1
|
Kreiss L, Wu M, Wayne M, Xu S, McKee P, Dwamena D, Kim K, Lee KC, Cowdrick KR, Liu W, Ülkü A, Harfouche M, Yang X, Cook C, Lee SA, Buckley E, Bruschini C, Charbon E, Huettel S, Horstmeyer R. Beneath the surface: revealing deep-tissue blood flow in human subjects with massively parallelized diffuse correlation spectroscopy. NEUROPHOTONICS 2025; 12:025007. [PMID: 40206420 PMCID: PMC11981687 DOI: 10.1117/1.nph.12.2.025007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
Significance Diffuse correlation spectroscopy (DCS) allows label-free, non-invasive investigation of microvascular dynamics deep within tissue, such as cerebral blood flow (CBF). However, the signal-to-noise ratio (SNR) in DCS limits its effective cerebral sensitivity in adults, in which the depth to the brain, through the scalp and skull, is substantially larger than in infants. Aim Therefore, we aim to increase its SNR and, ultimately, its sensitivity to CBF through new DCS techniques. Approach We present an in vivo demonstration of parallelized DCS (PDCS) to measure cerebral and muscular blood flow in healthy adults. Our setup employs an innovative array with hundreds of thousands single photon avalanche diodes (SPAD) in a 500 × 500 grid to boost SNR by averaging all independent pixel measurements. We tested this device on different total pixel counts and frame rates. A secondary, smaller array was used for reference measurements from shallower tissue at lower source-detector-separation (SDS). Results The new system can measure pulsatile blood flow in cerebral and muscular tissue, at up to 4 cm SDS, while maintaining a similar measurement noise as compared with a previously published 32 × 32 PDCS system at 1.5 cm SDS. Data from a cohort of 15 adults provide strong experimental evidence for functional CBF activity during a cognitive memory task and allowed analysis of pulse markers. Additional control experiments on muscular blood flow in the forearm with a different technical configuration provide converging evidence for the efficacy of this technique. Conclusions Our results outline successful PDCS measurements with large SPAD arrays to enable detect CBF in human adults. The ongoing development of SPAD camera technology is expected to result in larger and faster detectors in the future. In combination with new data processing techniques, tailored for the sparse signal of binary photon detection events in SPADs, this could lead to even greater SNR increase and ultimately greater depth sensitivity of PDCS.
Collapse
Affiliation(s)
- Lucas Kreiss
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Melissa Wu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Michael Wayne
- École polytechnique fédérale de Lausanne (EPFL), Advanced Quantum Architecture Laboratory, Neuchatel, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Paul McKee
- Duke University, Department of Psychology and Neuroscience, Durham, North Carolina, United States
| | - Derrick Dwamena
- Duke University, Department of Psychology and Neuroscience, Durham, North Carolina, United States
| | - Kanghyun Kim
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Kyung Chul Lee
- Seoul National University, Department of Mechanical Engineering, Seoul, Republic of Korea
- Seoul National University, School of Mechanical & Aerospace Engineering/SNU-IAMD, Seoul, Republic of Korea
| | - Kyle R. Cowdrick
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Wenhui Liu
- Tsinghua University, Department of Automation, Beijing, China
| | - Arin Ülkü
- École polytechnique fédérale de Lausanne (EPFL), Advanced Quantum Architecture Laboratory, Neuchatel, Switzerland
| | - Mark Harfouche
- Ramona Optics, Inc., Durham, North Carolina, United States
| | - Xi Yang
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Clare Cook
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Seung Ah Lee
- Seoul National University, Department of Mechanical Engineering, Seoul, Republic of Korea
| | - Erin Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Claudio Bruschini
- École polytechnique fédérale de Lausanne (EPFL), Advanced Quantum Architecture Laboratory, Neuchatel, Switzerland
| | - Edoardo Charbon
- École polytechnique fédérale de Lausanne (EPFL), Advanced Quantum Architecture Laboratory, Neuchatel, Switzerland
| | - Scott Huettel
- Duke University, Department of Psychology and Neuroscience, Durham, North Carolina, United States
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Ramona Optics, Inc., Durham, North Carolina, United States
| |
Collapse
|
2
|
Robinson MB, Renna M, Otic N, Kierul OS, Muldoon A, Franceschini MA, Carp SA. Pathlength-selective, interferometric diffuse correlation spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600096. [PMID: 38979367 PMCID: PMC11230245 DOI: 10.1101/2024.06.21.600096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is an optical method that offers non-invasive assessment of blood flow in tissue through the analysis of intensity fluctuations in diffusely backscattered coherent light. The non-invasive nature of DCS has enabled several clinical application areas for deep tissue blood flow measurements, including neuromonitoring, cancer imaging, and exercise physiology. While promising, in measurement configurations targeting deep tissue hemodynamics, standard DCS implementations suffer from insufficient signal-to-noise ratio (SNR), depth sensitivity, and sampling rate, limiting their utility. In this work, we present an enhanced DCS method called pathlength-selective, interferometric DCS (PaLS-iDCS), which uses pathlength-specific coherent gain to improve both the sensitivity to deep tissue hemodynamics and measurement SNR. Through interferometric detection, PaLS-iDCS can provide time-of-flight (ToF) specific blood flow information without the use of expensive time-tagging electronics and low-jitter detectors. The technique is compared to time-domain DCS (TD-DCS), another enhanced DCS method able to resolve photon ToF in tissue, through Monte Carlo simulation, phantom experiments, and human subject measurements. PaLS-iDCS consistently demonstrates improvements in SNR (>2x) for similar measurement conditions (same photon ToF), and the SNR improvements allow for measurements at extended photon ToFs, which have increased sensitivity to deep tissue hemodynamics (~50% increase). Further, like TD-DCS, PaLS-iDCS allows direct estimation of tissue optical properties from the sampled ToF distribution. This method offers a relatively straightforward way to allow DCS systems to make robust measurements of blood flow with greatly enhanced sensitivity to deep tissue hemodynamics without the need for time-resolved detection, enabling further applications of this non-invasive technology.
Collapse
Affiliation(s)
- Mitchell B Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Renna
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikola Otic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| | - Olivia S Kierul
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ailis Muldoon
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan A Carp
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Hastings RL, Webb KJ. Localization and coherent imaging of hidden moving objects using laser speckle. OPTICS LETTERS 2025; 50:1172-1175. [PMID: 39951756 DOI: 10.1364/ol.549456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 02/16/2025]
Abstract
Imaging and sensing of moving objects through opaque scattering media is a challenging but important problem in a variety of applications, including environmental sensing, biomedical imaging, and material inspection. We have previously demonstrated a technique to coherently image a moving object through thick, heavily scattering random media using correlations of speckle images as a function of the object's spatial translation. Here, we demonstrate that this technique can be combined with localization to achieve imaging without prior knowledge of the object's motion, greatly extending the application domain. This method is effective beyond the thin or weakly scattering regime and, rather than motion being deleterious, exploits the information available when the hidden object is moving, as could be the case in a cluttered terrestrial environment or through substantial levels of biological tissue scatter.
Collapse
|
4
|
Lefebvre AT, Steiner NE, Rodriguez CL, Angelo JP, Bar-Kochba E, Mathur R, Mirski M, Blodgett DW. Optical approaches for neurocritical care: Toward non-invasive recording of cerebral physiology in acute brain injury. Neurotherapeutics 2025; 22:e00520. [PMID: 39827053 PMCID: PMC11840349 DOI: 10.1016/j.neurot.2024.e00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Acute brain injury (ABI) is a complex disease process that begins with an initial insult followed by secondary injury resulting from disturbances in cerebral physiology. In the metabolically active brain, early recognition of physiologic derangements is critical in enabling clinicians with the insight to adjust therapeutic interventions and reduce risk of ischemia and permanent injury. Current established approaches for monitoring cerebral physiology include the neurologic physical examination, traditional brain imaging such as computed tomography (CT) and magnetic resonance imaging (MRI), electroencephalography (EEG), and bedside modalities such as invasive parenchymal probes and transcranial doppler ultrasound. Diffuse optical spectroscopy (DOS), diffuse correlation spectroscopy (DCS), and optical coherence tomography (OCT) are non-invasive optical techniques that have shown promise in measuring clinically relevant changes in cerebral physiology. These new modalities may offer clinicians significant benefits as they are safe, can be utilized at the point-of-care, and provide continuous measurements. This paper reviews major causes of primary and secondary ABI encountered in neurocritical care units, conventional measures of cerebral physiology during ABI, and emerging non-invasive optical techniques that have significant potential for translation to the bedside.
Collapse
Affiliation(s)
- Austen T Lefebvre
- Division of Neurosciences Critical Care, Departments of Neurology and Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Nicole E Steiner
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | | | - Joseph P Angelo
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Eyal Bar-Kochba
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Rohan Mathur
- Division of Neurosciences Critical Care, Departments of Neurology and Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Marek Mirski
- Division of Neurosciences Critical Care, Departments of Neurology and Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - David W Blodgett
- John Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| |
Collapse
|
5
|
Pandayil JT, Boetti NG, Janner D, Durduran T, Cortese L. Proof of concept validation of bioresorbable optical fibers for diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6384-6398. [PMID: 39553874 PMCID: PMC11563325 DOI: 10.1364/boe.540137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 11/19/2024]
Abstract
Optical quality bioresorbable materials have been gaining interest in recent years for various interstitial biomedical/medical application. An example of this is when the implant gradually dissolves in the body, providing physiological information over extended periods of time, hence reducing the need for revision surgeries. This study reports for the first time the in-house fabrication of single mode (at 785 nm) calcium phosphate glass (CPG) based bioresorbable optical fibers and investigates their suitability for microvascular blood flow monitoring using diffuse correlation spectroscopy (DCS). Ex vivo experiments in liquid phantom and non-invasive in vivo experiments on the human forearm muscle were conducted using multimode and single mode CPG bioresorbable optical fibers. The retrieved flow index from the correlation curves acquired using CPG fibers was in good agreement with that obtained using standard silica (Si) fibers, both ex vivo and in vivo. The results demonstrate the potential of CPG optical fibers for further exploration.
