1
|
Antoniades E, Keffes N, Vorri S, Tsitouras V, Gkantsinikoudis N, Tsitsopoulos P, Magras J. The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications. Cancers (Basel) 2025; 17:1566. [PMID: 40361492 PMCID: PMC12071314 DOI: 10.3390/cancers17091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family.
Collapse
Affiliation(s)
- Elias Antoniades
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Keffes
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Stamatia Vorri
- New York City Health and Hospital—Jacobi Medical Center Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Gkantsinikoudis
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Parmenion Tsitsopoulos
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - John Magras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| |
Collapse
|
2
|
Tauziède-Espariat A, Appay R, Bouvier C, Testud B, Girard N, Métais A, Servant E, Scavarda D, Meurgey A, Pissaloux D, Hasty L, Varlet P. A novel TEAD1::NCOA2 fusion that potentially expands the concept of supratentorial ependymoma, YAP1 fusion-positive. Acta Neuropathol 2025; 149:14. [PMID: 39928140 PMCID: PMC11811449 DOI: 10.1007/s00401-025-02852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France.
| | - Romain Appay
- Department of Pathology, APHM La Timone, Marseille, France
| | | | - Benoît Testud
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Euphrasie Servant
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Didier Scavarda
- Department of Pediatric Neurosurgery, AP-HM La Timone, Marseille, France
| | | | - Daniel Pissaloux
- Department of Biopathology, Léon Bérard Cancer Center, Lyon, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| |
Collapse
|
3
|
Okonechnikov K, Ghasemi DR, Schrimpf D, Tonn S, Mynarek M, Koster J, Milde T, Zheng T, Sievers P, Sahm F, Jones DTW, von Deimling A, Pfister SM, Kool M, Pajtler KW, Korshunov A. Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling. Acta Neuropathol Commun 2025; 13:4. [PMID: 39762990 PMCID: PMC11706152 DOI: 10.1186/s40478-024-01921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svenja Tonn
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584CS, The Netherlands
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Basu T, Das M, Debnath R, Bala A, Chatterjee U, Ghosh S. Clinicopathological profile of ependymomas with special reference to survival data - Experiences of a tertiary care center'. INDIAN J PATHOL MICR 2025; 68:118-124. [PMID: 38904443 DOI: 10.4103/ijpm.ijpm_814_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/18/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND AND AIMS Ependymomas exhibit heterogeneity across age, location, histology, molecular nature and survival suggestive of an epigenetic component in its pathogenesis. The CNS WHO classification (2021) classifies ependymomas based on DNA methylation profiles. Studies suggest that molecular sub-types remain stable throughout the course of disease. Immunohistochemical expression of L1CAM, has been identified as a surrogate marker for ZFTA/c11orf95-RELA fusion in supratentorial ependymomas. This study aims at realising its utility specially in resource-poor setups. MATERIALS AND METHODS Forty-three histopathologically-proven cases of ependymoma under treatment over the period of three years were selected. Histopathological examination followed by routine IHC staining for GFAP, S-100, EMA and Ki-67 in all cases and L1CAM in the supratentorial ependymomas was done. We have followed-up almost all cases during our study period and was correlated with the IHC expression patterns and clinico-pathological parameters, including survival. RESULTS In our study the commonest location for ependymomas was spine in adults and posterior fossa in pediatric age group. Majority cases belonged to CNS WHO Grade 2 both in adults and in the paediatric age group. Supratentorial location of ependymomas with positive immuno-reactivity for L1CAM and a higher Ki-67 labelling index were associated with poor survival. CONCLUSION Our study revealed that L1CAM is an effective surrogate marker for supratentorial ependymomas possibly carrying the ZFTA Fusion gene product. The L1CAM immuno-reactivity also corresponded with the survival data. However, larger population-based studies are required to validate these results further.
Collapse
Affiliation(s)
- Tista Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | - Mou Das
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Aishi Bala
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | | | - Subhasis Ghosh
- Department of Neurosurgery, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Perrod V, Levy R, Tauziède-Espariat A, Roux CJ, Beccaria K, Blauwblomme T, Grill J, Dufour C, Guerrini-Rousseau L, Abbou S, Bolle S, Roux A, Pallud J, Provost C, Oppenheim C, Varlet P, Boddaert N, Dangouloff-Ros V. Supra-tentorial Ependymomas with ZFTA Fusion, YAP1 Fusion, and Astroblastomas, MN1-altered: Characteristic Imaging Features. Clin Neuroradiol 2024; 34:939-950. [PMID: 39093426 DOI: 10.1007/s00062-024-01444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Supratentorial (ST) ependymoma subgroups are defined by two different fusions with different prognoses. Astroblastomas, MN1-altered, have ependymal-like histopathologic features and represent a differential diagnosis in children. We hypothesized that ZFTA-fused ependymoma and YAP1-fused ependymoma on the one hand, and astroblastoma, MN1-altered, on the other hand, show different MRI characteristics. METHODS We retrospectively analyzed the preoperative imaging of 45 patients with ST ependymoma or astroblastoma between January 2000 and September 2020, blinded to histomolecular grouping. Several characteristics, such as location, tumor volume, calcifications, solid/cystic component, and signal enhancement or diffusion were evaluated. We compared imaging characteristics according to their molecular subtype (ZFTA-fused, YAP1-fused, and astroblastoma, MN1-altered). RESULTS Thirty-nine patients were classified as having an ependymoma, 35 with a ZFTA fusion and four with a YAP1 fusion, and six as having an astroblastoma, MN1-altered. YAP1-fused ependymomas were more likely to involve at least 3 lobes than ZFTA-fused ependymomas. Astroblastomas were located in the frontal lobe in 100% of the tumors versus 49% of the ependymomas. Cerebral blood flow by arterial spin labeling was higher in astroblastomas than in ependymomas. There were no differences in the other characteristics between the molecular groups. All the tumors showed common features: intra-axial extra-ventricular tumors, very frequent contrast enhancement (39/43, 91%), a cystic/necrotic component (41/45, 91%), restricted diffusion (32/36, 89%), calcifications (15/18, 83%), and peri-tumoral edema (38/44, 86%). CONCLUSION The distinction between ST ependymoma subtypes and astroblastomas can be guided by several imaging features. These tumors share common imaging features that may help to differentiate ST ependymomas and astroblastomas from other pediatric ST tumors.
Collapse
Affiliation(s)
- Victoire Perrod
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Raphael Levy
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | | | - Charles-Joris Roux
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Kevin Beccaria
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades and Université Paris Cité, 75015, Paris, France
| | - Thomas Blauwblomme
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades and Université Paris Cité, 75015, Paris, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Stéphanie Bolle
- Department of Radiotherapy Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Alexandre Roux
- Neurosurgery Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Johan Pallud
- Neurosurgery Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Corentin Provost
- Neuroradiology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Catherine Oppenheim
- Neuroradiology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Neuropathology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France.
- INSERM U1299, Université Paris Cité, 75015, Paris, France.
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France.
- Assistance-Publique Hôpitaux de Paris, Department of Pediatric Radiology, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
6
|
Soni N, Ora M, Bathla G, Desai A, Gupta V, Agarwal A. Ependymal Tumors: Overview of the Recent World Health Organization Histopathologic and Genetic Updates with an Imaging Characteristic. AJNR Am J Neuroradiol 2024; 45:1624-1634. [PMID: 38844368 PMCID: PMC11543070 DOI: 10.3174/ajnr.a8237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 11/09/2024]
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System (CNS5), introduced significant changes, impacting tumors ranging from glial to ependymal neoplasms. Ependymal tumors were previously classified and graded based on histopathology, which had limited clinical and prognostic utility. The updated CNS5 classification now divides ependymomas into 10 subgroups based on anatomic location (supratentorial, posterior fossa, and spinal compartment) and genomic markers. Supratentorial tumors are defined by zinc finger translocation associated (ZFTA) (formerly v-rel avian reticuloendotheliosis viral oncogene [RELA]), or yes-associated protein 1 (YAP1) fusion; posterior fossa tumors are classified into groups A (PFA) and B (PFB), spinal ependymomas are defined by MYCN amplification. Subependymomas are present across all these anatomic compartments. The new classification kept an open category of "not elsewhere classified" or "not otherwise specified" if no pathogenic gene fusion is identified or if the molecular diagnosis is not feasible. Although there is significant overlap in the imaging findings of these tumors, a neuroradiologist needs to be familiar with updated CNS5 classification to understand tumor behavior, for example, the higher tendency for tumor recurrence along the dural flap for ZFTA fusion-positive ependymomas. On imaging, supratentorial ZFTA-fused ependymomas are preferentially located in the cerebral cortex, carrying predominant cystic components. YAP1-MAMLD1-fused ependymomas are intra- or periventricular with prominent multinodular solid components and have significantly better prognosis than ZFTA-fused counterparts. PFA ependymomas are aggressive paramedian masses with frequent calcification, seen in young children, originating from the lateral part of the fourth ventricular roof. PFB ependymomas are usually midline, noncalcified solid-cystic masses seen in adolescents and young adults arising from the fourth ventricular floor. PFA has a poorer prognosis, higher recurrence, and higher metastatic rate than PFB. Myxopapillary spinal ependymomas are now considered grade II due to high recurrence rates. Spinal-MYCN ependymomas are aggressive tumors with frequent leptomeningeal spread, relapse, and poor prognosis. Subependymomas are noninvasive, intraventricular, slow-growing benign tumors with an excellent prognosis. Currently, the molecular classification does not enhance the clinicopathologic understanding of subependymoma and myxopapillary categories. However, given the molecular advancements, this will likely change in the future. This review provides an updated molecular classification of ependymoma, discusses the individual imaging characteristics, and briefly outlines the latest targeted molecular therapies.
Collapse
Affiliation(s)
- Neetu Soni
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Manish Ora
- Department of Nuclear Medicine (M.O.), Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Girish Bathla
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Amit Desai
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Amit Agarwal
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| |
Collapse
|
7
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
8
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
9
|
Becker N, Camelo-Piragua S, Conway KS. A Contemporary Approach to Intraoperative Evaluation in Neuropathology. Arch Pathol Lab Med 2024; 148:649-658. [PMID: 37694565 DOI: 10.5858/arpa.2023-0097-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT.— Although the basic principles of intraoperative diagnosis in surgical neuropathology have not changed in the last century, the last several decades have seen dramatic changes in tumor classification, terminology, molecular classification, and modalities used for intraoperative diagnosis. As many neuropathologic intraoperative diagnoses are performed by general surgical pathologists, awareness of these recent changes is important for the most accurate intraoperative diagnosis. OBJECTIVE.— To describe recent changes in the practice of intraoperative surgical neuropathology, with an emphasis on new entities, tumor classification, and anticipated ancillary tests, including molecular testing. DATA SOURCES.— The sources for this review include the fifth edition of the World Health Organization Classification of Tumours of the Central Nervous System, primary literature on intraoperative diagnosis and newly described tumor entities, and the authors' clinical experience. CONCLUSIONS.— A significant majority of neuropathologic diagnoses require ancillary testing, including molecular analysis, for appropriate classification. Therefore, the primary goal for any neurosurgical intraoperative diagnosis is the identification of diagnostic tissue and the preservation of the appropriate tissue for molecular testing. The intraoperative pathologist should seek to place a tumor in the most accurate diagnostic category possible, but specific diagnosis at the time of an intraoperative diagnosis is often not possible. Many entities have seen adjustments to grading criteria, including the incorporation of molecular features into grading. Awareness of these changes can help to avoid overgrading or undergrading at the time of intraoperative evaluation.
