royan Institute. Reprod Biomed Online 2023; 47:103226. [PMID: 37597348 DOI: 10.1016/j.rbmo.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 08/21/2023]
Abstract
RESEARCH QUESTION Are TUBB8 gene variations present in Iranian infertile women with oocyte maturation arrest or embryo cleavage arrest? DESIGN TUBB8 gene variations were investigated by polymerase chain reaction sequencing on blood samples from 16 women with oocyte maturation arrest and 12 women with cleavage arrest, collectively referred to as the experimental cohort, as well as 56 fertile women as the control group. The Exome Sequencing Project and dbSNP databases and the Genome Aggregation Database were used to search the frequency of corresponding variants. PolyPhen and SIFT were used to conduct in-silico analysis of gene variations and Align-GVGD was used to predict the effect of missense variants on proteins. The homology modelling and structure evaluation of variations was also checked. RESULTS Two likely pathogenic variants [c.713C>T (p.Thr238Met), c.1054G>T (p.Ala352Ser)] were identified in patients with oocyte maturation arrest and one likely pathogenic variant [c.G763A, (p.Val255Met)] was identified in a patient with cleavage arrest. These changes were absent in controls. CONCLUSIONS Three deleterious variants in TUBB8 related to oocyte maturation arrest or cleavage arrest and infertility were identified. TUBB8 variant screening for patients with oocyte maturation and cleavage arrest is recommended.
Collapse
Affiliation(s)
- Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kathleen Rooney
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Mehdi Alikhani
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Rahmati
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghazaleh Feli
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kaveh Haratian
- Department of Microbiology and Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahar Movaghar
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
13
|
Zhang X, Hu C, Wu L. Advances in the study of genetic factors and clinical interventions for fertilization failure. J Assist Reprod Genet 2023; 40:1787-1805. [PMID: 37289376 PMCID: PMC10371943 DOI: 10.1007/s10815-023-02810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Fertilization failure refers to the failure in the pronucleus formation, evaluating 16-18 h post in vitro fertilization or intracytoplasmic sperm injection. It can be caused by sperm, oocytes, and sperm-oocyte interaction and lead to great financial and physical stress to the patients. Recent advancements in genetics, molecular biology, and clinical-assisted reproductive technology have greatly enhanced research into the causes and treatment of fertilization failure. Here, we review the causes that have been reported to lead to fertilization failure in fertilization processes, including the sperm acrosome reaction, penetration of the cumulus and zona pellucida, recognition and fusion of the sperm and oocyte membranes, oocyte activation, and pronucleus formation. Additionally, we summarize the progress of corresponding treatment methods of fertilization failure. This review will provide the latest research advances in the genetic aspects of fertilization failure and will benefit both researchers and clinical practitioners in reproduction and genetics.
Collapse
Affiliation(s)
- Xiangjun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Congyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Limin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
14
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
15
|
Zhou H, Cai YL, Luo Q, Zou L, Yin YX, Chen Y, Xiong F. High carrier frequency of pathogenic PATL2 gene mutations predicted in population: a bioinformatics-based approach. Front Genet 2023; 14:1097951. [PMID: 37255713 PMCID: PMC10225684 DOI: 10.3389/fgene.2023.1097951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Topoisomerase II homologue 2 (PATL2) has been confirmed to be a key gene that contributes to oocyte maturation. However, the allele distribution and carrier frequency of these mutations remain uncharacterized. So a bioinformatics subcategory analysis of PATL2 mutations from outcome data and Single Nucleotide Polymorphism (SNP) databases was conducted. Altogether, the causative PATL2 mutation number detected in patients with oocyte maturation defects in the clinical studies and pathogenic PATL2 mutation sites predicted by software based on the database was approximately 53. The estimated carrier frequency of pathogenic mutation sites was at least 1.14‰ based on the gnomAD and ExAC database, which was approximately 1/877. The highest frequency of mutations detected in the independent patients was c.223-14_223-2del13. The carrier frequency of this mutation in the population was 0.25‰, which may be a potential threat to fertility. Estimated allele and carrier frequency are relatively higher than those predicted previously based on clinical ascertainment. A review of PATL2 mutation lineage identified in 34 patients showed that 53.81%, 9.22% and 14.72% of the oocytes with PATL2 mutations were arrested at the germinal vesicle (GV) stage, metaphase I (MI) stage and first polar body stage, respectively. Oocytes that could develop to the first polar body stage were extremely rare to fertilise, and their ultimate fate was early embryonic arrest. Phenotypic variability is related to the function of the regions and degree of loss of function of PATL2 protein. A 3D protein structure changes predicted by online tools, AlphaFold, showed aberrations at the mutation sites, which may explain partially the function loss. When the mutated and wild-type proteins are not in the same amino acid category, the protein structure will be considerably unstable. The integration of additional mutation sites with phenotypes is helpful in drawing a complete picture of the disease. Bioinformatics analysis of PATL2 mutations will help reveal molecular epidemiological characteristics and provide an important reference for new mutation assessment, genetic counselling and drug research.
