1
|
Guo L, Du Y, Li H, He T, Yao L, Yang G, Yang X. Metabolites-mediated posttranslational modifications in cardiac metabolic remodeling: Implications for disease pathology and therapeutic potential. Metabolism 2025; 165:156144. [PMID: 39864796 DOI: 10.1016/j.metabol.2025.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The nonenergy - producing functions of metabolism are attracting increasing attention, as metabolic changes are involved in discrete pathways modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Yuting Du
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Heng Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Li Yao
- Department of Pathology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi' an 710018, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| |
Collapse
|
2
|
Xu X, Zhu T, Jing C, Jiang M, Fu Y, Xie F, Meng Q, Li J. Hepatic encephalopathy treatment after transjugular intrahepatic portosystemic shunt: a new perspective on the gut microbiota. Front Med (Lausanne) 2025; 12:1423780. [PMID: 40124683 PMCID: PMC11926149 DOI: 10.3389/fmed.2025.1423780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) placement alleviates portal hypertension symptoms. Hepatic encephalopathy (HE) is a common complication of TIPS, impacting patient quality of life and the healthcare burden. Post-TIPS HE is associated with portosystemic shunting, elevated blood ammonia levels, and inflammation. Increasing attention has been given to the liver and intestinal circulation in recent years. An imbalance in intestinal microecology plays a role in the occurrence of HE and may be a new target for treatment. This review discusses the causes, diagnosis, and treatment strategies for post-TIPS HE and focuses on exploring treatment strategies and their relationships with the gut microbiota, suggesting an innovative approach to address this complication.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhu
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Changyou Jing
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Minjie Jiang
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yunlai Fu
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qinghua Meng
- Department of Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jianjun Li
- Interventional Therapy Center for Oncology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Zhou J, Zhang H, Huo P, Shen H, Huang Q, Yang L, Liu A, Chen G, Tao F, Liu K, Zhang D. The association between circulating short-chain fatty acids and blood pressure in Chinese elderly population. Sci Rep 2024; 14:27062. [PMID: 39511348 PMCID: PMC11544228 DOI: 10.1038/s41598-024-78463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The gut microbiome primarily generates short-chain fatty acids (SCFAs) by fermenting dietary fibers. Though previous studies have linked SCFAs to blood pressure, there remains a lack of research on the relationship between SCFAs levels in the serum of elderly individuals and blood pressure. Based on this, we investigated the associations of serum SCFAs with blood pressure in Chinese older adults in a cross-sectional study. In this report, we recruited 1013 older adults over 60 years of age from June to September 2016 in Lu 'an City, China. Using Ultra High Performance Liquid Chromatography-Quadrupole-Exactive-Orbitrap-Mass Spectrometry (UHPLC-QE-Orbitrap MS), we measured the level of various SCFAs, including acetic acid (AA), propanoic acid (PA), butyric acid (BA), isobutyric acid (iso-BA), valeric acid (VA), isovaleric acid (iso-VA), and caproic acid (CA), in serum samples collected from Chinese elderly adults. The study recruited 1013 older adults in total. Multiple logistic regression analysis shows that AA (OR = 0.696, 95%CI: 0.501-0.966) and VA (OR = 0.713, 95%CI: 0.516-0.985) are negatively associated with hypertension. Linear regression analysis shows a negative correlation between AA (β = -3.89, 95% CI: -7.12 - -0.66) and the systolic blood pressure (SBP) levels, and a significant negative association between iso-VA (β = -2.11, 95% CI: -3.94 - -0.29) and diastolic blood pressure (DBP) levels. Whether in unadjusted or adjusted linear regression models, we all observe significant positive associations between CA and blood pressure levels. In the Bayesian kernel-machine regression (BKMR) models, the trends between the mixture of SCFAs and hypertension, SBP are inverse, but not significant; we also observe a significant negative correlation between AA and SBP, and a significant negative association between iso-VA and DBP levels, while CA is significantly positively correlated with SBP and DBP. Collectively, our results advocate for considering SCFA as a potential intervention to lower blood pressure, and especially AA may be a possible target for research. This may provide new perspectives for understanding the role of SCFAs in hypertension.
Collapse
Affiliation(s)
- Jiamou Zhou
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Heqiao Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Pengcheng Huo
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Huiyan Shen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Huang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Linsheng Yang
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Annuo Liu
- School of Nursing, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Guimei Chen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Fangbiao Tao
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Kaiyong Liu
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Dongmei Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Schnabl B. Gut Bacteria in Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:663-679. [PMID: 39362714 PMCID: PMC11450261 DOI: 10.1016/j.cld.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) poses a significant global public health challenge, with high patient mortality rates and economic burden. The gut microbiome plays an important role in the onset and progression of alcohol-associated liver disease. Excessive alcohol consumption disrupts the intestinal barrier, facilitating the entry of harmful microbes and their products into the liver, exacerbating liver damage. Dysbiosis, marked by imbalance in gut bacteria, correlates with ALD severity. Promising microbiota-centered therapies include probiotics, phages, and fecal microbiota transplantation. Clinical trials demonstrate the potential of these interventions to improve liver function and patient outcomes, offering a new frontier in ALD treatment.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
7
|
Jain V, Dalby MJ, Alexander EC, Burford C, Acford-Palmer H, Serghiou IR, Teng NM, Kiu R, Gerasimidis K, Zafeiropoulou K, Logan M, Verma A, Davenport M, Hall LJ, Dhawan A. Association of gut microbiota and gut metabolites and adverse outcomes in biliary atresia: A longitudinal prospective study. Hepatol Commun 2024; 8:e0550. [PMID: 39761011 PMCID: PMC11495700 DOI: 10.1097/hc9.0000000000000550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The Kasai portoenterostomy (KPE) aims to re-establish bile flow in biliary atresia (BA); however, BA remains the commonest indication for liver transplantation in pediatrics. Gut microbiota-host interplay is increasingly associated with outcomes in chronic liver disease. This study characterized fecal microbiota and fatty acid metabolites in BA. METHODS Fecal samples were prospectively collected in newly diagnosed BA infants (n = 55) before and after KPE. Age-matched healthy control (n = 19) and cholestatic control (n = 21) fecal samples were collected. Fecal 16S rRNA gene amplicon sequencing for gut microbiota and gas chromatography for fecal fatty acids was performed. RESULTS Increased abundance of Enterococcus in pre-KPE BA and cholestatic control infants, compared to healthy infants, was demonstrated. At the early post-KPE time points, increased alpha diversity was revealed in BA versus healthy cohorts. A lower relative abundance of Bifidobacterium and increased Enterococcus, Clostridium, Fusobacterium, and Pseudomonas was seen in infants with BA. Fecal acetate was reduced, and fecal butyrate and propionate were elevated in early post-KPE BA infants. Higher post-KPE alpha diversity was associated with nonfavorable clinical outcomes (6-month jaundice and liver transplantation). A higher relative abundance of post-KPE Streptococcus and Fusobacterium and a lower relative abundance of Dorea, Blautia, and Oscillospira were associated with nonfavorable clinical outcomes. Blautia inversely correlated to liver disease severity, and Bifidobacterium inversely correlated to fibrosis biomarkers. Bifidobacterium abundance was significantly lower in infants experiencing cholangitis within 6 months after KPE. CONCLUSIONS Increased diversity, enrichment of pathogenic, and depletion of beneficial microbiota early post-KPE are all factors associated with nonfavorable BA outcomes. Manipulation of gut microbiota in the early postsurgical period could provide therapeutic potential.
Collapse
Affiliation(s)
- Vandana Jain
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Matthew J. Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Emma C. Alexander
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Charlotte Burford
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | | | | | - Nancy M.Y. Teng
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Konstantina Zafeiropoulou
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Michael Logan
- Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Anita Verma
- Department of Infection Science, Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King’s College Hospital, London, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre and Mowatlabs, King’s College Hospital, London, UK
| |
Collapse
|
8
|
Mandrekar P, Mandal A. Pathogenesis of Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:647-661. [PMID: 39362713 DOI: 10.1016/j.cld.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) is complex and multifactorial. Several intracellular, intrahepatic, and extrahepatic factors influence development of early fatty liver injury leading to inflammation and fibrosis. Alcohol metabolism, cellular stress, and gut-derived factors contribute to hepatocyte and immune cell injury leading to cytokine and chemokine production. The pathogenesis of alcohol-associated hepatitis (AH), an advanced form of acute-on-chronic liver failure due to excessive chronic intake in patients with underlying liver disease, is not well understood. While pathogenic mechanisms in early ALD are studied, the pathogenesis of AH requires further investigation to help design effective drugs for patients.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Abhishek Mandal
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
9
|
Xuan W, Wu X, Zheng L, Jia H, Zhang X, Zhang X, Cao B. Gut microbiota-derived acetic acids promoted sepsis-induced acute respiratory distress syndrome by delaying neutrophil apoptosis through FABP4. Cell Mol Life Sci 2024; 81:438. [PMID: 39453486 PMCID: PMC11511807 DOI: 10.1007/s00018-024-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1β, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.