Collapse
Affiliation(s)
- Nicole Becker
- From the Department of Pathology, University of Iowa, Iowa City (Becker)
| | - Sandra Camelo-Piragua
- the Department of Pathology, University of Michigan, Ann Arbor (Camelo-Piragua, Conway)
| | - Kyle S Conway
- the Department of Pathology, University of Michigan, Ann Arbor (Camelo-Piragua, Conway)
| |
Collapse
|
10
|
Tauziède-Espariat A, Nicaise Y, Sievers P, Sahm F, von Deimling A, Guillemot D, Pierron G, Duchesne M, Edjlali M, Dangouloff-Ros V, Boddaert N, Roux A, Dezamis E, Hasty L, Lhermitte B, Hirsch E, Hirsch MPV, Ardellier FD, Karnoub MA, Csanyi M, Maurage CA, Mokhtari K, Bielle F, Rigau V, Roujeau T, Abad M, Klein S, Bernier M, Horodyckid C, Adam C, Brandal P, Niehusmann P, Vannod-Michel Q, Provost C, de Champfleur NM, Nichelli L, Métais A, Mariet C, Chrétien F, Blauwblomme T, Beccaria K, Pallud J, Puget S, Uro-Coste E, Varlet P. CNS tumors with PLAGL1-fusion: beyond ZFTA and YAP1 in the genetic spectrum of supratentorial ependymomas. Acta Neuropathol Commun 2024; 12:55. [PMID: 38581034 PMCID: PMC10998316 DOI: 10.1186/s40478-023-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 04/07/2024] Open
Abstract
A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
| | - Yvan Nicaise
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Delphine Guillemot
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Gaëlle Pierron
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Mathilde Duchesne
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Myriam Edjlali
- Radiology Department, AP-HP, Raymond Poincaré Hospital, 92380, Garches, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Benoît Lhermitte
- Department of Pathology, Strasbourg Hospital, Strasbourg, France
| | - Edouard Hirsch
- Department of Neurology, Strasbourg Hospital, Strasbourg, France
| | | | - François-Daniel Ardellier
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Mélodie-Anne Karnoub
- Department of Pediatric Neurosurgery, Lille University Hospital, 59000, Lille, France
| | - Marie Csanyi
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Claude-Alain Maurage
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Karima Mokhtari
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Valérie Rigau
- Department of Pathology, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Thomas Roujeau
- Department of Neurosurgery, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Marine Abad
- Department of Pathology, Jean Minjoz Hospital, Besançon, France
| | - Sébastien Klein
- Department of Pediatric Oncology, Jean Minjoz Hospital, Besançon, France
| | | | | | - Clovis Adam
- Department of Pathology, Bicêtre Hospital, 94275, Le Kremlin-Bicêtre, France
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Devision of Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Corentin Provost
- Department of Radiology, GHU-Paris-Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
| | | | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, 75013, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Cassandra Mariet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Stéphanie Puget
- Department of Neurosurgery, La Martinique Hospital, Fort-de-France, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| |
Collapse
|
11
|
de Castro JVA, Kulikowski LD, Wolff BM, Natalino R, Carraro DM, Torrezan GT, Scapulatempo Neto C, Amancio CT, Canedo FSNA, Feher O, Costa FD. Strong OLIG2 expression in supratentorial ependymoma, ZFTA fusion-positive: A potential diagnostic pitfall. Neuropathology 2024; 44:167-172. [PMID: 37855183 DOI: 10.1111/neup.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023]
Abstract
Ependymomas (EPN) are central nervous system neoplasms that exhibit an ependymal phenotype. In particular, supratentorial EPN (ST-EPN) must be differentiated from more aggressive entities such as glioblastoma, IDH-wildtype. This task is frequently addressed with the use of immunohistochemistry coupled with clinical presentation and morphological features. Here we describe the case of a young adult presenting with migraine-like symptoms and a temporoinsular-based expansile mass that was first diagnosed as a GBM, mostly based on strong and diffuse oligodendrocyte transcription factor 2 (OLIG2) expression. Molecular characterization revealed a ZFTA::RELA fusion, supporting the diagnosis of ST-EPN, ZFTA fusion-positive. OLIG2 expression is rarely reported in tumors other than GBM and oligodendrocyte-lineage committed neoplasms. The patient was treated with radiotherapy and temozolomide after surgery and was alive and well at follow-up. This report illustrates the need to assess immunostains within a broader clinical, morphological and molecular context to avoid premature exclusion of important differential diagnoses.
Collapse
Affiliation(s)
| | | | | | | | - Dirce Maria Carraro
- Department of Anatomic Pathology, AC Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Camila Trolez Amancio
- Departamento de Radiologia e Diagnóstico por Imagem, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Olavo Feher
- Departamento de Oncologia Clínica, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Felipe D'Almeida Costa
- Department of Anatomic Pathology, AC Camargo Cancer Center, São Paulo, Brazil
- DASA, São Paulo, Brazil
| |
Collapse
|
12
|
Lundar T, Due-Tønnessen BJ, Frič R, Sundseth J, Brandal P, Due-Tønnessen P. Outcome after treatment of pediatric supratentorial ependymoma: long-term follow-up of a single consecutive institutional series of 26 patients. Br J Neurosurg 2024; 38:514-522. [PMID: 34096810 DOI: 10.1080/02688697.2021.1914821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Long-term outcome after surgical treatment of supratentorial ependymoma (STE) in children has not been extensively reported. FINDINGS We identified 26 children who underwent primary tumor resection of STE between 1953 and 2011, with at least 8 years follow-up. Ten patients (38%) had anaplastic and 16 had low grade ependymoma. Four of 15 children (26%) treated in the years 1953-1976 survived more than 5 years, but the observed 10-year survival was only 7%. One patient lived for 37 years, and second surgery for a local recurrent lesion disclosed a glioblastoma, possibly secondary to radiotherapy. In contrast, the observed 5-year survival rate for 11 children treated in the years 1992-2011 was 8/11 (73%) and observed 10- and 25-year survival rates were 70% and 66%, respectively. Eight patients were alive and tumor-free with follow-up periods of 8-27 (median 18) years, all treated after 1992. Five of these long-term survivors were 23-39 years old with full-time (n = 3) or part-time (n = 2) work. The last three patients were still children (9-12 years old): one with good function and two with major neurological deficits. The majority of patients (n = 18) received adjuvant radiotherapy and eight children no adjuvant treatment. Repeated resections for residual or recurrent tumor were necessary in 11 patients (42%), mostly due to local disease with progressive clinical symptoms. Eight patients underwent only one repeat resection, whereas three patients had two or more repeat resections within 18 years after initial surgery. Four patients were tumor-free after repeated resections at the latest follow-up, 2-13 years after last surgery. CONCLUSION Pediatric STE has a marked risk for local recurrence even after gross total resection and postoperative radiotherapy, but survival has increased following the introduction of modern treatment in recent years. Repeated surgery is an important part of treatment and may lead to persistent tumor control.
Collapse
Affiliation(s)
- Tryggve Lundar
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Neurosurgery, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Radek Frič
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jarle Sundseth
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Paulina Due-Tønnessen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
14
|
Zhou Y, Sun YW, Liu XY, Shen DH. Misdiagnosis of synovial sarcoma - cellular myofibroma with SRF-RELA gene fusion: A case report. World J Clin Cases 2024; 12:1326-1332. [PMID: 38524524 PMCID: PMC10955539 DOI: 10.12998/wjcc.v12.i7.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cellular myofibroma is a rare subtype of myofibroma that was first described in 2017. Its diagnosis is often challenging because of its relative rarity, lack of known genetic abnormalities, and expression of muscle markers that can be confused with sarcomas that have myogenic differentiation. Currently, scholars have limited knowledge of this disease, and published cases are few. Further accumulation of diagnostic and treatment experiences is required. CASE SUMMARY A 16-year-old girl experienced left upper limb swelling for 3 years. She sought medical attention at a local hospital 10 months ago, where magnetic resonance imaging revealed a 5-cm soft tissue mass. Needle biopsy performed at a local hospital resulted in the diagnosis of a spindle cell soft tissue sarcoma. The patient was referred to our hospital for limb salvage surgery with endoprosthetic replacement. She was initially diagnosed with a synovial sarcoma. Consequently, clinical management with chemotherapy was continued for the malignant sarcoma. Our pathology department also performed fluorescence in situ hybridization for result validation, which returned negative for SS18 gene breaks, indicating that it was not a synovial sarcoma. Next-generation sequencing was used to identify the SRF-RELA rearrangement. The final pathological diagnosis was a cellular/myofibroblastic neoplasm with an SRF-RELA gene fusion. The patient had initially received two courses of chemotherapy; however, chemotherapy was discontinued after the final diagnosis. CONCLUSION This case was misdiagnosed because of its rare occurrence, benign biological behavior, and pathological similarity to soft tissue sarcoma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Yi-Wen Sun
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Xiao-Yang Liu
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Dan-Hua Shen
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
15
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
16
|
Tauziède-Espariat A, Tartar A, Mehdi L, Pucelle N, Lacombe J, Berthaud C, Brigot E, Massé J, Métais A, Benzakoun J, Hasty L, Chrétien F, Varlet P. [Contributions and limitations of FISH analysis for the diagnosis of central nervous system tumors according to the 2021 WHO classification: Feedback from Sainte-Anne Hospital's Department of Neuropathology]. Ann Pathol 2023; 43:443-451. [PMID: 37385935 DOI: 10.1016/j.annpat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System has identified many new tumor types and has established, for the first time, essential and desirable diagnostic criteria for each of them. Among these, genetic alterations play an important role associated with morphology. For the first time, epigenetic data can also constitute essential and/or desirable criteria. These genetic abnormalities can be fusions, deletions or gains/amplifications and can thus be detected by fluorescence in situ hybridization techniques. The purpose of this article is to present the advantages and limitations of this technique in reference to its specific use within neuro-oncopathology in light of the 2021 WHO classification.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France.
