1
|
Shin S, Chen S, Xie K, Duhun SA, Ortiz-Cerda T. Evaluating the anti-inflammatory and antioxidant efficacy of complementary and alternative medicines (CAM) used for management of inflammatory bowel disease: a comprehensive review. Redox Rep 2025; 30:2471737. [PMID: 40056427 DOI: 10.1080/13510002.2025.2471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune condition whose pathogenesis has not been fully elucidated, and current treatments are not definitive and often carry several side effects. The Complementary and Alternative Medicine (CAM) offers a new approach to conventional medicine. However, their clinical application and mechanisms remain limited.Objective: The aim of this review is to evaluate the anti-inflammatory, impact on microbiota and antioxidant efficacy of currently available CAM for IBD.Methods: The literature collection was obtained from Google Scholar, MEDLINE, PubMed and Web of Science (WOS). Studies in both human and animal models, published in English language between 2018 and 2024, were selected. Sixty-seven studies were included in the current review after inclusion and exclusion screening processes.Results: Mostly, studies showed significant anti-inflammatory, gut microbiota restoring, antioxidant effects of polyphenols, polysaccharides, emodin, short-chain fatty acids (SCFA; including butyrate, propionate and acetate), and probiotics although some contrasting results were noted. Current evidence shows that polyphenols exhibit the most consistent result in alleviating IBD pathophysiology, primarily due to their significant SCFA-elevating effect.Discussion: Future studies may focus on human studies, narrowing down on individual factors which may change natural product's metabolism. Further research studies are also essential to obtain therapeutic recommendations.
Collapse
Affiliation(s)
- Sia Shin
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Siqi Chen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Kangzhe Xie
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Suehad Abou Duhun
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tamara Ortiz-Cerda
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Sanchez-Rodriguez A, Idrovo IID, Villafranca R, Latorre N, Rielo JA, Laburu A, Nieto-Román S, Heredia D, González R, García-Cañas V, Laxalde D, Simó C, Vieites DR, Roldan ERS. Effect of Probiotics on Sperm Quality in the Adult Mouse. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10388-z. [PMID: 39441338 DOI: 10.1007/s12602-024-10388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The administration of probiotics for the treatment of different diseases has gained interest in recent years. However, few studies have evaluated their effects on reproductive traits. The objective of this study was to examine the effect of two mixtures of probiotics, a commercial probiotic (Vivomixx®) and a mix of Lacticaseibacillus rhamnosus GG and Faecalibacterium duncaniae A2-165, on sperm quality in a mouse model. Adult male mice (8 months old) were used for two experimental and one control groups (n = 5 each). The probiotics or physiological serum (control) was administered orally, twice a week, during 5 weeks. Sperm were collected from the cauda epididymis, and their total number, motility, kinematics, morphology, and acrosome integrity were assessed in recently collected samples and after a 60-min in vitro incubation. Results showed a higher percentage of normal sperm in both experimental groups, with fewer head abnormalities than in the control. Differences were found among groups in the morphometry of sperm heads, being more elongated in mice treated with probiotics. Sperm from probiotic-treated mice showed similar total motility when compared to the controls, although the proportion of progressively moving sperm and their vigor of motility were lower. Sperm swimming descriptors were measured with a CASA system. Velocity parameters were similar among groups whereas linearity was higher in mice treated with the commercial probiotic. These results suggest that the administration of probiotics may increase the proportion of sperm with normal morphology and lead to modifications in sperm head shape that may enhance sperm swimming. Studies using a longer administration period would be useful in further characterizing the effect of these probiotic mixtures on sperm quality and fertilization capacity.
Collapse
Affiliation(s)
- Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Ingrid I D Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Rocío Villafranca
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Nerea Latorre
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Juan Antonio Rielo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | - Ane Laburu
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain
| | | | - Daniel Heredia
- BioCoRe S. Coop. Calle Primitiva Gañan 11, 28026, Madrid, Spain
| | - Rubén González
- BioCoRe S. Coop. Calle Primitiva Gañan 11, 28026, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CSIC), Calle Nicolás Cabrera 9, 29049, Madrid, Spain
| | - Diego Laxalde
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CSIC), Calle Nicolás Cabrera 9, 29049, Madrid, Spain
| | - Carolina Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CSIC), Calle Nicolás Cabrera 9, 29049, Madrid, Spain
| | - David R Vieites
- Department of Ecology and Marine Resources, Institute of Marine Research (CSIC), Rúa Eduardo Cabello 6, 36208, Vigo, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle José Gutierrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
3
|
Estevinho MM, Yuan Y, Rodríguez‐Lago I, Sousa‐Pimenta M, Dias CC, Barreiro‐de Acosta M, Jairath V, Magro F. Efficacy and safety of probiotics in IBD: An overview of systematic reviews and updated meta-analysis of randomized controlled trials. United European Gastroenterol J 2024; 12:960-981. [PMID: 39106167 PMCID: PMC11497663 DOI: 10.1002/ueg2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Probiotics show promise in inflammatory bowel disease (IBD), yet knowledge gaps persist. We performed an overview of systematic reviews and an updated metanalysis of randomized controlled trials (RCT) assessing the effect of probiotics on Crohn's disease (CD) and ulcerative colitis (UC). METHODS MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched up to September 2023. Primary outcomes were clinical remission and recurrence; secondary outcomes included endoscopic response and remission, and adverse events. We calculated odds ratios (OR) using a random-effects model in R. The quality of systematic reviews was assessed using the AMSTAR-2; the trials' risk of bias was evaluated using the Cochrane Collaboration tool. Evidence certainty was rated using the GRADE framework. RESULTS Out of 2613 results, 67 studies (22 systematic reviews and 45 RCTs) met the eligibility criteria. In the updated meta-analysis, the OR for clinical remission in UC and CD was 2.00 (95% CI 1.28-3.11) and 1.61 (95% CI 0.21-12.50), respectively. The subgroup analysis suggested that combining 5-ASA and probiotics may be beneficial for inducing remission in mild-to-moderate UC (OR 2.35, 95% CI 1.29-4.28). Probiotics decreased the odds of recurrence in relapsing pouchitis (OR 0.03, 95% CI 0.00-0.25) and trended toward reducing clinical recurrence in inactive UC (OR 0.65, 95% CI 0.42-1.01). No protective effect against recurrence was identified for CD. Multi-strain formulations appear superior in achieving remission and preventing recurrence in UC. The use of probiotics was not associated with better endoscopic outcomes. Adverse events were similar to control. However, the overall certainty of evidence was low. CONCLUSION Probiotics, particularly multi-strain formulations, appear efficacious for the induction of clinical remission and the prevention of relapse in UC patients as well as for relapsing pouchitis. Notwithstanding, no significant effect was identified for CD. The favorable safety profile of probiotics was also highlighted.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of GastroenterologyUnidade Local de Saúde Gaia Espinho (ULSGE)Vila Nova de GaiaPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Yuhong Yuan
- Department of MedicineLondon Health Science CenterLondonOntarioCanada
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| | - Iago Rodríguez‐Lago
- Department of GastroenterologyHospital Universitario de GaldakaoBiocruces Bizkaia Health Research InstituteDeusto UniversityGaldakaoSpain
| | - Mário Sousa‐Pimenta
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Cláudia Camila Dias
- Knowledge Management UnitFaculty of MedicineUniversity of PortoPortoPortugal
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
| | | | - Vipul Jairath
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
- Alimentiv, Inc.LondonOntarioCanada
- Department of Epidemiology and BiostatisticsWestern UniversityLondonOntarioCanada
| | - Fernando Magro
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
- Department of GastroenterologyUnidade Local de Saúde São João (ULSSJ)PortoPortugal
| |
Collapse
|
4
|
Saadah OI, AlAmeel T, Al Sarkhy A, Hasosah M, Al-Hussaini A, Almadi MA, Al-Bawardy B, Altuwaijri TA, AlEdreesi M, Bakkari SA, Alharbi OR, Azzam NA, Almutairdi A, Alenzi KA, Al-Omari BA, Almudaiheem HY, Al-Jedai AH, Mosli MH. Saudi consensus guidance for the diagnosis and management of inflammatory bowel disease in children and adolescents. Saudi J Gastroenterol 2024:00936815-990000000-00101. [PMID: 39215473 DOI: 10.4103/sjg.sjg_171_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT The management of inflammatory bowel disease (IBD) in children and adolescents is challenging. Clear evidence-based guidelines are required for this population. This article provides recommendations for managing IBD in Saudi children and adolescents aged 6-19 years, developed by the Saudi Ministry of Health in collaboration with the Saudi Society of Clinical Pharmacy and the Saudi Gastroenterology Association. All 57 guideline statements are based on the most up-to-date information for the diagnosis and management of pediatric IBD.