Collapse
Affiliation(s)
- Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xu Wu
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.
| | - Longcheng Zheng
- People's Hospital of Henan University, Department of Respiratory and Critical Care Medicine, People's Hospital of Henan Province, Zhengzhou, 450003, China
| | - Huayun Jia
- Hunan Province Center for Disease Control and Prevention, Changsha, 410000, Hunan, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, Beijing, 100029, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
10
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
11
|
Hao Y, Hao Z, Zeng X, Lin Y. Gut microbiota and metabolites of cirrhotic portal hypertension: a novel target on the therapeutic regulation. J Gastroenterol 2024; 59:788-797. [PMID: 39028343 DOI: 10.1007/s00535-024-02134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The regulatory role of gut microbiota and gut-derived metabolites through the gut-liver axis in the development of cirrhotic portal hypertension (PH) has received increasing attention. METHODS The review summarized a series of investigations on effects of metabolites derived from microbiota and medicines targeting microbiome including rifaximin, VSL#3, statins, propranolol, FXR agonists as well as drugs derived from bile acids (BAs) on PH progression. RESULTS Patients with PH exhibit alterations in gut microbial richness and differential overall microbiota community, and several results clearly displayed the correlation of PH with enrichment of Veillonella dispar or depletion of Clostridiales, Peptostreptococcaceae, Alistipes putredinis, Roseburia faecis and Clostridium cluster IV. The gut-derived metabolites including hydrogen sulfide, tryptophan metabolites, butyric acid, secondary BAs and phenylacetic acid (PAA) participate in a range of pathophysiology process of PH through modulating intrahepatic vascular resistance and portal blood flow associated with the formation and progression of PH. Established and emerging drugs targeting on bacterial translocation and intestinal eubiosis are gradually identified as potential strategies for treatments of liver cirrhosis and PH by modulating intestinal inflammation, splanchnic arterial vasodilation and endothelial dysfunction. CONCLUSIONS Future explorations should further characterize the alteration of the fecal microbiome and metabolite profiles in PH and elucidate the regulatory mechanism of the intestinal microbiome, gut-derived metabolites and gut microbiota targeted pharmaceutical treatments involved in PH.
Collapse
Affiliation(s)
- Yarong Hao
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Zhiyuan Hao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
12
|
Efremova I, Maslennikov R, Kudryavtseva A, Avdeeva A, Krasnov G, Diatroptov M, Bakhitov V, Aliev S, Sedova N, Fedorova M, Poluektova E, Zolnikova O, Aliev N, Levshina A, Ivashkin V. Gut Microbiota and Cytokine Profile in Cirrhosis. J Clin Transl Hepatol 2024; 12:689-700. [PMID: 39130620 PMCID: PMC11310756 DOI: 10.14218/jcth.2024.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims Gut dysbiosis and abnormal cytokine profiles are common in cirrhosis. This study aimed to evaluate the correlations between them. Methods In the blood plasma of cirrhosis patients and controls, 27 cytokines were examined using a multiplex assay. The plasma levels of nitrites (stable metabolites of the endothelial dysfunction biomarker nitric oxide) and lipopolysaccharide (LPS) were examined. The fecal microbiota was assessed by 16S rRNA gene sequencing. Results Levels of IL-1b, IL-2, IL-6, IL-13, IP-10, IFN-g, TNF-a, LPS, and nitrites were higher in cirrhosis patients than in controls, while levels of IL-4, IL-7, and PDGF-BB were lower. The LPS level was directly correlated with the levels of IL-1b, IL1-Ra, IL-9, IL-17, PDGF-BB, IL-6, TNF-a, and nitrites. The nitrite level was significantly directly correlated with the levels of TNF-a, GM-CSF, IL-17, and IL-12, and inversely correlated with the IL-7 level. TNF-a levels were directly correlated with ascites severity and the abundance of Negativicutes, Enterobacteriaceae, Veillonellaceae, and Klebsiella, while inversely correlated with the abundance of Firmicutes, Clostridia, and Subdoligranulum. IFN-g levels were directly correlated with the abundance of Bacteroidaceae, Lactobacillaceae, Bacteroides, and Megasphaera, and inversely correlated with the abundance of Verrucomicrobiota, Akkermansiaceae, Coriobacteriaceae, Akkermansia, Collinsella, and Gemella. IL-1b levels were directly correlated with the abundance of Comamonadaceae and Enterobacteriaceae and inversely correlated with the abundance of Marinifilaceae and Dialister. IL-6 levels were directly correlated with the abundance of Enterobacteriaceae, hepatic encephalopathy, and ascites severity, and inversely correlated with the abundance of Peptostreptococcaceae, Streptococcaceae, and Streptococcus. Conclusions The abundance of harmful gut microbiota taxa and endotoxinemia directly correlates with the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Bakhitov
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
| | - Salekh Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Sedova
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- Department of Clinical Laboratory Diagnostics, FGBOU DPO “Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation”, Moscow, Russia
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study”, Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Nariman Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| |
Collapse
|
13
|
Thomsen M, Vemuri R, Huygens F, Clarke S, Vitetta L. An exploratory study of a multi-species probiotic formulation and markers of health in a real-world oncological cohort in the time of covid. Inflammopharmacology 2024; 32:2317-2335. [PMID: 38926298 PMCID: PMC11300539 DOI: 10.1007/s10787-024-01503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION The efficacy of cancer treatments has links to the intestinal microbiome. Mucositis is a dose-limiting intestinal pro-inflammatory side effect of cancer treatments, that increases the risk of diarrhoea, mucositis, and in severe cases, febrile neutropenia. METHODS The effect of cancer treatments on Quality of Life (QoL) was assessed using the FACT C questionnaire that included patient wellbeing and gut adverse symptoms (e.g. diarrhoea). Participants rated faecal samples via the Bristol Stool Chart. In addition, bacterial DNA was extracted from faecal samples, sequenced, and taxonomically examined. The incidence / severity of neutropenia was assessed with white blood cell and neutrophil counts. Circulating SCFAs and plasma lipopolysaccharide (LPS) endotoxin levels were recorded and correlated to intestinal mucositis. RESULTS Improvement in bowel function, with reduction in constipation and or diarrhoea or absence of significant disturbance to bowel function was recorded in 85% of the participants. One participant developed febrile neutropenia and two developed bowel toxicity during the study, that was unrelated to the test formulation. No significant changes in microbiota alpha- and beta-diversity at the phylum and species levels respectively from baseline to end of study treatment was observed. None of the participants had raised plasma-endotoxin levels from baseline to the first and subsequent treatment cycles for their cancers. Probiotics in this cohort were deemed safe and tolerable. Significant improvement in emotional QoL scores (p = 0.015) was reported with increased number of chemotherapy cycles. In a related observational study of exceptional responders to chemotherapy, participants were found to have had a high intake of fruits, vegetables, and fibre possibly indicative of a more balanced intestinal microbiota. CONCLUSION A multi-strain probiotic formulation was safe and tolerated in this chronically ill cohort that were undergoing oncological treatment. The probiotic formulation alleviated diarrhoea, constipation and maintained stool consistency/frequency during the multiple treatments with chemotherapy and radiotherapy. Intestinal dysbiosis that is characterised by decreased microbial diversity and increased pro-inflammatory species was not observed. Probiotic supplementation may have helped reduce dysbiosis during cancer treatments. These improvements may have been critical with the observation that emotional wellbeing was significantly improved from baseline. Hence albeit that the study had limitations, the probiotic intervention provided adjunctive treatment support to the patients. What is of scientifically plausible interest is that probiotics have a long association historically with human hosts and as such ratify their inclusion offering a significant adjunctive therapeutic potential. Future studies warrant larger sample sizes, control groups and should limit recruitment to a largely homogenous group of patients.
Collapse
Affiliation(s)
- Michael Thomsen
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Ravichandra Vemuri
- School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Flavia Huygens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen Clarke
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
14
|
An S, Cho EY, Hwang J, Yang H, Hwang J, Shin K, Jung S, Kim BT, Kim KN, Lee W. Methane gas in breath test is associated with non-alcoholic fatty liver disease. J Breath Res 2024; 18:046005. [PMID: 38968933 DOI: 10.1088/1752-7163/ad5faf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,P= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.
Collapse
Affiliation(s)
- Sanggwon An
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eui-Young Cho
- Department of Nursing Science, Paichai University, 155-40 Baejae-ro, Seo-gu, Daejeon 35345, Republic of Korea
| | - Junho Hwang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunseong Yang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyusik Shin
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Susie Jung
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Kyu-Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Wooyoung Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Parthasarathy G, Malhi H, Bajaj JS. Therapeutic manipulation of the microbiome in liver disease. Hepatology 2024:01515467-990000000-00932. [PMID: 38922826 DOI: 10.1097/hep.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome-dependent approach. To bring successful microbiome-targeted and microbiome-inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease-relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted-from prebiotics, probiotics, synbiotics, and antibiotics to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, cirrhosis, HE as well as liver cancer. Lastly, we discuss lessons learned from previous attempts at developing such therapies, the regulatory framework that needs to be navigated, and the challenges that remain.
Collapse
Affiliation(s)
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
16
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
17
|
Suslov AV, Panas A, Sinelnikov MY, Maslennikov RV, Trishina AS, Zharikova TS, Zharova NV, Kalinin DV, Pontes-Silva A, Zharikov YO. Applied physiology: gut microbiota and antimicrobial therapy. Eur J Appl Physiol 2024; 124:1631-1643. [PMID: 38683402 DOI: 10.1007/s00421-024-05496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The gut microbiota plays an important role in maintaining human health and in the pathogenesis of several diseases. Antibiotics are among the most commonly prescribed drugs and have a significant impact on the structure and function of the gut microbiota. The understanding that a healthy gut microbiota prevents the development of many diseases has also led to its consideration as a potential therapeutic target. At the same time, any factor that alters the gut microbiota becomes important in this approach. Exercise and antibacterial therapy have a direct effect on the microbiota. The review reflects the current state of publications on the mechanisms of intestinal bacterial involvement in the pathogenesis of cardiovascular, metabolic, and neurodegenerative diseases. The physiological mechanisms of the influence of physical activity on the composition of the gut microbiota are considered. The mechanisms of the common interface between exercise and antibacterial therapy will be considered using the example of several socially important diseases. The aim of the study is to show the physiological relationship between the effects of exercise and antibiotics on the gut microbiota.
