1
|
Fujii Y, Okabe I, Hatori A, Sah SK, Kanaujiya J, Fisher M, Norris R, Terasaki M, Reichenberger EJ, Chen IP. Skeletal abnormalities caused by a Connexin43 R239Q mutation in a mouse model for autosomal recessive craniometaphyseal dysplasia. Bone Res 2025; 13:14. [PMID: 39848944 PMCID: PMC11757998 DOI: 10.1038/s41413-024-00383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms. The pathogenesis of CMD is not fully understood. Treatment is limited to craniofacial surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a Cx43R239Q mutation. Cx43KI/KI mice replicate typical features of AR CMD, including thickening of craniofacial bones, club-shaped femurs, and widened diaphyseal cortical bones. Female Cx43KI/KI mice display remarkably more bone overgrowth than male Cx43KI/KI mice as they age. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones. Although formation of resting OCs in Cx43+/+ and Cx43KI/KI mice is comparable, the actively resorbing Cx43KI/KI OCs have reduced resorption on bone chips. Cx43KI/KI mice display reduced osteocyte dendrites. RNA from Cx43KI/KI femoral cortical bones show reduced expression levels of Sost, Tnf-α, IL-1β, Esr1, Esr2, and a lower Rankl/Opg ratio. Moreover, the Cx43R239Q mutation results in altered spatial expression of Cx43 protein and mild reduction of gap junction and hemichannel activity. The distinct phenotype seen in Cx43KI/KI mice but not in Cx43 ablation models suggests that Cx43 loss-of-function is unlikely the main cause of AR CMD. Additional studies are required to investigate new roles of CMD-mutant Cx43.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Iichiro Okabe
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Ayano Hatori
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Shyam Kishor Sah
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Jitendra Kanaujiya
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Melanie Fisher
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, USA
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
2
|
Wathuliyadde N, Willmore KE, Kelly GM. Evolution and Spatiotemporal Expression of ankha and ankhb in Zebrafish. J Dev Biol 2024; 12:23. [PMID: 39311118 PMCID: PMC11417794 DOI: 10.3390/jdb12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Craniometaphyseal Dysplasia (CMD) is a rare skeletal disorder that can result from mutations in the ANKH gene. This gene encodes progressive anksylosis (ANK), which is responsible for transporting inorganic pyrophosphate (PPi) and ATP from the intracellular to the extracellular environment, where PPi inhibits bone mineralization. When ANK is dysfunctional, as in patients with CMD, the passage of PPi to the extracellular environment is reduced, leading to excess mineralization, particularly in bones of the skull. Zebrafish may serve as a promising model to study the mechanistic basis of CMD. Here, we provide a detailed analysis of the zebrafish Ankh paralogs, Ankha and Ankhb, in terms of their phylogenic relationship with ANK in other vertebrates as well as their spatiotemporal expression patterns during zebrafish development. We found that a closer evolutionary relationship exists between the zebrafish Ankhb protein and its human and other vertebrate counterparts, and stronger promoter activity was predicted for ankhb compared to ankha. Furthermore, we noted distinct temporal expression patterns, with ankha more prominently expressed in early development stages, and both paralogs also being expressed at larval growth stages. Whole-mount in situ hybridization was used to compare the spatial expression patterns of each paralog during bone development, and both showed strong expression in the craniofacial region as well as the notochord and somites. Given the substantial overlap in spatiotemporal expression but only subtle patterning differences, the exact roles of these genes remain speculative. In silico analyses predicted that Ankha and Ankhb have the same function in transporting PPi across the membrane. Nevertheless, this study lays the groundwork for functional analyses of each ankh paralog and highlights the potential of using zebrafish to find possible targeted therapies for CMD.