| | - Amélie Tartar
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Leïla Mehdi
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Noémie Pucelle
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joëlle Lacombe
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Charlotte Berthaud
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Enola Brigot
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joëlle Massé
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Alice Métais
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joseph Benzakoun
- Service de neuroradiologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 75014 Paris, France
| | - Lauren Hasty
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Fabrice Chrétien
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Pascale Varlet
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| |
Collapse
|
17
|
Chapman RJ, Ghasemi DR, Andreiuolo F, Zschernack V, Espariat AT, Buttarelli FR, Giangaspero F, Grill J, Haberler C, Paine SML, Scott I, Jacques TS, Sill M, Pfister S, Kilday JP, Leblond P, Massimino M, Witt H, Modena P, Varlet P, Pietsch T, Grundy RG, Pajtler KW, Ritzmann TA. Optimizing biomarkers for accurate ependymoma diagnosis, prognostication, and stratification within International Clinical Trials: A BIOMECA study. Neuro Oncol 2023; 25:1871-1882. [PMID: 36916248 PMCID: PMC10547510 DOI: 10.1093/neuonc/noad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS Across 6 European BIOMECA laboratories, we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via fluorescent in situ hybridization (FISH) and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS DNA Methylation profiling classified 65.3% (n = 96/147) of cases as EPN-PFA and 15% (n = 22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99%-100% across 3 centers). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP-fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-center concordance and low sensitivity and specificity while MIP, MLPA, and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q, and CDKN2A loss while FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches.
Collapse
Affiliation(s)
- Rebecca J Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - David R Ghasemi
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
- Instituto Estadual do Cerebro Paulo Niemeyer, Rio de Janerio, Brazil
- IDOR Institute, Rio de Janeiro, Brazil
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Arnault Tauziede Espariat
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Francesca R Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Jacques Grill
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon M L Paine
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Ian Scott
- Department of Neuropathology, Nottingham University Hospital, Nottingham, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL GOS Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Martin Sill
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK
- The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pierre Leblond
- Institute of Hematology and Pediatric Oncology (IHOPe), Leon Berard Comprehensive Cancer Center, Lyon, France
| | - Maura Massimino
- Paediatric Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale dei Tumori, Milano, Italy
| | - Hendrik Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Pascale Varlet
- Departement de Neuropathologie, Hopital Sainte-Anne, Paris, France
- INSERM Unit 981 and Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Bonn, Germany
| | - Richard G Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy A Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
18
|
Boop SH, Shimony N, Boop FA. Review and update on pediatric ependymoma. Childs Nerv Syst 2023; 39:2667-2673. [PMID: 37493720 DOI: 10.1007/s00381-023-06091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Since our last Special Annual Issue dedicated to the topic of ependymoma in 2009, critical advancements have been made in the understanding of this disease which is largely confined to childhood. In the era of molecular profiling, the prior classification of ependymoma based on histology has become largely irrelevant, with multiple new subtypes of this disease now being described in the newest 2021 WHO CNS Tumor Classification System. Despite our advancements in understanding the underlying biology of these tumors, the mainstays of treatment-gross total surgical resection followed by confocal radiation therapy-have continued to yield the best treatment results across multiple studies and centers. Here, we provide an update on our understanding of the advancements made in tumor biology, surgical, and oncologic management of this disease. As we move into an era of more personalized medicine, it is critical to reflect on our historical understanding of different disease entities, to better understand the future directions of our treatments.
Collapse
Affiliation(s)
- Scott H Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, LeBonheur Children's Hospital, Memphis, TN, USA
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Semmes Murphey Clinic, Memphis, TN, USA
| | - Frederick A Boop
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.
- Global Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Jha S, Mulgulwar PB, Sharma MC, Purkait S, Pattnaik A, Sable MN. C11orf95-RELA, YAP1-MAMLD1, and YAP1-FAM118B Fusion Negative Anaplastic Ependymoma with Lipogenic Differentiation. Neurol India 2023; 71:1011-1014. [PMID: 37929446 DOI: 10.4103/0028-3886.388099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Lipogenic differentiation in ependymoma is an infrequent occurrence with very few reported cases. The grading was done solely based on the histomorphology and molecular subtyping was not described in such ependymomas. New molecular classification divided ependymomas in nine different subgroups, of which supratentorial location tumor usually exhibits C11orf95-RELA, YAP1-MAMLD1, and YAP1-FAM118B fusion proteins. A 46-year-old female presented with headache and right-sided parapresis. Radilogy revealed a large intraxial left parietooccipital mass lesion, which histologically and immuohistochemically confirmed as anaplastic ependymoma with extensive lipogenic changes. The ependymal origin of the tumor was corroborated by the immunohistochemistry and ultrastructural studies. Molecular studies for C11orf95-RELA, YAP1-MAMLD1, and YAP1-FAM118B fusion proteins were negative. This is the first documentation of fusion negative supratentorial anaplastic ependymoma with lipogenic differentiation. This novel finding needs further reinforcement by similar studies to identify its impact on the disease outcome.
Collapse
Affiliation(s)
- Shilpy Jha
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Prit Benny Mulgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Suvendu Purkait
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Ashis Pattnaik
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Mukund Namdev Sable
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Phuong C, Qiu B, Mueller S, Braunstein SE. Precision based approach to tailoring radiotherapy in the multidisciplinary management of pediatric central nervous system tumors. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:141-149. [PMID: 39035723 PMCID: PMC11256719 DOI: 10.1016/j.jncc.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Modern day survivorship from childhood malignancies is estimated to be over 80%. However, central nervous system tumors remain the leading cause of cancer mortality in children and is the most common solid tumor in this population. Improved survivorship is, in part, a result of improved multidisciplinary care, often with a combination of surgery, radiation therapy, and systemic therapy. With improved survival, long term effects of treatment and quality of life impacts have been recognized and pose a challenge to maximize the therapeutic ratio of treatment. It has been increasingly more apparent that precise risk stratification, such as with the inclusion of molecular classification, is instrumental in efforts to tailor radiotherapy for appropriate treatment, generally towards de-intensification for this vulnerable patient population. In addition, advances in radiotherapy techniques have allowed greater conformality and accuracy of treatment for those who do require radiotherapy for tumor control. Ongoing efforts to tailor radiotherapy, including de-escalation, omission, or intensification of radiotherapy, continue to improve as increasing insight into tumor heterogeneity is recognized, coupled with advances in precision medicine employing novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Christina Phuong
- Department of Radiation Oncology, University of California, San Francisco, United States of America
| | - Bo Qiu
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, United States of America
| | - Sabine Mueller
- Division of Hematology/Oncology, Department of Pediatrics, University of California, San Francisco, United States of America
- Department of Neurology and Neurosurgery, University of California, San Francisco, United States of America
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, United States of America
| |
Collapse
|
21
|
Obrecht D, Mynarek M, Stickan-Verfürth M, Bison B, Schüller U, Pajtler K, Hagel C, Thomale UW, Fleischhack G, Timmermann B, Rutkowski S. [Pediatric Intracranial Ependymoma - Recommendations for First-Line Treatment from the German HIT-MED study group]. KLINISCHE PADIATRIE 2023; 235:167-177. [PMID: 37172610 DOI: 10.1055/a-2070-7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biological subtypes of ependymoma (EPN) have been introduced by the recent WHO classification and appear to have great impact on the clinical course, but have not yet found their way into clinical risk stratification. Further, the overall unfavorable prognosis underlines the fact that current therapeutic strategies need further evaluation for improvement. To date, there is no international consensus regarding first-line treatment for children with intracranial EPN. Extent of resection is known to be the most important clinical risk factor, leading to the consensus that consequent evaluation for re-surgery of postoperative residual tumor needs to have highest priority. Furthermore, efficacy of local irradiation is unquestioned and recommended for patients aged>1 year. In contrast, efficacy of chemotherapy is still under discussion. The European trial SIOP Ependymoma II aims at evaluating efficacy of different chemotherapy elements, leading to the recommendation to include German patients. The BIOMECA study, as biological accompanying study, aims at identifying new prognostic parameters. These results might help to develop targeted therapies for unfavorable biological subtypes. For patient who are not qualified for inclusion into the interventional strata, the HIT-MED Guidance 5.2 provides specific recommendations. This article is meant as an overview of national guidelines regarding diagnostics and treatment as well as of treatment according to the SIOP Ependymoma II trial protocol.
Collapse
Affiliation(s)
- Denise Obrecht
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Stickan-Verfürth
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich-Wilhelm Thomale
- Department of Neurosurgery, Section of pediatric Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Changes to pediatric brain tumors in 2021 World Health Organization classification of tumors of the central nervous system. Pediatr Radiol 2023; 53:523-543. [PMID: 36348014 DOI: 10.1007/s00247-022-05546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
New tumor types are continuously being described with advances in molecular testing and genomic analysis resulting in better prognostics, new targeted therapy options and improved patient outcomes. As a result of these advances, pathological classification of tumors is periodically updated with new editions of the World Health Organization (WHO) Classification of Tumors books. In 2021, WHO Classification of Tumors of the Central Nervous System, 5th edition (CNS5), was published with major changes in pediatric brain tumors officially recognized including pediatric gliomas being separated from adult gliomas, ependymomas being categorized based on anatomical compartment and many new tumor types, most of them seen in children. Additional general changes, such as tumor grading now being done within tumor types rather than across entities and changes in definition of glioblastoma, are also relevant to pediatric neuro-oncology practice. The purpose of this manuscript is to highlight the major changes in pediatric brain tumors in CNS5 most relevant to radiologists. Additionally, brief descriptions of newly recognized entities will be presented with a focus on imaging findings.