Collapse
Affiliation(s)
- Andrey V Suslov
- Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow, 117418, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, 117997, Russia
| | - Alin Panas
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology, Radiotherapy and Reconstructive Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119048, Russia
| | - Roman V Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Aleksandra S Trishina
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Bld. 2, Moscow, 119991, Russia
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nataliya V Zharova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| | - Dmitry V Kalinin
- Pathology Department, A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, 115093, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), Universidade Federal de São Carlos (UFSCar), São Carlos (SP), Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 125009, Russia
| |
Collapse
|
18
|
Fristedt R, Ruppert V, Trower T, Cooney J, Landberg R. Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans. Talanta 2024; 272:125743. [PMID: 38382298 DOI: 10.1016/j.talanta.2024.125743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The role of gut microbiota in human health has been intensively studied and more recently shifted from emphasis on composition towards function. Function is partly mediated through formed metabolites. Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate as well as their branched analogues represent major products from gut fermentation of dietary fibre and proteins, respectively. Robust and high-throughput analysis of SCFAs in small volume blood samples have proven difficult. Major obstacles come from the ubiquitous presence of SCFAs that leads to contaminations and unstable analytical results because of the high volatility of these small molecules. Comprehensive and comparable data on the variation of SCFAs in blood samples from different blood matrices and mammal species including humans is lacking. Therefore, our aim was to develop and evaluate a stable and robust method for quantitation of 8 SCFAs and related fermentation products in small volume blood plasma samples and to investigate their variation in humans and different animal species. RESULTS Derivatization was a successful approach for measurement of SCFAs in biological samples but quenching of the derivatization reaction was crucial to obtain long-term stability of the derivatized analytes. In total 9 compounds (including succinic acid) were separated in 5 min. The method was linear over the range 0.6-3200 nM formic (FA), acetic (AA), 0.3-1600 nM propionic (PA), and 0.16-800 nM for butyric (BA)-, isobutyric (IBA)-, valeric (VA)-, isovaleric (IVA)-, succinic (SA) and caproic acid (CA). The precision ranged ≤12 % within days and ≤28 % between days (except for CA and VA) in three different plasma quality control (QC) samples (29 batches analyzed over 3 months). The extraction recovery was on average 94 % for the different SCFAs. Typical interquartile range (IQR) concentrations (μM) of SCFAs in human plasma samples were 168 μM (FA), 64 μM (AA), 2.2 μM (PA), 0.54 μM (BA), 0.66 μM (IBA), 0.18 μM (VA), 0.40 μM (IVA), and 0.34 μM (CA). In total, 55 samples per batch/day were successfully analyzed and in total 5380 human plasma samples measured over a 3-year timespan. SIGNIFICANCE The developed UHPLC-MS based method was suitable for measuring SCFAs in small blood volume samples and enabled robust quantitative data.
Collapse
Affiliation(s)
- Rikard Fristedt
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden.
| | - Vanessa Ruppert
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Rikard Landberg
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| |
Collapse
|
19
|
Zazueta A, Valenzuela-Pérez L, Ortiz-López N, Pinto-León A, Torres V, Guiñez D, Aliaga N, Merino P, Sandoval A, Covarrubias N, Pérez de Arce E, Cattaneo M, Urzúa A, Roblero JP, Poniachik J, Gotteland M, Magne F, Beltrán CJ. Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2024; 25:4387. [PMID: 38673972 PMCID: PMC11050088 DOI: 10.3390/ijms25084387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location. We aimed to identify microbial signatures in a group of Chilean MASLD patients. Forty subjects were recruited, including healthy controls (HCs), overweight/obese subjects (Ow/Ob), patients with MASLD without fibrosis (MASLD/F-), and MASLD with fibrosis (MASLD/F+). Both MASLD and fibrosis were detected through elastography and/or biopsy, and fecal microbiota were analyzed through deep sequencing. Despite no differences in α- and β-diversity among all groups, a higher abundance of Bilophila and a lower presence of Defluviitaleaceae, Lachnospiraceae ND3007, and Coprobacter was found in MASLD/F- and MASLD/F+, compared to HC. Ruminococcaceae UCG-013 and Sellimonas were more abundant in MASLD/F+ than in Ow/Ob; both significantly differed between MASLD/F- and MASLD/F+, compared to HC. Significant positive correlations were observed between liver stiffness and Bifidobacterium, Prevotella, Sarcina, and Acidaminococcus abundance. Our results show that MASLD is associated with changes in bacterial taxa that are known to be involved in bile acid metabolism and SCFA production, with some of them being more specifically linked to fibrosis.
Collapse
Affiliation(s)
- Alejandra Zazueta
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Lucía Valenzuela-Pérez
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Nicolás Ortiz-López
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Araceli Pinto-León
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Verónica Torres
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Danette Guiñez
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Nicolás Aliaga
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Pablo Merino
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Alexandra Sandoval
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Natalia Covarrubias
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Edith Pérez de Arce
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Máximo Cattaneo
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Alvaro Urzúa
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Caroll Jenny Beltrán
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| |
Collapse
|
20
|
Bahitham W, Alghamdi S, Omer I, Alsudais A, Hakeem I, Alghamdi A, Abualnaja R, Sanai FM, Rosado AS, Sergi CM. Double Trouble: How Microbiome Dysbiosis and Mitochondrial Dysfunction Drive Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Biomedicines 2024; 12:550. [PMID: 38540163 PMCID: PMC10967987 DOI: 10.3390/biomedicines12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are closely related liver conditions that have become more prevalent globally. This review examines the intricate interplay between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH. The combination of these two factors creates a synergistic situation referred to as "double trouble", which promotes the accumulation of lipids in the liver and the subsequent progression from simple steatosis (NAFLD) to inflammation (NASH). Microbiome dysbiosis, characterized by changes in the composition of gut microbes and increased intestinal permeability, contributes to the movement of bacterial products into the liver. It triggers metabolic disturbances and has anti-inflammatory effects. Understanding the complex relationship between microbiome dysbiosis and mitochondrial dysfunction in the development of NAFLD and NASH is crucial for advancing innovative therapeutic approaches that target these underlying mechanisms.
Collapse
Affiliation(s)
- Wesam Bahitham
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Siraj Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ibrahim Omer
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ali Alsudais
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Ilana Hakeem
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Arwa Alghamdi
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Reema Abualnaja
- King Abdullah International Medical Research Center-WR, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard for Health Affairs, Riyadh 11426, Saudi Arabia
| | - Faisal M Sanai
- Gastroenterology Unit, Department of Medicine, King Abdulaziz Medical City, Jeddah 21423, Saudi Arabia
| | - Alexandre S Rosado
- Bioscience, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Consolato M Sergi
- Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
21
|
Rodrigues SG, van der Merwe S, Krag A, Wiest R. Gut-liver axis: Pathophysiological concepts and medical perspective in chronic liver diseases. Semin Immunol 2024; 71:101859. [PMID: 38219459 DOI: 10.1016/j.smim.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Susana G Rodrigues
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Schalk van der Merwe
- Department of Gastroenterology and Hepatology, University hospital Gasthuisberg, University of Leuven, Belgium
| | - Aleksander Krag
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark, University of Southern Denmark, Odense, Denmark
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
22
|
Ichikawa M, Okada H, Nakamoto N, Taniki N, Chu PS, Kanai T. The gut-liver axis in hepatobiliary diseases. Inflamm Regen 2024; 44:2. [PMID: 38191517 PMCID: PMC10773109 DOI: 10.1186/s41232-023-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Recent advances in the analysis of intestinal bacteria have led to reports of variations in intestinal bacterial levels among hepatobiliary diseases. The mechanisms behind the changes in intestinal bacteria in various hepatobiliary diseases include the abnormal composition of intestinal bacteria, weakening of the intestinal barrier, and bacterial translocation outside the intestinal tract, along with their metabolites, but many aspects remain unresolved. Further research employing clinical studies and animal models is expected to clarify the direct relationship between intestinal bacteria and hepatobiliary diseases and to validate the utility of intestinal bacteria as a diagnostic biomarker and potential therapeutic target. This review summarizes the involvement of the microbiota in the pathogenesis of hepatobiliary diseases via the gut-liver axis.
Collapse
Affiliation(s)
- Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Haruka Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| |
Collapse
|
23
|
Xu X, Zhao Y, Wang X, Zhang R, Liu S, Sun R, Wang Z, Ge L, Sun Y, Zhang S, Ma H, Zhan J. Diagnostic and prognostic value of the gut microbiota and its metabolite butyrate in children with biliary atresia. Pediatr Surg Int 2023; 40:24. [PMID: 38127131 DOI: 10.1007/s00383-023-05606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To determine the prevalent microbiological profile of biliary atresia (BA) patients at the time of its occurrence by studying their intestinal flora. METHODS A total of 118 gut microbiota samples from three groups of 43 BA patients, 33 disease controls (DC) with other cholestatic diseases and 42 healthy controls (HC), were analyzed by deep mining of public data. Subsequently, a total of 23 fecal samples from three groups of clinically collected patients (11 BA, 6 DC and 6 HC) were sequenced for 16S rRNA gene amplification and analyzed for serum butyrate (BU) level by liquid chromatography. RESULTS Taxonomic analysis revealed significant differences in the composition of the intestinal microbiota between BA patients and controls, with a reduction in diversity and a higher abundance of Proteobacteria, Streptococcus and Lactobacillus in the BA group. Database and clinical data analyses concluded that Streptococcus/Bacteroides (AUC = 0.9035, 95% CI 0.8347-0.9722, P < 0.0001) or Streptococcus/Eggerthella (AUC = 0.8333, 95% CI 0.6340-1.000, P = 0.027) was the best microbiota to differentiate between BA and DC. Serum butyrate levels were low in the BA and DC groups and differed from the HC group (P = 0.01, P = 0.04). Butyrate levels in BA were negatively correlated with jaundice clearance and cholangitis, but not statistically significant. CONCLUSIONS Our study reveals changes in the composition of the gut microbiota in BA, especially the butyrate-producing microbiota, and suggests the potential for using gut microbiota as a noninvasive diagnostic benefit for BA. Low levels of serum butyrate in BA may indicate a poor prognosis.