Collapse
Affiliation(s)
- Jawad T Pandayil
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138 Torino, Italy
- Dipartimento di Scienza Applicata e Tecnologia (DISAT) and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138 Torino, Italy
| | - Davide Janner
- Dipartimento di Scienza Applicata e Tecnologia (DISAT) and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Turgut Durduran
- Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08660 Castelldefels (Barcelona), Spain
| | - Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss, 3, 08660 Castelldefels (Barcelona), Spain
| |
Collapse
|
6
|
Zang Z, Wang Q, Pan M, Zhang Y, Chen X, Li X, Li DDU. Towards high-performance deep learning architecture and hardware accelerator design for robust analysis in diffuse correlation spectroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108471. [PMID: 39531806 DOI: 10.1016/j.cmpb.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
This study proposes a compact deep learning (DL) architecture and a highly parallelized computing hardware platform to reconstruct the blood flow index (BFi) in diffuse correlation spectroscopy (DCS). We leveraged a rigorous analytical model to generate autocorrelation functions (ACFs) to train the DL network. We assessed the accuracy of the proposed DL using simulated and milk phantom data. Compared to convolutional neural networks (CNN), our lightweight DL architecture achieves 66.7% and 18.5% improvement in MSE for BFi and the coherence factor β, using synthetic data evaluation. The accuracy of rBFi over different algorithms was also investigated. We further simplified the DL computing primitives using subtraction for feature extraction, considering further hardware implementation. We extensively explored computing parallelism and fixed-point quantization within the DL architecture. With the DL model's compact size, we employed unrolling and pipelining optimizations for computation-intensive for-loops in the DL model while storing all learned parameters in on-chip BRAMs. We also achieved pixel-wise parallelism, enabling simultaneous, real-time processing of 10 and 15 autocorrelation functions on Zynq-7000 and Zynq-UltraScale+ field programmable gate array (FPGA), respectively. Unlike existing FPGA accelerators that produce BFi and the β from autocorrelation functions on standalone hardware, our approach is an encapsulated, end-to-end on-chip conversion process from intensity photon data to the temporal intensity ACF and subsequently reconstructing BFi and β. This hardware platform achieves an on-chip solution to replace post-processing and miniaturize modern DCS systems that use single-photon cameras. We also comprehensively compared the computational efficiency of our FPGA accelerator to CPU and GPU solutions.
Collapse
Affiliation(s)
- Zhenya Zang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Quan Wang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Yuanzhe Zhang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Xi Chen
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Xingda Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - David Day Uei Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
8
|
Izzetoglu K, Malaeb SN, Polat MD, Sinahon R, Shoshany DS, Gomero LM, Shewokis PA, Izzetoglu M. Noninvasive Monitoring of Changes in Cerebral Hemodynamics During Prolonged Field Care for Hemorrhagic Shock and Hypoxia-Induced Injuries With Portable Diffuse Optical Sensors. Mil Med 2024; 189:471-479. [PMID: 39160888 DOI: 10.1093/milmed/usae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 04/19/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Achieving simultaneous cerebral blood flow (CBF) and oxygenation measures, specifically for point-of-care injury monitoring in prolonged field care, requires the implementation of appropriate methodologies and advanced medical device design, development, and evaluation. The near-infrared spectroscopy (NIRS) method measures the absorbance of light whose attenuation is related to cerebral blood volume and oxygenation. By contrast, diffuse correlation spectroscopy (DCS) allows continuous noninvasive monitoring of microvascular blood flow by directly measuring the degree of light scattering because of red blood cell (RBC) movement in tissue capillaries. Hence, this study utilizes these two optical approaches (DCS-NIRS) to obtain a more complete hemodynamic monitoring by providing cerebral microvascular blood flow, hemoglobin oxygenation and deoxygenation in hemorrhage, and hypoxia-induced injuries. MATERIALS AND METHODS Piglet models of hemorrhage and hypoxia-induced brain injury were used with DCS and NIRS sensors placed over the preorbital to temporal skull regions. To induce hemorrhagic shock, up to 70% of the animal's total blood volume was withdrawn through graded hemorrhage serially via a syringe from a femoral artery cannula in 10 mL/kg aliquots over 1 minute every 10 minutes. A second group of animals was subjected to hypoxia for ∼1 hour through graded hypoxia by serial titration from normoxic fraction inspired oxygen of 21% to hypoxic fraction inspired oxygen of 6%. A subset of animals served as sham-controls undergoing anesthesia, instrumentation, and ventilation as the injury groups, yet experiencing no blood loss or hypoxia. RESULTS We first investigated the relationship between hemorrhagic shock and no shock by using measured biomarkers, including blood flow index from DCS associated with CBF and oxygenated (HbO) and de-oxygenated hemoglobin from NIRS. The statistical analysis revealed a significant difference between no shock and hemorrhagic shock (P < .01). The HbO decreased with each blood loss as expected, yet the de-oxygenated hemoglobin was slightly changed. During hypoxia-induced global hypoxic-ischemic injury tests, the CBF results from graded hypoxia were consistent with the response previously measured during hemorrhagic shock. Moreover, HbO decreased when the animal was hypoxic, as expected. A statistical analysis was also conducted to compare the results with those of the sham controls. CONCLUSIONS There is a consistency in blood flow measures in both injury mechanisms (hemorrhagic shock and hypoxia), which is significant as the new prototype system provides similar measures and trends for each brain injury type, suggesting that the optical system can be used in response to different injury mechanisms. Notably, the results support the idea that this optical system can probe the hemodynamic status of local cerebral cortical tissue and provide insight into the underlying changes of cerebral tissue perfusion at the microvascular level. These measurement capabilities can improve shock identification and monitoring of medical management of injuries, particularly hemorrhagic shock, in prolonged field care.
Collapse
MESH Headings
- Animals
- Shock, Hemorrhagic/physiopathology
- Shock, Hemorrhagic/complications
- Shock, Hemorrhagic/diagnosis
- Shock, Hemorrhagic/therapy
- Shock, Hemorrhagic/etiology
- Swine
- Spectroscopy, Near-Infrared/methods
- Spectroscopy, Near-Infrared/instrumentation
- Cerebrovascular Circulation/physiology
- Hypoxia/physiopathology
- Hypoxia/etiology
- Hypoxia/complications
- Monitoring, Physiologic/methods
- Monitoring, Physiologic/instrumentation
- Hemodynamics/physiology
- Disease Models, Animal
Collapse
Affiliation(s)
- Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Shadi N Malaeb
- College of Medicine, Drexel University, Philadelphia, PA 19104, USA
- Department of Pediatrics, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA
| | - Mert Deniz Polat
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Randolph Sinahon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Danielle S Shoshany
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Luis M Gomero
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA 19085, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
- College of Nursing and Health Professions, Drexel University, Philadelphia, PA 19104, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
9
|
Moore CH, Sunar U, Lin W. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. BIOSENSORS 2024; 14:384. [PMID: 39194613 DOI: 10.3390/bios14080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.
Collapse
Affiliation(s)
- Christopher H Moore
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Sarkar S, K M, Varma HM. Tunable dynamical tissue phantom for laser speckle imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4737-4748. [PMID: 39347004 PMCID: PMC11427206 DOI: 10.1364/boe.528286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 10/01/2024]
Abstract
We introduce a novel method to design and implement a tunable dynamical tissue phantom for laser speckle-based in-vivo blood flow imaging. This approach relies on stochastic differential equations (SDE) to control a piezoelectric actuator which, upon illuminated with a laser source, generates speckles of pre-defined probability density function and auto-correlation. The validation experiments show that the phantom can generate dynamic speckles that closely replicate both surfaces as well as deep tissue blood flow for a reasonably wide range and accuracy.
Collapse
Affiliation(s)
- Soumyajit Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| | - Murali K
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| | - Hari M Varma
- Department of Biosciences and Bioengineering, Indian Institute of Technology - Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Johansson JD, Hultman M, Saager R. Coagulation depth estimation using a line scanner for depth-resolved laser speckle contrast imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4486-4497. [PMID: 39347002 PMCID: PMC11427187 DOI: 10.1364/boe.529043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 10/01/2024]
Abstract
Partial-thickness burn wounds extend partially through the dermis, leaving many pain receptors intact and making the injuries very painful. Due to the painfulness, quick assessment of the burn depth is important to not delay surgery of the wound if needed. Laser speckle imaging (LSI) of skin blood flow can be helpful in finding severe coagulation zones with impaired blood flow. However, LSI measurements are typically too superficial to properly reach the full depth of the adult dermis and cannot resolve the flow in depth. Diffuse correlation spectroscopy (DCS) uses varying source-detector separations to allow differentiation of flow depths but requires time-consuming 2D scanning to form an image of the burn area. We here present a prototype for a hybrid DCS and LSI technique called speckle contrast diffuse correlation spectroscopy (scDCS) with the novel approach of using a laser line as a source and using the speckle contrast of averaged images to obtain an estimate of static scattering in the tissue. This will allow for fast non-contact 1D scanning to perform 3D tomographic imaging, making quantitative estimates of the depth and area of the coagulation zone from burn wounds. Simulations and experimental results from a volumetric flow phantom and a gelatin wedge phantom show promise to determine coagulation depth. The aim is to develop a method that, in the future, could provide more quantitative estimates of coagulation depth in partial thickness burn wounds to better estimate when surgery is needed.
