1
|
Khera HK, Mishra R. Nucleic Acid Based Testing (NABing): A Game Changer Technology for Public Health. Mol Biotechnol 2024; 66:2168-2200. [PMID: 37695473 DOI: 10.1007/s12033-023-00870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Timely and accurate detection of the causal agent of a disease is crucial to restrict suffering and save lives. Mere symptoms are often not enough to detect the root cause of the disease. Better diagnostics applied for screening at a population level and sensitive detection assays remain the crucial component of disease surveillance which may include clinical, plant, and environmental samples, including wastewater. The recent advances in genome sequencing, nucleic acid amplification, and detection methods have revolutionized nucleic acid-based testing (NABing) and screening assays. A typical NABing assay consists of three modules: isolation of the nucleic acid from the collected sample, identification of the target sequence, and final reading the target with the help of a signal, which may be in the form of color, fluorescence, etc. Here, we review current NABing assays covering the different aspects of all three modules. We also describe the frequently used target amplification or signal amplification procedures along with the variety of applications of this fast-evolving technology and challenges in implementation of NABing in the context of disease management especially in low-resource settings.
Collapse
Affiliation(s)
- Harvinder Kour Khera
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
| | - Rakesh Mishra
- Tata Institute for Genetics and Society, New inStem Building NCBS Campus, GKVK Post, Bellary Road, Bengaluru, 560065, India.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Rd, IICT Colony, Habsiguda, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Zhan YX, Luo GH. DNA methylation detection methods used in colorectal cancer. World J Clin Cases 2019; 7:2916-2929. [PMID: 31624740 PMCID: PMC6795732 DOI: 10.12998/wjcc.v7.i19.2916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) remains a major contributor to the number of cancer-related deaths that occur annually worldwide. With the development of molecular biology methods, an increasing number of molecular biomarkers have been identified and investigated. CRC is believed to result from an accumulation of epigenetic changes, and detecting aberrant DNA methylation patterns is useful for both the early diagnosis and prognosis of CRC. Numerous studies are focusing on the development of DNA methylation detection methods or DNA methylation panels. Thus, this review will discuss the commonly used techniques and technologies to evaluate DNA methylation, their merits and deficiencies as well as the prospects for new methods.
Collapse
Affiliation(s)
- Yu-Xia Zhan
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, Changzhou Key Lab of Individualized Diagnosis and Treatment Associated with High Technology Research, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
3
|
Cuomo F, Coppola A, Botti C, Maione C, Forte A, Scisciola L, Liguori G, Caiafa I, Ursini MV, Galderisi U, Cipollaro M, Altucci L, Cobellis G. Pro-inflammatory cytokines activate hypoxia-inducible factor 3α via epigenetic changes in mesenchymal stromal/stem cells. Sci Rep 2018; 8:5842. [PMID: 29643458 PMCID: PMC5895792 DOI: 10.1038/s41598-018-24221-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Human mesenchymal stromal/stem cells (hMSCs) emerged as a promising therapeutic tool for ischemic disorders, due to their ability to regenerate damaged tissues, promote angiogenesis and reduce inflammation, leading to encouraging, but still limited results. The outcomes in clinical trials exploring hMSC therapy are influenced by low cell retention and survival in affected tissues, partially influenced by lesion's microenvironment, where low oxygen conditions (i.e. hypoxia) and inflammation coexist. Hypoxia and inflammation are pathophysiological stresses, sharing common activators, such as hypoxia-inducible factors (HIFs) and NF-κB. HIF1α and HIF2α respond essentially to hypoxia, activating pathways involved in tissue repair. Little is known about the regulation of HIF3α. Here we investigated the role of HIF3α in vitro and in vivo. Human MSCs expressed HIF3α, differentially regulated by pro-inflammatory cytokines in an oxygen-independent manner, a novel and still uncharacterized mechanism, where NF-κB is critical for its expression. We investigated if epigenetic modifications are involved in HIF3α expression by methylation-specific PCR and histone modifications. Robust hypermethylation of histone H3 was observed across HIF3A locus driven by pro-inflammatory cytokines. Experiments in a murine model of arteriotomy highlighted the activation of Hif3α expression in infiltrated inflammatory cells, suggesting a new role for Hif3α in inflammation in vivo.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Antonietta Coppola
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Chiara Botti
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
- Laboratorio di Patologia Clinica, Ospedale Santobono, Via M. Fiore 6, 80129, Naples, Italy
| | - Ciro Maione
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Amalia Forte
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Lucia Scisciola
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Giuseppina Liguori
- Istituto Nazionale Tumori, Struttura Complessa Oncologia Medica Melanoma Immunoterapia Oncologica e Terapia Innovativa, Via M. Semmola, 80131, Naples, Italy
| | - Ilaria Caiafa
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'A. Buzzati-Traverso' (IGB), via P. Castellino, 111, 80131, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Gilda Cobellis
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania L. Vanvitelli, Via L. De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
4
|
Lizardi PM, Yan Q, Wajapeyee N. Analysis of DNA Methylation in Mammalian Cells. Cold Spring Harb Protoc 2017; 2017:pdb.top094821. [PMID: 27852839 DOI: 10.1101/pdb.top094821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Methylation of DNA, the most experimentally accessible epigenetic alteration of eukaryotic cells, has generated an extensive literature and an abundance of analytical tools. The term "methylome" (referring to the complete set of cytosine modifications in a genome) is appearing with greater frequency in the literature, reflecting the growing number of researchers in the field. Here we introduce a set of robust protocols for methods that can be performed routinely for the elucidation of DNA chemical modifications involving methylation of cytosine. The strengths and limitations of each approach are also discussed.
Collapse
|