Collapse
Affiliation(s)
- Hao Zhou
- Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Ye-Lan Cai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qing Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lian Zou
- Reproduction Center, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong-Xiang Yin
- Pathology Department, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Institute of Medical Genetics, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fang Xiong
- Reproduction Center, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Wang W, Guo J, Shi J, Li Q, Chen B, Pan Z, Qu R, Fu J, Shi R, Xue X, Mu J, Zhang Z, Wu T, Wang W, Zhao L, Li Q, He L, Sun X, Sang Q, Lin G, Wang L. Bi-allelic pathogenic variants in PABPC1L cause oocyte maturation arrest and female infertility. EMBO Mol Med 2023:e17177. [PMID: 37052235 DOI: 10.15252/emmm.202217177] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Oocyte maturation arrest is one of the important causes of female infertility, but the genetic factors remain largely unknown. PABPC1L, a predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos prior to zygotic genome activation, plays a key role in translational activation of maternal mRNAs. Here, we identified compound heterozygous and homozygous variants in PABPC1L that are responsible for female infertility mainly characterized by oocyte maturation arrest in five individuals. In vitro studies demonstrated that these variants resulted in truncated proteins, reduced protein abundance, altered cytoplasmic localization, and reduced mRNA translational activation by affecting the binding of PABPC1L to mRNA. In vivo, three strains of Pabpc1l knock-in (KI) female mice were infertile. RNA-sequencing analysis showed abnormal activation of the Mos-MAPK pathway in the zygotes of KI mice. Finally, we activated this pathway in mouse zygotes by injecting human MOS mRNA, and this mimicked the phenotype of KI mice. Our findings reveal the important roles of PABPC1L in human oocyte maturation and add a genetic potential candidate gene to be screened for causes of infertility.
Collapse
Affiliation(s)
- Weijie Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Juanzi Shi
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Xi'an, China
| | - Qun Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Ronggui Qu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Xi'an, China
| | - Xia Xue
- Reproductive Medicine Center, Shaanxi Maternal and Child Care Service Center, Xi'an, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Zhang J, Li S, Huang F, Xu R, Wang D, Song T, Liang B, Liu D, Chen J, Shi X, Huang HL. A novel compound heterozygous mutation in TUBB8 causing early embryonic developmental arrest. J Assist Reprod Genet 2023; 40:753-763. [PMID: 36735156 PMCID: PMC10224908 DOI: 10.1007/s10815-023-02734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Mutations in the β-tubulin isotype, TUBB8, can cause female infertility. Although several mutations of TUBB8 have been reported, the full spectrum for guiding genetics counseling still needs to be further explored. Here, we sought to identify novel variants in TUBB8 and their phenotypic effects on microtubule network structure in vitro. METHODS Whole-exome sequence analysis was performed in two families with infertility to detect pathogenic variants, with validation by Sanger sequencing. All gene variants and protein structures were predicted in silico. Cells were transfected with wild-type and mutants, and immunofluorescence analysis was performed to visualize microtubule network changes. RESULTS We detected a novel compound heterozygous mutation, c.915_916delCC (p.Arg306Serfs*21) and c.82C > T (p.His28Tyr), and a benign heterozygous variant c.1286C > T (p.Thr429Met) in TUBB8 in the two families. Female patients with p.Arg306Serfs*21 and p.His28Tyr were infertile with early embryonic developmental arrest. The female patient with p.Thr429Met gave birth to a healthy baby in the second in vitro fertilization frozen embryo transfer cycle. The p.Arg306Serfs*21 mutation was predicted to cause large structural alteration in the TUBB8 protein and was confirmed to produce a truncated and trace protein by western blot analysis. Immunofluorescence analysis of transfected HeLa cells showed that p.Arg306Serfs*21 significantly disrupted microtubule structure. CONCLUSIONS Our findings expand the known mutational spectrum of TUBB8 associated with early embryonic developmental arrest and female infertility.