Collapse
Affiliation(s)
- Johannes D. Johansson
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| | - Martin Hultman
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| | - Rolf Saager
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
12
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
13
|
Zavriyev AI, Kaya K, Wu KC, Pierce ET, Franceschini MA, Robinson MB. Measuring pulsatile cortical blood flow and volume during carotid endarterectomy. BIOMEDICAL OPTICS EXPRESS 2024; 15:1355-1369. [PMID: 38495722 PMCID: PMC10942688 DOI: 10.1364/boe.507730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 03/19/2024]
Abstract
Carotid endarterectomy (CEA) involves removal of plaque in the carotid artery to reduce the risk of stroke and improve cerebral perfusion. This study aimed to investigate the utility of assessing pulsatile blood volume and flow during CEA. Using a combined near-infrared spectroscopy/diffuse correlation spectroscopy instrument, pulsatile hemodynamics were assessed in 12 patients undergoing CEA. Alterations to pulsatile amplitude, pulse transit time, and beat morphology were observed in measurements ipsilateral to the surgical side. The additional information provided through analysis of pulsatile hemodynamic signals has the potential to enable the discovery of non-invasive biomarkers related to cortical perfusion.
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kutlu Kaya
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kuan Cheng Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric T. Pierce
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mitchell B. Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Kobayashi Frisk L, Verma M, Bešlija F, Lin CHP, Patil N, Chetia S, Trobaugh JW, Culver JP, Durduran T. Comprehensive workflow and its validation for simulating diffuse speckle statistics for optical blood flow measurements. BIOMEDICAL OPTICS EXPRESS 2024; 15:875-899. [PMID: 38404339 PMCID: PMC10890893 DOI: 10.1364/boe.502421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/27/2024]
Abstract
Diffuse optical methods including speckle contrast optical spectroscopy and tomography (SCOS and SCOT), use speckle contrast (κ) to measure deep blood flow. In order to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of limited sampling of statistical quantities, should be considered. To that end, we have developed a method for simulating speckle contrast signals including effects of detector noise. The method was validated experimentally, and the simulations were used to study the effects of physical and experimental parameters on the accuracy and precision of κ. These results revealed that systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low detected signals. The method can provide guidelines for the design and usage of SCOS and/or SCOT instruments.
Collapse
Affiliation(s)
- Lisa Kobayashi Frisk
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Manish Verma
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Faruk Bešlija
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Chen-Hao P. Lin
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nishighanda Patil
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Sumana Chetia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Jason W. Trobaugh
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph P. Culver
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Kedia N, McDowell MM, Yang J, Wu J, Friedlander RM, Kainerstorfer JM. Pulsatile microvascular cerebral blood flow waveforms change with intracranial compliance and age. NEUROPHOTONICS 2024; 11:015003. [PMID: 38250664 PMCID: PMC10799239 DOI: 10.1117/1.nph.11.1.015003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Significance Diffuse correlation spectroscopy (DCS) is an optical method to measure relative changes in cerebral blood flow (rCBF) in the microvasculature. Each heartbeat generates a pulsatile signal with distinct morphological features that we hypothesized to be related to intracranial compliance (ICC). Aim We aim to study how three features of the pulsatile rCBF waveforms: the augmentation index (AIx), the pulsatility index, and the area under the curve, change with respect to ICC. We describe ICC as a combination of vascular compliance and extravascular compliance. Approach Since patients with Chiari malformations (CM) (n = 30 ) have been shown to have altered extravascular compliance, we compare the morphology of rCBF waveforms in CM patients with age-matched healthy control (n = 30 ). Results AIx measured in the supine position was significantly less in patients with CM compared to healthy controls (p < 0.05 ). Since physiologic aging also leads to changes in vessel stiffness and intravascular compliance, we evaluate how the rCBF waveform changes with respect to age and find that the AIx feature was strongly correlated with age (R healthy subjects = - 0.63 , R preoperative CM patient = - 0.70 , and R postoperative CM patients = - 0.62 , p < 0.01 ). Conclusions These results suggest that the AIx measured in the cerebral microvasculature using DCS may be correlated to changes in ICC.
Collapse
Affiliation(s)
- Nikita Kedia
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Michael M. McDowell
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jingyi Wu
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Robert M. Friedlander
- University of Pittsburgh School of Medicine, Department of Neurological Surgery, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
16
|
Baykal Y, Gökçe MC, Gerçekcioğlu H, Ata Y. Correlations of multimode optical incidences in a turbulent biological tissue. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2045-2051. [PMID: 38038070 DOI: 10.1364/josaa.500542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
In a turbulent biological tissue, field correlations at the observation plane are found when a multimode optical incidence is used. For different multimode structures, variations of the multimode field correlations are evaluated against the biological tissue turbulence parameters, i.e., the strength coefficient of the refractive-index fluctuations, fractal dimension, characteristic length of heterogeneity, and the small length-scale factor. Using a chosen multimode content, for specific biological tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human), and deep dermis (mouse), field correlations are evaluated versus the strength coefficient of the refractive-index fluctuations and small length-scale factor. Again, with a chosen multimode content, behavior of the field correlations is studied against the strength coefficient of the refractive-index fluctuations for various diagonal lengths and the transverse coordinate at the observation plane. Finally, the field correlation versus the strength coefficient of the refractive-index fluctuations is reported for different single modes, which are special cases of multimode excitation. This topic is being reported in the literature for the first time, to our knowledge, and the presented results can be employed in many important biological tissue applications.
Collapse
|
17
|
Maity AK, Sharma MK, Veeraraghavan A, Sabharwal A. SpeckleCam: high-resolution computational speckle contrast tomography for deep blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5316-5337. [PMID: 37854569 PMCID: PMC10581815 DOI: 10.1364/boe.498900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.
Collapse
Affiliation(s)
- Akash Kumar Maity
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Manoj Kumar Sharma
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashok Veeraraghavan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Ashutosh Sabharwal
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
18
|
Lin CHP, Orukari I, Frisk LK, Verma M, Chetia S, Beslija F, Eggebrecht AT, Durduran T, Culver JP, Trobaugh JW. Anatomical Modeling and Optimization of Speckle Contrast Optical Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556565. [PMID: 37732196 PMCID: PMC10508753 DOI: 10.1101/2023.09.06.556565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Traditional methods for mapping cerebral blood flow (CBF), such as positron emission tomography and magnetic resonance imaging, offer only isolated snapshots of CBF due to scanner logistics. Speckle contrast optical tomography (SCOT) is a promising optical technique for mapping CBF. However, while SCOT has been established in mice, the method has not yet been demonstrated in humans - partly due to a lack of anatomical reconstruction methods and uncertainty over the optimal design parameters. Herein we develop SCOT reconstruction methods that leverage MRI-based anatomical head models and finite-element modeling of the SCOT forward problem (NIRFASTer). We then simulate SCOT for CBF perturbations to evaluate sensitivity of imaging performance to exposure time and SD-distances. We find image resolution comparable to intensity-based diffuse optical tomography at superficial cortical tissue depth (~1.5 cm). Localization errors can be reduced by including longer SD-measurements. With longer exposure times speckle contrast decreases, however, noise decreases faster, resulting in a net increase in SNR. Specifically, extending exposure time from 10μs to 10ms increased SCOT SNR by 1000X. Overall, our modeling methods provide anatomically-based image reconstructions that can be used to evaluate a broad range of tissue conditions, measurement parameters, and noise sources and inform SCOT system design.
Collapse
Affiliation(s)
- Chen-Hao P. Lin
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Inema Orukari
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lisa Kobayashi Frisk
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Manish Verma
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Sumana Chetia
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Faruk Beslija
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joseph P. Culver
- Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jason W. Trobaugh
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
19
|
Kim B, Zilpelwar S, Sie EJ, Marsili F, Zimmermann B, Boas DA, Cheng X. Measuring human cerebral blood flow and brain function with fiber-based speckle contrast optical spectroscopy system. Commun Biol 2023; 6:844. [PMID: 37580382 PMCID: PMC10425329 DOI: 10.1038/s42003-023-05211-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Cerebral blood flow (CBF) is crucial for brain health. Speckle contrast optical spectroscopy (SCOS) is a technique that has been recently developed to measure CBF, but the use of SCOS to measure human brain function at large source-detector separations with comparable or greater sensitivity to cerebral rather than extracerebral blood flow has not been demonstrated. We describe a fiber-based SCOS system capable of measuring human brain activation induced CBF changes at 33 mm source detector separations using CMOS detectors. The system implements a pulsing strategy to improve the photon flux and uses a data processing pipeline to improve measurement accuracy. We show that SCOS outperforms the current leading optical modality for measuring CBF, i.e. diffuse correlation spectroscopy (DCS), achieving more than 10x SNR improvement at a similar financial cost. Fiber-based SCOS provides an alternative approach to functional neuroimaging for cognitive neuroscience and health science applications.
Collapse
Affiliation(s)
- Byungchan Kim
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sharvari Zilpelwar
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Edbert J Sie
- Reality Labs Research, Meta Platforms Inc, Menlo Park, CA, USA
| | | | - Bernhard Zimmermann
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
20
|
Frisk LK, Verma M, Bešlija F, Lin CHP, Patil N, Chetia S, Trobaugh J, Culver JP, Durduran T. A comprehensive workflow and its validation for simulating diffuse speckle statistics for optical blood flow measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551830. [PMID: 37577491 PMCID: PMC10418286 DOI: 10.1101/2023.08.03.551830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Diffuse optical methods including speckle contrast optical spectroscopy and tomography (SCOS and SCOT), use speckle contrast (κ ) to measure deep blood flow. In order to design practical systems, parameters such as signal-to-noise ratio (SNR) and the effects of limited sampling of statistical quantities, should be considered. To that end, we have developed a method for simulating speckle contrast signals including effects of detector noise. The method was validated experimentally, and the simulations were used to study the effects of physical and experimental parameters on the accuracy and precision of κ . These results revealed that systematic detector effects resulted in decreased accuracy and precision of κ in the regime of low detected signals. The method can provide guidelines for the design and usage of SCOS and/or SCOT instruments.