Collapse
Affiliation(s)
- Xiaodan Xu
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Yilin Zhao
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Xueting Wang
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of Pediatric Surgery, Xinjiang Yili Friendship Hospital, Yili, 835000, People's Republic of China
| | - Ruifeng Zhang
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Shaowen Liu
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Rongjuan Sun
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Zhiru Wang
- Graduate College, Tianjin Medical University, Tianjin, 300070, People's Republic of China
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Liang Ge
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Yan Sun
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Shujian Zhang
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China
| | - Hui Ma
- Department of Clinical Laboratory, Tianjin Children's Hospital, Tianjin, 300134, People's Republic of China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, LongYan Road 238, Beichen District, Tianjin, 300134, People's Republic of China.
| |
Collapse
|
24
|
Yu G, Chen Q, Chen J, Liao X, Xie H, Zhao Y, Liu J, Sun J, Chen S. Gut microbiota alterations are associated with functional outcomes in patients of acute ischemic stroke with non-alcoholic fatty liver disease. Front Neurosci 2023; 17:1327499. [PMID: 38178834 PMCID: PMC10765497 DOI: 10.3389/fnins.2023.1327499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Patients with acute ischemic stroke (AIS) with non-alcoholic fatty liver disease (NAFLD) frequently have poor prognosis. Many evidences suggested that the changes in gut microbiota may play an important role in the occurrence and development of AIS patients with NAFLD. The purpose of this study was to explore microbial characteristics in patients of AIS with NAFLD, and the correlation between gut microbiota and functional outcomes. Methods The patients of AIS were recruited and divided into NAFLD group and non-NAFLD group. The stool samples and clinical information were collected. 16 s rRNA sequencing was used to analyze the characteristics of gut microbiota. The patients of AIS with NAFLD were followed-up to evaluate the functional outcomes of disease. The adverse outcomes were determined by modified Rankin scale (mRS) scores at 3 months after stroke. The diagnostic performance of microbial marker in predicting adverse outcomes was assessed by recipient operating characteristic (ROC) curves. Results Our results showed that the composition of gut microbiota between non-NAFLD group and NAFLD group were different. The characteristic bacteria in the patients of AIS with NAFLD was that the relative abundance of Dorea, Dialister, Intestinibacter and Flavonifractor were decreased, while the relative abundance of Enorma was increased. Moreover, the characteristic microbiota was correlated with many clinical parameters, such as mRS scores, mean arterial pressure and fasting blood glucose level. In addition, ROC models based on the characteristic microbiota or the combination of characteristic microbiota with independent risk factors could distinguish functional dependence patients and functional independence patients in AIS with NAFLD (area under curve is 0.765 and 0.882 respectively). Conclusion These findings revealed the microbial characteristics in patients of AIS with NAFLD, and further demonstrated the predictive capability of characteristic microbiota for adverse outcomes in patients of AIS with NAFLD.
Collapse
Affiliation(s)
- Gaojie Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qionglei Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaxin Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolan Liao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiting Zhao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Islam MM, Islam MM, Rahman MA, Ripon MAR, Hossain MS. Gut microbiota in obesity and related complications: Unveiling the complex interplay. Life Sci 2023; 334:122211. [PMID: 38084672 DOI: 10.1016/j.lfs.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In recent years, the obesity epidemic has escalated into a serious public health catastrophe that is only getting worse. However, research into the pathophysiological pathways behind the obesity development and the illnesses that it is associated with is ongoing. In the last decades, it is now clear that the gut microbiota plays a significant role in the genesis and progression of obesity and obesity-related illnesses, particularly changes in its metabolites and composition as obesity progresses. Here, we provide a summary of the processes by which variations in gut metabolite levels and the composition of gut microbiota affect obesity and associated disorders. The bacteria residing in the gut release several chemicals that influence the appetite control, metabolism, and other systems. Since it can either encourage or restrict the deposition of fat in several different ways, the gut microbiota's role in obesity is debatable. Additionally, we go over potential therapeutic approaches that could be utilized to alter gut microbiota composition and focus on the important metabolic pathways associated with obesity and metabolic disorders linked to obesity.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Mahmodul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Abdur Rahman Ripon
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| |
Collapse
|
26
|
Eepho OI, Bashir AAM, Oniyide AA, Aturamu A, Owolabi OV, Ajadi IO, Fafure AA, Ajadi MB, Areloegbe SE, Olaniyi KS. Modulation of GABA by sodium butyrate ameliorates hypothalamic inflammation in experimental model of PCOS. BMC Neurosci 2023; 24:62. [PMID: 37996797 PMCID: PMC10666373 DOI: 10.1186/s12868-023-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a known endocrine disorder that has affected many women of childbearing age, and is accompanied by various neurodegenerative conditions. Hence, this study investigates the impact of butyrate in reversing hypothalamic-related disorder, possibly through γ aminobutyric acid (GABA) in a rat model of PCOS. Eight-week-old female Wistar rats were allotted into four groups (n = 5), which include control, butyrate, letrozole, and letrozole + butyrate groups. PCOS was induced by administering 1 mg/kg of letrozole (oral gavage) for 21 days. After confirmation of PCOS, 200 mg/kg of butyrate (oral gavage) was administered for 6 weeks. Rats with PCOS were characterized by elevated levels of plasma insulin and testosterone. Increases in plasma and hypothalamic triglyceride levels, inflammatory biomarker (SDF-1), apoptotic marker (caspase-6), and decreased plasma GnRH were observed. Additionally, a decrease in hypothalamic GABA was revealed. Nevertheless, the administration of butyrate attenuated these alterations. The present study suggests that butyrate ameliorates hypothalamic inflammation in an experimental model of PCOS, a beneficial effect that is accompanied by enhanced GABA production.
Collapse
Affiliation(s)
- Oony-Iye Eepho
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Al-Amin M Bashir
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Adesola A Oniyide
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Ayodeji Aturamu
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Olutunmise V Owolabi
- Department of Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaac O Ajadi
- Department of Physiology, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Adedamola A Fafure
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Mary B Ajadi
- Department of Chemical Pathology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
27
|
Xu J, Kong X, Li J, Mao H, Zhu Y, Zhu X, Xu Y. Pediatric intensive care unit treatment alters the diversity and composition of the gut microbiota and antimicrobial resistance gene expression in critically ill children. Front Microbiol 2023; 14:1237993. [PMID: 38029168 PMCID: PMC10679412 DOI: 10.3389/fmicb.2023.1237993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Common critical illnesses are a growing economic burden on healthcare worldwide. However, therapies targeting the gut microbiota for critical illnesses have not been developed on a large scale. This study aimed to investigate the changes in the characteristics of the gut microbiota in critically ill children after short-term pediatric intensive care unit (PICU) treatments. Methods Anal swab samples were prospectively collected from March 2021 to March 2022 from children admitted to the PICU of Xinhua Hospital who received broad-spectrum antibiotics on days 1 (the D1 group) and 7 (the D7 group) of the PICU treatment. The structural and functional characteristics of the gut microbiota of critically ill children were explored using metagenomic next-generation sequencing (mNGS) technology, and a comparative analysis of samples from D1 and D7 was conducted. Results After 7 days of PICU admission, a significant decrease was noted in the richness of the gut microbiota in critically ill children, while the bacterial diversity and the community structure between groups remained stable to some extent. The relative abundance of Bacilli and Lactobacillales was significantly higher, and that of Campylobacter hominis was significantly lower in the D7 group than in the D1 group. The random forest model revealed that Prevotella coporis and Enterobacter cloacae were bacterial biomarkers between groups. LEfSe revealed that two Gene Ontology entries, GO:0071555 (cell wall organization) and GO:005508 (transmembrane transport), changed significantly after the short-term treatment in the PICU. In addition, 30 KEGG pathways were mainly related to the activity of enzymes and proteins during the processes of metabolism, DNA catabolism and repair, and substance transport. Finally, 31 antimicrobial resistance genes had significantly different levels between the D7 and D1 groups. The top 10 up-regulated genes were Erm(A), ErmX, LptD, eptB, SAT-4, tetO, adeJ, adeF, APH(3')-IIIa, and tetM. Conclusion The composition, gene function, and resistance genes of gut microbiota of critically ill children can change significantly after short PICU treatments. Our findings provide a substantial basis for a better understanding of the structure and function of gut microbiota and their role in critical illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaya Xu
- Department of Pediatric Intensive Care Medicine, Xinhua Hospital, Affiliated to the Medical School, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Martinez TM, Wachsmuth HR, Meyer RK, Weninger SN, Lane AI, Kangath A, Schiro G, Laubitz D, Stern JH, Duca FA. Differential effects of plant-based flours on metabolic homeostasis and the gut microbiota in high-fat fed rats. Nutr Metab (Lond) 2023; 20:44. [PMID: 37858106 PMCID: PMC10585811 DOI: 10.1186/s12986-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The gut microbiome is a salient contributor to the development of obesity, and diet is the greatest modifier of the gut microbiome, which highlights the need to better understand how specific diets alter the gut microbiota to impact metabolic disease. Increased dietary fiber intake shifts the gut microbiome and improves energy and glucose homeostasis. Dietary fibers are found in various plant-based flours which vary in fiber composition. However, the comparative efficacy of specific plant-based flours to improve energy homeostasis and the mechanism by which this occurs is not well characterized. METHODS In experiment 1, obese rats were fed a high fat diet (HFD) supplemented with four different plant-based flours for 12 weeks. Barley flour (BF), oat bran (OB), wheat bran (WB), and Hi-maize amylose (HMA) were incorporated into the HFD at 5% or 10% total fiber content and were compared to a HFD control. For experiment 2, lean, chow-fed rats were switched to HFD supplemented with 10% WB or BF to determine the preventative efficacy of flour supplementation. RESULTS In experiment 1, 10% BF and 10% WB reduced body weight and adiposity gain and increased cecal butyrate. Gut microbiota analysis of WB and BF treated rats revealed increases in relative abundance of SCFA-producing bacteria. 10% WB and BF were also efficacious in preventing HFD-induced obesity; 10% WB and BF decreased body weight and adiposity, improved glucose tolerance, and reduced inflammatory markers and lipogenic enzyme expression in liver and adipose tissue. These effects were accompanied by alterations in the gut microbiota including increased relative abundance of Lactobacillus and LachnospiraceaeUCG001, along with increased portal taurodeoxycholic acid (TDCA) in 10% WB and BF rats compared to HFD rats. CONCLUSIONS Therapeutic and preventative supplementation with 10%, but not 5%, WB or BF improves metabolic homeostasis, which is possibly due to gut microbiome-induced alterations. Specifically, these effects are proposed to be due to increased concentrations of intestinal butyrate and circulating TDCA.