Collapse
Affiliation(s)
- Jing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Suping Li
- Reproductive Medicine Center, Chenzhou No. 1 People's Hospital, Chenzhou, 412000, Hunan, China
| | - Fei Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ru Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Tian Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Boluo Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Dan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiaobo Shi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hua-Lin Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
18
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F, Yang J. Roles of the cytoskeleton in human diseases. Mol Biol Rep 2023; 50:2847-2856. [PMID: 36609753 DOI: 10.1007/s11033-022-08025-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023]
Abstract
Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.
Collapse
Affiliation(s)
- Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China.
| |
Collapse
|
19
|
Lin T, Liu W, Han W, Tong K, Xiang Y, Liao H, Chen K, He Y, Liu D, Huang G. Genetic screening and analysis of TUBB8 variants in females seeking ART. Reprod Biomed Online 2023; 46:244-254. [PMID: 36463079 DOI: 10.1016/j.rbmo.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
RESEARCH QUESTION More than 100 variants have been identified in the TUBB8 gene, which account for approximately 30% of infertile women with oocyte maturation defects. But what is the correlation between the highly phenotypic diversity and genetic variability? Are there other variants in TUBB8 related to female infertility? DESIGN TUBB8 resequencing was performed in 80 female subjects who were experiencing infertility and were seeking treatment with assisted reproductive technologies (ART), or had ever experienced ART failure due to oocyte maturation defects. All variants were evaluated with pedigree analysis, population frequency, in-silico analysis and molecular modelling. The effects of the variants on oocytes/arrested embryos were assessed by morphological observations, immunostaining, embryo biopsies and chromosome euploidy analysis. RESULTS Nine missense variants and two frameshift variants from an additional 15 families were identified, including four novel variants and seven previously reported recurrent variants. These TUBB8 variants were related to highly variable phenotypes, including abnormalities in oocyte maturation or morphology, fertilization failure, embryonic development abnormalities and implantation failure. Also further clarified were the incomplete penetrance of heterozygous p.E108K, the likely benign significance of heterozygous p.A313V and the clinical effect of a novel variant of p.R380C. CONCLUSIONS This study significantly expands the variant spectrum of the TUBB8 gene and, together with the available findings on TUBB8 variants and female infertility, will potentially facilitate the genetic counselling of infertile women in future.
Collapse
Affiliation(s)
- Tingting Lin
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China; Chongqing Key Laboratory of Human Embryo Engineering Chongqing, China
| | - Weiwei Liu
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Wei Han
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Keya Tong
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Yezhou Xiang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Haiyuan Liao
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Ke Chen
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Yao He
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China
| | - Dongyun Liu
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China.
| | - Guoning Huang
- Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University Chongqing, China; Chongqing Health Center for Women and Children Chongqing, China; Chongqing Key Laboratory of Human Embryo Engineering Chongqing, China.
| |
Collapse
|
20
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics (Basel) 2022; 12:diagnostics12102501. [PMID: 36292190 PMCID: PMC9601227 DOI: 10.3390/diagnostics12102501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Oocyte maturation abnormalities (OMAS) are a poorly understood area of reproductive medicine. Much remains to be understood about how OMAS occur. However, current knowledge has provided some insight into the mechanistic and genetic origins of this syndrome. In this study, current classifications of OMAS syndromes are discussed and areas of inadequacy are highlighted. We explain why empty follicle syndrome, dysmorphic oocytes, some types of premature ovarian insufficiency and resistant ovary syndrome can cause OMAS. We discuss live births in different types of OMAS and when subjects can be offered treatment with autologous oocytes. As such, we present this review of the mechanism and understanding of OMAS to better lead the clinician in understanding this difficult-to-treat diagnosis.