Collapse
Affiliation(s)
- Lisa Kobayashi Frisk
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Manish Verma
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Faruk Bešlija
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Chen-Hao P. Lin
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nishighanda Patil
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Sumana Chetia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Jason Trobaugh
- Department of Electrical and Systems Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Joseph P. Culver
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
21
|
Parfentyeva V, Colombo L, Lanka P, Pagliazzi M, Brodu A, Noordzij N, Kolarczik M, Dalla Mora A, Re R, Contini D, Torricelli A, Durduran T, Pifferi A. Fast time-domain diffuse correlation spectroscopy with superconducting nanowire single-photon detector: system validation and in vivo results. Sci Rep 2023; 13:11982. [PMID: 37488188 PMCID: PMC10366131 DOI: 10.1038/s41598-023-39281-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023] Open
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) has been introduced as an advancement of the "classical" continuous wave DCS (CW-DCS) allowing one to not only to measure depth-resolved blood flow index (BFI) but also to extract optical properties of the measured medium without using any additional diffuse optics technique. However, this method is a photon-starved technique, specially when considering only the late photons that are of primary interest which has limited its in vivo application. In this work, we present a TD-DCS system based on a superconducting nanowire single-photon detector (SNSPD) with a high quantum efficiency, a narrow timing response, and a negligibly low dark count noise. We compared it to the typically used single-photon avalanche diode (SPAD) detector. In addition, this system allowed us to conduct fast in vivo measurements and obtain gated pulsatile BFI on the adult human forehead.
Collapse
Affiliation(s)
- Veronika Parfentyeva
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Lorenzo Colombo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Pranav Lanka
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Marco Pagliazzi
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | | | | | | | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| | - Turgut Durduran
- Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08015, Spain
| | - Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, 20133, Italy
| |
Collapse
|
22
|
Favilla CG, Mullen MT, Kahn F, Rasheed IYD, Messe SR, Parthasarathy AB, Yodh AG. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2023:271678X231153728. [PMID: 36703572 PMCID: PMC10369149 DOI: 10.1177/0271678x231153728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and cerebral blood flow (CBF). Transcranial Doppler (TCD) measures CBF-velocity and is commonly used to assess dCA. Diffuse correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemodynamic were monitored simultaneously with high-speed (20 Hz) DCS and TCD. dCA parameters were calcaulated by a transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r = 0.73, p < 0.001) and stroke patients (r = 0.76, p = 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC 0.87 and 0.82, respectively). DCS and TCD-derived phase (latency of regulation) did not significantly correlate in healthy volunteers (r = 0.12, p = 0.50) but moderately correlated in stroke patients (r = 0.65, p = 0.006). DCS-derived phase was reproducible in both groups (ICC 0.88 and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
Collapse
Affiliation(s)
| | - Michael T Mullen
- Department of Neurology, 6558Temple University, Philadelphia, USA
| | - Farhan Kahn
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Steven R Messe
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Yang J, Ruesch A, Kainerstorfer JM. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015002. [PMID: 36699625 PMCID: PMC9868286 DOI: 10.1117/1.nph.10.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Cerebrovascular impedance (CVI) is related to cerebral autoregulation (CA), which is the mechanism of the brain to maintain near-constant cerebral blood flow (CBF) despite changes in cerebral perfusion pressure (CPP). Changes in blood vessel impedance enable the stabilization of blood flow. Due to the interplay between CVI and CA, assessment of CVI may enable quantification of CA and may serve as a biomarker for cerebral health. AIM We developed a method to quantify CVI based on a combination of diffuse correlation spectroscopy (DCS) and continuous wave (CW) near-infrared spectroscopy (NIRS). Data on healthy human volunteers were used to validate the method. APPROACH A combined high-speed DCS-NIRS system was developed, allowing for simultaneous, noninvasive blood flow, and volume measurements in the same tissue compartment. Blood volume was used as a surrogate measurement for blood pressure and CVI was calculated as the spectral ratio of blood volume and blood flow changes. This technique was validated on six healthy human volunteers undergoing postural changes to elicit CVI changes. RESULTS Averaged across the six subjects, a decrease in CVI was found for a head of bed (HOB) tilting of - 40 deg . These impedance changes were reversed when returning to the horizontal (0 deg) HOB baseline. CONCLUSIONS We developed a combined DCS-NIRS system, which measures CBF and volume changes, which we demonstrate can be used to measure CVI. Using CVI as a metric of CA may be beneficial for assessing cerebral health, especially in patients where CPP is altered.
Collapse
Affiliation(s)
- Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
24
|
Carp SA, Robinson MB, Franceschini MA. Diffuse correlation spectroscopy: current status and future outlook. NEUROPHOTONICS 2023; 10:013509. [PMID: 36704720 PMCID: PMC9871606 DOI: 10.1117/1.nph.10.1.013509] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Diffuse correlation spectroscopy (DCS) has emerged as a versatile, noninvasive method for deep tissue perfusion assessment using near-infrared light. A broad class of applications is being pursued in neuromonitoring and beyond. However, technical limitations of the technology as originally implemented remain as barriers to wider adoption. A wide variety of approaches to improve measurement performance and reduce cost are being explored; these include interferometric methods, camera-based multispeckle detection, and long path photon selection for improved depth sensitivity. We review here the current status of DCS technology and summarize future development directions and the challenges that remain on the path to widespread adoption.
Collapse
Affiliation(s)
- Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| | - Mitchell B. Robinson
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| | - Maria A. Franceschini
- Massachusetts General Hospital, Harvard Medical School, Optics at Martinos Research Group, Charlestown, Massachusetts, United States
| |
Collapse
|
25
|
Helton M, Rajasekhar S, Zerafa S, Vishwanath K, Mycek MA. Numerical approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation with continuous-wave and time-domain diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:367-384. [PMID: 36698680 PMCID: PMC9841990 DOI: 10.1364/boe.469419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/11/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique that can measure brain perfusion by quantifying temporal intensity fluctuations of multiply scattered light. A primary limitation for accurate quantitation of cerebral blood flow (CBF) is the fact that experimental measurements contain information about both extracerebral scalp blood flow (SBF) as well as CBF. Separating CBF from SBF is typically achieved using multiple source-detector channels when using continuous-wave (CW) light sources, or more recently with use of time-domain (TD) techniques. Analysis methods that account for these partial volume effects are often employed to increase CBF contrast. However, a robust, real-time analysis procedure that can separate and quantify SBF and CBF with both traditional CW and TD-DCS measurements is still needed. Here, we validate a data analysis procedure based on the diffusion equation in layered media capable of quantifying both extra- and cerebral blood flow in the CW and TD. We find that the model can quantify SBF and CBF coefficients with less than 5% error compared to Monte Carlo simulations using a 3-layered brain model in both the CW and TD. The model can accurately fit data at a rate of <10 ms for CW data and <250 ms for TD data when using a least-squares optimizer.
Collapse
Affiliation(s)
- Michael Helton
- Applied Physics Program, University of Michigan, Ann Arbor, USA
| | - Suraj Rajasekhar
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Samantha Zerafa
- Biomedical Engineering Department, University of Michigan, Ann Arbor, USA
| | - Karthik Vishwanath
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Physics, Miami University, Oxford, OH, USA
| | - Mary-Ann Mycek
- Applied Physics Program, University of Michigan, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, USA
| |
Collapse
|
26
|
Udina C, Avtzi S, Mota-Foix M, Rosso AL, Ars J, Kobayashi Frisk L, Gregori-Pla C, Durduran T, Inzitari M. Dual-task related frontal cerebral blood flow changes in older adults with mild cognitive impairment: A functional diffuse correlation spectroscopy study. Front Aging Neurosci 2022; 14:958656. [PMID: 36605362 PMCID: PMC9807627 DOI: 10.3389/fnagi.2022.958656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction In a worldwide aging population with a high prevalence of motor and cognitive impairment, it is paramount to improve knowledge about underlying mechanisms of motor and cognitive function and their interplay in the aging processes. Methods We measured prefrontal cerebral blood flow (CBF) using functional diffuse correlation spectroscopy during motor and dual-task. We aimed to compare CBF changes among 49 older adults with and without mild cognitive impairment (MCI) during a dual-task paradigm (normal walk, 2- forward count walk, 3-backward count walk, obstacle negotiation, and heel tapping). Participants with MCI walked slower during the normal walk and obstacle negotiation compared to participants with normal cognition (NC), while gait speed during counting conditions was not different between the groups, therefore the dual-task cost was higher for participants with NC. We built a linear mixed effects model with CBF measures from the right and left prefrontal cortex. Results MCI (n = 34) showed a higher increase in CBF from the normal walk to the 2-forward count walk (estimate = 0.34, 95% CI [0.02, 0.66], p = 0.03) compared to participants with NC, related to a right- sided activation. Both groups showed a higher CBF during the 3-backward count walk compared to the normal walk, while only among MCI, CFB was higher during the 2-forward count walk. Discussion Our findings suggest a differential prefrontal hemodynamic pattern in older adults with MCI compared to their NC counterparts during the dual-task performance, possibly as a response to increasing attentional demand.
Collapse
Affiliation(s)
- Cristina Udina
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Cristina Udina,
| | - Stella Avtzi
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Mota-Foix
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrea L. Rosso
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joan Ars
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marco Inzitari
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
27
|
K M, Varma HM. Laser speckle simulation tool based on stochastic differential equations for bio imaging applications. BIOMEDICAL OPTICS EXPRESS 2022; 13:6745-6762. [PMID: 36589556 PMCID: PMC9774864 DOI: 10.1364/boe.470926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Laser speckle-based blood flow imaging is a well-accepted and widely used method for pre-clinical and clinical applications. Although it was introduced as a method to measure only superficial blood flow (< 1mm depth), several recently introduced variants resulted in measuring deep tissue blood flow (a few cm) as well. A means of simulating laser speckles is often necessary for the analysis and development of these imaging modalities, as evident from many such attempts towards developing simulation tools in the past. Such methods often employ Fourier transforms or statistical tools to simulate speckles with desired statistical properties. We present the first method to use a stochastic differential equation to generate laser speckles with a pre-determined probability density function and a temporal auto-correlation. The method allows the choice of apriori gamma distribution along with simple exponential or more complex temporal auto-correlation statistics for simulated speckles, making it suitable for different blood flow profiles. In contrast to the existing methods that often generate speckles associated with superficial flow, we simulate both superficial and diffuse speckles leading to applications in deep tissue blood flow imaging. In addition, we have also incorporated appropriate models for noise associated with the detectors to simulate realistic speckles. We have validated our model by comparing the simulated speckles with those obtained from in-vivo studies in mice and healthy human subject.