Collapse
Affiliation(s)
- Taylor M Martinez
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Hallie R Wachsmuth
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Rachel K Meyer
- School of Nutritional Science and Wellness, University of Arizona, Tucson, AZ, USA
| | - Savanna N Weninger
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Adelina I Lane
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA
| | - Gabriele Schiro
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Daniel Laubitz
- The PANDA Core for Genomics and Microbiome Research, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Jennifer H Stern
- Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, ACBS Building, 1117 E Lowell St., Tucson, AZ, 85711, USA.
- BIO 5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
29
|
Chen X, Zhang H, Ren S, Ding Y, Remex NS, Bhuiyan MS, Qu J, Tang X. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases. Chin Med J (Engl) 2023; 136:2269-2284. [PMID: 37442759 PMCID: PMC10538883 DOI: 10.1097/cm9.0000000000002206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases, including heart failure, coronary artery disease, atherosclerosis, aneurysm, thrombosis, and hypertension, are a great economic burden and threat to human health and are the major cause of death worldwide. Recently, researchers have begun to appreciate the role of microbial ecosystems within the human body in contributing to metabolic and cardiovascular disorders. Accumulating evidence has demonstrated that the gut microbiota is closely associated with the occurrence and development of cardiovascular diseases. The gut microbiota functions as an endocrine organ that secretes bioactive metabolites that participate in the maintenance of cardiovascular homeostasis, and their dysfunction can directly influence the progression of cardiovascular disease. This review summarizes the current literature demonstrating the role of the gut microbiota in the development of cardiovascular diseases. We also highlight the mechanism by which well-documented gut microbiota-derived metabolites, especially trimethylamine N-oxide, short-chain fatty acids, and phenylacetylglutamine, promote or inhibit the pathogenesis of cardiovascular diseases. We also discuss the therapeutic potential of altering the gut microbiota and microbiota-derived metabolites to improve or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sichong Ren
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yangnan Ding
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Jiahua Qu
- Department of Pathology, University of California, San Francisco, CA 94117, USA
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
30
|
Purnomo HD, Kusuma RA, Sianturi E, Haroen RF, Solichin MR, Nissa C, Pramono A, Mahati E, Noer ER. The Effects of Hepatogomax Enteral Formula on Systemic Inflammation, Caecum Short-Chain Fatty Acid Levels, and Liver Histopathology in Thioacetamide-Induced Rats. J Nutr Metab 2023; 2023:2313503. [PMID: 37744692 PMCID: PMC10513838 DOI: 10.1155/2023/2313503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023] Open
Abstract
Liver damage characterized by fibrosis and necrosis can worsen the condition of liver disease. Liver disease is associated with impaired immune response and may affect short-chain fatty acid (SCFA) gut metabolites. Hepatogomax enteral formula was developed, which contains brain-chain amino acids (BCAAs) and middle-chain triglycerides (MCTs), which could repair liver tissue damage, improve the inflammatory status, and modulate SCFA in liver damage. The study aimed to determine the effect of hepatogomax on liver tissue repair, inflammation (TNF-α and IL-6), and SCFA levels in thioacetamide (TAA)-induced rats. The induction of TAA causes liver steatosis, increasing TNF-α and IL-6, and decreasing SCFA levels. Hepatogomax at a dose of 14.6 g/200 gBW significantly reduces TNF-α and IL-6 levels and increases SCFA levels (p < 0.05). The number of steatosis between groups P2 and P3 was lower as compared to a group of negative control [K2] (p < 0.05). Hepatogomax, in a dose-dependent manner, may repair liver tissue and improve inflammatory response and SCFA levels in TAA-induced rats.
Collapse
Affiliation(s)
- Hery D. Purnomo
- Division of Gastroentero-Hepatology, Department of Internal Medical, Dr Kariadi Hospital, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Refani A. Kusuma
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Elfrida Sianturi
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Ryan F. Haroen
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Muchamad R. Solichin
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta 55281, Indonesia
| | - Choirun Nissa
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Endang Mahati
- Department of Pharmacology and Therapy, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Etika R. Noer
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| |
Collapse
|
31
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
32
|
Wang Q, Chen C, Zuo S, Cao K, Li H. Integrative analysis of the gut microbiota and faecal and serum short-chain fatty acids and tryptophan metabolites in patients with cirrhosis and hepatic encephalopathy. J Transl Med 2023; 21:395. [PMID: 37330571 PMCID: PMC10276405 DOI: 10.1186/s12967-023-04262-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE The purpose of this study was to describe the changes in the gut microbiome of patients with cirrhosis and hepatic encephalopathy (HE), as well as quantify the variations in short-chain fatty acid (SCFA) and tryptophan metabolite levels in serum and faeces. METHODS Fresh faeces and serum were collected from 20 healthy volunteers (NC group), 30 cirrhosis patients (Cir group), and 30 HE patients (HE group). Then, 16S rRNA sequencing and metabolite measurements were performed using the faeces. Gas chromatography‒mass spectrometry and ultrahigh-performance liquid chromatography-tandem mass spectrometry were used to measure SCFA and tryptophan levels, respectively. The results were analysed by SIMCA16.0.2 software. Differences in species were identified using MetaStat and t tests. The correlations among the levels of gut microbes and metabolites and clinical parameters were determined using Spearman correlation analysis. RESULTS Patients with cirrhosis and HE had lower microbial species richness and diversity in faeces than healthy volunteers; these patients also had altered β-diversity. Serum valeric acid levels were significantly higher in the HE group than in the Cir group. Serum SCFA levels did not differ between the Cir and NC groups. Serum melatonin and 5-HTOL levels were significantly higher in the HE group than in the Cir group. The Cir and NC groups had significant differences in the levels of eight serum tryptophan metabolites. Furthermore, the levels of faecal SCFAs did not differ between the HE and Cir groups. Faecal IAA-Ala levels were significantly lower in the HE group than in the Cir group. There were significant differences in the levels of 6 faecal SCFAs and 7 faecal tryptophan metabolites between the Cir and NC groups. Certain gut microbes were associated with serum and faecal metabolites, and some metabolites were associated with certain clinical parameters. CONCLUSION Reduced microbial species richness and diversity were observed in patients with HE and cirrhosis. In both serum and faeces, the levels of different SCFAs and tryptophan metabolites showed varying patterns of change. In HE patients, the levels of some serum tryptophan metabolites, and not SCFAs, were correlated with liver function and systemic inflammation. Systemic inflammation in patients with cirrhosis was correlated with faecal acetic acid levels. In summary, this study identified metabolites important for HE and cirrhosis.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chengxin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
33
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
He J, Hu L, Deng Q, Sun L, Zhao Y, Fang Z, Wang C, Zhao J. Carboxymethyl pachymaran attenuates short-term stress induced depressive behaviours and over-expression of occludin and claudin-2 in the blood–brain-barrier by regulating inflammatory cytokines- JNK/ERK/p38 pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
35
|
Gkolfakis P, Tziatzios G, Leite G, Papanikolaou IS, Xirouchakis E, Panayiotides IG, Karageorgos A, Millan MJ, Mathur R, Weitsman S, Dimitriadis GD, Giamarellos-Bourboulis EJ, Pimentel M, Triantafyllou K. Prevalence of Small Intestinal Bacterial Overgrowth Syndrome in Patients with Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis: A Cross-Sectional Study. Microorganisms 2023; 11:723. [PMID: 36985296 PMCID: PMC10057935 DOI: 10.3390/microorganisms11030723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is a multifactorial, wide-spectrum liver disorder. Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the number and/or type of colonic bacteria in the upper gastrointestinal tract. SIBO, through energy salvage and induction of inflammation, may be a pathophysiological factor for NAFLD development and progression. AIM/METHODS Consecutive patients with histological, biochemical, or radiological diagnosis of any stage of NAFLD (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], cirrhosis) underwent upper gastrointestinal endoscopy. Duodenal fluid (2cc) was aspirated from the 3rd-4th part of duodenum into sterile containers. SIBO was defined as ≥103 aerobic colony-forming units (CFU)/mL of duodenal aspirate and/or the presence of colonic-type bacteria. Patients without any liver disease undergoing gastroscopy due to gastroesophageal reflux disease (GERD) comprised the healthy control (HC) group. Concentrations (pg/mL) of tumor necrosis factor alpha (TNFα), interleukin (IL)-1β, and IL-6 were also measured in the duodenal fluid. The primary endpoint was to evaluate the prevalence of SIBO in NAFLD patients, while the comparison of SIBO prevalence among NAFLD patients and healthy controls was a secondary endpoint. RESULTS We enrolled 125 patients (51 NAFL, 27 NASH, 17 cirrhosis, and 30 HC) aged 54 ± 11.9 years and with a weight of 88.3 ± 19.6 kg (NAFLD vs. HC 90.7 ± 19.1 vs. 80.8 ± 19.6 kg, p = 0.02). Overall, SIBO was diagnosed in 23/125 (18.4%) patients, with Gram-negative bacteria being the predominant species (19/23; 82.6%). SIBO prevalence was higher in the NAFLD cohort compared to HC (22/95; 23.2% vs. 1/30; 3.3%, p = 0.014). Patients with NASH had higher SIBO prevalence (6/27; 22.2%) compared to NAFL individuals (8/51; 15.7%), but this difference did not reach statistical significance (p = 0.11). Patients with NASH-associated cirrhosis had a higher SIBO prevalence compared to patients with NAFL (8/17; 47.1% vs. 8/51; 15.7%, p = 0.02), while SIBO prevalence between patients with NASH-associated cirrhosis and NASH was not statistically different (8/17; 47.1% vs. 6/27; 22.2%, p = 0.11). Mean concentration of TNF-α, IL-1β, and IL-6 did not differ among the different groups. CONCLUSION The prevalence of SIBO is significantly higher in a cohort of patients with NAFLD compared to healthy controls. Moreover, SIBO is more prevalent in patients with NASH-associated cirrhosis compared to patients with NAFL.