Collapse
Affiliation(s)
- Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Gastroenterology Unit, Pediatrics Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, Gastroenterology Unit, King Abdulaziz Medical City, National Guard Hospital, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majid A Almadi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia, Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Talal A Altuwaijri
- Department of Surgery, Division of Vascular Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlEdreesi
- Gastroenterology Unit, Pediatric Department, Al Habib Medical Group, Khobar, Saudi Arabia
| | - Shakir A Bakkari
- Department of Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Othman R Alharbi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Nahla A Azzam
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah Almutairdi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalidah A Alenzi
- Executive Management of Transformation, Planning, and Business Development, Tabuk Health Cluster, Tabuk, Saudi Arabia
| | - Bedor A Al-Omari
- Department of Pharmaceutical Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Ahmed H Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahmoud H Mosli
- Department of Internal Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Ekstedt N, Jamioł-Milc D, Pieczyńska J. Importance of Gut Microbiota in Patients with Inflammatory Bowel Disease. Nutrients 2024; 16:2092. [PMID: 38999840 PMCID: PMC11242987 DOI: 10.3390/nu16132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic diseases of the digestive system with a multifactorial and not fully understood etiology. There is research suggesting that they may be initiated by genetic, immunological, and lifestyle factors. In turn, all of these factors play an important role in the modulation of intestinal microflora, and a significant proportion of IBD patients struggle with intestinal dysbiosis, which leads to the conclusion that intestinal microflora disorders may significantly increase the risk of developing IBD. Additionally, in IBD patients, Toll-like receptors (TLRs) produced by intestinal epithelial cells and dendritic cells treat intestinal bacterial antigens as pathogens, which causes a disruption of the immune response, resulting in the development of an inflammatory process. This may result in the occurrence of intestinal dysbiosis, which IBD patients are significantly vulnerable to. In this study, we reviewed scientific studies (in particular, systematic reviews with meta-analyses, being studies with the highest level of evidence) regarding the microflora of patients with IBD vs. the microflora in healthy people, and the use of various strains in IBD therapy.
Collapse
Affiliation(s)
- Natalia Ekstedt
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Joanna Pieczyńska
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
6
|
Dierick M, Ongena R, Vanrompay D, Devriendt B, Cox E. Exploring the modulatory role of bovine lactoferrin on the microbiome and the immune response in healthy and Shiga toxin-producing E. coli challenged weaned piglets. J Anim Sci Biotechnol 2024; 15:39. [PMID: 38449023 PMCID: PMC10916201 DOI: 10.1186/s40104-023-00985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Post-weaned piglets suffer from F18+ Escherichia coli (E. coli) infections resulting in post-weaning diarrhoea or oedema disease. Frequently used management strategies, including colistin and zinc oxide, have contributed to the emergence and spread of antimicrobial resistance. Novel antimicrobials capable of directly interacting with pathogens and modulating the host immune responses are being investigated. Lactoferrin has shown promising results against porcine enterotoxigenic E. coli strains, both in vitro and in vivo. RESULTS We investigated the influence of bovine lactoferrin (bLF) on the microbiome of healthy and infected weaned piglets. Additionally, we assessed whether bLF influenced the immune responses upon Shiga toxin-producing E. coli (STEC) infection. Therefore, 2 in vivo trials were conducted: a microbiome trial and a challenge infection trial, using an F18+ STEC strain. BLF did not affect the α- and β-diversity. However, bLF groups showed a higher relative abundance (RA) for the Actinobacteria phylum and the Bifidobacterium genus in the ileal mucosa. When analysing the immune response upon infection, the STEC group exhibited a significant increase in F18-specific IgG serum levels, whereas this response was absent in the bLF group. CONCLUSION Taken together, the oral administration of bLF did not have a notable impact on the α- and β-diversity of the gut microbiome in weaned piglets. Nevertheless, it did increase the RA of the Actinobacteria phylum and Bifidobacterium genus, which have previously been shown to play an important role in maintaining gut homeostasis. Furthermore, bLF administration during STEC infection resulted in the absence of F18-specific serum IgG responses.
Collapse
Affiliation(s)
- Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Zhou S, Wang M, Li W, Zhang Y, Zhao T, Song Q, Cong J. Comparative efficacy and tolerability of probiotic, prebiotic, and synbiotic formulations for adult patients with mild-moderate ulcerative colitis in an adjunctive therapy: A network meta-analysis. Clin Nutr 2024; 43:20-30. [PMID: 37995508 DOI: 10.1016/j.clnu.2023.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS Probiotics, prebiotics, and synbiotics (PPS) have been widely used as adjuvant treatments in patients with ulcerative colitis (UC) in recent years. However, the most effective formulations of PPS have yet to be identified. We thus aimed to compare the efficacy and tolerability of different PPS formulations for mild-moderate UC. METHODS We searched PubMed, Embase, Web of Science, and Cochrane CENTRAL from inception to June 24, 2023 for double-blind randomized controlled trials. We used a frequentist approach in random-effects models for network meta-analysis and the Grading of Recommendations Assessment, Development, and Evaluation approach to evaluate the certainty of evidence. RESULTS We analysed data from 20 trials involving 1153 patients. The combinations of specific strains of Lactobacillus and Bifidobacterium (CLB) (odds ratio (OR), 3.85; 95 % confidence interval (CI), 1.40-10.60; low certainty) and combinations of specific strains of Lactobacillus, Bifidobacterium, and Streptococcus (CLBS) (OR, 2.20; 95 % CI, 1.47-3.28; low certainty) significantly increased the clinical remission rate in intention-to-treat analysis (ITT) when compared to placebo. Similarly, compared with placebo, the two combinations significantly reduced clinical activity scores (standardized mean difference (SMD), -1.17 (95 % CI, -1.68 to -0.65), low certainty; and SMD, -1.33 (95 % CI, -1.81 to -0.86), low certainty, respectively). Hierarchical cluster analyses showed the two combinations formed clusters with high efficacy (clinical remission in ITT and clinical activity score) and tolerability (withdrawal due to worsening symptoms) within 12 weeks. CONCLUSION In this systematic review, we found CLB and CLBS demonstrated a clinical benefit in adjuvant treatments, with a comparable tolerability and safety profile to placebo. Further trials are needed. TRIAL REGISTRATION NUMBER CRD42022344905.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Mengjuan Wang
- Emergency Department, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Wenhui Li
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
8
|
Lopes SA, Roque-Borda CA, Duarte JL, Di Filippo LD, Borges Cardoso VM, Pavan FR, Chorilli M, Meneguin AB. Delivery Strategies of Probiotics from Nano- and Microparticles: Trends in the Treatment of Inflammatory Bowel Disease-An Overview. Pharmaceutics 2023; 15:2600. [PMID: 38004578 PMCID: PMC10674632 DOI: 10.3390/pharmaceutics15112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder, most known as ulcerative colitis (UC) and Crohn's disease (CD), that affects the gastrointestinal tract (GIT), causing considerable symptoms to millions of people around the world. Conventional therapeutic strategies have limitations and side effects, prompting the exploration of innovative approaches. Probiotics, known for their potential to restore gut homeostasis, have emerged as promising candidates for IBD management. Probiotics have been shown to minimize disease symptoms, particularly in patients affected by UC, opening important opportunities to better treat this disease. However, they exhibit limitations in terms of stability and targeted delivery. As several studies demonstrate, the encapsulation of the probiotics, as well as the synthetic drug, into micro- and nanoparticles of organic materials offers great potential to solve this problem. They resist the harsh conditions of the upper GIT portions and, thus, protect the probiotic and drug inside, allowing for the delivery of adequate amounts directly into the colon. An overview of UC and CD, the benefits of the use of probiotics, and the potential of micro- and nanoencapsulation technologies to improve IBD treatment are presented. This review sheds light on the remarkable potential of nano- and microparticles loaded with probiotics as a novel and efficient strategy for managing IBD. Nonetheless, further investigations and clinical trials are warranted to validate their long-term safety and efficacy, paving the way for a new era in IBD therapeutics.