Collapse
|
23
|
El Mokh H, Zehani A, Chelly B, Chelly I, Azouz H, Haouet S. [A cerebral supratentorial tumor in a child]. Ann Pathol 2023; 43:150-152. [PMID: 36496291 DOI: 10.1016/j.annpat.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Haythem El Mokh
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia.
| | - Alia Zehani
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia
| | - Beya Chelly
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia
| | - Iness Chelly
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia
| | - Haifa Azouz
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia
| | - Slim Haouet
- Service d'anatomie et cytologie pathologiques, hôpital La Rabta, 1082 Tunis, Tunisia
| |
Collapse
|
24
|
Lehman NL. Early ependymal tumor with MN1-BEND2 fusion: a mostly cerebral tumor of female children with a good prognosis that is distinct from classical astroblastoma. J Neurooncol 2023; 161:425-439. [PMID: 36604386 PMCID: PMC9992034 DOI: 10.1007/s11060-022-04222-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Review of the clinicopathologic and genetic features of early ependymal tumor with MN1-BEND2 fusion (EET MN1-BEND2), classical astroblastomas, and recently described related pediatric CNS tumors. I also briefly review general mechanisms of gene expression silencing by DNA methylation and chromatin remodeling, and genomic DNA methylation profiling as a powerful new tool for CNS tumor classification. METHODS Literature review and illustration of tumor histopathologic features and prenatal gene expression timelines. RESULTS Astroblastoma, originally descried by Bailey and Cushing in 1926, has been an enigmatic tumor. Whether they are of ependymal or astrocytic derivation was argued for decades. Recent genetic evidence supports existence of both ependymal and astrocytic astroblastoma-like tumors. Studies have shown that tumors exhibiting astroblastoma-like histology can be classified into discrete entities based on their genomic DNA methylation profiles, gene expression, and in some cases, the presence of unique gene fusions. One such tumor, EET MN1-BEND2 occurs mostly in female children, and has an overall very good prognosis with surgical management. It contains a gene fusion comprised of portions of the MN1 gene at chromosomal location 22q12.1 and the BEND2 gene at Xp22.13. Other emerging pediatric CNS tumor entities demonstrating ependymal or astroblastoma-like histological features also harbor gene fusions involving chromosome X, 11q22 and 22q12 breakpoint regions. CONCLUSIONS Genomic DNA profiling has facilitated discovery of several new CNS tumor entities, however, traditional methods, such as immunohistochemistry, DNA or RNA sequencing, and cytogenetic studies, including fluorescence in situ hybridization, remain necessary for their accurate biological classification and diagnosis.
Collapse
Affiliation(s)
- Norman L Lehman
- Departments of Pathology and Laboratory Medicine, Biochemistry and Molecular Genetics, and the Brown Cancer Center, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.
| |
Collapse
|
25
|
Cardoni A, Barresi S, Piccirilli E, Alesi V, Miele E, Giovannoni I, Genovese S, Del Baldo G, Diomedi-Camassei F, Antonelli M, Giangaspero F, Puggioni C, Carai A, Colafati GS, Mastronuzzi A, Gessi M, Alaggio R, Rossi S. A non-hemispheric transtentorial ZFTA fusion-positive ependymoma in a 6-month-old boy. Neuropathol Appl Neurobiol 2023; 49:e12886. [PMID: 36709981 DOI: 10.1111/nan.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/23/2022] [Accepted: 01/21/2023] [Indexed: 01/31/2023]
Affiliation(s)
- Antonello Cardoni
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Piccirilli
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Manila Antonelli
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Felice Giangaspero
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Chiara Puggioni
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Pathology Division Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Halfpenny AM, Wood MD. Review of the Recent Changes in the WHO Classification for Pediatric Brain and Spinal Cord Tumors. Pediatr Neurosurg 2023; 58:337-355. [PMID: 36617415 PMCID: PMC10664345 DOI: 10.1159/000528957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Periodic updates to the World Health Organization (WHO) classification system for central nervous system (CNS) tumors reflect advances in the pathological diagnosis, categorization, and molecular underpinnings of primary brain, spinal cord, and peripheral nerve tumors. The 5th edition of the WHO Classification of CNS Tumors was published in 2021. This review discusses the guiding principles of the revision, introduces the more common new diagnostic entities, and describes tumor classification and nomenclature changes that are relevant for pediatric neurological surgeons. SUMMARY Revisions to the WHO CNS tumor classification system introduced new diagnostic entities, restructured and renamed other entities with particular impact in the diffuse gliomas and CNS embryonal tumors, and expanded the requirements for incorporating both molecular and histological features of CNS tumors into a unified integrated diagnosis. Many of the new diagnostic entities occur at least occasionally in pediatric patients and will thus be encountered by pediatric neurosurgeons. New nomenclature impacts the terminology that is applied in communication between pathologists, surgeons, clinicians, and patients. Requirements for molecular information in tumor diagnosis are expected to refine diagnostic categories while also introducing practical considerations for intraoperative consultation, preliminary histological evaluation, and triaging of neurosurgical tissue samples for histology, molecular testing, and clinical trial requirements. KEY MESSAGES Pediatric brain tumor diagnosis and clinical management are a multidisciplinary effort that is rapidly advancing in the molecular era. Interdisciplinary collaboration is critical for providing the best care for pediatric CNS tumor patients. Pediatric neurosurgeons and their local neuropathologists and neuro-oncologists must work collaboratively to put the most current CNS tumor diagnostic guidelines into standard practice.
Collapse
Affiliation(s)
| | - Matthew D. Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
27
|
Salomão JFM, Protzenko T. Intracranial Tumors in the First Year of Life. Adv Tech Stand Neurosurg 2023; 46:23-52. [PMID: 37318568 DOI: 10.1007/978-3-031-28202-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intracranial tumors in the first year of life are rare and, in this age group, are the second most common type of pediatric cancer after leukemias. As the more common solid tumor in neonates and infants, they present some peculiarities such as the high incidence of malignancies. Routine ultrasonography made easier to detect intrauterine tumors, but diagnosis can be delayed due to the lack or scarcity of recognizable symptoms. These neoplasms are often very large and highly vascular. Their removal is challenging, and there is a higher rate of morbidity and mortality than seen in older children, adolescents, and adults. They also differ from older children with respect to location, histological features, clinical behavior, and management. Pediatric low-grade gliomas represent 30% of the tumors in this age group and comprise circumscribed and diffuse tumors. They are followed by medulloblastoma and ependymoma. Other non-medulloblastoma embryonal neoplasms, former known as PNETS, are also commonly diagnosed in neonates and infants. Teratomas have an expressive incidence in newborns but decline gradually until the end of the first year of life. Immunohistochemical, molecular, and genomic advances are impacting the understanding and targeting of the treatment of some tumors, but, despite all these advances, the extent of resection remains the most important factor in the prognosis and survival of almost all types of tumors. The outcome is difficult to estimate, and 5-year survival ranges from one-quarter to three-quarters of the patients.
Collapse
Affiliation(s)
- José Francisco M Salomão
- Fernandes Figueira Institute - Oswaldo Cruz Foundation (IFF-Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana Protzenko
- Fernandes Figueira Institute - Oswaldo Cruz Foundation (IFF-Fiocruz), Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Bertero L, Ricci AA, Tampieri C, Cassoni P, Modena P. Ependymomas. Pathologica 2022; 114:436-446. [PMID: 36534422 PMCID: PMC9763977 DOI: 10.32074/1591-951x-817] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Ependymal neoplasms are a heterogenous group of neoplasms arising from the progenitors of the cells lining the ventricular system and the spinal central canal. During the last few years, significant novel data concerning oncogenesis, molecular characteristics and clinical correlations of these tumours have been collected, with a strong relevance for their pathological classification. The recently published 5th edition of WHO Classification of Central Nervous System Tumours integrates this novel knowledge and represents a substantial update compared to the previous edition. Concerning supratentorial ependymomas, the previous RELA fusion-positive ependymoma has been renamed into ZFTA fusion-positive and the novel YAP1 fusion-positive ependymoma subtype has been added. Posterior fossa ependymomas should now be allocated either to the Type A or Type B subtypes based on molecular profiling or using the H3 K27me3 immunohistochemical surrogate. Regarding spinal ependymomas, a novel subtype has been added based on a distinctive molecular trait, presence of MYCN amplification, and on the unfavourable outcome. Finally, myxopapillary ependymoma is now classified as a grade 2 tumour in accordance with its overall prognosis which mirrors that of conventional spinal ependymomas. The aim of this review is to present these changes and summarize the current diagnostic framework of ependymal tumours, according to the most recent updates.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy,Correspondence Luca Bertero Pathology Unit, Dept. Medical Sciences, University of Turin, via Santena 7, 10126 Torino, Italy Tel.: +390116336181 E-mail:
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristian Tampieri
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
29
|
Smith HL, Wadhwani N, Horbinski C. Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics 2022; 19:1691-1704. [PMID: 35578106 PMCID: PMC9723092 DOI: 10.1007/s13311-022-01249-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have also been reconceptualized into new "supercategories," including adult-type diffuse gliomas, pediatric-type diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
Collapse
Affiliation(s)
- Heather L Smith
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, IL, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Feinberg School of Medicine, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
30
|
Pagès M, Debily M, Fina F, Jones DTW, Saffroy R, Castel D, Blauwblomme T, Métais A, Bourgeois M, Lechapt‐Zalcman E, Tauziède‐Espariat A, Andreiuolo F, Chrétien F, Grill J, Boddaert N, Figarella‐Branger D, Beroukhim R, Varlet P. The genomic landscape of dysembryoplastic neuroepithelial tumours and a comprehensive analysis of recurrent cases. Neuropathol Appl Neurobiol 2022; 48:e12834. [PMID: 35836307 PMCID: PMC9542977 DOI: 10.1111/nan.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022]
Abstract
AIMS Dysembryoplastic neuroepithelial tumour (DNT) is a glioneuronal tumour that is challenging to diagnose, with a wide spectrum of histological features. Three histopathological patterns have been described: specific DNTs (both the simple form and the complex form) comprising the specific glioneuronal element, and also the non-specific/diffuse form which lacks it, and has unclear phenotype-genotype correlations with numerous differential diagnoses. METHODS We used targeted methods (immunohistochemistry, fluorescence in situ hybridisation and targeted sequencing) and large-scale genomic methodologies including DNA methylation profiling to perform an integrative analysis to better characterise a large retrospective cohort of 82 DNTs, enriched for tumours that showed progression on imaging. RESULTS We confirmed that specific DNTs are characterised by a single driver event with a high frequency of FGFR1 variants. However, a subset of DNA methylation-confirmed DNTs harbour alternative genomic alterations to FGFR1 duplication/mutation. We also demonstrated that a subset of DNTs sharing the same FGFR1 alterations can show in situ progression. In contrast to the specific forms, "non-specific/diffuse DNTs" corresponded to a heterogeneous molecular group encompassing diverse, newly-described, molecularly distinct entities. CONCLUSIONS Specific DNT is a homogeneous group of tumours sharing characteristics of paediatric low-grade gliomas: a quiet genome with a recurrent genomic alteration in the RAS-MAPK signalling pathway, a distinct DNA methylation profile and a good prognosis but showing progression in some cases. The "non-specific/diffuse DNTs" subgroup encompasses various recently described histomolecular entities, such as PLNTY and diffuse astrocytoma, MYB or MYBL1 altered.