Collapse
Affiliation(s)
| | - Katherine E. Willmore
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada;
| | - Gregory M. Kelly
- Department of Biology, Western University, London, ON N6A 5B7, Canada;
| |
Collapse
|
3
|
Reichenberger EJ, O’Brien K, Hatori A, Carpenter TO, van de Wetering K, Flaman L, Howe J, Ortiz D, Sabbagh Y, Chen IP. ENPP1 enzyme replacement therapy improves ectopic calcification but does not rescue skeletal phenotype in a mouse model for craniometaphyseal dysplasia. JBMR Plus 2024; 8:ziae103. [PMID: 39165910 PMCID: PMC11334334 DOI: 10.1093/jbmrpl/ziae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Craniometaphyseal dysplasia (CMD) is a rare genetic bone disorder, characterized by progressive thickening of craniofacial bones and flared metaphyses of long bones. Craniofacial hyperostosis leads to the obstruction of neural foramina and neurological symptoms such as facial palsy, blindness, deafness, or severe headache. Mutations in ANKH (mouse ortholog ANK), a transporter of small molecules such as citrate and ATP, are responsible for autosomal dominant CMD. Knock-in (KI) mice carrying an ANKF377del mutation (AnkKI/KI ) replicate many features of human CMD. Pyrophosphate (PPi) levels in plasma are significantly reduced in AnkKI/KI mice. PPi is a potent inhibitor of mineralization. To examine the extent to which restoration of circulating PPi levels may prevent the development of a CMD-like phenotype, we treated AnkKI/KI mice with the recombinant human ENPP1-Fc protein IMA2a. ENPP1 hydrolyzes ATP into AMP and PPi. Male and female Ank+/+ and AnkKI/KI mice (n ≥ 6/group) were subcutaneously injected with IMA2a or vehicle weekly for 12 wk, starting at the age of 1 wk. Plasma ENPP1 activity significantly increased in AnkKI/KI mice injected with IMA2a (Vehicle/IMA2a: 28.15 ± 1.65/482.7 ± 331.2 mOD/min; p <.01), which resulted in the successful restoration of plasma PPi levels (Ank+/+ /AnkKI/KI vehicle treatment/AnkKI/KI IMA2a: 0.94 ± 0.5/0.43 ± 0.2/1.29 ± 0.8 μM; p <.01). We examined the skeletal phenotype by X-Ray imaging and μCT. IMA2a treatment of AnkKI/KI mice did not significantly correct CMD features such as the abnormal shape of femurs, increased bone mass of mandibles, hyperostotic craniofacial bones, or the narrowed foramen magnum. However, μCT imaging showed ectopic calcification near basioccipital bones at the level of the foramen magnum and on joints of AnkKI/KI mice. Interestingly, IMA2a treatment significantly reduced the volume of calcified nodules at both sites. Our data demonstrate that IMA2a is sufficient to restore plasma PPi levels and reduce ectopic calcification but fails to rescue skeletal abnormalities in AnkKI/KI mice under our treatment conditions.
Collapse
Affiliation(s)
- Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States
| | - Kevin O’Brien
- Research and Development, Inozyme Pharma, Boston, MA 02210, United States
| | - Ayano Hatori
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, New Haven, CT 06520, United States
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, United States
| | - Lisa Flaman
- Research and Development, Inozyme Pharma, Boston, MA 02210, United States
| | - Jennifer Howe
- Research and Development, Inozyme Pharma, Boston, MA 02210, United States
| | - Daniel Ortiz
- Research and Development, Inozyme Pharma, Boston, MA 02210, United States
| | - Yves Sabbagh
- Research and Development, Inozyme Pharma, Boston, MA 02210, United States
| | - I-Ping Chen
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, United States
| |
Collapse
|
4
|
Li R, Lai C, Luo H, Lan Y, Duan X, Bao D, Hou Z, Liu H, Fu S. Animal models of tendon calcification: Past, present, and future. Animal Model Exp Med 2024; 7:471-483. [PMID: 38887851 PMCID: PMC11369024 DOI: 10.1002/ame2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Tendon calcification is a common clinical condition that frequently occurs as a complication after tendon injury and surgery, or as an expression of fibrodysplasia ossificans progressiva. This condition can be referred to by various names in clinical practice and literature, including tendon ossification, tendon mineralization, heterotopic ossification, and calcific tendonitis. The exact pathogenesis of tendon calcification remains uncertain, but current mainstream research suggests that calcification is mostly cell mediated. To further elucidate the pathogenesis of tendon calcification and to better simulate the overall process, selecting appropriate experimental animal models is important. Numerous animal models have been utilized in various clinical studies, each with its own set of advantages and limitations. In this review, we have discussed the advancements made in research on animal models of tendon calcification, with a focus on the selection of experimental animals, the sites of injury in these models, and the methods employed for modeling.