Collapse
Affiliation(s)
- Sílvio André Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | | | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Vinícius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Fernando Rogério Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, Brazil; (S.A.L.); (J.L.D.); (L.D.D.F.); (V.M.B.C.); (F.R.P.); (M.C.)
| |
Collapse
|
9
|
Minhas HJ, Papamichael K, Cheifetz AS, Gianotti RJ. A primer on common supplements and dietary measures used by patients with inflammatory bowel disease. Ther Adv Chronic Dis 2023; 14:20406223231182367. [PMID: 37426698 PMCID: PMC10328183 DOI: 10.1177/20406223231182367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the intestines. The pathophysiology of IBD, namely Crohn's disease and ulcerative colitis, is a complex interplay between environmental, genetic, and immune factors. Physicians and patients often seek complementary and alternative medicines (CAMs) as primary and supplementary treatment modalities. CAMs in IBD span a wide range of plants, herbs, pre/probiotics, and include formulations, such as cannabis, curcumin, fish oil, and De Simone Formulation. Dietary measures are also used to improve symptoms by attempting to target trigger foods and reducing inflammation. Examples include the specific carbohydrate diet, the Mediterranean diet, and a diet low in fermentable oligo-, di- and monosaccharides as well as polyols (FODMAP). We examine and review the most common complementary supplements and diets used by patients with IBD.
Collapse
Affiliation(s)
- Hadi J Minhas
- Department of Gastroenterology, Albany Medical Center, Albany NY, USA
| | | | - Adam S. Cheifetz
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert J. Gianotti
- Department of Gastroenterology, Albany Medical Center, Albany NY, USA
- Albany Gastroenterology Consultants, Albany, NY, USA
| |
Collapse
|
10
|
Ribaldone DG, Pellicano R, Fagoonee S, Actis GC. Modulation of the gut microbiota: opportunities and regulatory aspects. Minerva Gastroenterol (Torino) 2023; 69:128-140. [PMID: 35179341 DOI: 10.23736/s2724-5985.22.03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human gut is an intensively colonized organ containing microorganisms that can be health-promoting or pathogenic. This feature led to the development of functional foods aiming to fortify the former category at the expense of the latter. Since long, cultured products, including probiotics fortification, have been used for humans as live microbial feed additions. This review presents some of the microbes used as probiotics and discusses how supplementation with probiotics may help initiate and/or restore eubiotic composition of gut microbiota. Additionally, it considers safety and regulatory aspects of probiotics.
Collapse
Affiliation(s)
| | | | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging (CNR) c/o Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
11
|
Comparative Genomic Analysis and Physiological Properties of Limosilactobacillus fermentum SMFM2017-NK2 with Ability to Inflammatory Bowel Disease. Microorganisms 2023; 11:microorganisms11030547. [PMID: 36985121 PMCID: PMC10057904 DOI: 10.3390/microorganisms11030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The objective of this study was to evaluate the anti-inflammatory effect of Latilactobacillus sakei SMFM2017-NK1 (LS1), L. sakei SMFM2017-NK3 (LS2), and Limosilactobacillus fermentum SMFM2017-NK2 (LF) on colitis using an animal model. DSS (dextran sulfate sodium salt) was orally injected into C57BL/6N mice to induce inflammation in the colon for seven days. Colitis mice models were treated with LS1, LS2, and LF, respectively, and Lacticaseibacillus rhamnosus GG (LGG) was used as a positive control. During oral administration of lactic acid bacteria, the weights of the mice were measured, and the disease activity index (DAI) score was determined by judging the degree of diarrhea and bloody stool. When comparing the differences between the minimum weight after DSS administration and the maximum weight after lactic acid bacteriaadministration were compared, the LF-treated group showed the highest weight gain at 8.91%. The DAI scores of the LF, LS2, and LGG groups were lower than that of the control group. After sacrifice, mRNA expression levels for proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) and mediators (iNOS and COX-2) in the colon were measured. LF was selected as a superior strain for anti-inflammation in the colon. It was further analyzed to determine its biochemical characteristics, cytotoxicity, and thermal stability. Catalase and oxidase activities for LF were negative. In cytotoxicity and heat stability tests, the LF group had higher cell viability than the LGG group. The genome of LF was obtained, and 5682 CDS, 114 tRNA, 2 RNA, and 5 repeat regions were predicted. Especially, LF could be distinguished from the other three L. fermentum strains based on taxonomic profiling, specific orthologous genes of the strain, and genomic variants. The results of this study suggest that L. fermentum SMFM2017-NK2 is a novel strain with an anti-inflammatory effect on colitis.
Collapse
|
12
|
The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci 2023; 24:ijms24032399. [PMID: 36768722 PMCID: PMC9917289 DOI: 10.3390/ijms24032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Collapse
|
13
|
Caballero V, Estévez M, Tomás-Barberán FA, Morcuende D, Martín I, Delgado J. Biodegradation of Punicalagin into Ellagic Acid by Selected Probiotic Bacteria: A Study of the Underlying Mechanisms by MS-Based Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16273-16285. [PMID: 36519204 PMCID: PMC9801417 DOI: 10.1021/acs.jafc.2c06585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 05/31/2023]
Abstract
Pomegranate (Punica granatum L.) is a well-known source of bioactive phenolic compounds such as ellagitannins, anthocyanins, and flavanols. Punicalagin, one of the main constituents of pomegranate, needs to be biodegraded by bacteria to yield metabolites of medicinal interest. In this work, we tested 30 lactic acid bacteria (LAB) and their capacity to transform punicalagin from a punicalagin-rich pomegranate extract into smaller bioactive molecules, namely, ellagic acid and urolithins. These were identified and quantified by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS2). Further, we evaluated the molecular mechanism governing this transformation through label-free comparative MS-based proteomics. All tested LAB strains were capable of transforming punicalagin into ellagic acid, while the biosynthesis of urolithins was not observed. Proteomic analysis revealed an increase of generic transglycosylases that might have a hydrolytic role in the target phenolic molecule, coupled with an increase in the quantity of ATP-binding cassette (ABC) transporters, which might play a relevant role in transporting the resulting byproducts in and out of the cell.
Collapse
Affiliation(s)
- Víctor Caballero
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Mario Estévez
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | | | - David Morcuende
- Food
Technology, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Irene Martín
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| | - Josué Delgado
- Food
Hygiene and Safety, IPROCAR Research Institute, Universidad de Extremadura, 10003Cáceres, Spain
| |
Collapse
|
14
|
Mirsepasi-Lauridsen HC. Therapy Used to Promote Disease Remission Targeting Gut Dysbiosis, in UC Patients with Active Disease. J Clin Med 2022; 11:7472. [PMID: 36556089 PMCID: PMC9784819 DOI: 10.3390/jcm11247472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Ulcerative colitis (UC) is a relapsing non-transmural chronic inflammatory disease of the colon characterized by bloody diarrhea. The etiology of UC is unknown. The goal is to reduce the inflammation and induce disease remission in UC patients with active disease. The aim of this study is to investigate the innovative treatment method used to promote disease remission in UC patients with active disease targeting gut dysbiosis. Immunosuppressants such as TNF-α blocker are used to promote disease remission in UC, but it is expensive and with side effects. Probiotic, prebiotic and diet are shown to be effective in maintaining disease remission. Fecal microbiota transplantation (FMT) might be the future therapy option to promote disease remission in UC patients with active disease. However, correct manufacturing and administration of the FMT are essential to achieve successful outcome. A few cohorts with FMT capsules show promising results in UC patients with active disease. However, randomized controlled clinical trials with long-term treatment and follow-up periods are necessary to show FMT capsules' efficacy to promote disease remission in UC patients.