Collapse
Affiliation(s)
- Mélanie Pagès
- GHU‐Paris – Sainte‐Anne Hospital, Department of NeuropathologyParis UniversityParisFrance
- Department of GeneticsInstitut CurieParisFrance
- SIREDO Paediatric Cancer CenterInstitut CurieParisFrance
- INSERM U830, Laboratory of Translational Research in Paediatric OncologyInstitut CurieParisFrance
- Paris Sciences Lettres Research UniversityParisFrance
| | - Marie‐Anne Debily
- Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
- Département de Biologie, Univ. EvryUniversité Paris‐SaclayEvryFrance
| | - Frédéric Fina
- APHM, CHU TimoneService d'Anatomie Pathologique et de NeuropathologieMarseilleFrance
| | - David T. W. Jones
- Pediatric Glioma ResearchHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Pediatric Glioma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Raphael Saffroy
- Oncogenetics Department, Assistance Publique‐Hôpitaux de Paris, Paul Brousse HospitalUniversité Paris‐SaclayVillejuifFrance
| | - David Castel
- Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
- Département de Biologie, Univ. EvryUniversité Paris‐SaclayEvryFrance
| | - Thomas Blauwblomme
- Pediatric Neurosurgery Department, AP‐HPHôpital Universitaire Necker‐Enfants MaladesParisFrance
- Université de Paris‐ CitéParisFrance
| | - Alice Métais
- GHU‐Paris – Sainte‐Anne Hospital, Department of NeuropathologyParis UniversityParisFrance
| | - Marie Bourgeois
- Pediatric Neurosurgery Department, AP‐HPHôpital Universitaire Necker‐Enfants MaladesParisFrance
| | | | | | - Felipe Andreiuolo
- Department of NeuropathologyInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
- Pathology Division, D'Or Research Institute (IDOR)D'Or Hospitals NetworkRio de JaneiroBrazil
| | - Fabrice Chrétien
- GHU‐Paris – Sainte‐Anne Hospital, Department of NeuropathologyParis UniversityParisFrance
- Université de Paris‐ CitéParisFrance
| | - Jacques Grill
- Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
- Département de Biologie, Univ. EvryUniversité Paris‐SaclayEvryFrance
- Department of Pediatric and Adolescent OncologyInstitut Gustave RoussyVillejuifFrance
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP‐HPHôpital Universitaire Necker‐Enfants MaladesParisFrance
- INSERM ERL UA10Université de ParisParisFrance
- Institut ImagineUniversité de Paris, UMR 1163ParisFrance
| | - Dominique Figarella‐Branger
- APHM, CHU TimoneService d'Anatomie Pathologique et de NeuropathologieMarseilleFrance
- Institute of NeuroPhysiopatholyAix‐Marseille Univ, CNRS, INPMarseilleFrance
| | - Rameen Beroukhim
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Cancer ProgramBroad InstituteCambridgeMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Pascale Varlet
- GHU‐Paris – Sainte‐Anne Hospital, Department of NeuropathologyParis UniversityParisFrance
| |
Collapse
|
31
|
Smith JD, Mandel G, Niazi T, Bradley JA, Indelicato DJ, Khatib Z. Multifocal and Multiphasic Demyelinating Lesions After Radiation for Ependymoma in a Pediatric Population. J Child Neurol 2022; 37:609-616. [PMID: 35619552 DOI: 10.1177/08830738221079476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Radiation treatment is widely used to address unresectable intracranial tumors. Owing to the nature of therapy, healthy tissue and diseased regions will be affected. New insights have shown that not only does this impact brain parenchyma but it causes changes in fluid status, myelination, and the integrity of the blood-brain barrier. This alters how peripheral and central immune systems interact, perpetuating neuroinflammation. Rare case reports in the adult literature have described multifocal, multiphasic demyelinating lesions after radiation. Here we describe 2 pediatric cases of relapsing demyelination after and in conjunction with radiation therapy for ependymoma, consistent with a multiple sclerosis phenotype. Insights into the underpinnings of multiple sclerosis show peripheral inflammation, blood-brain barrier disruption, and antigenic mimicry stimulating neuroinflammation. Here we investigate the role that radiation, tumor burden, and systemic inflammation may play in creating demyelinating disorders. We strive to elucidate common pathophysiology between radiation-induced brain injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jacklyn D Smith
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Gabriel Mandel
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Toba Niazi
- Division of Neurosurgery, 5447Nicklaus Children's Hospital, Miami, FL, USA
| | - Julie A Bradley
- Department of Radiation Oncology, 50551University of Florida, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, 50551University of Florida, Jacksonville, FL, USA
| | - Ziad Khatib
- Department of Pediatrics, 5447Nicklaus Children's Hospital, Miami, FL, USA.,Division of Hematology-Oncology, 5447Nicklaus Children's Hospital, Miami, FL, USA
| |
Collapse
|
32
|
Goyal-Honavar A, Balasundaram A, Thayakaran IP, Babu M, Pai R, Joseph J, Jayachandran R, Chacko AG, Mathew LG, Balakrishnan R, Rajshekhar V, L J, Sudarsanam TD, Chacko G. ZFTA-fusion in supratentorial ependymomas: low prevalence in South Asians and no correlation with survival. World Neurosurg 2022; 164:e82-e90. [PMID: 35378317 DOI: 10.1016/j.wneu.2022.03.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND - Supratentorial ependymomas (STEs) are an aggressive group of ependymoma, topographically distinct from their posterior fossa and spinal counterparts. ZFTA fusion-positive cases have been reported to account for the majority of STEs, although data on its association with poorer outcomes is inconsistent. MATERIALS AND METHODS - We assessed the prevalence of the ZFTA-fusion by RT PCR and FISH in a cohort of 61 patients (68 samples) with STE. Our primary outcome was to determine the role of the ZFTA-fusion on progression-free and overall survival of patients with STE. Our secondary objectives were to assess the impact of ZFTA-fusion on NF-kB pathway signalling via surrogate markers of this pathway, namely COX-2, CCND1 and L1CAM. RESULTS - ZFTA-fusion was noted in 21.3% of STEs in our cohort. The presence of this rearrangement did not significantly impact the PFS or OS of patients with STEs and was not associated with upregulation of markers of the NF-kB pathway. Only gross total resection was significantly associated with better progression-free survival. CONCLUSION - In contradiction to prior reports from across the world, the ZFTA-fusion is far less prevalent among our population. It does not appear to drive NF-kB signaling or significantly affect outcomes. Gross total resection (GTR) must be attempted in all cases of STE and adjuvant radiation and/or chemotherapy employed when GTR is not achieved.
Collapse
|
33
|
Chinnam D, Gupta K, Kiran T, Saraswati A, Salunke P, Madan R, Kumar N, Radotra BD. Molecular subgrouping of ependymoma across three anatomic sites and their prognostic implications. Brain Tumor Pathol 2022; 39:151-161. [PMID: 35348910 DOI: 10.1007/s10014-022-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
The 2021 WHO classification stratifies ependymoma (EPN) into nine molecular subgroups according to the anatomic locations which outperforms histological grading. We aimed at molecularly reclassifying 200 EPN using immunohistochemistry (IHC) and sequencing for ZFTA fusions in supratentorial (ST) EPN. Further, we assessed the utility of L1CAM, cyclinD1, and p65 markers in identifying ZFTA fusion. Demographic profiles, histologic features, molecular subgroups and clinical outcome were retrospectively analyzed. IHC for L1CAM, cyclinD1, p65, H3K27me3, and H3K27M and sequencing for ZFTA fusion were performed. ZFTA fusions were identified in 44.8% ST EPN. p65 displayed the highest specificity (93.8%), while L1CAM had the highest sensitivity (92.3%) in detecting ZFTA fusions. The negative predictive value approached 96.6% and sensitivity improved to 96.2% with combinatorial IHC (L1CAM, cyclinD1, p65). H3K27me3 loss (PF-A) was noted in 65% PF EPN. Our results provide evidence that a combination of two of three (L1CAM, p65, and cyclinD1) can be used as surrogate markers for predicting fusion. ZFTA fusion, and its surrogate markers in ST, and H3K27me3 and younger age (< 5 years) in PF showed significant correlation with PFS and OS on univariate and Kaplan-Meier analysis. On multivariate analysis, H3K27me3 loss and younger age group are associated with poor clinical outcome.
Collapse
Affiliation(s)
- Dheeraj Chinnam
- Department of Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Tanvi Kiran
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Saraswati
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Madan
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
34
|
Watal P, Patel RP, Chandra T. Pearls and Pitfalls of Imaging in Pediatric Brain Tumors. Semin Ultrasound CT MR 2022; 43:31-46. [PMID: 35164908 DOI: 10.1053/j.sult.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The central nervous system (CNS) tumors constitute the most common type of solid tumors in the pediatric population. The cerebral and cerebellar parenchyma are the most common site of pediatric CNS neoplasms. Imaging plays an important role in detection, characterization, staging and prognostication of brain tumors. The focus of the current article is pediatric brain tumor imaging with emphasis on pearls and pitfalls of conventional and advanced imaging in various pediatric brain tumor subtypes. The article also elucidates changes in brain tumor terms and entities as applicable to pediatric patients, updated as per World Health Organization (WHO) 2016 classification of primary CNS tumors. This classification introduced the genetic and/or molecular information of primary CNS neoplasms as part of comprehensive tumor pathology report in the routine clinical workflow. The concepts from 2016 classification have been further refined based on current research, by the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) group and published in the form of updates. The updates serve as guidelines in the time interval between WHO updates and expect to be broadly adopted in the subsequent WHO classification. The current review covers most pediatric brain tumors except pituitary tumors, meningeal origin tumors, nerve sheath tumors and CNS lymphoma/leukemia.
Collapse
Affiliation(s)
- Pankaj Watal
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL.
| | - Rajan P Patel
- Section of Neuroradiology, Department of Diagnostic and Interventional Imaging The University of Texas Health Sciences Center at Houston, TX
| | - Tushar Chandra
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL
| |
Collapse
|
35
|
Abstract
Ependymomas (EPN) are commonly encountered brain tumors in the pediatric population. They may arise in the supratentorial compartment, posterior fossa and spinal cord. Histopathologic grading of EPN has always been challenging with poor interobserver reproducibility and lack of correlation between histologic grade and patient outcomes. Recent studies have highlighted that, despite histopathological similarities among variants of EPN at different anatomical sites, they possess site-specific genetic and epigenetic alterations, transcriptional profiles and DNA copy number variations. This has led to a molecular and location-based classification for EPN which has been adopted by the World Health Organization Classification of Central Nervous System Tumors and more accurately risk-stratifies patients than histopathologic grading alone. Given the complexity of this evolving field, the purpose of this paper is to offer a practical approach to the diagnosis of EPN, including the selection of the most appropriate molecular surrogate immunohistochemical stains, basic molecular studies and more sophisticated techniques if needed. The goal is to reach a rapid, sound diagnosis, providing essential information regarding prognosis and guiding clinical decision-making.