Collapse
Affiliation(s)
- Ruichen Li
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Canhao Lai
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Hong Luo
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Yujian Lan
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Xinfang Duan
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Dingsu Bao
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
- Chengdu University of Traditional Chinese MedicineChengduChina
| | - Zhipeng Hou
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Huan Liu
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| | - Shijie Fu
- Department of Bone and JointThe Affiliated Traditional Chinese Medicine Hospital, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
5
|
Liu X, Wang X, Ma X, Li H, Miao C, Tian Z, Hu Y. Genetic disruption of Ano5 leads to impaired osteoclastogenesis for gnathodiaphyseal dysplasia. Oral Dis 2024; 30:1403-1415. [PMID: 36989132 DOI: 10.1111/odi.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVES Gnathodiaphyseal dysplasia (GDD; OMIM#166260) is a rare skeletal genetic disorder characterized by sclerosis of tubular bones and cemento-osseous lesions in mandibles. TMEM16E/ANO5 gene mutations have been identified in patients with GDD. Here, Ano5 knockout (Ano5-/-) mice with enhanced osteoblastogenesis were used to investigate whether Ano5 disruption affects osteoclastogenesis. SUBJECTS AND METHODS The maturation of osteoclasts, formation of F-actin ring and bone resorption were detected by immunohistochemistry, TRAP, phalloidin staining and Coming Osteo assays. The expression of osteoclast-related factors was measured by qRT-PCR. Early signaling pathways were verified by western blot. RESULTS Ano5-/- mice exhibited inhibitory formation of multinucleated osteoclasts with a reduction of TRAP activity. The expression of Nfatc1, c-Fos, Trap, Ctsk, Mmp9, Rank and Dc-stamp was significantly decreased in bone tissues and bone marrow-derived macrophages (BMMs) of Ano5-/- mice. Ano5-/- osteoclasts manifested disrupted actin ring and less mineral resorption. RANKL-induced early signaling pathways were suppressed in Ano5-/- osteoclasts and Ano5 knockdown RAW264.7 cells. Moreover, the inhibitory effects of NF-κB signalling pathway on osteoclastogenesis were partially attenuated with NF-κB signalling activator. CONCLUSIONS Ano5 deficiency impairs osteoclastogenesis, which leads to enhanced osteogenic phenotypes mediated by bone homeostasis dysregulation.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xinrong Ma
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Congcong Miao
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchuan Tian
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
6
|
Fujii Y, Okabe I, Hatori A, Sah SK, Kanaujiya J, Fisher M, Norris R, Terasaki M, Reichenberger EJ, Chen IP. Skeletal abnormalities caused by a Connexin43 R239Q mutation in a mouse model for autosomal recessive craniometaphyseal dysplasia. RESEARCH SQUARE 2024:rs.3.rs-3906170. [PMID: 38405920 PMCID: PMC10889043 DOI: 10.21203/rs.3.rs-3906170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and flaring metaphyses of long bones. Many patients with CMD suffer from neurological symptoms. To date, the pathogenesis of CMD is not fully understood. Treatment is limited to decompression surgery. Here, we report a knock in (KI) mouse model for AR CMD carrying a R239Q mutation in CX43. Cx43KI/KI mice replicate many features of AR CMD in craniofacial and long bones. In contrast to Cx43+/+ littermates, Cx43KI/KI mice exhibit periosteal bone deposition and increased osteoclast (OC) numbers in the endosteum of long bones, leading to an expanded bone marrow cavity and increased cortical bone thickness. Although formation of Cx43+/+ and Cx43KI/KI resting OCs are comparable, on bone chips the actively resorbing Cx43KI/KI OCs resorb less bone. Cortical bones of Cx43KI/KI mice have an increase in degenerating osteocytes and empty lacunae. Osteocyte dendrite formation is decreased with reduced expression levels of Fgf23, Sost, Tnf-α, IL-1β, Esr1, Esr2, and a lower Rankl/Opg ratio. Female Cx43KI/KI mice display a more severe phenotype. Sexual dimorphism in bone becomes more evident as mice age. Our data show that the CX43R239Q mutation results in mislocalization of CX43 protein and impairment of gap junction and hemichannel activity. Different from CX43 ablation mouse models, the CX43R239Q mutation leads to the AR CMD-like phenotype in Cx43KI/KI mice not only by loss-of-function but also via a not yet revealed dominant function.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Iichiro Okabe