Collapse
|
15
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Cerdó T, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Nieto-Ruíz A, G. Bermúdez M, Campoy C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022; 14:4691. [PMID: 36364953 PMCID: PMC9658482 DOI: 10.3390/nu14214691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Parenteral nutrition (PN) is a life-saving therapy providing nutritional support in patients with digestive tract complications, particularly in preterm neonates due to their gut immaturity during the first postnatal weeks. Despite this, PN can also result in several gastrointestinal complications that are the cause or consequence of gut mucosal atrophy and gut microbiota dysbiosis, which may further aggravate gastrointestinal disorders. Consequently, the use of PN presents many unique challenges, notably in terms of the potential role of the gut microbiota on the functional and clinical outcomes associated with the long-term use of PN. In this review, we synthesize the current evidence on the effects of PN on gut microbiome in infants and children suffering from diverse gastrointestinal diseases, including necrotizing enterocolitis (NEC), short bowel syndrome (SBS) and subsequent intestinal failure, liver disease and inflammatory bowel disease (IBD). Moreover, we discuss the potential use of pre-, pro- and/or synbiotics as promising therapeutic strategies to reduce the risk of severe gastrointestinal disorders and mortality. The findings discussed here highlight the need for more well-designed studies, and harmonize the methods and its interpretation, which are critical to better understand the role of the gut microbiota in PN-related diseases and the development of efficient and personalized approaches based on pro- and/or prebiotics.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - María García-Ricobaraza
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Ana Nieto-Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Mercedes G. Bermúdez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Carlos III Health Institute, Avda. Monforte de Lemos 5, 28028 Madrid, Spain
| |
Collapse
|
17
|
Rudiansyah M, Abdalkareem Jasim S, S Azizov B, Samusenkov V, Kamal Abdelbasset W, Yasin G, Mohammad HJ, Jawad MA, Mahmudiono T, Hosseini-Fard SR, Mirzaei R, Karampoor S. The emerging microbiome-based approaches to IBD therapy: From SCFAs to urolithin A. J Dig Dis 2022; 23:412-434. [PMID: 36178158 DOI: 10.1111/1751-2980.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic gastrointestinal inflammatory conditions which can be life-threatening, affecting both children and adults. Crohn's disease and ulcerative colitis are the two main forms of IBD. The pathogenesis of IBD is complex and involves genetic background, environmental factors, alteration in gut microbiota, aberrant immune responses (innate and adaptive), and their interactions, all of which provide clues to the identification of innovative diagnostic or prognostic biomarkers and the development of novel treatments. Gut microbiota provide significant benefits to its host, most notably via maintaining immunological homeostasis. Furthermore, changes in gut microbial populations may promote immunological dysregulation, resulting in autoimmune diseases, including IBD. Investigating the interaction between gut microbiota and immune system of the host may lead to a better understanding of the pathophysiology of IBD as well as the development of innovative immune- or microbe-based therapeutics. In this review we summarized the most recent findings on innovative therapeutics for IBD, including microbiome-based therapies such as fecal microbiota transplantation, probiotics, live biotherapeutic products, short-chain fatty acids, bile acids, and urolithin A.
Collapse
Affiliation(s)
- Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Ulin Hospital, Banjarmasin, Indonesia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College Medical Laboratory Techniques Department Al-Anbar-Ramadi, Ramadi, Iraq
| | - Bakhadir S Azizov
- Department of Therapeutic Disciplines No.1, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ghulam Yasin
- Department of Botany University of Bahauddin Zakariya University, Multan, Pakistan
| | | | | | - Trias Mahmudiono
- Department of Nutrition Faculty of Public Health Universitas, Airlangga, Indonesia
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hone Lopez S, Jalving M, Fehrmann RS, Nagengast WB, de Vries EG, de Haan JJ. The gut wall’s potential as a partner for precision oncology in immune checkpoint treatment. Cancer Treat Rev 2022; 107:102406. [DOI: 10.1016/j.ctrv.2022.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/02/2022]
|
19
|
Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms 2022; 10:microorganisms10030578. [PMID: 35336153 PMCID: PMC8954387 DOI: 10.3390/microorganisms10030578] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
|
20
|
Efficacy of Probiotics-Based Interventions as Therapy for Inflammatory Bowel Disease: A Recent Update. Saudi J Biol Sci 2022; 29:3546-3567. [PMID: 35844369 PMCID: PMC9280206 DOI: 10.1016/j.sjbs.2022.02.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host’s immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.
Collapse
|
21
|
Cai Z, Wang S, Li J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front Med (Lausanne) 2021; 8:765474. [PMID: 34988090 PMCID: PMC8720971 DOI: 10.3389/fmed.2021.765474] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD), as a global disease, has attracted much research interest. Constant research has led to a better understanding of the disease condition and further promoted its management. We here reviewed the conventional and the novel drugs and therapies, as well as the potential ones, which have shown promise in preclinical studies and are likely to be effective future therapies. The conventional treatments aim at controlling symptoms through pharmacotherapy, including aminosalicylates, corticosteroids, immunomodulators, and biologics, with other general measures and/or surgical resection if necessary. However, a considerable fraction of patients do not respond to available treatments or lose response, which calls for new therapeutic strategies. Diverse therapeutic options are emerging, involving small molecules, apheresis therapy, improved intestinal microecology, cell therapy, and exosome therapy. In addition, patient education partly upgrades the efficacy of IBD treatment. Recent advances in the management of IBD have led to a paradigm shift in the treatment goals, from targeting symptom-free daily life to shooting for mucosal healing. In this review, the latest progress in IBD treatment is summarized to understand the advantages, pitfalls, and research prospects of different drugs and therapies and to provide a basis for the clinical decision and further research of IBD.
Collapse
Affiliation(s)
- Zhaobei Cai
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
- Department of Gastroenterology and Hepatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Wu Z, Pan D, Jiang M, Sang L, Chang B. Selenium-Enriched Lactobacillus acidophilus Ameliorates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Regulating Inflammatory Cytokines and Intestinal Microbiota. Front Med (Lausanne) 2021; 8:716816. [PMID: 34532332 PMCID: PMC8439139 DOI: 10.3389/fmed.2021.716816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
Aim: To evaluate the effect of Selenium-enriched Lactobacillus acidophilus (Se-enriched L. acidophilus) on dextran sulfate sodium (DSS)-induced colitis in mice. Methods: Mice were randomly divided into four groups: a control group, a control + Se-enriched L. acidophilus group, a chronic colitis group, and a chronic colitis + Se-enriched L. acidophilus group (n = 10 each group). The mice were sacrificed on the 26th day. The disease activity index, survival rates, and histological injury score were determined. Cytokines produced by lamina propria lymphocytes (LPLs), the selenium (Se) concentrations in serum and colon tissue and the mouse intestinal microbiota were evaluated. Results: Se-enriched L. acidophilus can improve histological injury and the disease activity index in mice with chronic colitis and reduce IL-1β, IL-6, IL-12p70, TNF-α, IL-23, IFN-γ, IL-17A, and IL-21 (P < 0.05) and increase IL-10 (P < 0.05) expression levels. Moreover, Se-enriched L. acidophilus can increase the β diversity of intestinal microbiota in mice with chronic colitis, significantly reduce the relative abundance of Lactobacillus and Romboutsia (P < 0.05), and significantly increase the relative abundance of Parasutterella (P < 0.05). Conclusions: Se-enriched L. acidophilus can improve DSS-induced chronic colitis by regulating inflammatory cytokines and intestinal microbiota.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 37:7-19. [PMID: 35385892 DOI: 10.1515/dmpt-2021-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 0:dmdi-2021-0150. [PMID: 34428363 DOI: 10.1515/dmdi-2021-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Pyle S, Shahzad M, Andrews S, Walton GE. Malnutrition and Gut Microbiota in Children. Nutrients 2021; 13:nu13082727. [PMID: 34444887 PMCID: PMC8401185 DOI: 10.3390/nu13082727] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition continues to threaten the lives of millions across the world, with children being hardest hit. Although inadequate access to food and infectious disease are the primary causes of childhood malnutrition, the gut microbiota may also contribute. This review considers the evidence on the role of diet in modifying the gut microbiota, and how the microbiota impacts childhood malnutrition. It is widely understood that the gut microbiota of children is influenced by diet, which, in turn, can impact child nutritional status. Additionally, diarrhoea, a major contributor to malnutrition, is induced by pathogenic elements of the gut microbiota. Diarrhoea leads to malabsorption of essential nutrients and reduced energy availability resulting in weight loss, which can lead to malnutrition. Alterations in gut microbiota of severe acute malnourished (SAM) children include increased Proteobacteria and decreased Bacteroides levels. Additionally, the gut microbiota of SAM children exhibits lower relative diversity compared with healthy children. Thus, the data indicate a link between gut microbiota and malnutrition in children, suggesting that treatment of childhood malnutrition should include measures that support a healthy gut microbiota. This could be of particular relevance in sub-Saharan Africa and Asia where prevalence of malnutrition remains a major threat to the lives of millions.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
| | - Simone Pyle
- Unilever R&D, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK;
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK;
| | - Gemma Emily Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AX, UK; (I.I.); (A.M.-M.); (C.P.)