Collapse
Affiliation(s)
- Murali K
- Department of Biosciences and Bioengineering,
Indian Institute of Technology –
Bombay, 400076, India
| | - Hari M. Varma
- Department of Biosciences and Bioengineering,
Indian Institute of Technology –
Bombay, 400076, India
| |
Collapse
|
28
|
Zilpelwar S, Sie EJ, Postnov D, Chen AI, Zimmermann B, Marsili F, Boas DA, Cheng X. Model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics. BIOMEDICAL OPTICS EXPRESS 2022; 13:6533-6549. [PMID: 36589566 PMCID: PMC9774840 DOI: 10.1364/boe.472263] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 05/02/2023]
Abstract
We introduce a dynamic speckle model (DSM) to simulate the temporal evolution of fully developed speckle patterns arising from the interference of scattered light reemitted from dynamic tissue. Using this numerical tool, the performance of laser speckle contrast imaging (LSCI) or speckle contrast optical spectroscopy (SCOS) systems which quantify tissue dynamics using the spatial contrast of the speckle patterns with a certain camera exposure time is evaluated. We have investigated noise sources arising from the fundamental speckle statistics due to the finite sampling of the speckle patterns as well as those induced by experimental measurement conditions including shot noise, camera dark and read noise, and calibrated the parameters of an analytical noise model initially developed in the fundamental or shot noise regime that quantifies the performance of SCOS systems using the number of independent observables (NIO). Our analysis is particularly focused on the low photon flux regime relevant for human brain measurements, where the impact of shot noise and camera read noise can become significant. Our numerical model is also validated experimentally using a novel fiber based SCOS (fb-SCOS) system for a dynamic sample. We have found that the signal-to-noise ratio (SNR) of fb-SCOS measurements plateaus at a camera exposure time, which marks the regime where shot and fundamental noise dominates over camera read noise. For a fixed total measurement time, there exists an optimized camera exposure time if temporal averaging is utilized to improve SNR. For a certain camera exposure time, photon flux value, and camera noise properties, there exists an optimized speckle-to-pixel size ratio (s/p) at which SNR is maximized. Our work provides the design principles for any LSCI or SCOS systems given the detected photon flux and properties of the instruments, which will guide the experimental development of a high-quality, low-cost fb-SCOS system that monitors human brain blood flow and functions.
Collapse
Affiliation(s)
- Sharvari Zilpelwar
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Edbert J Sie
- Reality Labs Research, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | - Dmitry Postnov
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - Anderson Ichun Chen
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Bernhard Zimmermann
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Francesco Marsili
- Reality Labs Research, Meta Platforms Inc., Menlo Park, CA 94025, USA
| | - David A Boas
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA 02215, USA
| | - Xiaojun Cheng
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA 02215, USA
| |
Collapse
|
29
|
Paul R, Murali K, Varma HM. High-density diffuse correlation tomography with enhanced depth localization and minimal surface artefacts. BIOMEDICAL OPTICS EXPRESS 2022; 13:6081-6099. [PMID: 36733746 PMCID: PMC9872877 DOI: 10.1364/boe.469405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 05/08/2023]
Abstract
A spatially weighted filter applied to both the measurement and the Jacobian is proposed for high-density diffuse correlation tomography (DCT) to remove unwanted extracerebral interferences and artefacts along with better depth localization in the reconstructed blood flow images. High-density DCT is implemented by appropriate modification of recently introduced Multi-speckle Diffuse Correlation Spectroscopy (M-DCS) system. Additionally, we have used autocorrelation measurements at multiple delay-times in an iterative manner to improve the reconstruction results. The proposed scheme has been validated by simulations, phantom experiments and in-vivo human experiments.
Collapse
Affiliation(s)
- Ria Paul
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| | - K. Murali
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| | - Hari M. Varma
- Indian Institute of Technology Bombay (IITB), Mumbai-400076, India
| |
Collapse
|
30
|
Xu S, Yang X, Liu W, Jönsson J, Qian R, Konda PC, Zhou KC, Kreiß L, Wang H, Dai Q, Berrocal E, Horstmeyer R. Imaging Dynamics Beneath Turbid Media via Parallelized Single-Photon Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201885. [PMID: 35748188 PMCID: PMC9404405 DOI: 10.1002/advs.202201885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Indexed: 05/05/2023]
Abstract
Noninvasive optical imaging through dynamic scattering media has numerous important biomedical applications but still remains a challenging task. While standard diffuse imaging methods measure optical absorption or fluorescent emission, it is also well-established that the temporal correlation of scattered coherent light diffuses through tissue much like optical intensity. Few works to date, however, have aimed to experimentally measure and process such temporal correlation data to demonstrate deep-tissue video reconstruction of decorrelation dynamics. In this work, a single-photon avalanche diode array camera is utilized to simultaneously monitor the temporal dynamics of speckle fluctuations at the single-photon level from 12 different phantom tissue surface locations delivered via a customized fiber bundle array. Then a deep neural network is applied to convert the acquired single-photon measurements into video of scattering dynamics beneath rapidly decorrelating tissue phantoms. The ability to reconstruct images of transient (0.1-0.4 s) dynamic events occurring up to 8 mm beneath a decorrelating tissue phantom with millimeter-scale resolution is demonstrated, and it is highlighted how the model can flexibly extend to monitor flow speed within buried phantom vessels.
Collapse
Affiliation(s)
- Shiqi Xu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Xi Yang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Wenhui Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of AutomationTsinghua UniversityBeijing100084China
| | - Joakim Jönsson
- Division of Combustion PhysicsDepartment of PhysicsLund UniversityLund22100Sweden
| | - Ruobing Qian
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Kevin C. Zhou
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Lucas Kreiß
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Institute of Medical BiotechnologyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)Erlangen91054Germany
| | - Haoqian Wang
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Qionghai Dai
- Department of AutomationTsinghua UniversityBeijing100084China
| | - Edouard Berrocal
- Division of Combustion PhysicsDepartment of PhysicsLund UniversityLund22100Sweden
| | - Roarke Horstmeyer
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNC27708USA
- Department of PhysicsDuke UniversityDurhamNC27708USA
| |
Collapse
|
31
|
Ozana N, Lue N, Renna M, Robinson MB, Martin A, Zavriyev AI, Carr B, Mazumder D, Blackwell MH, Franceschini MA, Carp SA. Functional Time Domain Diffuse Correlation Spectroscopy. Front Neurosci 2022; 16:932119. [PMID: 35979338 PMCID: PMC9377452 DOI: 10.3389/fnins.2022.932119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) offers a novel approach to high-spatial resolution functional brain imaging based on the direct quantification of cerebral blood flow (CBF) changes in response to neural activity. However, the signal-to-noise ratio (SNR) offered by previous TD-DCS instruments remains a challenge to achieving the high temporal resolution needed to resolve perfusion changes during functional measurements. Here we present a next-generation optimized functional TD-DCS system that combines a custom 1,064 nm pulse-shaped, quasi transform-limited, amplified laser source with a high-resolution time-tagging system and superconducting nanowire single-photon detectors (SNSPDs). System characterization and optimization was conducted on homogenous and two-layer intralipid phantoms before performing functional CBF measurements in six human subjects. By acquiring CBF signals at over 5 Hz for a late gate start time of the temporal point spread function (TPSF) at 15 mm source-detector separation, we demonstrate for the first time the measurement of blood flow responses to breath-holding and functional tasks using TD-DCS.
Collapse
Affiliation(s)
- Nisan Ozana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,*Correspondence: Nisan Ozana, ,
| | - Niyom Lue
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Marco Renna
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mitchell B. Robinson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States,Massachusetts Institute of Technology, Health Sciences and Technology Program, Cambridge, MA, United States
| | - Alyssa Martin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexander I. Zavriyev
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryce Carr
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dibbyan Mazumder
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan H. Blackwell
- Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, United States
| | - Maria A. Franceschini
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan A. Carp
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Renna M, Peruch A, Sunwoo J, Starkweather Z, Martin A, Franceschini MA. A Contact-Sensitive Probe for Biomedical Optics. SENSORS (BASEL, SWITZERLAND) 2022; 22:2361. [PMID: 35336531 PMCID: PMC8953277 DOI: 10.3390/s22062361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Capacitive proximity sensing is widespread in our everyday life, but no sensor for biomedical optics takes advantage of this technology to monitor the probe attachment to the subject's skin. In particular, when using optical monitoring devices, the capability to quantitatively measure the probe contact can significantly improve data quality and ensure the subject's safety. We present a custom novel optical probe based on a flexible printed circuit board which integrates a capacitive contact sensor, 3D-printed optic fiber holders and an accelerometer sensor. The device can be effectively adopted during continuous monitoring optical measurements to detect contact quality, motion artifacts, probe detachment and ensure optimal signal quality.