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Ayano Hatori
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Shyam Kishor Sah
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Jitendra Kanaujiya
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Melanie Fisher
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Rachael Norris
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, CT, United States
| | - Ernst J. Reichenberger
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| | - I-Ping Chen
- Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
7
|
Soto Barros J, Braddock D, Carpenter TO. Hypophosphatemic rickets: An unexplained early feature of craniometaphyseal dysplasia. Bone Rep 2023; 19:101707. [PMID: 37654679 PMCID: PMC10466911 DOI: 10.1016/j.bonr.2023.101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Craniometaphyseal dysplasia (CMD) is an infrequently occurring skeletal dysplasia often caused by a mutation in ANKH. The most common features are early and progressive hyperostosis of craniofacial bones, which may cause obstruction of cranial nerves, and metaphyseal flaring of long bones. Rarely, rickets has been associated with CMD, occurring early in the course of the disease. We report an infant with CMD who presented with elevated serum alkaline phosphatase activity and low serum phosphorus at age 1 month and radiographic changes of rickets at 3 months of age. Further biochemical investigations revealed a high tubular reabsorption of phosphate and suppressed FGF23 level congruent with a deficit of phosphorus availability. Therapy with phosphorus was started at 4 months of age; calcitriol was subsequently added upon emergence of secondary hyperparathyroidism. A heterozygous pathogenic variant in ANKH c.1124_1126del (p.Ser375del) was identified. At 19 months of age therapy was discontinued in view of the corrected biochemical profile and radiographic improvement of rickets. ©The Authors. All rights reserved.
Collapse
Affiliation(s)
- Julio Soto Barros
- Department of Pediatrics, Faculty of Medicine, University of Concepcion, Chacabuco esquina Janequeo S/N, 4070106 Concepcion, Chile
- Las Higueras Hospital, Alto Horno 777, 4270918 Talcahuano, Chile
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| | - Demetrios Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas O Carpenter
- Department of Pediatrics (Endocrinology), Yale University School of Medicine, PO Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
8
|
Cuevas PL, Aellos F, Dawid IM, Helms JA. Wnt/β-Catenin Signaling in Craniomaxillofacial Osteocytes. Curr Osteoporos Rep 2023; 21:228-240. [PMID: 36807035 DOI: 10.1007/s11914-023-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW There is a growing appreciation within the scientific community that cells exhibit regional variation. Whether the variation is attributable to differences in embryonic origin or anatomical location and mechanical loading has not been elucidated; what is clear, however, is that adult cells carry positional information that ultimately affects their functions. The purpose of this review is to highlight the functions of osteocytes in the craniomaxillofacial (CMF) skeleton as opposed to elsewhere in the body, and in doing so gain mechanistic insights into genetic conditions and chemically-induced diseases that particularly affect this region of our anatomy. RECENT FINDINGS In the CMF skeleton, elevated Wnt/β-catenin signaling affects not only bone mass and volume, but also mineralization of the canalicular network and osteocyte lacunae. Aberrant elevation in the Wnt/β-catenin pathway can also produce micropetrosis and osteonecrosis of CMF bone, presumably due to a disruption in the signaling network that connects osteocytes to one another, and to osteoblasts on the bone surface.
Collapse
Affiliation(s)
- Pedro L Cuevas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Fabiana Aellos
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Isaiah M Dawid
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94305, USA.