- Correspondence:
| |
Collapse
|
26
|
Zhang XF, Guan XX, Tang YJ, Sun JF, Wang XK, Wang WD, Fan JM. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: a systematic review and meta-analysis. Eur J Nutr 2021; 60:2855-2875. [PMID: 33555375 DOI: 10.1007/s00394-021-02503-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Probiotics have been reported to be beneficial for inflammatory bowel disease (IBD), but the types, number of strains, dosage, and intervention time of probiotics used remain controversial. Furthermore, the changes of gut microbiota in IBD's patients are also intriguing. Thus, this meta-analysis was to explore the clinical effects and gut microbiota changes of using probiotics, prebiotics and synbiotics in IBD. METHODS The search was performed in PubMed, Web of Science and the Cochrane library from inception to April 2020. Qualified randomized controlled trials were included. IBD's remission rate, disease activity index and recurrence rate were extracted and analyzed. Changes in the gut microbiota of patients with IBD are comprehensively described. RESULTS Thirty-eight articles were included. Probiotics, prebiotics and synbiotics can induce/maintain IBD's remission and reduce ulcerative colitis (UC) disease activity index (RR = 1.13, 95% CI 1.02, 1.26, P < 0.05; SMD = 1.00, 95% CI 0.27, 1.73, P < 0.05). In subgroup analyses of IBD remission rate and UC disease activity index, we obtained some statistically significant results in some subgroup (P < 0.05). To some extent, probiotic supplements can increase the number of beneficial bacteria (especially Bifidobacteria) in the intestinal tract of patients with IBD. CONCLUSIONS Our results support the treatment of IBD (especially UC) with pro/pre/synbiotics, and synbiotics are more effective. Probiotic supplements that are based on Lactobacillus and Bifidobacterium or more than one strain are more likely to be beneficial for IBD remission. The dose of 1010-1012 CFU/day may be a reference range for using probiotics to relieve IBD.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jin-Feng Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xiao-Kai Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Wei-Dong Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
27
|
Al-Yassir F, Khoder G, Sugathan S, Saseedharan P, Al Menhali A, Karam SM. Modulation of Stem Cell Progeny by Probiotics during Regeneration of Gastric Mucosal Erosions. BIOLOGY 2021; 10:biology10070596. [PMID: 34203400 PMCID: PMC8301058 DOI: 10.3390/biology10070596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Patients with gastric mucosal erosions are predisposed to chronic gastritis, ulcer or even cancer. The repair of mucosal erosions involves several events including proliferation of gastric epithelial stem cells. The aim of this study was to investigate the effects of the probiotic mixture of De Simone Formulation on gastric epithelial stem cell lineages in mouse models of gastric mucosal erosions. Gastric erosions were induced by a single oral gavage of 80% ethanol containing 15 mg/mL acetylsalicylic acid (5 mL/kg) following a daily dose of probiotic mixture (5 mg/day/mouse) for 10 days. In another protocol, erosions were induced by a daily gavage of acetylsalicylic acid (400 mg/kg/day/mouse) for 5 days before or after daily administration of probiotic mixture for 5 days. Control mice received water gavage for 10 days. All mice were injected with bromodeoxyuridine two hours before sacrifice to label S-phase cells. The stomachs of all mice were processed for histological examination, lectin binding, and immunohistochemical analysis. The results reveal that mice that received probiotics before or after the induction of erosion showed a decrease in erosion index with an increase in gastric epithelial stem/progenitor cell proliferation and enhanced production of mucus, trefoil factors, and ghrelin by mucous and enteroendocrine cell lineages. These mice also showed restoration of the amount of H+,K+-ATPase and pepsinogen involved in the production of the harsh acidic environment by parietal and chief cell lineages. In conclusion, this study demonstrates the beneficial effects of probiotics against gastric mucosal erosion and highlights the involvement and modulation of proliferative stem cells and their multiple glandular epithelial cell lineages.
Collapse
Affiliation(s)
- Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Department of Biological Sciences, Faculty of Science, Debbieh Campus, Beirut Arab University, P.O. Box 11-50-20 Riad El Solh 11072809, Beirut, Lebanon
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (G.K.); (A.A.M.); (S.M.K.); Tel.: +971-3-713-7493 (S.M.K.)
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence: (G.K.); (A.A.M.); (S.M.K.); Tel.: +971-3-713-7493 (S.M.K.)
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence: (G.K.); (A.A.M.); (S.M.K.); Tel.: +971-3-713-7493 (S.M.K.)
| |
Collapse
|
28
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Zhang C, Franklin CL, Ericsson AC. Consideration of Gut Microbiome in Murine Models of Diseases. Microorganisms 2021; 9:microorganisms9051062. [PMID: 34068994 PMCID: PMC8156714 DOI: 10.3390/microorganisms9051062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM), a complex community of bacteria, viruses, protozoa, and fungi located in the gut of humans and animals, plays significant roles in host health and disease. Animal models are widely used to investigate human diseases in biomedical research and the GM within animal models can change due to the impact of many factors, such as the vendor, husbandry, and environment. Notably, variations in GM can contribute to differences in disease model phenotypes, which can result in poor reproducibility in biomedical research. Variation in the gut microbiome can also impact the translatability of animal models. For example, standard lab mice have different pathogen exposure experiences when compared to wild or pet store mice. As humans have antigen experiences that are more similar to the latter, the use of lab mice with more simplified microbiomes may not yield optimally translatable data. Additionally, the literature describes many methods to manipulate the GM and differences between these methods can also result in differing interpretations of outcomes measures. In this review, we focus on the GM as a potential contributor to the poor reproducibility and translatability of mouse models of disease. First, we summarize the important role of GM in host disease and health through different gut–organ axes and the close association between GM and disease susceptibility through colonization resistance, immune response, and metabolic pathways. Then, we focus on the variation in the microbiome in mouse models of disease and address how this variation can potentially impact disease phenotypes and subsequently influence research reproducibility and translatability. We also discuss the variations between genetic substrains as potential factors that cause poor reproducibility via their effects on the microbiome. In addition, we discuss the utility of complex microbiomes in prospective studies and how manipulation of the GM through differing transfer methods can impact model phenotypes. Lastly, we emphasize the need to explore appropriate methods of GM characterization and manipulation.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA;
- Mutant Mouse Resource and Research Center, University of Missouri, Columbia, MO 65201, USA
- Metagenomics Center, University of Missouri, Columbia, MO 65201, USA
- Correspondence: (C.L.F.); (A.C.E.)
| |
Collapse
|
30
|
Meyer J, Roos E, Ris F, Fearnhead N, Davies J. Does dairy product consumption impact the prevalence of inflammatory bowel disease? An ecological cross-sectional analysis. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
31
|
Shafiee NH, Manaf ZA, Mokhtar NM, Raja Ali RA. Anti-inflammatory diet and inflammatory bowel disease: what clinicians and patients should know? Intest Res 2021; 19:171-185. [PMID: 33525858 PMCID: PMC8100370 DOI: 10.5217/ir.2020.00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Current treatment for inflammatory bowel disease (IBD) includes the application of anti-inflammatory agents for the induction and remission of IBD. However, prolonged use of anti-inflammatory agents can exert adverse effects on patients. Recently, formulated dietary approach in treating IBD patients is utilized to improve clinical activity scores. An alteration of gastrointestinal microbiota through dietary therapy was found to reduce IBD and is recognized as a promising therapeutic strategy for IBD. One of the recommended formulated diets is an anti-inflammatory diet (AID) that restricts the intake of carbohydrates with modified fatty acids. This diet also contains probiotics and prebiotics that can promote balanced intestinal microbiota composition. However, scientific evidences are limited to support this specific dietary regime in maintaining the remission and prevention relapse of IBD. Therefore, this review aimed to summarize available data from various studies to evaluate the AID diet effectiveness which will be useful for clinicians to manage their IBD patients by application of improved dietary therapy.
Collapse
Affiliation(s)
- Nor Hamizah Shafiee
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zahara Abdul Manaf
- Dietetics Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza M. Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Raja Affendi Raja Ali
- GUT Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Gastroenterology Unit, Department of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Kirby TO, Ochoa-Reparaz J, Roullet JB, Gibson KM. Dysbiosis of the intestinal microbiome as a component of pathophysiology in the inborn errors of metabolism. Mol Genet Metab 2021; 132:1-10. [PMID: 33358495 DOI: 10.1016/j.ymgme.2020.12.289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.