Collapse
Affiliation(s)
- Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Sievers P, Henneken SC, Blume C, Sill M, Schrimpf D, Stichel D, Okonechnikov K, Reuss DE, Benzel J, Maaß KK, Kool M, Sturm D, Zheng T, Ghasemi DR, Kohlhof-Meinecke P, Cruz O, Suñol M, Lavarino C, Ruf V, Boldt HB, Pagès M, Pouget C, Schweizer L, Kranendonk MEG, Akhtar N, Bunkowski S, Stadelmann C, Schüller U, Mueller WC, Dohmen H, Acker T, Harter PN, Mawrin C, Beschorner R, Brandner S, Snuderl M, Abdullaev Z, Aldape K, Gilbert MR, Armstrong TS, Ellison DW, Capper D, Ichimura K, Reifenberger G, Grundy RG, Jabado N, Krskova L, Zapotocky M, Vicha A, Varlet P, Wesseling P, Rutkowski S, Korshunov A, Wick W, Pfister SM, Jones DTW, von Deimling A, Pajtler KW, Sahm F. Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathol 2021; 142:827-839. [PMID: 34355256 PMCID: PMC8500895 DOI: 10.1007/s00401-021-02356-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Ependymomas encompass a heterogeneous group of central nervous system (CNS) neoplasms that occur along the entire neuroaxis. In recent years, extensive (epi-)genomic profiling efforts have identified several molecular groups of ependymoma that are characterized by distinct molecular alterations and/or patterns. Based on unsupervised visualization of a large cohort of genome-wide DNA methylation data, we identified a highly distinct group of pediatric-type tumors (n = 40) forming a cluster separate from all established CNS tumor types, of which a high proportion were histopathologically diagnosed as ependymoma. RNA sequencing revealed recurrent fusions involving the pleomorphic adenoma gene-like 1 (PLAGL1) gene in 19 of 20 of the samples analyzed, with the most common fusion being EWSR1:PLAGL1 (n = 13). Five tumors showed a PLAGL1:FOXO1 fusion and one a PLAGL1:EP300 fusion. High transcript levels of PLAGL1 were noted in these tumors, with concurrent overexpression of the imprinted genes H19 and IGF2, which are regulated by PLAGL1. Histopathological review of cases with sufficient material (n = 16) demonstrated a broad morphological spectrum of tumors with predominant ependymoma-like features. Immunohistochemically, tumors were GFAP positive and OLIG2- and SOX10 negative. In 3/16 of the cases, a dot-like positivity for EMA was detected. All tumors in our series were located in the supratentorial compartment. Median age of the patients at the time of diagnosis was 6.2 years. Median progression-free survival was 35 months (for 11 patients with data available). In summary, our findings suggest the existence of a novel group of supratentorial neuroepithelial tumors that are characterized by recurrent PLAGL1 fusions and enriched for pediatric patients.
Collapse
Affiliation(s)
- Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie C Henneken
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christina Blume
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ofelia Cruz
- Department of Pediatric Oncology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Viktoria Ruf
- Institute of Neuropathology, Ludwig-Maximilian University, Munich, Germany
| | - Henning B Boldt
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mélanie Pagès
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Laboratory of Translational Research in Pediatric Oncology, SIREDO, INSERM U830, Institut Curie, Paris Sciences Lettres University, Paris, France
| | | | - Leonille Schweizer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariëtte E G Kranendonk
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noreen Akhtar
- Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Stephanie Bunkowski
- Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute for Neuropathology, University Medical Centre Göttingen, Göttingen, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Wolf C Mueller
- Paul-Flechsig Institute of Neuropathology, University Hospital and Faculty of Medicine, Leipzig, Germany
| | - Hildegard Dohmen
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institute of Neurology (Edinger-Institute), University Hospital, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | | | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Capper
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen/Düsseldorf, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Center, Montreal, QC, H4A 3J1, Canada
| | - Lenka Krskova
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Zapotocky
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Ales Vicha
- Prague Brain Tumor Research Group, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers, Location VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
| |
Collapse
|
37
|
Zaytseva M, Papusha L, Novichkova G, Druy A. Molecular Stratification of Childhood Ependymomas as a Basis for Personalized Diagnostics and Treatment. Cancers (Basel) 2021; 13:cancers13194954. [PMID: 34638438 PMCID: PMC8507860 DOI: 10.3390/cancers13194954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Ependymomas are among the most enigmatic tumors of the central nervous system, posing enormous challenges for pathologists and clinicians. Despite the efforts made, the treatment options are still limited to surgical resection and radiation therapy, while none of conventional chemotherapies is beneficial. While being histologically similar, ependymomas show considerable clinical and molecular diversity. Their histopathological evaluation alone is not sufficient for reliable diagnostics, prognosis, and choice of treatment strategy. The importance of integrated diagnosis for ependymomas is underscored in the recommendations of Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. These updated recommendations were adopted and implemented by WHO experts. This minireview highlights recent advances in comprehensive molecular-genetic characterization of ependymomas. Strong emphasis is made on the use of molecular approaches for verification and specification of histological diagnoses, as well as identification of prognostic markers for ependymomas in children.
Collapse
Affiliation(s)
- Margarita Zaytseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Correspondence:
| | - Ludmila Papusha
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
| | - Alexander Druy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (L.P.); (G.N.); (A.D.)
- Research Institute of Medical Cell Technologies, 620026 Yekaterinburg, Russia
| |
Collapse
|
38
|
Cabral de Carvalho Corrêa D, Tesser-Gamba F, Dias Oliveira I, Saba da Silva N, Capellano AM, de Seixas Alves MT, Benevides Silva FA, Dastoli PA, Cavalheiro S, Caminada de Toledo SR. Molecular profiling of pediatric and adolescent ependymomas: identification of genetic variants using a next-generation sequencing panel. J Neurooncol 2021; 155:13-23. [PMID: 34570300 DOI: 10.1007/s11060-021-03848-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ependymoma (EPN) accounts for approximately 10% of all primary central nervous system (CNS) tumors in children and in most cases, chemotherapy is ineffective and treatment remains challenging. We investigated molecular alterations, with a potential prognostic marker and therapeutic target in EPNs of childhood and adolescence, using a next-generation sequencing (NGS) panel specific for pediatric neoplasms. METHODS We selected 61 samples with initial diagnosis of EPN from patients treated at Pediatric Oncology Institute-GRAACC/UNIFESP. All samples were divided according to the anatomical compartment of the CNS - 42 posterior fossa (PF), 14 supratentorial (ST), and five spinal (SP). NGS was performed to identify somatic genetic variants in tumor samples using the Oncomine Childhood Cancer Research Assay® (OCCRA®) panel, from Thermo Fisher Scientific®. RESULTS Genetic variants were identified in 24 of 61 (39.3%) tumors and over 90% of all variants were pathogenic or likely pathogenic. The most commonly variants detected were in CIC, ASXL1, and JAK2 genes and have not been reported in EPN yet. MN1-BEND2 fusion, alteration recently described in a new CNS tumor type, was identified in one ST sample that was reclassified as astroblastoma. Additionally, YAP1-MAMLD1 fusion, a rare event associated with good outcome in ST-EPN, was observed in two patients diagnosed under 2 years old. CONCLUSIONS Molecular profiling by the OCCRA® panel showed novel alterations in pediatric and adolescent EPNs, which highlights the clinical importance in identifying genetic variants for patients' prognosis and therapeutic orientation.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Francine Tesser-Gamba
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nasjla Saba da Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Pathology, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Frederico Adolfo Benevides Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Alessandra Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.,Department of Neurology and Neurosurgery, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Division of Genetics, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, SP, Brazil. .,Pediatric Oncology Institute-Grupo de Apoio ao Adolescente e à Criança com Câncer/Federal University of Sao Paulo (IOP-GRAACC/UNIFESP), 743 Botucatu Street, 8th Floor - Genetics Laboratory, Vila Clementino, Sao Paulo, SP, 04023-062, Brazil.
| |
Collapse
|
39
|
Zheng T, Ghasemi DR, Okonechnikov K, Korshunov A, Sill M, Maass KK, Benites Goncalves da Silva P, Ryzhova M, Gojo J, Stichel D, Arabzade A, Kupp R, Benzel J, Taya S, Adachi T, Shiraishi R, Gerber NU, Sturm D, Ecker J, Sievers P, Selt F, Chapman R, Haberler C, Figarella-Branger D, Reifenberger G, Fleischhack G, Rutkowski S, Donson AM, Ramaswamy V, Capper D, Ellison DW, Herold-Mende CC, Schüller U, Brandner S, Driever PH, Kros JM, Snuderl M, Milde T, Grundy RG, Hoshino M, Mack SC, Gilbertson RJ, Jones DTW, Kool M, von Deimling A, Pfister SM, Sahm F, Kawauchi D, Pajtler KW. Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion-Positive Supratentorial Ependymomas. Cancer Discov 2021; 11:2230-2247. [PMID: 33879448 DOI: 10.1158/2159-8290.cd-20-0963] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kendra K Maass
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Benites Goncalves da Silva
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marina Ryzhova
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Johannes Gojo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Arabzade
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas
| | - Robert Kupp
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Julia Benzel
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Duesseldorf, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M Donson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vijay Ramaswamy
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Capper
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Brandner
- Division of Neuropathology, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Matija Snuderl
- Division of Neuropathology, Department of Pathology, NYU Langone Health, New York, New York
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
40
|
Tauziède-Espariat A, Siegfried A, Nicaise Y, Kergrohen T, Sievers P, Vasiljevic A, Roux A, Dezamis E, Benevello C, Machet MC, Michalak S, Puiseux C, Llamas-Gutierrez F, Leblond P, Bourdeaut F, Grill J, Dufour C, Guerrini-Rousseau L, Abbou S, Dangouloff-Ros V, Boddaert N, Saffroy R, Hasty L, Wahler E, Pagès M, Andreiuolo F, Lechapt E, Chrétien F, Blauwblomme T, Beccaria K, Pallud J, Puget S, Uro-Coste E, Varlet P. Supratentorial non-RELA, ZFTA-fused ependymomas: a comprehensive phenotype genotype correlation highlighting the number of zinc fingers in ZFTA-NCOA1/2 fusions. Acta Neuropathol Commun 2021; 9:135. [PMID: 34389065 PMCID: PMC8362233 DOI: 10.1186/s40478-021-01238-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
The cIMPACT-NOW Update 7 has replaced the WHO nosology of “ependymoma, RELA fusion positive” by “Supratentorial-ependymoma, C11orf95-fusion positive”. This modification reinforces the idea that supratentorial-ependymomas exhibiting fusion that implicates the C11orf95 (now called ZFTA) gene with or without the RELA gene, represent the same histomolecular entity. A hot off the press molecular study has identified distinct clusters of the DNA methylation class of ZFTA fusion-positive tumors. Interestingly, clusters 2 and 4 comprised tumors of different morphologies, with various ZFTA fusions without involvement of RELA. In this paper, we present a detailed series of thirteen cases of non-RELA ZFTA-fused supratentorial tumors with extensive clinical, radiological, histopathological, immunohistochemical, genetic and epigenetic (DNA methylation profiling) characterization. Contrary to the age of onset and MRI aspects similar to RELA fusion-positive EPN, we noted significant histopathological heterogeneity (pleomorphic xanthoastrocytoma-like, astroblastoma-like, ependymoma-like, and even sarcoma-like patterns) in this cohort. Immunophenotypically, these NFκB immunonegative tumors expressed GFAP variably, but EMA constantly and L1CAM frequently. Different gene partners were fused with ZFTA: NCOA1/2, MAML2 and for the first time MN1. These tumors had epigenetic homologies within the DNA methylation class of ependymomas-RELA and were classified as satellite clusters 2 and 4. Cluster 2 (n = 9) corresponded to tumors with classic ependymal histological features (n = 4) but also had astroblastic features (n = 5). Various types of ZFTA fusions were associated with cluster 2, but as in the original report, ZFTA:MAML2 fusion was frequent. Cluster 4 was enriched with sarcoma-like tumors. Moreover, we reported a novel anatomy of three ZFTA:NCOA1/2 fusions with only 1 ZFTA zinc finger domain in the putative fusion protein, whereas all previously reported non-RELA ZFTA fusions have 4 ZFTA zinc fingers. All three cases presented a sarcoma-like morphology. This genotype/phenotype association requires further studies for confirmation. Our series is the first to extensively characterize this new subset of supratentorial ZFTA-fused ependymomas and highlights the usefulness of ZFTA FISH analysis to confirm the existence of a rearrangement without RELA abnormality.