| |
Collapse
|
9
|
Wu J, Li X, Chen S. Special manifestations and treatment of rare cases of snoring with special facial features and hearing loss in children. J Int Med Res 2022; 50:3000605221108085. [PMID: 35796496 PMCID: PMC9274808 DOI: 10.1177/03000605221108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This current case report describes two rare cases of children with both hearing loss and snoring. Case 1, a 17-month-old male patient, and case 2, an 11-year-old male patient, both presented with nasal obstruction, snoring and hearing loss. Physical examinations showed obvious enlargement of the head circumference and special facial features. The two children underwent otolaryngology examinations, endoscopy, hearing tests, laboratory examinations for bone metabolism markers, cranial computed tomography, X-rays and genome-wide exon sequencing. The first case was diagnosed with craniometaphyseal dysplasia, which was relieved after giving a low-calcium diet. The second case was diagnosed with osteopathia striata with cranial sclerosis by gene sequencing. Snoring improved after medication and the speech and quality of life improved with a hearing aid. Paediatric otolaryngological physicians need to have a deeper understanding of congenital diseases involving the bones. Only by genetic testing to determine the pathogenesis can those children be given the correct treatment, which is of great importance for improving their prognosis.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Paediatric Otolaryngology, Jiahui International Hospital, Shanghai, China
| | - Xiaoli Li
- Department of Radiation Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumei Chen
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wu JL, Li XL, Chen SM, Lan XP, Chen JJ, Li XY, Wang W. A three-year clinical investigation of a Chinese child with craniometaphyseal dysplasia caused by a mutated ANKH gene. World J Clin Cases 2021; 9:1853-1862. [PMID: 33748234 PMCID: PMC7953411 DOI: 10.12998/wjcc.v9.i8.1853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/31/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Craniometaphyseal dysplasia (CMD) is a rare genetic disorder. Autosomal dominant CMD (AD-CMD) is caused by mutations in the ANKH gene. Affected individuals typically have distinctive facial features including progressive thickening of the craniofacial bones. Treatment for AD-CMD primarily consists of surgical intervention to release compression of the cranial nerves and the brain stem/spinal cord. To alleviate progression of the clinical course and improve the quality of life in children waiting to undergo the necessary surgery, we investigated clinical changes in a diagnosed patient with AD-CMD over three years.
CASE SUMMARY A 17-mo-old boy presented with progressive nasal obstruction, snoring and hearing loss symptoms. Physical examination showed enlargement of the head circumference and clinical features such as wide nasal bridge, paranasal bossing, widely spaced eyes with an increased bizygomatic width, and a prominent mandible. The patient underwent otolaryngological examination, endoscopy, hearing test, laboratory examination of phosphorus and bone metabolism, cranial and femoral computed tomography, X-ray and next-generation sequencing. The patient was diagnosed with AD-CMD due to p.Phe377 deletion (c.1129_1131del) on exon 9 of the ANKH gene. After adherence to a prescribed low-calcium diet, the boy’s alkaline phosphatase (ALP) levels continuously decreased to within the normal range. However, after 14 mo of dietary intervention, his parents altered his diet to an intermittent low-calcium diet to include milk and eggs. The patient’s ALP was slightly higher than normal after the dietary change but remained close to the normal range. His serum osteocalcin changed to within normal levels after dietary regulation for 33 mo. His serum combined beta C-terminal telopeptide of type I collagen also continuously decreased after the nutritional intervention, although still slightly higher than normal levels. Despite fluctuating blood test results, the boy’s nasal symptoms were markedly relieved and steadily improved after dietary intervention. No significant changes were found in the craniofacial bones by cranial radiography. Close monitoring of clinical features is still ongoing. Calcitriol treatment is currently under consideration and a surgical procedure is planned as necessary in the future.
CONCLUSION We herein report the first Chinese case of AD-CMD with heterozygous mutation of p.Phe377 deletion (c.1129_1131del) on the ANKH gene. Biochemical alterations were significantly improved after dietary intervention indicating that a low-calcium diet may be applied in pediatric AD-CMD patients with ANKH mutations to help alleviate phenotypic manifestations and improve the quality of life before surgical intervention. Further large scale studies are needed to replicate these findings and to establish the appropriate timing for nutritional and surgical interventions