Collapse
Affiliation(s)
- Trevor O Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Javier Ochoa-Reparaz
- Department of Biological Sciences, Eastern Washington University, Cheney, WA, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA.
| |
Collapse
|
33
|
Olshan KL, Leonard MM, Serena G, Zomorrodi AR, Fasano A. Gut microbiota in Celiac Disease: microbes, metabolites, pathways and therapeutics. Expert Rev Clin Immunol 2020; 16:1075-1092. [PMID: 33103934 DOI: 10.1080/1744666x.2021.1840354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current evidence supports a vital role of the microbiota on health outcomes, with alterations in an otherwise healthy balance linked to chronic medical conditions like celiac disease (CD). Recent advances in microbiome analysis allow for unparalleled profiling of the microbes and metabolites. With the growing volume of data available, trends are emerging that support a role for the gut microbiota in CD pathogenesis. AREAS COVERED In this article, the authors review the relationship between factors such as genes and antibiotic exposure on CD onset and the intestinal microbiota. The authors also review other microbiota within the human body (like the oropharynx) that may play a role in CD pathogenesis. Finally, the authors discuss implications for disease modification and the ultimate goal of prevention. The authors reviewed literature from PubMed, EMBASE, and Web of Science. EXPERT OPINION CD serves as a unique opportunity to explore the role of the intestinal microbiota on the development of chronic autoimmune disease. While research to date provides a solid foundation, most studies have been case-control and thus do not have capacity to explore the mechanistic role of the microbiota in CD onset. Further longitudinal studies and integrated multi-omics are necessary for investigating CD pathogenesis.
Collapse
Affiliation(s)
- Katherine L Olshan
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS) , Salerno, Italy
| |
Collapse
|
34
|
Wu WJH, Zegarra-Ruiz DF, Diehl GE. Intestinal Microbes in Autoimmune and Inflammatory Disease. Front Immunol 2020; 11:597966. [PMID: 33424846 PMCID: PMC7786055 DOI: 10.3389/fimmu.2020.597966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses resulting in excessive and uncontrolled tissue inflammation. Multiple factors including genetic variation, environmental stimuli, and infection are all thought to contribute to continued inflammation and pathology. Current evidence supports the microbiota as one such factor with emerging data linking commensal organisms to the onset and progression of disease. In this review, we will discuss links between the microbiota and specific diseases as well as highlight common pathways that link intestinal microbes with multiple autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Wan-Jung H. Wu
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Daniel F. Zegarra-Ruiz
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
35
|
Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms 2020; 8:E1907. [PMID: 33266303 PMCID: PMC7760123 DOI: 10.3390/microorganisms8121907] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are known for their biotechnological potential. Moreover, LAB are distinguished by amazing criteria: Adjusting the intestinal environment, inhibiting pathogenic microbes in the gastrointestinal tract, ability to reduce pathogen adhesion activity, improving the balance of the microbiota inside the intestine, capabilities of regulating intestinal mucosal immunity, and maintaining intestinal barrier function. The escalating number of research and studies about beneficial microorganisms and their impact on promoting health has attracted a big interest in the last decades. Since antiquity, various based fermented products of different kinds have been utilized as potential probiotic products. Nevertheless, the current upsurge in consumers' interest in bioalternatives has opened new horizons for the probiotic field in terms of research and development. The present review aims at shedding light on the world of probiotics, a continuous story of astonishing success in various fields, in particular, the biomedical sector and pharmaceutical industry, as well as to display the importance of probiotics and their therapeutic potential in purpose to compete for sturdy pathogens and to struggle against diseases and acute infections. Shadows and future trends of probiotics use are also discussed.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université Tunis El-Manar, Tunis 1006, Tunisia
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Université de Rouen Normandie, Normandie Université, F-27000 Evreux, France; (M.G.J.F.); (N.C.)
| |
Collapse
|
36
|
Ma Y, Hu C, Yan W, Jiang H, Liu G. Lactobacillus pentosus Increases the Abundance of Akkermansia and Affects the Serum Metabolome to Alleviate DSS-Induced Colitis in a Murine Model. Front Cell Dev Biol 2020; 8:591408. [PMID: 33195257 PMCID: PMC7609924 DOI: 10.3389/fcell.2020.591408] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Lactobacillus pentosus has the beneficial function of regulating the host’s immune system and plays an indispensable role in intestinal health. The purpose of this study was to investigate the specific mechanism by which L. pentosus relieves dextran sulfate sodium (DSS) induced ulcerative colon inflammation. We randomly divided 24 mice into three groups, which were administered either a basic diet, drinking water with 2.5% DSS (DSS), or drinking water with 2.5% DSS and intragastric administration of L. pentosus (DSS + L. pentosus). DSS was added to the drinking water on days 8 to 12, and L. pentosus was administered on days 12 to 19. Serum was collected for metabolomic analysis, colon length and weight were measured, and colon contents were collected to detect microbial structural composition. Compared with the DSS group, the DSS + L. pentosus group had significantly higher levels of indolepyruvate and pantothenic acid in the serum and significantly lower levels of 3,4-dimethyl-5-pentyl-2-furannonanoic acid and 5-oxo-6-trans-leukotriene B4. Moreover, compared with the other two groups, the DSS + L. pentosus group had a significantly greater abundance of Akkermansia. The abundance of Akkermansia was positively correlated with indolepyruvate and pantothenic acid levels. Therefore, L. pentosus can interact with Akkermansia to increase its abundance in the intestinal tract. This results in the production of metabolites that are beneficial for the regulation of intestinal immunity, thereby alleviating DSS-induced ulcerative colon inflammation.
Collapse
Affiliation(s)
- Yong Ma
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chao Hu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenxin Yan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
37
|
Pabón-Carrasco M, Ramirez-Baena L, Vilar-Palomo S, Castro-Méndez A, Martos-García R, Rodríguez-Gallego I. Probiotics as a Coadjuvant Factor in Active or Quiescent Inflammatory Bowel Disease of Adults-A Meta-Analytical Study. Nutrients 2020; 12:nu12092628. [PMID: 32872272 PMCID: PMC7551006 DOI: 10.3390/nu12092628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Inflammatory bowel diseases are pathologies of unknown etiology and auto-immune pathogenia. The use of probiotics is studied in order to increase the arsenal of treatments. The aim was to assess the efficacy of the probiotics in these diseases in the active or quiescent phases; (2) Methods: A systematic review with meta-analysis was performed by an exhaustive bibliographic search in Medline, Cinahl, Embase, Scopus, Web of Science, and Cochrane Library. The inclusion criteria were studies of more than 10 years, English/Spanish, clinical trials, and involving human beings. Relative risk was used to compare efficacy, which was meta-analyzed using a fixed effects model. Heterogeneity was evaluated with the Higgins I2 test; (3) Results: Nineteen studies were included in the systematic review and 17 in the meta-analysis, with a total of 1537 patients (nexperimental group = 762; nplacebo group = 775). There are significant remission differences in ulcerative colitis (relative risk (RR) = 0.81; 95% CI = 0.72–0.91; I2 = 32%; p = 0.16). However, no significant differences were found in the use of probiotics for the prevention of ulcerative colitis, and for the remission of Crohn’s disease; (4) Conclusions: There are data showing an additional beneficial effect of probiotics on active ulcerative colitis. More and better studies are needed which assess its possible therapeutic efficacy for quiescent ulcerative colitis and for Crohn’s disease.
Collapse
Affiliation(s)
- Manuel Pabón-Carrasco
- Spanish Red Cross Nursing School, Universidad de Sevilla, Avda de la Cruz Roja nº 1 Dpdo, 41009 Seville, Spain; (M.P.-C.); (R.M.-G.); (I.R.-G.)
| | - Lucia Ramirez-Baena
- Spanish Red Cross Nursing School, Universidad de Sevilla, Avda de la Cruz Roja nº 1 Dpdo, 41009 Seville, Spain; (M.P.-C.); (R.M.-G.); (I.R.-G.)