Collapse
Affiliation(s)
- Marco Renna
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adriano Peruch
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - John Sunwoo
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Starkweather
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Martin
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Angela Franceschini
- Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.P.); (J.S.); (Z.S.); (A.M.); (M.A.F.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Poon CS, Langri DS, Rinehart B, Rambo TM, Miller AJ, Foreman B, Sunar U. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. BIOMEDICAL OPTICS EXPRESS 2022; 13:1344-1356. [PMID: 35414986 PMCID: PMC8973196 DOI: 10.1364/boe.448135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/02/2023]
Abstract
Recently proposed time-gated diffuse correlation spectroscopy (TG-DCS) has significant advantages compared to conventional continuous wave (CW)-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower signal-to-noise ratio (SNR) when gating for the deeper traveling late photons. Longer wavelengths, such as 1064 nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064 nm in a case study on a patient with severe traumatic brain injury admitted to the neuro-intensive care unit (neuroICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064 nm using a superconducting nanowire single-photon detector.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Dharminder S. Langri
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Benjamin Rinehart
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | | | | | - Brandon Foreman
- Dept of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
34
|
Horn AG, Schulze KM, Weber RE, Barstow TJ, Musch TI, Poole DC, Behnke BJ. Post-occlusive reactive hyperemia and skeletal muscle capillary hemodynamics. Microvasc Res 2022; 140:104283. [PMID: 34822837 PMCID: PMC8830587 DOI: 10.1016/j.mvr.2021.104283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Post-occlusive reactive hyperemia (PORH) is an accepted diagnostic tool for assessing peripheral macrovascular function. While conduit artery hemodynamics have been well defined, the impact of PORH on capillary hemodynamics remains unknown, despite the microvasculature being the dominant site of vascular control. Therefore, the purpose of this investigation was to determine the effects of 5 min of feed artery occlusion on capillary hemodynamics in skeletal muscle. We tested the hypothesis that, upon release of arterial occlusion, there would be: 1) an increased red blood cell flux (fRBC) and red blood cell velocity (VRBC), and 2) a decreased proportion of capillaries supporting RBC flow compared to the pre-occlusion condition. METHODS In female Sprague-Dawley rats (n = 6), the spinotrapezius muscle was exteriorized for evaluation of capillary hemodynamics pre-occlusion, 5 min of feed artery occlusion (Occ), and 5 min of reperfusion (Post-Occ). RESULTS There were no differences in mean arterial pressure (MAP) or capillary diameter (Dc) between pre-occlusion and post-occlusion (P > 0.05). During 30 s of PORH, capillary fRBC was increased (pre: 59 ± 4 vs. 30 s-post: 77 ± 2 cells/s; P < 0.05) and VRBC was not changed (pre: 300 ± 24 vs. 30 s post: 322 ± 25 μm/s; P > 0.05). Capillary hematocrit (Hctcap) was unchanged across the pre- to post-occlusion conditions (P > 0.05). Following occlusion, there was a 20-30% decrease in the number of capillaries supporting RBC flow at 30 s and 300 s-post occlusion (pre: 92 ± 2%; 30 s-post: 66 ± 3%; 300 s-post: 72 ± 6%; both P < 0.05). CONCLUSION Short-term feed artery occlusion (i.e. 5 min) resulted in a more heterogeneous capillary flow profile with the presence of capillary no-reflow, decreasing the percentage of capillaries supporting RBC flow. A complex interaction between myogenic and metabolic mechanisms at the arteriolar level may play a role in the capillary no-reflow with PORH. Measurements at the level of the conduit artery mask significant alterations in blood flow distribution in the microcirculation.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America.
| | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Ramona E Weber
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Johnson Cancer Research Center, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
35
|
Cheng X, Chen H, Sie EJ, Marsili F, Boas DA. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210362SSR. [PMID: 35199501 PMCID: PMC8866418 DOI: 10.1117/1.jbo.27.8.083009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Diffuse correlation spectroscopy (DCS) is an optical technique that measures blood flow non-invasively and continuously. The time-domain (TD) variant of DCS, namely, TD-DCS has demonstrated a potential to improve brain depth sensitivity and to distinguish superficial from deeper blood flow by utilizing pulsed laser sources and a gating strategy to select photons with different pathlengths within the scattering tissue using a single source-detector separation. A quantitative tool to predict the performance of TD-DCS that can be compared with traditional continuous wave DCS (CW-DCS) currently does not exist but is crucial to provide guidance for the continued development and application of these DCS systems. AIMS We aim to establish a model to simulate TD-DCS measurements from first principles, which enables analysis of the impact of measurement noise that can be utilized to quantify the performance for any particular TD-DCS system and measurement geometry. APPROACH We have integrated the Monte Carlo simulation describing photon scattering in biological tissue with the wave model that calculates the speckle intensity fluctuations due to tissue dynamics to simulate TD-DCS measurements from first principles. RESULTS Our model is capable of simulating photon counts received at the detector as a function of time for both CW-DCS and TD-DCS measurements. The effects of the laser coherence, instrument response function, detector gate delay, gate width, intrinsic noise arising from speckle statistics, and shot noise are incorporated in the model. We have demonstrated the ability of our model to simulate TD-DCS measurements under different conditions, and the use of our model to compare the performance of TD-DCS and CW-DCS under a few typical measurement conditions. CONCLUSION We have established a Monte Carlo-Wave model that is capable of simulating CW-DCS and TD-DCS measurements from first principles. In our exploration of the parameter space, we could not find realistic measurement conditions under which TD-DCS outperformed CW-DCS. However, the parameter space for the optimization of the contrast to noise ratio of TD-DCS is large and complex, so our results do not imply that TD-DCS cannot indeed outperform CW-DCS under different conditions. We made our code available publicly for others in the field to find use cases favorable to TD-DCS. TD-DCS also provides a promising way to measure deep brain tissue dynamics using a short source-detector separation, which will benefit the development of technologies including high density DCS systems and image reconstruction using a limited number of source-detector pairs.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Hui Chen
- Meta Platforms Inc., Reality Labs Research, Menlo Park, California, United States
| | - Edbert J. Sie
- Meta Platforms Inc., Reality Labs Research, Menlo Park, California, United States
| | - Francesco Marsili
- Meta Platforms Inc., Reality Labs Research, Menlo Park, California, United States
| | - David A. Boas
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
36
|
Vadset TA, Rajaram A, Hsiao CH, Kemigisha Katungi M, Magombe J, Seruwu M, Kaaya Nsubuga B, Vyas R, Tatz J, Playter K, Nalule E, Natukwatsa D, Wabukoma M, Neri Perez LE, Mulondo R, Queally JT, Fenster A, Kulkarni AV, Schiff SJ, Grant PE, Mbabazi Kabachelor E, Warf BC, Sutin JDB, Lin PY. Improving Infant Hydrocephalus Outcomes in Uganda: A Longitudinal Prospective Study Protocol for Predicting Developmental Outcomes and Identifying Patients at Risk for Early Treatment Failure after ETV/CPC. Metabolites 2022; 12:78. [PMID: 35050201 PMCID: PMC8781620 DOI: 10.3390/metabo12010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023] Open
Abstract
Infant hydrocephalus poses a severe global health burden; 80% of cases occur in the developing world where patients have limited access to neurosurgical care. Surgical treatment combining endoscopic third ventriculostomy and choroid plexus cauterization (ETV/CPC), first practiced at CURE Children's Hospital of Uganda (CCHU), is as effective as standard ventriculoperitoneal shunt (VPS) placement while requiring fewer resources and less post-operative care. Although treatment focuses on controlling ventricle size, this has little association with treatment failure or long-term outcome. This study aims to monitor the progression of hydrocephalus and treatment response, and investigate the association between cerebral physiology, brain growth, and neurodevelopmental outcomes following surgery. We will enroll 300 infants admitted to CCHU for treatment. All patients will receive pre/post-operative measurements of cerebral tissue oxygenation (SO2), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) using frequency-domain near-infrared combined with diffuse correlation spectroscopies (FDNIRS-DCS). Infants will also receive brain imaging, to monitor tissue/ventricle volume, and neurodevelopmental assessments until two years of age. This study will provide a foundation for implementing cerebral physiological monitoring to establish evidence-based guidelines for hydrocephalus treatment. This paper outlines the protocol, clinical workflow, data management, and analysis plan of this international, multi-center trial.
Collapse
Affiliation(s)
- Taylor A. Vadset
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ajay Rajaram
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chuan-Heng Hsiao
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Miriah Kemigisha Katungi
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Joshua Magombe
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Marvin Seruwu
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Brian Kaaya Nsubuga
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Julia Tatz
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katharine Playter
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Esther Nalule
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Davis Natukwatsa
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Moses Wabukoma
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Luis E. Neri Perez
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ronald Mulondo
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Jennifer T. Queally
- Department of Psychiatry, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aaron Fenster
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
| | | | - Steven J. Schiff
- Center for Neural Engineering, Center for Infectious Disease Dynamics, Departments of Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Patricia Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Edith Mbabazi Kabachelor
- CURE Children’s Hospital of Uganda, Mbale P.O. Box 903, Uganda; (M.K.K.); (J.M.); (M.S.); (B.K.N.); (E.N.); (D.N.); (M.W.); (R.M.); (E.M.K.)
| | - Benjamin C. Warf
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Jason D. B. Sutin
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pei-Yi Lin
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (T.A.V.); (A.R.); (C.-H.H.); (R.V.); (J.T.); (K.P.); (L.E.N.P.); (P.E.G.); (J.D.B.S.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Matsuda Y, Nakabayashi M, Suzuki T, Zhang S, Ichinose M, Ono Y. Evaluation of Local Skeletal Muscle Blood Flow in Manipulative Therapy by Diffuse Correlation Spectroscopy. Front Bioeng Biotechnol 2022; 9:800051. [PMID: 35087803 PMCID: PMC8786806 DOI: 10.3389/fbioe.2021.800051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Manipulative therapy (MT) is applied to motor organs through a therapist’s hands. Although MT has been utilized in various medical treatments based on its potential role for increasing the blood flow to the local muscle, a quantitative validation of local muscle blood flow in MT remains challenging due to the lack of appropriate bedside evaluation techniques. Therefore, we investigated changes in the local blood flow to the muscle undergoing MT by employing diffuse correlation spectroscopy, a portable and emerging optical measurement technology that non-invasively measures blood flow in deep tissues. This study investigated the changes in blood flow, heart rate, blood pressure, and autonomic nervous activity in the trapezius muscle through MT application in 30 volunteers without neck and shoulder injury. Five minutes of MT significantly increased the median local blood flow relative to that of the pre-MT period (p < 0.05). The post-MT local blood flow increase was significantly higher in the MT condition than in the control condition, where participants remained still without receiving MT for the same time (p < 0.05). However, MT did not affect the heart rate, blood pressure, or cardiac autonomic nervous activity. The post-MT increase in muscle blood flow was significantly higher in the participants with muscle stiffness in the neck and shoulder regions than in those without (p < 0.05). These results suggest that MT could increase the local blood flow to the target skeletal muscle, with minimal effects on systemic circulatory function.