Collapse
Affiliation(s)
- Jia-Li Wu
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, China
| | - Xiao-Li Li
- Department of Radiation Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shu-Mei Chen
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, China
| | - Xiao-Ping Lan
- Molecular Diagnostic Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, China
| | - Jin-Jin Chen
- Department of Child Healthcare, Shanghai Children’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, China
| | - Xiao-Yan Li
- Department of Otolaryngology and Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200062, China
| | - Wei Wang
- Shanghai AhCare Consulting, Shanghai 20120, China
| |
Collapse
|
11
|
Chen IP. Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) into Osteoclasts. Bio Protoc 2020; 10:e3854. [PMID: 33659501 DOI: 10.21769/bioprotoc.3854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/02/2022] Open
Abstract
Defects in bone resorption by osteoclasts result in numerous rare genetic bone disorders as well as in some common diseases such as osteoporosis or osteopetrosis. The use of hiPSC-differentiated osteoclasts opens new avenues in this research field by providing an unlimited cell source and overcoming obstacles such as unavailability of human specimens and suitable animal models. Generation of hiPSCs is well established but efficient differentiation of hiPSCs into osteoclasts has been challenging. Published hiPSC-osteoclast differentiation protocols use a hiPSC-OP9 co-culture system or hiPSC-derived embryoid bodies (EBs) with multiple cytokines. Our three-stage protocol consists of 1) EB mesoderm differentiation, 2) expansion of myelomonocytic cells and 3) maturation of hiPSC-osteoclasts. We generate uniformly-sized EBs by culturing Accutase-dissociated hiPSCs on Nunclon Sphera microplates and promote EB mesoderm differentiation in a cytokine cocktail for 4 days. For Stage 2, EBs are transferred to gelatin-coated plates and cultured with hM-CSF and hIL-3 to expand the myelomonocytic population. By supplementing with vitamin D, hTGFβ, hM-CSF and hRANKL, cells collected at the end of Stage 2 are differentiated into mature osteoclasts (Stage 3). Compared to other techniques, our protocol does not require a co-culture system; induces EBs into mesoderm differentiation in a homogenous manner; uses less cytokines for differentiation; requires only a short time for osteoclast maturation and produces sufficient numbers of osteoclasts for subsequent molecular analyses. Graphic abstract.
Collapse
Affiliation(s)
- I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
12
|
Laurain A, Rubera I, Duranton C, Rutsch F, Nitschke Y, Ray E, Vido S, Sicard A, Lefthériotis G, Favre G. Alkaline Phosphatases Account for Low Plasma Levels of Inorganic Pyrophosphate in Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:586831. [PMID: 33425894 PMCID: PMC7793922 DOI: 10.3389/fcell.2020.586831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Patients on dialysis and kidney transplant recipients (KTR) present the syndrome of mineral and bone disorders (MBD), which share common traits with monogenic calcifying diseases related to disturbances of the purinergic system. Low plasma levels of inorganic pyrophosphate (PPi) and ectopic vascular calcifications belong to these two conditions. This suggests that the purinergic system may be altered in chronic kidney disease with MBD. Therefore, we perform a transversal pilot study in order to compare the determinants of PPi homeostasis and the plasma levels of PPi in patients on dialysis, in KTR and in healthy people. Patients and Methods We included 10 controls, 10 patients on maintenance dialysis, 10 early KTR 3 ± 1 months after transplantation and nine late KTR 24 ± 3 months after transplantation. We measured aortic calcifications, plasma and urine levels of PPi, the renal fractional excretion of PPi (FePPi), nucleoside triphosphate hydrolase (NPP) and ALP activities in plasma. Correlations and comparisons were assessed with non-parametric tests. Results Low PPi was found in patients on dialysis [1.11 (0.88–1.35), p = 0.004], in early KTR [0.91 (0.66–0.98), p = 0.0003] and in late KTR [1.16 (1.07–1.45), p = 0.02] compared to controls [1.66 (1.31–1.72) μmol/L]. Arterial calcifications were higher in patients on dialysis than in controls [9 (1–75) vs. 399 (25–526) calcium score/cm2, p < 0.05]. ALP activity was augmented in patients on dialysis [113 (74–160), p = 0.01] and in early KTR [120 (84–142), p = 0.002] compared to controls [64 (56–70) UI/L]. The activity of NPP and FePPi were not different between groups. ALP activity was negatively correlated with PPi (r = −0.49, p = 0.001). Discussion Patients on dialysis and KTR have low plasma levels of PPi, which are partly related to high ALP activity, but neither to low NPP activity, nor to increased renal excretion of PPi. Further work is necessary to explore comprehensively the purinergic system in chronic kidney disease.