- Correspondence: ; Tel.: +34-954-350997; Fax: +34-954-350997
| | - Samuel Vilar-Palomo
- Hospital Virgen del Rocío, Unidad de Anestesiología y Reanimación, Servicio Andaluz de Salud, Av. Manuel Siurot, SN., 41013 Seville, Spain;
| | - Aurora Castro-Méndez
- Faculty of Nursing, Physiotherapy and Podology, Universidad de Sevilla, C/Avenzoar 6, 41009 Seville, Spain;
| | - Raúl Martos-García
- Spanish Red Cross Nursing School, Universidad de Sevilla, Avda de la Cruz Roja nº 1 Dpdo, 41009 Seville, Spain; (M.P.-C.); (R.M.-G.); (I.R.-G.)
| | - Isabel Rodríguez-Gallego
- Spanish Red Cross Nursing School, Universidad de Sevilla, Avda de la Cruz Roja nº 1 Dpdo, 41009 Seville, Spain; (M.P.-C.); (R.M.-G.); (I.R.-G.)
| |
Collapse
|
38
|
The effect of Faecalibacterium prausnitzii and its extracellular vesicles on the permeability of intestinal epithelial cells and expression of PPARs and ANGPTL4 in the Caco-2 cell culture model. J Diabetes Metab Disord 2020; 19:1061-1069. [PMID: 33520823 DOI: 10.1007/s40200-020-00605-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
Background and Objectives Gut microbiota such as Faecalibacterium prausnitzii play a major role in the regulation of gut barrier, inflammation and metabolic functions. Microbiota-derived extracellular vehicles (EVs) have been recently introduced as functional units mediating the eukaryotic and prokaryotic cell-microbiota interactions. In this paper, the effect of F. prausnitzii and its EVs on mRNA expression levels of tight junction genes (ZO1 and OCLN) as well as PPARs and ANGPTL4 genes in the human epithelial colorectal adenocarcinoma (Caco-2) cell line was evaluated. Methods F. prausnitzii was cultured on the Brain Heart Infusion (BHI) broth medium under anaerobic conditions, and its EVs were extracted by ultracentrifugation. This bacterium and its EVs were treated on the Caco-2 cells. After 24 h, the expression of the genes encoding TJ proteins such as ZO1 and OCLN, PPARs and ANGPTL4 was evaluated by quantitative real-time PCR. Results Unlike F. prausnitzii, its EVs significantly increased the expression of ZO1 and OCLN genes, and PPARα, PPARγ and PPARβ/δ genes (except at a concentration of 100 µg/ml) as well as ANGPTL4 gene. Conclusions The results of this study demonstrated that F. prausnitzii-derived EVs increased the intestinal barrier permeability via TJs (ZO1 and OCLN) as well as PPAR-α, PPAR-γ and PPAR β/δ genes and their targeted gene (ANGPTL4) in the Caco-2 cell line. Accordingly, it is suggested that F. prausnitzii-derived EVs can be considered as a new bacterial postbiotic to cure dysbiosis-associated diseases including obesity and its related metabolic dysfunctions, according to the leaky gut hypothesis.
Collapse
|
39
|
Wu X, Pan S, Luo W, Shen Z, Meng X, Xiao M, Tan B, Nie K, Tong T, Wang X. Roseburia intestinalis‑derived flagellin ameliorates colitis by targeting miR‑223‑3p‑mediated activation of NLRP3 inflammasome and pyroptosis. Mol Med Rep 2020; 22:2695-2704. [PMID: 32700754 PMCID: PMC7453595 DOI: 10.3892/mmr.2020.11351] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD), which is a chronic, relapsing condition associated with the disorder of gut microbial communities. A previous study reported that levels of Roseburia intestinalis (R.I), a butyrate‑producing bacterium, are significantly decreased in patients with IBD and exert an anti‑inflammatory function in dextran sulfate sodium (DSS)‑induced colitis. However, the role of R.I flagellin in UC and its underlying molecular mechanism are not yet fully understood. Therefore, a DSS‑induced colitis model in C57Bl/6 mice and the LPS/ATP‑induced THP‑1 macrophages were treated with R.I flagellin, which were used to investigate the anti‑inflammatory effects of R.I flagellin. The results demonstrated that R.I flagellin decreased colitis‑associated disease activity index, colonic shortening and the pathological damage of the colon tissues in murine colitis models. Furthermore, R.I flagellin decreased the serum levels of proinflammatory cytokines and inhibited activation of the nucleotide‑binding oligomerization segment‑like receptor family 3 (NLRP3) inflammasome in murine colitis. R.I flagellin was also demonstrated to decrease the Gasdermin D to yield the N‑terminal fragment membrane pore and inhibit inflammasome‑triggered pyroptosis. In vitro analysis indicated that microRNA (miR)‑223‑3p was involved in the regulation of R.I flagellin on NLRP3 inflammasome activation. Taken together, the results of the present study demonstrated that R.I flagellin inhibited activation of the NLRP3 inflammasome and pyroptosis via miR‑223‑3p/NLRP3 signaling in macrophages, suggesting that R.I flagellin may be used as a novel probiotic product for the treatment of UC.
Collapse
Affiliation(s)
- Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiyu Pan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiangrui Meng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Mengwei Xiao
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Bei Tan
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kai Nie
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ting Tong
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
40
|
Cheng FS, Pan D, Chang B, Jiang M, Sang LX. Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases. World J Clin Cases 2020; 8:1361-1384. [PMID: 32368530 PMCID: PMC7190945 DOI: 10.12998/wjcc.v8.i8.1361] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Probiotics are known as “live microorganisms” and have been proven to have a health effect on hosts at the proper dose. Recently, a kind of probiotic mixture including eight live bacterial strains, VSL#3, has attracted considerable attention for its combined effect. VSL#3 is the only probiotic considered as a kind of medical food; it mainly participates in the regulation of the intestinal barrier function, including improving tight junction protein function, balancing intestinal microbial composition, regulating immune-related cytokine expression and so on. The objective of this review is to discuss the treatment action and mechanism for the administration of VSL#3 in chronic diseases of animals and humans (including children). We found that VSL#3 has a therapeutic or preventive effect in various systemic diseases per a large number of studies, including digestive systemic diseases (gastrointestinal diseases and hepatic diseases), obesity and diabetes, allergic diseases, nervous systemic diseases, atherosclerosis, bone diseases, and female reproductive systemic diseases.
Collapse
Affiliation(s)
- Fang-Shu Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Class 85 of 101k, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
41
|
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16:605-616. [PMID: 31296969 DOI: 10.1038/s41575-019-0173-3] [Citation(s) in RCA: 977] [Impact Index Per Article: 162.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
Abstract
Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).
Collapse
Affiliation(s)
- Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Gregor Reid
- Lawson Research Institute, and Western University, London, Ontario, Canada
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
42
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Beneficial effect of a mixture of vitamin-producing and immune-modulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Appl Microbiol Biotechnol 2019; 103:8937-8945. [PMID: 31520133 DOI: 10.1007/s00253-019-10133-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are chronic and relapsing-remitting disorders that affect the gastrointestinal tract. Previously, the administration of folate and riboflavin-producing lactic acid bacteria (LAB) or an immune-modulating strain showed beneficial effects as they were able to reduce the acute inflammation in mouse models. The aim of this work was to evaluate a mixture of vitamin-producing and immune-modulating LAB administering together with an anti-inflammatory drug during the remission period of a mouse model of recurrent colitis. BALB/c mice were intrarectally instilled with trinitrobenzene sulfonic acid (TNBS) and those who recovered from this acute challenge were given the LAB mixture, mesalazine, or the combination of both (mesalazine + LAB) during 21 days, followed by a second challenge with TNBS. Control mice instilled with ethanol (vehicle of TNBS) and receiving the different treatments were also evaluated in order to study the effect of chronic anti-inflammatory therapy. The combination of mesalazine and LAB mixture was the most effective to decrease the intestinal damage at macroscopic and histological levels and to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in intestinal fluids. In animals instilled with ethanol, mesalazine produced a loss of body weight and intestinal damages with increased IL-6. These side effects were prevented by the co-administration of mesalazine and the LAB mixture. The LAB blend did not affect the primary anti-inflammatory treatment, was able to improve it, and also prevented the side effects of this therapy.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Alejandra de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
43
|
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8:pathogens8030126. [PMID: 31412603 PMCID: PMC6789542 DOI: 10.3390/pathogens8030126] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Ashiq Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China.
| |
Collapse
|
44
|
Khoder G, Al-Yassir F, Al Menhali A, Saseedharan P, Sugathan S, Tomasetto C, Karam SM. Probiotics Upregulate Trefoil Factors and Downregulate Pepsinogen in the Mouse Stomach. Int J Mol Sci 2019; 20:ijms20163901. [PMID: 31405107 PMCID: PMC6719917 DOI: 10.3390/ijms20163901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Probiotics are used in the management of some gastrointestinal diseases. However, little is known about their effects on normal gastric epithelial biology. The aim of this study was to explore how the probiotic mixture VSL#3 affects gastric cell lineages in mice with a special focus on protective and aggressive factors. Weight-matching littermate male mice (n = 14) were divided into treated and control pairs. The treated mice received VSL#3 (5 mg/day/mouse) by gastric gavage for 10 days. Control mice received only the vehicle. Food consumption and bodyweight were monitored. All mice were injected intraperitoneally with bromodeoxyuridine (120 mg/Kg bodyweight) two hours before sacrificed to label S-phase cells. Stomach tissues were processed for lectin- and immunohistochemical examination. ImageJ software was used to quantify immunolabeled gastric epithelial cells. Real-time quantitative polymerase chain reaction was used to provide relative changes in expression of gastric cell lineages specific genes. Results revealed that treated mice acquired (i) increased production of mucus, trefoil factor (TFF) 1 and TFF2, (ii) decreased production of pepsinogen, and (iii) increased ghrelin-secreting cells. No significant changes were observed in bodyweight, food consumption, cell proliferation, or parietal cells. Therefore, VSL#3 administration amplifies specific cell types specialized in the protection of the gastric epithelium.