Collapse
Affiliation(s)
- Yasuhiro Matsuda
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Japan
- Faculty of Medical Science, Nippon Sport Science University, Yokohama, Japan
| | - Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Japan
- Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Tatsuya Suzuki
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Sinan Zhang
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, Kawasaki, Japan
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Japan
- *Correspondence: Yumie Ono,
| |
Collapse
|
38
|
Kholiqov O, Zhou W, Zhang T, Zhao M, Ghandiparsi S, Srinivasan VJ. Scanning interferometric near-infrared spectroscopy. OPTICS LETTERS 2022; 47:110-113. [PMID: 34951892 PMCID: PMC9281567 DOI: 10.1364/ol.443533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/19/2021] [Indexed: 05/24/2023]
Abstract
In diffuse optics, quantitative assessment of the human brain is confounded by the skull and scalp. To better understand these superficial tissues, we advance interferometric near-infrared spectroscopy (iNIRS) to form images of the human superficial forehead blood flow index (BFI). We present a null source-collector (S-C) polarization splitting approach that enables galvanometer scanning and eliminates unwanted backscattered light. Images show an order-of-magnitude heterogeneity in superficial dynamics, implying an order-of-magnitude heterogeneity in brain specificity, depending on forehead location. Along the time-of-flight dimension, autocorrelation decay rates support a three-layer model with increasing BFI from the skull to the scalp to the brain. By accurately characterizing superficial tissues, this approach can help improve specificity for the human brain.
Collapse
Affiliation(s)
- Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Wenjun Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Tingwei Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Mingjun Zhao
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
| | - Soroush Ghandiparsi
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
- Tech4Health Institute, NYU Langone Health, New York, New York 10010, USA
| |
Collapse
|
39
|
Khani ME, Osman OB, Arbab MH. Diffuse terahertz spectroscopy in turbid media using a wavelet-based bimodality spectral analysis. Sci Rep 2021; 11:22804. [PMID: 34815438 PMCID: PMC8611087 DOI: 10.1038/s41598-021-02068-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Current terahertz (THz) spectroscopy techniques only use the coherent light beam for spectral imaging. In the presence of electromagnetic scattering, however, the scattering-mitigated incoherent beams allow for flexible emitter-detector geometries, which enable applications such as seeing through turbid media. Despite this potential, THz spectroscopy using diffuse waves has not been demonstrated. The main obstacles are the very poor signal to noise ratios of the diffused fields and the resonance-like spectral artifacts due to multiple Mie scattering events that obscure the material absorption signatures. In this work, we demonstrate diffuse THz spectroscopy of a heterogeneous sample through turbid media using a novel technique based on the wavelet multiresolution analysis and the bimodality coefficient spectrum, which we define here for the first time using the skewness and kurtosis of the spectral images. The proposed method yields broadband and simultaneous material characterization at detection angles as high as 90° with respect to the incident beam. We determined the accuracy of the wavelet-based diffuse spectroscopy at oblique detection angles, by evaluating the area under the receiver operating characteristic curves, to be higher than 95%. This technique is agnostic to any a priori information on the spectral signatures of the sample materials or the characteristics of the scattering medium, and can be expanded for other broadband spectroscopic modalities.
Collapse
Affiliation(s)
- Mahmoud E Khani
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Omar B Osman
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - M Hassan Arbab
- Department of Biomedical Engineering, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.
| |
Collapse
|
40
|
Rinehart B, Poon CS, Sunar U. Quantification of perfusion and metabolism in an autism mouse model assessed by diffuse correlation spectroscopy and near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000454. [PMID: 34328247 DOI: 10.1002/jbio.202000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
There is a need for quantitative biomarkers for early diagnosis of autism. Cerebral blood flow and oxidative metabolism parameters may show superior contrasts for improved characterization. Diffuse correlation spectroscopy (DCS) has been shown to be reliable method to obtain cerebral blood flow contrast in animals and humans. Thus, in this study, we evaluated the combination of DCS and fNIRS in an established autism mouse model. Our results indicate that autistic group had significantly (P = .001) lower (~40%) blood flow (1.16 ± 0.26) × 10-8 cm2 /s), and significantly (P = .015) lower (~70%) oxidative metabolism (52.4 ± 16.6 μmol/100 g/min) compared to control group ([1.93 ± 0.74] × 10-8 cm2 /s, 177.2 ± 45.8 μmol/100 g/min, respectively). These results suggest that the combination of DCS and fNIRS can provide hemodynamic and metabolic contrasts for in vivo assessment of autism pathological conditions noninvasively.
Collapse
Affiliation(s)
- Benjamin Rinehart
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio, USA
| | - Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
41
|
Samaei S, Colombo L, Borycki D, Pagliazzi M, Durduran T, Sawosz P, Wojtkiewicz S, Contini D, Torricelli A, Pifferi A, Liebert A. Performance assessment of laser sources for time-domain diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5351-5367. [PMID: 34692187 PMCID: PMC8515963 DOI: 10.1364/boe.432363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
Time-domain diffuse correlation spectroscopy (TD-DCS) is an emerging optical technique that enables noninvasive measurement of microvascular blood flow with photon path-length resolution. In TD-DCS, a picosecond pulsed laser with a long coherence length, adequate illumination power, and narrow instrument response function (IRF) is required, and satisfying all these features is challenging. To this purpose, in this study we characterized the performance of three different laser sources for TD-DCS. First, the sources were evaluated based on their emission spectrum and IRF. Then, we compared the signal-to-noise ratio and the sensitivity to velocity changes of scattering particles in a series of phantom measurements. We also compared the results for in vivo measurements, performing an arterial occlusion protocol on the forearm of three adult subjects. Overall, each laser has the potential to be successfully used both for laboratory and clinical applications. However, we found that the effects caused by the IRF are more significant than the effect of a limited temporal coherence.
Collapse
Affiliation(s)
- Saeed Samaei
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lorenzo Colombo
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Dawid Borycki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland
| | - Marco Pagliazzi
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
| | - Turgut Durduran
- ICFO—Institut de Ciències Fotòniques, Mediterranean Technology Park, Avinguda Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109, Warsaw, Poland
| |
Collapse
|
42
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
43
|
Poon CS, Rinehart B, Langri DS, Rambo TM, Miller AJ, Foreman B, Sunar U. Noninvasive Optical Monitoring of Cerebral Blood Flow and EEG Spectral Responses after Severe Traumatic Brain Injury: A Case Report. Brain Sci 2021; 11:1093. [PMID: 34439712 PMCID: PMC8394546 DOI: 10.3390/brainsci11081093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Survivors of severe brain injury may require care in a neurointensive care unit (neuro-ICU), where the brain is vulnerable to secondary brain injury. Thus, there is a need for noninvasive, bedside, continuous cerebral blood flow monitoring approaches in the neuro-ICU. Our goal is to address this need through combined measurements of EEG and functional optical spectroscopy (EEG-Optical) instrumentation and analysis to provide a complementary fusion of data about brain activity and function. We utilized the diffuse correlation spectroscopy method for assessing cerebral blood flow at the neuro-ICU in a patient with traumatic brain injury. The present case demonstrates the feasibility of continuous recording of noninvasive cerebral blood flow transients that correlated well with the gold-standard invasive measurements and with the frequency content changes in the EEG data.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Benjamin Rinehart
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | | | | | - Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| |
Collapse
|
44
|
Giovannella M, Urtane E, Zanoletti M, Karadeniz U, Rubins U, Weigel UM, Marcinkevics Z, Durduran T. Microvascular blood flow changes of the abductor pollicis brevis muscle during sustained static exercise. BIOMEDICAL OPTICS EXPRESS 2021; 12:4235-4248. [PMID: 34457411 PMCID: PMC8367267 DOI: 10.1364/boe.427885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A practical assessment of the general health and microvascular function of the palm muscle, abductor pollicis brevis (APB), is important for the diagnosis of different conditions. In this study, we have developed a protocol and a probe to study microvascular blood flow using near-infrared diffuse correlation spectroscopy (DCS) in APB during and after thumb abduction at 55% of maximum voluntary contraction (MVC). Near-infrared time resolved spectroscopy (TRS) was also used to characterize the baseline optical and hemodynamic properties. Thirteen (n=13) subjects were enrolled and subdivided in low MVC (N=6, MVC<2.3 kg) and high MVC (N=7, MVC≥2.3 kg) groups. After ruling out significant changes in the systemic physiology that influence the muscle hemodynamics, we have observed that the high MVC group showed a 56% and 36% decrease in the blood flow during exercise, with respect to baseline, in the long and short source-detector (SD) separations (p=0.031 for both). No statistical differences were shown for the low MVC group (p=1 for short and p=0.15 for long SD). These results suggest that the mechanical occlusion, due to increased intramuscular pressure, exceeded the vasodilation elicited by the higher metabolic demand. Also, blood flow changes during thumb contraction negatively correlated (R=-0.7, p<0.01) with the absolute force applied by each subject. Furthermore, after the exercise, muscular blood flow increased significantly immediately after thumb contractions in both high and low MVC groups, with respect to the recorded values during the exercise (p=0.031). An increase of 251% (200%) was found for the long (short) SD in the low MVC group. The high MVC groups showed a significant 90% increase in blood flow only after 80 s from the start of the protocol. For both low and high MVC groups, blood flow recovered to baseline values within 160 s from starting the exercise. In conclusion, DCS allows the study of the response of a small muscle to static exercise and can be potentially used in multiple clinical conditions scenarios for assessing microvascular health.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Evelina Urtane
- Faculty of Biology, Department of Human and Animal Physiology, University of Latvia, Kronvalda Blvd. 4, LV 1586, Riga, Latvia
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Umut Karadeniz
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Uldis Rubins
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Rainis Blvd., Riga LV- 1586, Latvia
| | - Udo M. Weigel
- HemoPhotonics S.L., Av. Carl Friedrich Gauss Num. 3, 08860 Castelldefels (Barcelona), Spain