Collapse
Affiliation(s)
- Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgios Tziatzios
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ioannis S Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical Palaio Faliron General Hospital, 17562 Palaio Faliron, Greece
| | - Ioannis G Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, 124622 Athens, Greece
| | - Athanasios Karageorgos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Jesus Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - George D Dimitriadis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
36
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Best KP, Yelland LN, Collins CT, McPhee AJ, Rogers GB, Choo J, Gibson RA, Murguia-Peniche T, Varghese J, Cooper TR, Makrides M. Growth of late preterm infants fed nutrient-enriched formula to 120 days corrected age-A randomized controlled trial. Front Pediatr 2023; 11:1146089. [PMID: 37205223 PMCID: PMC10185835 DOI: 10.3389/fped.2023.1146089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Objectives We aimed to compare the effects of nutrient-enriched formula with standard term formula on rate of body weight gain of late preterm infants appropriately grown for gestational age. Study design A multi-center, randomized, controlled trial. Late preterm infants (34-37 weeks' gestation), with weight appropriate for gestational age (AGA), were randomized to nutrient enriched formula (NEF) with increased calories (22 kcal/30 ml) from protein, added bovine milk fat globule membrane, vitamin D and butyrate or standard term formula 20 kcal/30 ml (STF). Breastfed term infants were enrolled as an observational reference group (BFR). Primary outcome was rate of body weight gain from enrollment to 120 days corrected age (d/CA). Planned sample size was 100 infants per group. Secondary outcomes included body composition, weight, head circumference and length gain, and medically confirmed adverse events to 365 d/CA. Results The trial was terminated early due to recruitment challenges and sample size was substantially reduced. 40 infants were randomized to NEF (n = 22) and STF (n = 18). 39 infants were enrolled in the BFR group. At 120 d/CA there was no evidence of a difference in weight gain between randomized groups (mean difference 1.77 g/day, 95% CI, -1.63 to 5.18, P = 0.31). Secondary outcomes showed a significant reduction in risk of infectious illness in the NEF group at 120 d/CA [relative risk 0.37 (95% CI, 0.16-0.85), P = 0.02]. Conclusion We saw no difference in rate of body weight gain between AGA late preterm infants fed NEF compared to STF. Results should be interpreted with caution due to small sample size. Clinical Trial Registration The Australia New Zealand Clinical Trials Registry (ACTRN 12618000092291). "mailto:maria.makrides@sahmri.com" maria.makrides@sahmri.com.
Collapse
Affiliation(s)
- Karen P. Best
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Lisa N. Yelland
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Public Health, The University of Adelaide, Adelaide, SA, Australia
| | - Carmel T. Collins
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew J. McPhee
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Geraint B. Rogers
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Jocelyn Choo
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Robert A. Gibson
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Teresa Murguia-Peniche
- School of Medicine, Indiana University, Evansville, IN, United States
- Medical Sciences, Mead Johnson Nutrition|Reckitt, Evansville, IN, United States
| | - Jojy Varghese
- Department of Neonatology, Lyell McEwin Hospital, Adelaide, SA, Australia
| | - Timothy R. Cooper
- Medical Sciences, Mead Johnson Nutrition|Reckitt, Evansville, IN, United States
| | - Maria Makrides
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Correspondence: Maria Makrides
| |
Collapse
|
38
|
Koning M, Herrema H, Nieuwdorp M, Meijnikman AS. Targeting nonalcoholic fatty liver disease via gut microbiome-centered therapies. Gut Microbes 2023; 15:2226922. [PMID: 37610978 PMCID: PMC10305510 DOI: 10.1080/19490976.2023.2226922] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Humans possess abundant amounts of microorganisms, including bacteria, fungi, viruses, and archaea, in their gut. Patients with nonalcoholic fatty liver disease (NAFLD) exhibit alterations in their gut microbiome and an impaired gut barrier function. Preclinical studies emphasize the significance of the gut microbiome in the pathogenesis of NAFLD. In this overview, we explore how adjusting the gut microbiome could serve as an innovative therapeutic strategy for NAFLD. We provide a summary of current information on untargeted techniques such as probiotics and fecal microbiota transplantation, as well as targeted microbiome-focused therapies including engineered bacteria, prebiotics, postbiotics, and phages for the treatment of NAFLD.
Collapse
Affiliation(s)
- Mijra Koning
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Hilde Herrema
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Gastroenterology and Metabolism, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| | - Abraham S. Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Diabetes, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Batchu P, Naldurtiker A, Kouakou B, Terrill TH, McCommon GW, Kannan G. Metabolomic exploration of the effects of habituation to livestock trailer and extended transportation in goats. Front Mol Biosci 2022; 9:1027069. [PMID: 36465562 PMCID: PMC9714579 DOI: 10.3389/fmolb.2022.1027069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 03/26/2024] Open
Abstract
Goats raised for meat production are often transported long distances. Twelve-month-old male Spanish goats were used to determine the effects of habituation to trailers on plasma metabolomic profiles when transported for extended periods. In a split-plot design, 168 goats were separated into two treatment (TRT; whole plot) groups and maintained on two different paddocks. Concentrate supplement was fed to one group inside two livestock trailers (habituated group, H), while the other group received the same quantity of concentrate, but not inside the trailers (non-habituated, NH). Goats were subjected to a 10-h transportation stress in 4 replicates (n = 21 goats/replicate/TRT) after 4 weeks of habituation period. Blood samples were collected prior to loading, 20 min after loading (0 h), and at 2, 4, 6, 8, and 10 h of transportation (Time; subplot). A targeted quantitative metabolomics approach was employed to analyze the samples. The data were analyzed using R software and MIXED procedures in SAS. Several amino acids (alanine, serine, glycine, histidine, glutamate, trans-hydroxyproline, asparagine, threonine, methylhistidine, ornithine, proline, leucine, tryptophan) were higher (p < 0.05) in the H group compared to the NH group. Six long-chain acylcarnitines were higher (p < 0.05), while free (C0) and short-chain (C3, C5) carnitines were lower (p < 0.05) in the NH goats compared to the H goats. In general, amino acid concentrations decreased and long-chain acylcarnitine (>C10) levels increased with transportation time (p < 0.05). Butyric acid, α-ketoglutaric acid, and α-aminoadipic acid concentrations were lower (p < 0.05) and β-hydroxybutyric acid concentrations were higher in the NH goats compared to the H goats. Plasma glucose, non-esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly influenced by Time (p < 0.01). Plasma NEFA concentrations were significantly lower (p < 0.01) in the H group than the NH group. Habituation to trailers can be beneficial in enhancing stress coping abilities in goats due to higher concentrations of metabolites such as butyrate and certain amino acids that support antioxidant activities and immune function. Plasma long-chain acylcarnitines may be good indicators of stress during long-distance transportation in goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Govind Kannan
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, United States
| |
Collapse
|
40
|
Host-microbiome interactions: Gut-Liver axis and its connection with other organs. NPJ Biofilms Microbiomes 2022; 8:89. [PMID: 36319663 PMCID: PMC9626460 DOI: 10.1038/s41522-022-00352-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
An understanding of connections between gut microbiome and liver has provided important insights into the pathophysiology of liver diseases. Since gut microbial dysbiosis increases gut permeability, the metabolites biosynthesized by them can reach the liver through portal circulation and affect hepatic immunity and inflammation. The immune cells activated by these metabolites can also reach liver through lymphatic circulation. Liver influences immunity and metabolism in multiple organs in the body, including gut. It releases bile acids and other metabolites into biliary tract from where they enter the systemic circulation. In this review, the bidirectional communication between the gut and the liver and the molecular cross talk between the host and the microbiome has been discussed. This review also provides details into the intricate level of communication and the role of microbiome in Gut-Liver-Brain, Gut-Liver-Kidney, Gut-Liver-Lung, and Gut-Liver-Heart axes. These observations indicate a complex network of interactions between host organs influenced by gut microbiome.