Collapse
|
22
|
Fei CF, Zhou LQ. Gene mutations impede oocyte maturation, fertilization, and early embryonic development. Bioessays 2022; 44:e2200007. [PMID: 35900055 DOI: 10.1002/bies.202200007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022]
Abstract
Reproductive diseases are a long-standing problem and have become more common in the world. Currently, 15% of the world's population suffers from infertility, and half of them are women. Maturation of oocytes, successful fertilization, and high-quality embryos are prerequisites for pregnancy. With the development of assisted reproductive technology and advanced genetic assays, we have found that infertility in many young female patients is caused by mutations in various developmental regulators. These pathogenic factors may result in impediment of oocyte maturation, failure of fertilization or early embryonic development arrest. In this review, we categorize these clinically-identified, mutated genetic factors by their molecular characteristics: nuclear factors (PALT2, TRIP13, WEE2, TBPL2, REC114, MEI1 and CDC20), cytoplasmic factors (TLE6, PADI6, NLRP2/5, FBXO43, MOS and BTG4), a factor unique to primates (TUBB8), cell membrane factor (PANX1), and zona pellucida factors (ZP1-3). We compared discrepancies observed in phenotypes between human and mouse models to provide clues for clinical diagnosis and treatment of related reproductive diseases.
Collapse
Affiliation(s)
- Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Yao Z, Zeng J, Zhu H, Zhao J, Wang X, Xia Q, Li Y, Wu L. Mutation analysis of the TUBB8 gene in primary infertile women with oocyte maturation arrest. J Ovarian Res 2022; 15:38. [PMID: 35354490 PMCID: PMC8969352 DOI: 10.1186/s13048-022-00971-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background Oocyte maturation arrest at metaphase I leads to fertilization failure in humans. In early embryos, the tubulin beta 8 class VIII (TUBB8) encodes a β-tubulin isotype and aids in the assembling of the human oocyte spindle. Mutations in the TUBB8 potentially interfere with human oocyte maturation—a crucial prerequisite for fertilization and subsequent embryonic development. This study aims to investigate the novel mutations in TUBB8 and their prevalence. Results Hundred fertile women (controls) and eleven infertile women with oocyte maturation arrest were chosen for the study. A total of five TUBB8 heterozygous/homozygous mutations were found in eleven infertile females (p.A313V, p.C239W, p.R251Q, p.P358L, and p.G96R). The Exome Aggregation Consortium (ExAC), SIFT, and PolyPhen-2 analyses revealed that p. A313V has unknown pathogenicity and p.C239W, p.R251Q, p.P358L, and p.G96R have possible pathogenicity. The wild-type (WT) and four mutant gene constructs were transfected to Hela cells. The Western blot analysis indicates that the TUBB8 expression of the p.C239W, p.R251Q, and p.G96R mutations was significantly decreased than that of WT. The immunofluorescence assay showed that the Hela cells transfected with either p.C239W, p.R251Q, or p.G96R mutations exhibited the disrupted microtubule structure, revealing a significant difference in the organization of the microtubule network compared to the WT. Conclusions We identified three novel variants and two reported variants out of 11 infertile women with oocyte metaphase I arrest. According to the present data, TUBB8 gene variants account for 31.96% of all participants (109/341) with oocyte maturation arrest. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00971-9.
Collapse
Affiliation(s)
- Zhongyuan Yao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Jun Zeng
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Huimin Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Jing Zhao
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan, China
| | - Xiaoxia Wang
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
| | - Qiuping Xia
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yanping Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China. .,Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
24
|
Picchetta L, Caroselli S, Figliuzzi M, Cogo F, Zambon P, Costa M, Pergher I, Patassini C, Cortellessa F, Zuccarello D, Poli M, Capalbo A. Molecular tools for the genomic assessment of oocyte’s reproductive competence. J Assist Reprod Genet 2022; 39:847-860. [PMID: 35124783 PMCID: PMC9050973 DOI: 10.1007/s10815-022-02411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The most important factor associated with oocytes' developmental competence has been widely identified as the presence of chromosomal abnormalities. However, growing application of genome-wide sequencing (GS) in population diagnostics has enabled the identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting IVF outcomes and reproductive fitness. Indeed, GS analysis in families with history of isolated infertility has recently led to the discovery of new genes and variants involved in specific human infertility endophenotypes that impact the availability and the functionality of female gametes by altering unique mechanisms necessary for oocyte maturation and early embryo development. Ongoing advancements in analytical and bioinformatic pipelines for the study of the genetic determinants of oocyte competence may provide the biological evidence required not only for improving the diagnosis of isolated female infertility but also for the development of novel preventive and therapeutic approaches for reproductive failure. Here, we provide an updated discussion and review of the progresses made in preconception genomic medicine in the identification of genetic factors associated with oocyte availability, function, and competence.