Collapse
|
41
|
Massimino M, Barretta F, Modena P, Witt H, Minasi S, Pfister SM, Pajtler KW, Antonelli M, Gandola L, Luisa Garrè M, Bertin D, Mastronuzzi A, Mascarin M, Quaglietta L, Viscardi E, Sardi I, Ruggiero A, Pollo B, Buccoliero A, Boschetti L, Schiavello E, Chiapparini L, Erbetta A, Morra I, Gessi M, Donofrio V, Patriarca C, Giangaspero F, Johann P, Buttarelli FR. Second series by the Italian Association of Pediatric Hematology and Oncology of children and adolescents with intracranial ependymoma: an integrated molecular and clinical characterization with a long-term follow-up. Neuro Oncol 2021; 23:848-857. [PMID: 33135735 PMCID: PMC8099475 DOI: 10.1093/neuonc/noaa257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A prospective 2002-2014 study stratified 160 patients by resection extent and histological grade, reporting results in 2016. We re-analyzed the series after a median of 119 months, adding retrospectively patients' molecular features. METHODS Follow-up of all patients was updated. DNA copy number analysis and gene-fusion detection could be completed for 94/160 patients, methylation classification for 68. RESULTS Progression-free survival (PFS) and overall survival (OS) at 5/10 years were 66/58%, and 80/73%. Ten patients had late relapses (range 66-126 mo), surviving after relapse no longer than those relapsing earlier (0-5 y). On multivariable analysis a better PFS was associated with grade II tumor and complete surgery at diagnosis and/or at radiotherapy; female sex and complete resection showed a positive association with OS. Posterior fossa (PF) tumors scoring ≥0.80 on DNA methylation analysis were classified as PFA (n = 41) and PFB (n = 9). PFB patients had better PFS and OS. Eighteen/32 supratentorial tumors were classified as RELA, and 3 as other molecular entities (anaplastic PXA, LGG MYB, HGNET). RELA had no prognostic impact. Patients with 1q gain or cyclin-dependent kinase inhibitor 2A (CDKN2A) loss had worse outcomes, included significantly more patients >3 years old (P = 0.050) and cases of dissemination at relapse (P = 0.007). CONCLUSIONS Previously described prognostic factors were confirmed at 10-year follow-up. Late relapses occurred in 6.2% of patients. Specific molecular features may affect outcome: PFB patients had a very good prognosis; 1q gain and CDKN2A loss were associated with dissemination. To draw reliable conclusions, modern ependymoma trials need to combine diagnostics with molecular risk stratification and long-term follow-up.
Collapse
Affiliation(s)
- Maura Massimino
- Departments of Pediatric, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Barretta
- Medical Statistics, Biometry and Bioinformatics, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Hendrik Witt
- Hopp-Children’s Cancer Center Heidelberg, German Cancer Research Center, German Cancer Consortium , Heidelberg, Germany
| | - Simone Minasi
- Departments of Neurology and Psychiatric, La Sapienza University, Rome, Italy
| | - Stefan M Pfister
- Hopp-Children’s Cancer Center Heidelberg, German Cancer Research Center, German Cancer Consortium , Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children’s Cancer Center Heidelberg, German Cancer Research Center, German Cancer Consortium , Heidelberg, Germany
| | - Manila Antonelli
- Radiological, Oncological and Anatomo-Pathological Sciences, La Sapienza University, Rome, Italy
| | - Lorenza Gandola
- Pediatric Radiotherapy, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Luisa Garrè
- Neuroncology and Neurosurgery Unit, Giannina Gaslini Institute, Genova, Italy
| | - Daniele Bertin
- Pediatric Onco-Hematology, Units, Regina Margherita Children’s Hospital, Torino, Italy
| | - Angela Mastronuzzi
- Pediatric Hematology and Oncology Department, Bambino Gesù Pediatric Hospital, Rome, Italy
| | | | - Lucia Quaglietta
- Departments of Pediatric Oncology, Santobono-Pausillipon Hospital, Naples, Italy
| | | | - Iacopo Sardi
- Neuroncology, Units, Meyer Pediatric Hospital, Firenze, Italy
| | | | | | | | - Luna Boschetti
- Departments of Pediatric, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Schiavello
- Departments of Pediatric, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Isabella Morra
- Pathology, Units, Regina Margherita Children’s Hospital, Torino, Italy
| | - Marco Gessi
- Pathology, Units, Carlo Besta Neurological Institute, Milan, Italy
| | | | | | | | - Pascal Johann
- Hopp-Children’s Cancer Center Heidelberg, German Cancer Research Center, German Cancer Consortium , Heidelberg, Germany
| | | |
Collapse
|
42
|
Diagnostic Utility of the Immunohistochemical Expression of Serine and Arginine Rich Splicing Factor 1 (SRSF1) in the Differential Diagnosis of Adult Gliomas. Cancers (Basel) 2021; 13:cancers13092086. [PMID: 33925821 PMCID: PMC8123436 DOI: 10.3390/cancers13092086] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Gliomas represent a wide group of central nervous system neoplasms, arising from the glial component of the central nervous system. They are generally sub-classified into astrocytomas, oligodendrogliomas, ependymomas and other rarer subtypes. Apart from morphological and molecular features, there are currently no specific markers for this heterogeneous group of tumors: thus, there is a need to identify more specific and useful markers to distinguish each histological subtype from the others. SRSF1 has been recently characterized as being functionally involved in gliomagenesis and it has been found that SRSF1 is increased in glioma tissues and its increased immunohistochemical expression among adult diffuse astrocytomas is positively correlated with histological grade. The aim of this study is to evaluate the immunohistochemical expression of the SRSF1 protein in a series of astrocytic and non-astrocytic adult gliomas, emphasizing its potential use in the differential diagnosis of these neuropathological entities. Abstract Background: The aim of this study was to investigate the immunohistochemical expression and distribution of serine and arginine rich splicing factor 1 (SRSF1) in a series of 102 cases of both diffuse and circumscribed adult gliomas to establish the potential diagnostic role of this protein in the differential diagnosis of brain tumors. Methods: This retrospective immunohistochemical study included 42 glioblastoma cases, 21 oligodendrogliomas, 15 ependymomas, 15 pilocytic astrocytomas, 5 sub-ependymal giant cell astrocytoma and 4 pleomorphic xanthoastrocytomas. Results: Most glioblastoma (81%), oligodendroglioma (71%), sub-ependymal giant cell astrocytoma (80%) and pleomorphic xanthoastrocytoma (75%) cases showed strong SRSF1 immunoexpression, while no detectable staining was found in the majority of ependymomas (87% of cases) and pilocytic astrocytomas (67% of cases). Conclusions: The immunohistochemical expression of SRSF1 may be a promising diagnostic marker of astrocytomas and oligodendrogliomas and its increased expression might allow for excluding entities that often enter into differential diagnosis, such as ependymomas and pilocytic astrocytomas.
Collapse
|
43
|
Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathol 2021; 141:455-466. [PMID: 33481105 PMCID: PMC7882569 DOI: 10.1007/s00401-020-02260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
Two distinct genetically defined entities of ependymoma arising in the supratentorial compartment are characterized by the presence of either a C11orf95-RELA or a YAP-MAMLD1 fusion, respectively. There is growing evidence that supratentorial ependymomas without these genetic features exist. In this study, we report on 18 pediatric non-RELA/non-YAP supratentorial ependymomas that were systematically characterized by means of their histology, immunophenotype, genetics, and epigenomics. Comprehensive molecular analyses included high-resolution copy number analysis, methylation profiling, analysis of fusion transcripts by Nanostring technology, and RNA sequencing. Based upon histological and immunohistochemical features two main patterns were identified—RELA-like (n = 9) and tanycytic ependymomas (n = 6). In the RELA-like group histologically assigned to WHO grade III and resembling RELA-fused ependymomas, tumors lacked nuclear expression of p65-RelA as a surrogate marker for a pathological activation of the NF-κB pathway. Three tumors showed alternative C11orf95 fusions to MAML2 or NCOA1. A methylation-based brain tumor classifier assigned two RELA-like tumors to the methylation class “EP, RELA-fusion”; the others demonstrated no significant similarity score. Of the tanycytic group, 5/6 tumors were assigned a WHO grade II. No gene fusions were detected. Methylation profiling did not show any association with an established methylation class. We additionally identified two astroblastoma-like tumors that both presented with chromothripsis of chromosome 22 but lacked MN1 breaks according to FISH analysis. They revealed novel fusion events involving genes in chromosome 22. One further tumor with polyploid cytogenetics was interpreted as PFB ependymoma by the brain tumor methylation classifier but had no relation to the posterior fossa. Clinical follow-up was available for 16/18 patients. Patients with tanycytic and astroblastoma-like tumors had no relapse, while 2 patients with RELA-like ependymomas died. Our data indicate that in addition to ependymomas discovered so far, at least two more supratentorial ependymoma types (RELA-like and tanycytic) exist.