Collapse
|
41
|
Cao Y, Aquino-Martinez R, Hutchison E, Allayee H, Lusis AJ, Rey FE. Role of gut microbe-derived metabolites in cardiometabolic diseases: Systems based approach. Mol Metab 2022; 64:101557. [PMID: 35870705 PMCID: PMC9399267 DOI: 10.1016/j.molmet.2022.101557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut microbiome influences host physiology and cardiometabolic diseases by interacting directly with intestinal cells or by producing molecules that enter the host circulation. Given the large number of microbial species present in the gut and the numerous factors that influence gut bacterial composition, it has been challenging to understand the underlying biological mechanisms that modulate risk of cardiometabolic disease. SCOPE OF THE REVIEW Here we discuss a systems-based approach that involves simultaneously examining individuals in populations for gut microbiome composition, molecular traits using "omics" technologies, such as circulating metabolites quantified by mass spectrometry, and clinical traits. We summarize findings from landmark studies using this approach and discuss future applications. MAJOR CONCLUSIONS Population-based integrative approaches have identified a large number of microbe-derived or microbe-modified metabolites that are associated with cardiometabolic traits. The knowledge gained from these studies provide new opportunities for understanding the mechanisms involved in gut microbiome-host interactions and may have potentially important implications for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Cao
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Ruben Aquino-Martinez
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Evan Hutchison
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aldons J Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Sun X, Ni HB, Xue J, Wang S, Aljbri A, Wang L, Ren TH, Li X, Niu M. Bibliometric-analysis visualization and review of non-invasive methods for monitoring and managing the portal hypertension. Front Med (Lausanne) 2022; 9:960316. [PMID: 36186776 PMCID: PMC9520322 DOI: 10.3389/fmed.2022.960316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPortal hypertension monitoring is important throughout the natural course of cirrhosis. Hepatic venous pressure gradient (HVPG), regarded as the golden standard, is limited by invasiveness and technical difficulties. Portal hypertension is increasingly being assessed non-invasively, and hematological indices, imaging data, and statistical or computational models are studied to surrogate HVPG. This paper discusses the existing non-invasive methods based on measurement principles and reviews the methodological developments in the last 20 years.MethodsFirst, we used VOSviewer to learn the architecture of this field. The publications about the non-invasive assessment of portal hypertension were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer 1.6.17.0 was used to analyze and visualize these publications, including the annual trend, the study hotspots, the significant articles, authors, journals, and organizations in this field. Next, according to the cluster analysis result of the keywords, we further retrieved and classified the related studies to discuss.ResultsA total of 1,088 articles or review articles about our topic were retrieved from WoSCC. From 2000 to 2022, the number of publications is generally growing. “World Journal of Gastroenterology” published the most articles (n = 43), while “Journal of Hepatology” had the highest citations. “Liver fibrosis” published in 2005 was the most influential manuscript. Among the 20,558 cited references of 1,088 retrieved manuscripts, the most cited was a study on liver stiffness measurement from 2007. The highest-yielding country was the United States, followed by China and Italy. “Berzigotti, Annalisa” was the most prolific author and had the most cooperation partners. Four study directions emerged from the keyword clustering: (1) the evaluation based on fibrosis; (2) the evaluation based on hemodynamic factors; (3) the evaluation through elastography; and (4) the evaluation of variceal bleeding.ConclusionThe non-invasive assessment of portal hypertension is mainly based on two principles: fibrosis and hemodynamics. Liver fibrosis is the major initiator of cirrhotic PH, while hemodynamic factors reflect secondary alteration of splanchnic blood flow. Blood tests, US (including DUS and CEUS), CT, and magnetic resonance imaging (MRI) support the non-invasive assessment of PH by providing both hemodynamic and fibrotic information. Elastography, mainly USE, is the most important method of PH monitoring.
Collapse
Affiliation(s)
- XiaoHan Sun
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Hong Bo Ni
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jian Xue
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Afaf Aljbri
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Liuchun Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Tian Hang Ren
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiao Li,
| | - Meng Niu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
- Meng Niu,
| |
Collapse
|
43
|
Liu G, Wang X, Fan X, Luo X. Metabolomics profiles in acute-on-chronic liver failure: Unveiling pathogenesis and predicting progression. Front Pharmacol 2022; 13:953297. [PMID: 36059949 PMCID: PMC9437334 DOI: 10.3389/fphar.2022.953297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) usually develops based on acute decompensation (AD) of cirrhosis and is characterized by intense systemic inflammation, multiple organ failure, and high short-term mortality. Validated biomarkers for the diagnosis and prognosis of ACLF remain to be clarified. Metabolomics is an emerging method used to measure low-molecular-weight metabolites and is currently frequently implemented to understand pathophysiological processes involved in disease progression, as well as to search for new diagnostic or prognostic biomarkers of various disorders. The characterization of metabolites in ACLF has recently been described via metabolomics. The role of metabolites in the pathogenesis of ACLF deserves further investigation and improvement and could be the basis for the development of new diagnostic and therapeutic strategies. In this review, we focused on the contributions of metabolomics on uncovering metabolic profiles in patients with ACLF, the key metabolic pathways that are involved in the progression of ACLF, and the potential metabolite-associated therapeutic targets for ACLF.
Collapse
Affiliation(s)
- Guofeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Luo
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short‑chain fatty acids, TNF‑α level and disease progression in non‑alcoholic fatty liver disease: A retrospective study. Exp Ther Med 2022; 24:598. [PMID: 35949337 PMCID: PMC9353543 DOI: 10.3892/etm.2022.11536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The onset and progression of non-alcoholic fatty liver disease (NAFLD) remains unclear, but short-chain fatty acids (SCFAs) in circulation may participate in its pathogenesis by acting as inflammation inhibitors. The aim of this retrospective study was to investigate plasma concentrations of general SCFAs in healthy individuals and in patients with distinct stages of NAFLD. Three main SCFAs (including acetate, propionate and butyrate) were analyzed by gas chromatography. The plasma TNF-α concentration was measured by ELISA. One-way ANOVA, Spearman's correlation and Pearson's correlation analysis were performed to estimate the associations between SCFAs, TNF-α and disease progression. Multiple linear stepwise regression was computed to explore the predictor variables of TNF-α in circulation. A total of 71 patients with NAFLD [including 27 patients with NAFL, 20 patients with non-alcoholic steatohepatitis (NASH) and 24 patients with NAFLD-related cirrhosis (NAFLD-cirrhosis)] and 9 healthy control (HC) subjects were enrolled for analysis. Although not statistically significant, plasma SCFAs were elevated in patients with NAFL compared with HC subjects, whereas the vast majority of SCFAs were statistically reduced in patients with NASH or NAFLD-cirrhosis compared with patients with NAFL. Plasma SCFAs had no significant differences in NASH or NAFLD-cirrhosis patients compared with HC subjects. In addition, significant negative correlations were observed between TNF-α and SCFAs. The progression of NAFLD (β=0.849; P<0.001) and the decline of the total three SCFA concentrations (β=-0.189; P<0.001) were recognized as independent risk variables related to the elevated peripheral TNF-α in the multiple linear stepwise regression model. Plasma SCFA concentrations may alter with the development of NAFLD and may have a potential link to TNF-α and the progression of NAFLD, which may serve a protective role toward disease advancement. Further mechanistic studies, such as analysis of gastrointestinal microecology, signaling pathways and functions involved in TNF-α, need to be performed. Also, therapeutic supplementation of SCFAs for NASH and NAFLD-cirrhosis needs further research and verification.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Xia Chen
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Zhijing Zhao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ying Liao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ting Zhou
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Qian Xiang
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| |
Collapse
|
46
|
Rangan P, Mondino A. Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 2022; 10:jitc-2021-004147. [PMID: 35882448 PMCID: PMC9330349 DOI: 10.1136/jitc-2021-004147] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
The gut microbiota and its metabolites have been shown to play a pivotal role in the regulation of metabolic, endocrine and immune functions. Though the exact mechanism of action remains to be fully elucidated, available knowledge supports the ability of microbiota-fermented short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, to influence epigenetic and metabolic cascades controlling gene expression, chemotaxis, differentiation, proliferation, and apoptosis in several non-immune and immune cell subsets. While used as preferred metabolic substrates and sources of energy by colonic gut epithelial cells, most recent evidence indicates that these metabolites regulate immune functions, and in particular fine-tune T cell effector, regulatory and memory phenotypes, with direct in vivo consequences on the efficacy of chemotherapy, radiotherapy and immunotherapy. Most recent data also support the use of these metabolites over the course of T cell manufacturing, paving the way for refined adoptive T cell therapy engineering. Here, we review the most recent advances in the field, highlighting in vitro and in vivo evidence for the ability of SCFAs to shape T cell phenotypes and functions.