Collapse
|
25
|
Abstract
Maternal effect genes (MEGs) encode factors (e.g., RNA) that are present in the oocyte and required for early embryonic development. Hence, while these genes and gene products are of maternal origin, their phenotypic consequences result from effects on the embryo. The first mammalian MEGs were identified in the mouse in 2000 and were associated with early embryonic loss in the offspring of homozygous null females. In humans, the first MEG was identified in 2006, in women who had experienced a range of adverse reproductive outcomes, including hydatidiform moles, spontaneous abortions, and stillbirths. Over 80 mammalian MEGs have subsequently been identified, including several that have been associated with phenotypes in humans. In general, pathogenic variants in MEGs or the absence of MEG products are associated with a spectrum of adverse outcomes, which in humans range from zygotic cleavage failure to offspring with multi-locus imprinting disorders. Although less established, there is also evidence that MEGs are associated with structural birth defects (e.g., craniofacial malformations, congenital heart defects). This review provides an updated summary of mammalian MEGs reported in the literature through early 2021, as well as an overview of the evidence for a link between MEGs and structural birth defects.
Collapse
|
26
|
Guo Q, Liu Q, Wang N, Wang J, Sun A, Qiao J, Yan L. The function of Nucleoporin 37 on mouse oocyte maturation and preimplantation embryo development. J Assist Reprod Genet 2022; 39:107-116. [PMID: 35022896 PMCID: PMC8866631 DOI: 10.1007/s10815-021-02330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Nucleoporin 37 (NUP37) has been reported to activate the YAP-TEAD signaling, which is crucial for early embryo development. However, whether NUP37 is involved in oocyte meiosis and embryo development remains largely unknown. The study aimed to clarify the function of Nup37 in oocyte maturation and early embryo development, and to explore the mechanism. METHODS The expression level and subcellular localization of NUP37 were explored. After knocking down of Nup37 by microinjecting interfering RNA (siRNA), the oocyte maturation rate, aberrant PB1 extrusion rate, and blastocyst formation rate were evaluated. In addition, the effect of the downregulation of Nup37 on YAP-TEAD signaling was confirmed by immunofluorescence staining and real-time quantitative PCR. RESULTS NUP37 was highly expressed in oocytes and early embryos; it mainly localized to the nuclear periphery at mice GV stage oocytes and early embryos. Nup37 depletion led to aberrant PB1 extrusion at the MII stage oocyte and a decreased blastocyst formation rate. The reduction of NUP37 caused YAP1 mislocalization and decreased the expression of Tead1, Tead2, and Tead4 during mice embryo development, thus affecting the YAP-TEAD activity and embryo developmental competence. CONCLUSIONS In summary, NUP37 played an important role in mice oocyte maturation and preimplantation embryo development.
Collapse
Affiliation(s)
- Qianying Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Andi Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191 China ,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education Beijing Key, Beijing, 100191 China ,Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191 China ,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Xue Y, Cheng X, Xiong Y, Li K. Gene mutations associated with fertilization failure after in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne) 2022; 13:1086883. [PMID: 36589837 PMCID: PMC9800785 DOI: 10.3389/fendo.2022.1086883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Fertilization failure during assisted reproductive technologies (ART) is often unpredictable, as this failure is encountered only after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) have been performed. The etiology of fertilization failure remains elusive. More and more mutations of genes are found to be involved in human fertilization failure in infertile patients as high throughput sequencing techniques are becoming widely applied. In this review, the mutations of nine important genes expressed in sperm or oocytes, PLCZ1, ACTL7A, ACTL9, DNAH17, WEE2, TUBB8, NLRP5, ZP2, and TLE6, were summarized and discussed. These abnormalities mainly have shown Mendelian patterns of inheritance, including dominant and recessive inheritance, although de novo mutations were present in some cases. The review revealed the crucial roles of each reported gene in the fertilization process and summarized all known mutations and their corresponding phenotypes. The review suggested the mutations might become promising targets for precision treatments in reproductive medicine. Moreover, our work will provide some helpful clues for genetic counseling, risk prediction, and optimizing clinical treatments for human infertility by supplying the useful and timely information on the genetic causes leading to fertilization failure.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Kun Li,
| |
Collapse
|
28
|
Zheng W, Sha QQ, Hu H, Meng F, Zhou Q, Chen X, Zhang S, Gu Y, Yan X, Zhao L, Zong Y, Hu L, Gong F, Lu G, Fan HY, Lin G. Biallelic variants in ZFP36L2 cause female infertility characterised by recurrent preimplantation embryo arrest. J Med Genet 2021; 59:850-857. [PMID: 34611029 DOI: 10.1136/jmedgenet-2021-107933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recurrent preimplantation embryo developmental arrest (RPEA) is the most common cause of assisted reproductive technology treatment failure associated with identified genetic abnormalities. Variants in known maternal genes can only account for 20%-30% of these cases. The underlying genetic causes for the other affected individuals remain unknown. METHODS Whole exome sequencing was performed for 100 independent infertile females that experienced RPEA. Functional characterisations of the identified candidate disease-causative variants were validated by Sanger sequencing, bioinformatics and in vitro functional analyses, and single-cell RNA sequencing of zygotes. RESULTS Biallelic variants in ZFP36L2 were associated with RPEA and the recurrent variant (p.Ser308_Ser310del) prevented maternal mRNA decay in zygotes and HeLa cells. CONCLUSION These findings emphasise the relevance of the relationship between maternal mRNA decay and human preimplantation embryo development and highlight a novel gene potentially responsible for RPEA, which may facilitate genetic diagnoses.