Collapse
|
44
|
Korshunov A, Okonechnikov K, Schmitt-Hoffner F, Ryzhova M, Sahm F, Stichel D, Schrimpf D, Reuss DE, Sievers P, Suwala AK, Kumirova E, Zheludkova O, Golanov A, Jones DTW, Pfister SM, Kool M, von Deimling A. Molecular analysis of pediatric CNS-PNET revealed nosologic heterogeneity and potent diagnostic markers for CNS neuroblastoma with FOXR2-activation. Acta Neuropathol Commun 2021; 9:20. [PMID: 33536079 PMCID: PMC7860633 DOI: 10.1186/s40478-021-01118-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly malignant neoplasms posing diagnostic challenge due to a lack of defining molecular markers. CNS neuroblastoma with forkhead box R2 (FOXR2) activation (CNS_NBL) emerged as a distinct pediatric brain tumor entity from a pool previously diagnosed as primitive neuroectodermal tumors of the central nervous system (CNS-PNETs). Current standard of identifying CNS_NBL relies on molecular analysis. We set out to establish immunohistochemical markers allowing safely distinguishing CNS_NBL from morphological mimics. To this aim we analyzed a series of 84 brain tumors institutionally diagnosed as CNS-PNET. As expected, epigenetic analysis revealed different methylation groups corresponding to the (1) CNS-NBL (24%), (2) glioblastoma IDH wild-type subclass H3.3 G34 (26%), (3) glioblastoma IDH wild-type subclass MYCN (21%) and (4) ependymoma with RELA_C11orf95 fusion (29%) entities. Transcriptome analysis of this series revealed a set of differentially expressed genes distinguishing CNS_NBL from its mimics. Based on RNA-sequencing data we established SOX10 and ANKRD55 expression as genes discriminating CNS_NBL from other tumors exhibiting CNS-PNET. Immunohistochemical detection of combined expression of SOX10 and ANKRD55 clearly identifies CNS_NBL discriminating them to other hemispheric CNS neoplasms harboring “PNET-like” microscopic appearance. Owing the rarity of CNS_NBL, a confirmation of the elaborated diagnostic IHC algorithm will be necessary in prospective patient series.
Collapse
|
45
|
Jünger ST, Timmermann B, Pietsch T. Pediatric ependymoma: an overview of a complex disease. Childs Nerv Syst 2021; 37:2451-2463. [PMID: 34008056 PMCID: PMC8342354 DOI: 10.1007/s00381-021-05207-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Pediatric ependymomas comprise biologically distinct tumor entities with different (epi)genetics, age distribution and localization, as well as a different prognosis. Regarding risk stratification within these biologically defined entities, histopathological features still seem to be relevant. The mainstay of treatment is gross total resection (GTR) if possible, achieved with intraoperative monitoring and neuronavigation-and if necessary second surgery-followed by adjuvant radiation therapy. However, there is growing evidence that some ependymal tumors may be cured by surgery alone, while others relapse despite adjuvant treatment. To date, the role of chemotherapy is not clear. Current therapy achieves reasonable survival rates for the majority of ependymoma patients. The next challenge is to go beyond initial tumor control and use risk-adapted therapy to reduce secondary effect and therapy-induced morbidity for low-risk patients and to intensify treatment for high-risk patients. With identification of specific alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie Theresa Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany. .,Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Beate Timmermann
- grid.410718.b0000 0001 0262 7331Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Torsten Pietsch
- grid.15090.3d0000 0000 8786 803XDepartment of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
46
|
C11orf95-RELA reprograms 3D epigenome in supratentorial ependymoma. Acta Neuropathol 2020; 140:951-960. [PMID: 32909151 PMCID: PMC7666583 DOI: 10.1007/s00401-020-02225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Supratentorial ependymoma (ST-EPN) is a type of malignant brain tumor mainly seen in children. Since 2014, it has been known that an intrachromosomal fusion C11orf95-RELA is an oncogenic driver in ST-EPN [Parker et al. Nature 506:451–455 (2014); Pietsch et al. Acta Neuropathol 127:609–611 (2014)] but the molecular mechanisms of oncogenesis are unclear. Here we show that the C11orf95 component of the fusion protein dictates DNA binding activity while the RELA component is required for driving the expression of ependymoma-associated genes. Epigenomic characterizations using ChIP-seq and HiChIP approaches reveal that C11orf95-RELA modulates chromatin states and mediates chromatin interactions, leading to transcriptional reprogramming in ependymoma cells. Our findings provide important characterization of the molecular underpinning of C11orf95-RELA fusion and shed light on potential therapeutic targets for C11orf95-RELA subtype ependymoma.
Collapse
|
47
|
Abstract
Gliomas are a diverse group of primary central nervous system tumors with astrocytic, oligodendroglial, and/or ependymal features and are an important cause of morbidity/mortality in pediatric patients. Glioma classification relies on integrating tumor histology with key molecular alterations. This approach can help establish a diagnosis, guide treatment, and determine prognosis. New categories of pediatric glioma have been recognized in recent years, due to increasing application of molecular profiling in brain tumors. The aim of this review is to alert pediatric pathologists to emerging diagnostic concepts in pediatric glioma neuropathology, emphasizing the incorporation of molecular features into diagnostic practice.
Collapse
Affiliation(s)
- Melanie H Hakar
- Department of Pathology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA
| | - Matthew D Wood
- Department of Pathology, Oregon Health & Science University and Knight Cancer Institute, 3181 Southwest Sam Jackson Park Road, L-113, Portland, OR 97239, USA.
| |
Collapse
|
48
|
Eder N, Roncaroli F, Domart MC, Horswell S, Andreiuolo F, Flynn HR, Lopes AT, Claxton S, Kilday JP, Collinson L, Mao JH, Pietsch T, Thompson B, Snijders AP, Ultanir SK. YAP1/TAZ drives ependymoma-like tumour formation in mice. Nat Commun 2020; 11:2380. [PMID: 32404936 PMCID: PMC7220953 DOI: 10.1038/s41467-020-16167-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
YAP1 gene fusions have been observed in a subset of paediatric ependymomas. Here we show that, ectopic expression of active nuclear YAP1 (nlsYAP5SA) in ventricular zone neural progenitor cells using conditionally-induced NEX/NeuroD6-Cre is sufficient to drive brain tumour formation in mice. Neuronal differentiation is inhibited in the hippocampus. Deletion of YAP1's negative regulators LATS1 and LATS2 kinases in NEX-Cre lineage in double conditional knockout mice also generates similar tumours, which are rescued by deletion of YAP1 and its paralog TAZ. YAP1/TAZ-induced mouse tumours display molecular and ultrastructural characteristics of human ependymoma. RNA sequencing and quantitative proteomics of mouse tumours demonstrate similarities to YAP1-fusion induced supratentorial ependymoma. Finally, we find that transcriptional cofactor HOPX is upregulated in mouse models and in human YAP1-fusion induced ependymoma, supporting their similarity. Our results show that uncontrolled YAP1/TAZ activity in neuronal precursor cells leads to ependymoma-like tumours in mice.
Collapse
Affiliation(s)
- Noreen Eder
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Federico Roncaroli
- Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biology, University of Manchester, Manchester, M13 9PT, UK
| | | | - Stuart Horswell
- Bioinformatics and Biostatistics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Felipe Andreiuolo
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Helen R Flynn
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Andre T Lopes
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - John-Paul Kilday
- Centre for Paediatric, Teenage and Young Adult Cancer, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lucy Collinson
- Electron Microscopy Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jun-Hao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumour Reference Center, University of Bonn, Bonn, Germany
| | - Barry Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
49
|
RELA Fusion in Supratentorial Extraventricular Ependymomas: A Morphologic, Immunohistochemical, and Molecular Study of 43 Cases. Am J Surg Pathol 2020; 43:1674-1681. [PMID: 31393268 DOI: 10.1097/pas.0000000000001342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Supratentorial extraventricular ependymomas (STEEs) are relatively rare ependymomas, and their pathologic and genetic characteristics are still poorly understood. The aim of this study was to determine the histologic, immunohistochemical, and RELA fusion features, as well as to clarify in more detail the clinical courses of STEEs. Data from a total of 43 patients with STEEs was analyzed retrospectively. The status of RELA fusion was evaluated using fluorescence in situ hybridization. The expression levels of L1CAM, p65, cyclin D1, and p53 were assessed using immunohistochemistry. Progression-free survival and overall survival were calculated via Kaplan-Meier estimation using the log-rank test. Among all 43 STEEs, 65.1% (28/43) are positive for RELA fusion. Interestingly, almost half of the patients with RELA fusion-positive ependymomas are adults (13/28), and 89.3% (25/28) cases are anaplastic ependymomas, which suggests that RELA fusion testing is necessary in adults with STEEs. We investigated the immunohistochemical status of p65, L1CAM and CCND1 protein expression for their ability to predict RELA fusion status. RELA fusion-positive STEEs are frequently associated with expression of p65 (85.2%), L1CAM (85.2%), and CCND1 (81.5%). The accuracy of predicting RELA fusion status was much higher when the expression of p65 and L1CAM was combined, that is, when both were immunopositive. The status of RELA fusion, p53 overexpression, and extent of tumor resection are significantly associated with prognosis.
Collapse
|
50
|
Perez E, Capper D. Invited Review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 2020; 46:28-47. [PMID: 31955441 DOI: 10.1111/nan.12598] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation-based machine learning algorithms represent powerful diagnostic tools that are currently emerging for several fields of tumour classification. For various reasons, paediatric brain tumours have been the main driving forces behind this rapid development and brain tumour classification tools are likely further advanced than in any other field of cancer diagnostics. In this review, we will discuss the main characteristics that were important for this rapid advance, namely the high clinical need for improvement of paediatric brain tumour diagnostics, the robustness of methylated DNA and the consequential possibility to generate high-quality molecular data from archival formalin-fixed paraffin-embedded pathology specimens, the implementation of a single array platform by most laboratories allowing data exchange and data pooling to an unprecedented extent, as well as the high suitability of the data format for machine learning. We will further discuss the four most central output qualities of DNA methylation profiling in a diagnostic setting (tumour classification, tumour sub-classification, copy number analysis and guidance for additional molecular testing) individually for the most frequent types of paediatric brain tumours. Lastly, we will discuss DNA methylation profiling as a tool for the detection of new paediatric brain tumour classes and will give an overview of the rapidly growing family of new tumours identified with the aid of this technique.
Collapse
Affiliation(s)
- E Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - D Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|