Collapse
Affiliation(s)
- Priya Rangan
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Anna Mondino
- Department of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
47
|
Zhang XZ, Chen MJ, Fan PM, Su TS, Liang SX, Jiang W. Prediction of the Mechanism of Sodium Butyrate against Radiation-Induced Lung Injury in Non-Small Cell Lung Cancer Based on Network Pharmacology and Molecular Dynamic Simulations and Molecular Dynamic Simulations. Front Oncol 2022; 12:809772. [PMID: 35837112 PMCID: PMC9275827 DOI: 10.3389/fonc.2022.809772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRadiation-induced lung injury (RILI) is a severe side effect of radiotherapy for non-small cell lung cancer (NSCLC) ,and one of the major hindrances to improve the efficacy of radiotherapy. Previous studies have confirmed that sodium butyrate (NaB) has potential of anti-radiation toxicity. However, the mechanism of the protective effect of NaB against RILI has not yet been clarified. This study aimed to explore the underlying protective mechanisms of NaB against RILI in NSCLC through network pharmacology, molecular docking, molecular dynamic simulations and in vivo experiments.MethodsThe predictive target genes of NaB were obtained from the PharmMapper database and the literature review. The involved genes of RILI and NSCLC were predicted using OMIM and GeneCards database. The intersectional genes of drug and disease were identified using the Venny tool and uploaded to the Cytoscape software to identify 5 core target genes of NaB associated with RILI. The correlations between the 5 core target genes and EGFR, PD-L1, immune infiltrates, chemokines and chemokine receptors were analyzed using TIMER 2.0, TIMER and TISIDB databases. We constructed the mechanism maps of the 3 key signaling pathways using the KEGG database based on the results of GO and KEGG analyses from Metascape database. The 5 core target genes and drug were docked using the AutoDock Vina tool and visualized using PyMOL software. GROMACS software was used to perform 100 ns molecular dynamics simulation. Irradiation-induced lung injury model in mice were established to assess the therapeutic effects of NaB.ResultsA total of 51 intersectional genes involved in NaB against RILI in NSCLC were identified. The 5 core target genes were AKT1, TP53, NOTCH1, SIRT1, and PTEN. The expressions of the 5 core target genes were significantly associated with EGFR, PD-L1, immune infiltrates, chemokines and chemokine receptors, respectively. The results from GO analysis of the 51 intersectional genes revealed that the biological processes were focused on the regulation of smooth muscle cell proliferation, oxidative stress and cell death, while the three key KEGG pathways were enriched in PI3K-Akt signal pathway, p53 signal pathway, and FOXO signal pathway. The docking of NaB with the 5 core target genes showed affinity and stability, especially AKT1. In vivo experiments showed that NaB treatment significantly protected mice from RILI, with reduced lung histological damage. In addition, NaB treatment significantly inhibited the PI3K/Akt signaling pathway.ConclusionsNaB may protect patients from RILI in NSCLC through multiple target genes including AKT1, TP53, NOTCH1, SIRT1 and PTEN, with multiple signaling pathways involving, including PI3K-Akt pathway, p53 pathway, and FOXO pathways. Our findings effectively provide a feasible theoretical basis to further elucidate the mechanism of NaB in the treatment of RILI.
Collapse
Affiliation(s)
- Xiao-zhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mao-jian Chen
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ping-ming Fan
- Department of Breast-Thoracic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ting-shi Su
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shi-xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Wei Jiang, ; Shi-xiong Liang,
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Wei Jiang, ; Shi-xiong Liang,
| |
Collapse
|
48
|
Weiss SL, Zhang D, Farooqi S, Wallace DC. Sodium butyrate reverses lipopolysaccharide-induced mitochondrial dysfunction in lymphoblasts. J Cell Mol Med 2022; 26:3290-3293. [PMID: 35587004 PMCID: PMC9170810 DOI: 10.1111/jcmm.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Butyrate is a short-chain fatty acid that is produced by commensal microbes within the intestinal microbiome through fermentation of dietary fibre. Microbial-derived butyrate has been shown to promote immunologic and metabolic homeostasis, in part through its beneficial effects on mitochondrial function, and thus has been proposed as a possible anti-inflammatory therapy. We tested the hypothesis that butyrate could mitigate the decrease in mitochondrial respiration in immune cells under septic conditions as a preliminary step towards better understanding the potential for butyrate as a novel therapy in sepsis. Mitochondrial respiration and content (measured as citrate synthase activity) were compared within four Epstein-Barr virus-transformed lymphoblast (LB) cell lines exposed to either control media or lipopolysaccharide (LPS) 100 ng/ml. Both co-incubation of LBs with LPS + butyrate and treatment with butyrate after LPS stimulation reversed the decrease in mitochondrial respiration observed in LBs exposed to LPS without butyrate. Neither LPS nor butyrate led to significant changes in citrate synthase activity. The preliminary findings support further investigation of a potential mitochondrial-based mechanism through which butyrate may help to mitigate the immuno-inflammatory response in sepsis.
Collapse
Affiliation(s)
- Scott L. Weiss
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Pediatric Sepsis Program at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Donglan Zhang
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Sumera Farooqi
- Department of Anesthesiology and Critical CareChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of PediatricsChildren's Hospital of PhiladelphiaUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
49
|
Bajaj JS, Ng SC, Schnabl B. Promises of microbiome-based therapies. J Hepatol 2022; 76:1379-1391. [PMID: 35589257 PMCID: PMC9588437 DOI: 10.1016/j.jhep.2021.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
Humans harbour large quantities of microbes, including bacteria, fungi, viruses and archaea, in the gut. Patients with liver disease exhibit changes in the intestinal microbiota and gut barrier dysfunction. Preclinical models demonstrate the importance of the gut microbiota in the pathogenesis of various liver diseases. In this review, we discuss how manipulation of the gut microbiota can be used as a novel treatment approach for liver disease. We summarise current data on untargeted approaches, including probiotics and faecal microbiota transplantation, and precision microbiome-centered therapies, including engineered bacteria, postbiotics and phages, for the treatment of liver diseases.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Department of Medicine, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, Virginia, USA.
| | - Siew C Ng
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, Institute of Digestive Disease, The Chinese University of Hong Kong; Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
50
|
Scarpellini E, Abenavoli L, Cassano V, Rinninella E, Sorge M, Capretti F, Rasetti C, Svegliati Baroni G, Luzza F, Santori P, Sciacqua A. The Apparent Asymmetrical Relationship Between Small Bowel Bacterial Overgrowth, Endotoxemia, and Liver Steatosis and Fibrosis in Cirrhotic and Non-Cirrhotic Patients: A Single-Center Pilot Study. Front Med (Lausanne) 2022; 9:872428. [PMID: 35559337 PMCID: PMC9090439 DOI: 10.3389/fmed.2022.872428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Gut microbiota are a complex ecosystem harboring our intestine. They maintain human body equilibrium, while their derangement, namely, “dysbiosis“, has been associated with several gastrointestinal diseases, such as liver steatosis (NAFLD) and liver cirrhosis. Small intestinal bacterial overgrowth (SIBO) is an example of dysbiosis of the upper gastrointestinal (GI) tract. Aim The aim of this study is to evaluate the relationship between SIBO and levels of endotoxemia and grade of liver steatosis (LS) and liver fibrosis (LF) in hepatologic patients. Materials and Methods Consecutive outpatients referred to our hepatology clinic were tested for SIBO by the lactulose breath test (LBT) and peripheral blood levels of endotoxemia; LS grading and LF were assessed by abdominal ultrasound and transient elastography, respectively. Results Fifty-two consecutive patients (17 with alcohol abuse (4.5 ± 0.8 alcohol units per day), 4 with HCV and 2 with HBV infection, 24 of metabolic origin, 2 of autoimmune origin, and 3 with cholangiopathies; mean age 54.7 ± 8.3 years, 31 F, BMI 24.1 ± 1.1 Kg/m2) and 14 healthy volunteers (HV) (mean age 50.1 ± 4.3 years, 9 F, BMI 23.3 ± 1.1 Kg/m2) were enrolled. SIBO prevalence was significantly higher in cirrhotic (LC) vs. non-cirrhotic (LNC) patients and vs. HV (all, p < 0.05), with a significant positive trend according to Child-Pugh status (all, p < 0.05). SIBO prevalence was not correlated with LS stages (all, p = NS). Consensually, endotoxin levels were significantly higher in LC vs. LNC and vs. HV (all, p < 0.05) and significantly correlated with LF in patients with LC, according to Child-Pugh status (all, p < 0.05). Conclusion This study shows that SIBO prevalence and relative endotoxin blood levels seem to be significantly associated with the grade of LF vs. LS in LC. SIBO is also present under pre-cirrhotic conditions, but its prevalence seems to correlate with liver disease irreversible derangement.
Collapse
Affiliation(s)
- E. Scarpellini
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
- T.A.R.G.I.D., Gasthuisberg University Hospital, KULeuven, Lueven, Belgium
- *Correspondence: E. Scarpellini
| | - L. Abenavoli
- Department of Health Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - V. Cassano
- Department of Medical and Surgical Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - E. Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M. Sorge
- Gastroenterology and Endoscopy Unit “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - F. Capretti
- Gastroenterology and Endoscopy Unit “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - C. Rasetti
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - G. Svegliati Baroni
- Gastroenterology Clinic, “Riuniti University Hospital”, Polytechnics University of Marche, Ancona, Italy
| | - F. Luzza
- Department of Health Sciences, University “Magna Græcia”, Catanzaro, Italy
| | - P. Santori
- Hepatology and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, San Benedetto del Tronto, Italy
| | - A. Sciacqua
- Department of Medical and Surgical Sciences, University “Magna Græcia”, Catanzaro, Italy
| |
Collapse
|