Collapse
Affiliation(s)
- Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Huiling Hu
- Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Qinwei Zhou
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Xueqin Chen
- Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Xian Yan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Lei Zhao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Yurong Zong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China.,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, Hunan, China .,Labortatory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem and Reproductive Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Lu Q, Zhang X, Cao Q, Wang C, Ding J, Zhao C, Zhang J, Ling X, Meng Q, Huo R, Li H. Expanding the Genetic and Phenotypic Spectrum of Female Infertility Caused by TUBB8 Mutations. Reprod Sci 2021; 28:3448-3457. [PMID: 34494234 DOI: 10.1007/s43032-021-00694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
Tubulin beta eight class VIII (TUBB8) is a subtype of β-tubulin that only exists in primates. TUBB8 mutations have been reported to cause arrest of oocyte maturation and embryonic development. We aim to further investigate the mutational spectrum of TUBB8 and its relevance with female infertility. In our study, infertile patients were recruited, and their basal and clinical characteristics were analyzed. Genomic DNA was extracted from peripheral blood donated by patients. Candidate variants were identified by whole-exome sequencing, selected by relevant criteria, and validated by Sanger sequencing. We found five heterozygous variants: c.C208A(p.P70T), c.T907C(p.C303R), c.G173A(p.R58K), c.G326T(p.G109V), and c.C916T(p.R306C) in TUBB8 among six infertile patients characterized by abnormal phenotypes in oocyte maturation, fertilization, or embryo development. Most of oocytes retrieved from affected individuals were arrested at GV (germinal vesicle) stage and early embryos were arrested at variable stages. In vitro experiments were performed, and the relationship between variant c.G173A(p.R58K), c.C208A(p.P70T), and infertility phenotype was confirmed. We also discussed the possibility about patient II-1 from family 4 is affected by germinal/germline mosaicism. These results expand the kinds of variants and phenotypic spectrum of TUBB8 variants with regard to female infertility.
Collapse
Affiliation(s)
- Qianneng Lu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaolan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Congjing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.,Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qingxia Meng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China.
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.,Reproductive Genetic Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
30
|
Liu Z, Xi Q, Zhu L, Yang X, Jin L, Wang J, Zhang T, Zhou X, Zhang D, Peng X, Luo Y, Li Z, Zhang X. TUBB8 Mutations Cause Female Infertility with Large Polar Body Oocyte and Fertilization Failure. Reprod Sci 2021; 28:2942-2950. [PMID: 34160777 DOI: 10.1007/s43032-021-00633-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Tubulin beta 8 class VIII (TUBB8) is a special β-tubulin isotype that mainly expressed in primate oocytes and early embryos and identified as the disease-causing gene of human oocyte maturation arrest. To identify the disease-causing genes in 2 patients with female infertility due to large polar body oocyte or fertilization failure, whole-exome sequencing was performed on the patients and available family members. We identified a novel heterozygous missense mutation c.817C>G (p.L273V) and a recently reported heterozygous missense mutation c.608A>G (p.D203G) in TUBB8 from two patients, respectively. We found oocyte with a large polar body in the patient who carried the p.D203G mutation in TUBB8. Bioinformatics analysis showed that these two mutations are harmful. The results of western blot and RT-PCR experiments showed that the D203G mutation caused a significant decrease in the expression of TUBB8, and immunostaining showed that the TUBB8 mutation caused abnormal microtubule morphology. These findings suggest that TUBB8 mutations resulted in oocyte with a large polar body and fertilization failure in patients.