Collapse
Affiliation(s)
- Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh Campus PO Box 11-50-20 Riad El Solh, Beirut 11072809, Lebanon
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, F-67404 Illkirch, France
| | - Sherif M Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE.
| |
Collapse
|
45
|
Probiotic Mixture VSL#3 Alleviates Dextran Sulfate Sodium-induced Colitis in Mice by Downregulating T Follicular Helper Cells. Curr Med Sci 2019; 39:371-378. [DOI: 10.1007/s11596-019-2045-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Indexed: 01/01/2023]
|
46
|
Meng X, Zhou HY, Shen HH, Lufumpa E, Li XM, Guo B, Li BZ. Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmun Rev 2019; 18:455-475. [PMID: 30844549 DOI: 10.1016/j.autrev.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.
Collapse
Affiliation(s)
- Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Anhui, Hefei, China
| | - Eniya Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiao-Mei Li
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Biao Guo
- The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
47
|
Jeong DY, Kim S, Son MJ, Son CY, Kim JY, Kronbichler A, Lee KH, Shin JI. Induction and maintenance treatment of inflammatory bowel disease: A comprehensive review. Autoimmun Rev 2019; 18:439-454. [PMID: 30844556 DOI: 10.1016/j.autrev.2019.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are the two major types of inflammatory bowel disease (IBD). We conducted a comprehensive review of meta-analyses to summarize the reported effectiveness of different drugs for IBD. We performed a literature search and a total of 110 meta-analyses from 66 articles were summarized and re-analyzed (62 in UC and 48 in CD). In summary, 5-ASA was more effective than placebo in both induction and maintenance treatment of UC, but there were conflicting results on the effect of 5-ASA on the induction treatment or relapse of CD. The use of immunomodulatory agents in the induction or maintenance phase of UC and CD using immunomodulators appeared to be more effective than placebo, but the results were impacted by small number of patients, discordant results with the largest study and risk of biases. Anti-TNF-α and anti-integrin therapeutic antibodies in both, induction and maintenance, showed a better efficacy than placebo in a large proportion of patients analyzed. Other agents, such as probiotics, antibiotics, omega-3, were shown to be more effective than placebo, but the same issues arose as stated above with the use of immunomodulatory agents. In conclusion, we performed a comprehensive review of meta-analysis on comparative efficacy of pharmacotherapy used in the management of IBD. Our review will augment our understanding of the treatment of UC and CD by providing a guideline for interpreting the statistically significant findings and discusses the optimal choice for IBD treatment.
Collapse
Affiliation(s)
- Dong Yeon Jeong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea; Pediatric Gastroenterology, Hepatology and Nutrition, Yonsei University College of Medicine, Severance Pediatric IBD Research Group, Severance Children's Hospital, Seoul 03722, Republic of Korea
| | - Min Ji Son
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Jong Yeob Kim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Astó E, Méndez I, Audivert S, Farran-Codina A, Espadaler J. The Efficacy of Probiotics, Prebiotic Inulin-Type Fructans, and Synbiotics in Human Ulcerative Colitis: A Systematic Review and Meta-Analysis. Nutrients 2019; 11:nu11020293. [PMID: 30704039 PMCID: PMC6412539 DOI: 10.3390/nu11020293] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Studies of probiotics, fructan-type prebiotics, and synbiotics in patients with ulcerative colitis (UC) show significant heterogeneity in methodology and results. Here, we study the efficacy of such interventions and the reasons for the heterogeneity of their results. Eligible random controlled trials were collected from the PUBMED and SCOPUS databases. A total of 18 placebo-controlled and active treatment-controlled (i.e., mesalazine) studies were selected with a Jadad score ≥ 3, including 1491 patients with UC. Data for prebiotics and synbiotics were sparse and consequently these studies were excluded from the meta-analysis. The UC remission efficacy of probiotics was measured in terms of relative risk (RR) and odds ratio (OR). Significant effects were observed in patients with active UC whenever probiotics containing bifidobacteria were used, or when adopting the US Food and Drug Administration (FDA)-recommended scales (UC Disease Activity Index and Disease Activity Index). By the FDA recommended scales, the RR was 1.55 (CI95%: 1.13–2.15, p-value = 0.007, I2 = 29%); for bifidobacteria-containing probiotics, the RR was 1.73 (CI95%: 1.23–2.43, p-value = 0.002, I2 = 35%). No significant effects were observed on the maintenance of remission for placebo-controlled or mesalazine-controlled studies. We conclude that a validated scale is necessary to determine the state of patients with UC. However, probiotics containing bifidobacteria are promising for the treatment of active UC.
Collapse
Affiliation(s)
- Erola Astó
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Iago Méndez
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Sergi Audivert
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, XaRTA ⁻ INSA, Faculty of Pharmacy, University of Barcelona, Campus de l'Alimentació de Torribera, Av. Prat de la Riba, 171, Santa Coloma de Gramenet, E-08921 Barcelona, Spain.
| | - Jordi Espadaler
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| |
Collapse
|
49
|
Interactions between Host PPARs and Gut Microbiota in Health and Disease. Int J Mol Sci 2019; 20:ijms20020387. [PMID: 30658440 PMCID: PMC6359605 DOI: 10.3390/ijms20020387] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract is inhabited by many types of microbiota, including bacteria, viruses, and fungi. Dysregulations of their microenvironment are associated with various health problems, not only limited to gastrointestinal disorders, such as inflammatory bowel disease, but to impacts beyond the intestine. For example, intestinal microbiota can affect the liver in non-alcoholic fatty liver disease, visceral adipose tissue during adipogenesis, and the heart in atherosclerosis. The factors contributing to these pathogeneses involve the gut microbiota and the effector organs of the host, and everything in between. The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are pivotal for the modulation of many of the pathogeneses mentioned above. It is, therefore, conceivable that, in the process of host-microbiota interactions, PPARs play important roles. In this review, we focus on the interactions between host PPARs in different organs and gut microbiota and their impacts on maintaining health and various diseases.
Collapse
|
50
|
Basso PJ, Câmara NOS, Sales-Campos H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease - An Overview of Human Studies. Front Pharmacol 2019; 9:1571. [PMID: 30687107 PMCID: PMC6335320 DOI: 10.3389/fphar.2018.01571] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of multifactorial and inflammatory infirmities comprised of two main entities: Ulcerative colitis (UC) and Crohn’s disease (CD). Classic strategies to treat IBD are focused on decreasing inflammation besides inducing and extending disease remission. However, these approaches have several limitations such as low responsiveness, excessive immunosuppression, and refractoriness. Despite the multifactorial causality of IBD, immune disturbances and intestinal dysbiosis have been suggested as the central players in disease pathogenesis. Hence, therapies aiming at modulating intestinal microbial composition may represent a promising strategy in IBD control. Fecal microbiota transplantation (FMT) and probiotics have been explored as promising candidates to reestablish microbial balance in several immune-mediated diseases such as IBD. These microbial-based therapies have demonstrated the ability to reduce both the dysbiotic environment and production of inflammatory mediators, thus inducing remission, especially in UC. Despite these promising results, there is still no consensus on the relevance of such treatments in IBD as a potential clinical strategy. Thus, this review aims to critically review and describe the use of FMT and probiotics to treat patients with IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|