| | - Zbignevs Marcinkevics
- Faculty of Biology, Department of Human and Animal Physiology, University of Latvia, Kronvalda Blvd. 4, LV 1586, Riga, Latvia
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
45
|
Cheng X, Sie EJ, Naufel S, Boas DA, Marsili F. Measuring neuronal activity with diffuse correlation spectroscopy: a theoretical investigation. NEUROPHOTONICS 2021; 8:035004. [PMID: 34368390 PMCID: PMC8339443 DOI: 10.1117/1.nph.8.3.035004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/16/2021] [Indexed: 05/18/2023]
Abstract
Significance: Diffuse correlation spectroscopy (DCS) measures cerebral blood flow non-invasively. Variations in blood flow can be used to detect neuronal activities, but its peak has a latency of a few seconds, which is slow for real-time monitoring. Neuronal cells also deform during activation, which, in principle, can be utilized to detect neuronal activity on fast timescales (within 100 ms) using DCS. Aims: We aim to characterize DCS signal variation quantified as the change of the decay time of the speckle intensity autocorrelation function during neuronal activation on both fast (within 100 ms) and slow (100 ms to seconds) timescales. Approach: We extensively modeled the variations in the DCS signal that are expected to arise from neuronal activation using Monte Carlo simulations, including the impacts of neuronal cell motion, vessel wall dilation, and blood flow changes. Results: We found that neuronal cell motion induces a DCS signal variation of ∼ 10 - 5 . We also estimated the contrast and number of channels required to detect hemodynamic signals at different time delays. Conclusions: From this extensive analysis, we do not expect to detect neuronal cell motion using DCS in the near future based on current technology trends. However, multi-channel DCS will be able to detect hemodynamic response with sub-second latency, which is interesting for brain-computer interfaces.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Massachusetts, United States
- Address all correspondence to Xiaojun Cheng,
| | - Edbert J. Sie
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - Stephanie Naufel
- Facebook Reality Labs Research, Menlo Park, California, United States
| | - David A. Boas
- Boston University, Neurophotonics Center, Department of Biomedical Engineering, Massachusetts, United States
| | - Francesco Marsili
- Facebook Reality Labs Research, Menlo Park, California, United States
| |
Collapse
|
46
|
Mazumder D, Wu MM, Ozana N, Tamborini D, Franceschini MA, Carp SA. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. NEUROPHOTONICS 2021; 8:035005. [PMID: 34395719 PMCID: PMC8358828 DOI: 10.1117/1.nph.8.3.035005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. Aim: We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters. Approach: Light propagation was modeled on an MRI-derived human head geometry using Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe with a source-detector separation of 1 cm placed in the pre-frontal region. Performance metrics described above were evaluated to determine optimal time gate(s) for different IRFs. Validation of simulation noise estimates was done with experiments conducted on an intralipid-based liquid phantom. Results: We find that TD-DCS performance strongly depends on the system IRF. Among Gaussian pulse shapes, ∼ 300 ps pulse length appears to offer the best performance, at wide gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765 and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimentally (600 kcps at 765 nm and 4 Mcps at 1064 nm). Conclusions: Our work shows that optimal time gates satisfy competing requirements for sufficient sensitivity and sufficient SNR. The achievable performance is further impacted by system IRF with ∼ 300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the best results.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Dibbyan Mazumder,
| | - Melissa M. Wu
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Nisan Ozana
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
47
|
Cortese L, Lo Presti G, Pagliazzi M, Contini D, Dalla Mora A, Dehghani H, Ferri F, Fischer JB, Giovannella M, Martelli F, Weigel UM, Wojtkiewicz S, Zanoletti M, Durduran T. Recipes for diffuse correlation spectroscopy instrument design using commonly utilized hardware based on targets for signal-to-noise ratio and precision. BIOMEDICAL OPTICS EXPRESS 2021; 12:3265-3281. [PMID: 34221659 PMCID: PMC8221932 DOI: 10.1364/boe.423071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/04/2021] [Indexed: 05/09/2023]
Abstract
Over the recent years, a typical implementation of diffuse correlation spectroscopy (DCS) instrumentation has been adapted widely. However, there are no detailed and accepted recipes for designing such instrumentation to meet pre-defined signal-to-noise ratio (SNR) and precision targets. These require specific attention due to the subtleties of the DCS signals. Here, DCS experiments have been performed using liquid tissue simulating phantoms to study the effect of the detected photon count-rate, the number of parallel detection channels and the measurement duration on the precision and SNR to suggest scaling relations to be utilized for device design.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Fabio Ferri
- Università degli Studi dell’Insubria, Dipartimento di Scienza e Alta Tecnologia and To. Sca. Lab., 22100 Como, Italy
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Fabrizio Martelli
- Università degli Studi di Firenze, Dipartimento di Fisica, 50100 Firenze, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Zanoletti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
48
|
Cortese L, Lo Presti G, Zanoletti M, Aranda G, Buttafava M, Contini D, Dalla Mora A, Dehghani H, Di Sieno L, de Fraguier S, Hanzu FA, Mora Porta M, Nguyen-Dinh A, Renna M, Rosinski B, Squarcia M, Tosi A, Weigel UM, Wojtkiewicz S, Durduran T. The LUCA device: a multi-modal platform combining diffuse optics and ultrasound imaging for thyroid cancer screening. BIOMEDICAL OPTICS EXPRESS 2021; 12:3392-3409. [PMID: 34221667 PMCID: PMC8221941 DOI: 10.1364/boe.416561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 05/07/2023]
Abstract
We present the LUCA device, a multi-modal platform combining eight-wavelength near infrared time resolved spectroscopy, sixteen-channel diffuse correlation spectroscopy and a clinical ultrasound in a single device. By simultaneously measuring the tissue hemodynamics and performing ultrasound imaging, this platform aims to tackle the low specificity and sensitivity of the current thyroid cancer diagnosis techniques, improving the screening of thyroid nodules. Here, we show a detailed description of the device, components and modules. Furthermore, we show the device tests performed through well established protocols for phantom validation, and the performance assessment for in vivo. The characterization tests demonstrate that LUCA device is capable of performing high quality measurements, with a precision in determining in vivo tissue optical and dynamic properties of better than 3%, and a reproducibility of better than 10% after ultrasound-guided probe repositioning, even with low photon count-rates, making it suitable for a wide variety of clinical applications.
Collapse
Affiliation(s)
- Lorenzo Cortese
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Giuseppe Lo Presti
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- These authors equally contributed to this work. Authors are listed in alphabetical order except for the first three and the last
| | - Marta Zanoletti
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | - Gloria Aranda
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
| | - Mauro Buttafava
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, 20133 Milano, Italy
| | | | - Felicia A. Hanzu
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mireia Mora Porta
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Clínic of Barcelona, Barcelona, Spain
- Centro de Investigación Biomèdica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | | | - Marco Renna
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Mattia Squarcia
- IDIBAPS, Fundació Clínic per la Recerca Biomèdica, Barcelona, Spain
- Neuroradiology Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria, 20133 Milano, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., 08860 Castelldefels (Barcelona), Spain
| | - Stanislaw Wojtkiewicz
- University of Birmingham, School of Computer Science, Edgbaston, Birmingham, B15 2TT, UK
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015 Barcelona, Spain
| |
Collapse
|
49
|
Guo Y, Deng J, Li J, Zhou J, Cai D, Le Z. Static laser speckle suppression using liquid light guides. OPTICS EXPRESS 2021; 29:14135-14150. [PMID: 33985138 DOI: 10.1364/oe.425587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Static laser speckle suppression using multimode fibers has practical limitations as the technique requires an extremely long fiber to achieve an acceptable speckle contrast. An effective method based on liquid light guides was developed in this study to suppress laser speckle. In this study, a speckle simulation model of the liquid light guide was established for numerically calculating the speckle contrast without solving the analytical solution of the photon diffusion equation. The obtained simulation results were compared with the experimental results for the dependence of speckle contrast on the required length and numerical aperture with different liquid core types of liquid light guides. A speckle contrast of 12% and a speckle suppression efficiency of 5 was achieved at the end of a 2.4 m long liquid light guide. For the same fiber length, liquid light guides were found to suppress speckle more efficiently when compared to multimode fibers.
Collapse
|
50
|
Gregori-Pla C, Mesquita RC, Favilla CG, Busch DR, Blanco I, Zirak P, Frisk LK, Avtzi S, Maruccia F, Giacalone G, Cotta G, Camps-Renom P, Mullen MT, Martí-Fàbregas J, Prats-Sánchez L, Martínez-Domeño A, Kasner SE, Greenberg JH, Zhou C, Edlow BL, Putt ME, Detre JA, Yodh AG, Durduran T, Delgado-Mederos R. Blood flow response to orthostatic challenge identifies signatures of the failure of static cerebral autoregulation in patients with cerebrovascular disease. BMC Neurol 2021; 21:154. [PMID: 33836684 PMCID: PMC8033703 DOI: 10.1186/s12883-021-02179-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. Methods Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. Results After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [− 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). Conclusions The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02179-8.
Collapse
Affiliation(s)
- Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
| | | | | | - David R Busch
- Departments of Anesthesiology and Pain Management and Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Igor Blanco
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Peyman Zirak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Stella Avtzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giacomo Giacalone
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pol Camps-Renom
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Michael T Mullen
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joan Martí-Fàbregas
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Luís Prats-Sánchez
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Alejandro Martínez-Domeño
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Scott E Kasner
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joel H Greenberg
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Chao Zhou
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08015, Barcelona, Spain
| | - Raquel Delgado-Mederos
- Department of Neurology (Stroke Unit). Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|