Collapse
Affiliation(s)
- Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiarui Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaopei Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dazhi Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuejie Peng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yalin Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
31
|
Zheng W, Hu H, Zhang S, Xu X, Gao Y, Gong F, Lu G, Lin G. The comprehensive variant and phenotypic spectrum of TUBB8 in female infertility. J Assist Reprod Genet 2021; 38:2261-2272. [PMID: 33970371 DOI: 10.1007/s10815-021-02219-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE TUBB8 is a gene that is frequently analysed in the genetic diagnosis of female infertility; 102 variants of this gene have been identified. However, the evaluation of its pathogenicity and the resulting phenotypes vary. Here, we aimed to identify novel TUBB8 variants as well as to summarize the reported variants and phenotypes in order for them to be included in genetic counselling analyses. METHODS We performed whole exome sequencing to screen for candidate variants in 100 infertile female subjects and 100 controls who were able to conceive naturally. All variants were confirmed by Sanger sequencing. The effects of the variants in oocytes/arrested embryos were assessed by morphological observations, polar body biopsies, and chromosome analysis. A molecular modelling analysis was used to evaluate the possible effects of variants on protein secondary structure. RESULTS We identified 29 TUBB8 variants, of which 20 were novel and five were maternally inherited. We identified three of a total of six recurrent variants that were specific for complete cleavage failure. Moreover, we obtained evidence that TUBB8 variants with large polar bodies had chromosome segregation errors. CONCLUSIONS Our study expands the spectrum of TUBB8 variants, particularly for embryonic arrest. Together with the extant knowledge of TUBB8 variants, this study provides a foundation for the genetic counselling of female infertility.
Collapse
Affiliation(s)
- Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Huiling Hu
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China
| | - Xilin Xu
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
| | - Yong Gao
- Wuhan BGI Clinical Laboratory Co., Ltd., Wuhan, 430075, China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China.,Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China.,Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, 410008, China. .,Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410008, China.
| |
Collapse
|
32
|
Sang Q, Zhou Z, Mu J, Wang L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J Assist Reprod Genet 2021; 38:993-1002. [PMID: 33895934 PMCID: PMC8190202 DOI: 10.1007/s10815-021-02196-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/15/2021] [Indexed: 11/24/2022] Open
Abstract
Successful human reproduction requires gamete maturation, fertilization, and early embryonic development. Human oocyte maturation includes nuclear and cytoplasmic maturation, and abnormalities in the process will lead to infertility and recurrent failure of IVF/ICSI attempts. In addition, the quality of oocytes/embryos in the clinic can only be determined by morphological markers, and there is currently a lack of molecular markers for determining oocyte quality. As the number of patients undergoing IVF/ICSI has increased, many patients have been identified with recurrent IVF/ICSI failure. However, the genetic basis behind this phenotype remains largely unknown. In recent years, a few mutant genes have been identified by us and others, which provide potential molecular markers for determining the quality of oocytes/embryos. In this review, we outline the genetic determinants of abnormalities in the processes of oocyte maturation, fertilization, and early embryonic development. Currently, 16 genes (PATL2, TUBB8, TRIP13, ZP1, ZP2, ZP3, PANX1, TLE6, WEE2, CDC20, BTG4, PADI6, NLRP2, NLRP5, KHDC3L, and REC114) have been reported to be the causes of oocyte maturation arrest, fertilization failure, embryonic arrest, and preimplantation embryonic lethality. These abnormalities mainly have Mendelian inheritance patterns, including both dominant inheritance and recessive inheritance, although in some cases de novo mutations have also appeared. In this review, we will introduce the effects of each gene in the specific processes of human early reproduction and will summarize all known variants in these genes and their corresponding phenotypes. Variants in some genes have specific effects on certain steps in the early human reproductive processes, while other variants result in a spectrum of phenotypes. These variants and genetic markers will lay the foundation for individualized genetic counseling and potential treatments for patients and will be the target for precision treatments in reproductive medicine.
Collapse
Affiliation(s)
- Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|