Collapse
Affiliation(s)
- Audrey Laurain
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Nephrology Department, University Hospital, Nice, France
| | - Isabelle Rubera
- UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France
| | - Christophe Duranton
- UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany
| | - Elodie Ray
- Department of Vascular Medicine and Surgery, University Hospital, Nice, France
| | - Sandor Vido
- Nephrology Department, University Hospital, Nice, France
| | - Antoine Sicard
- Faculty of Medicine, Côte d'Azur University, Nice, France.,Nephrology Department, University Hospital, Nice, France
| | - Georges Lefthériotis
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Department of Vascular Medicine and Surgery, University Hospital, Nice, France
| | - Guillaume Favre
- Faculty of Medicine, Côte d'Azur University, Nice, France.,UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), Centre National de la Recherche Scientifique, Nice, France.,Nephrology Department, University Hospital, Nice, France
| |
Collapse
|
13
|
Fujii Y, Kozak E, Dutra E, Varadi A, Reichenberger EJ, Chen IP. Restriction of Dietary Phosphate Ameliorates Skeletal Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia. J Bone Miner Res 2020; 35:2070-2081. [PMID: 33463757 PMCID: PMC9164311 DOI: 10.1002/jbmr.4110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 11/08/2022]
Abstract
Craniometaphyseal dysplasia (CMD), a rare genetic bone disorder, is characterized by lifelong progressive thickening of craniofacial bones and metaphyseal flaring of long bones. The autosomal dominant form of CMD is caused by mutations in the progressive ankylosis gene ANKH (mouse ortholog Ank), encoding a pyrophosphate (PPi) transporter. We previously reported reduced formation and function of osteoblasts and osteoclasts in a knockin (KI) mouse model for CMD (AnkKI/KI) and in CMD patients. We also showed rapid protein degradation of mutant ANK/ANKH. Mutant ANK protein displays reduced PPi transport, which may alter the inorganic phosphate (Pi) and PPi ratio, an important regulatory mechanism for bone mineralization. Here we investigate whether reducing dietary Pi intake can ameliorate the CMD-like skeletal phenotype by comparing male and female Ank+/+ and AnkKI/KI mice exposed to a low (0.3%) and normal (0.7%) Pi diet for 13 weeks from birth. Serum Pi and calcium (Ca) levels were not significantly changed by diet, whereas PTH and 25-hydroxy vitamin D (25-OHD) were decreased by low Pi diet but only in male Ank+/+ mice. Importantly, the 0.3% Pi diet significantly ameliorated mandibular hyperostosis in both sexes of AnkKI/KI mice. A tendency of decreased femoral trabeculation was observed in male and female Ank+/+ mice as well as in male AnkKI/KI mice fed with the 0.3% Pi diet. In contrast, in female AnkKI/KI mice the 0.3% Pi diet resulted in increased metaphyseal trabeculation. This was also the only group that showed increased bone formation rate. Low Pi diet led to increased osteoclast numbers and increased bone resorption in all mice. We conclude that lowering but not depleting dietary Pi delays the development of craniofacial hyperostosis in CMD mice without severely compromising serum levels of Pi, Ca, PTH, and 25-OHD. These findings may have implications for better clinical care of patients with CMD. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Eszter Kozak
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eliane Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Andras Varadi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
14
|
Chu EY, Vo TD, Chavez MB, Nagasaki A, Mertz EL, Nociti FH, Aitken SF, Kavanagh D, Zimmerman K, Li X, Stabach PR, Braddock DT, Millán JL, Foster BL, Somerman MJ. Genetic and pharmacologic modulation of cementogenesis via pyrophosphate regulators. Bone 2020; 136:115329. [PMID: 32224162 PMCID: PMC7482720 DOI: 10.1016/j.bone.2020.115329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/27/2022]
Abstract
Pyrophosphate (PPi) serves as a potent and physiologically important regulator of mineralization, with systemic and local concentrations determined by several key regulators, including: tissue-nonspecific alkaline phosphatase (ALPL gene; TNAP protein), the progressive ankylosis protein (ANKH; ANK), and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1; ENPP1). Results to date have indicated important roles for PPi in cementum formation, and we addressed several gaps in knowledge by employing genetically edited mouse models where PPi metabolism was disrupted and pharmacologically modulating PPi in a PPi-deficient mouse model. We demonstrate that acellular cementum growth is inversely proportional to PPi levels, with reduced cementum in Alpl KO (increased PPi levels) mice and excess cementum in Ank KO mice (decreased PPi levels). Moreover, simultaneous ablation of Alpl and Ank results in reestablishment of functional cementum in dKO mice. Additional reduction of PPi by dual deletion of Ank and Enpp1 does not further increase cementogenesis, and PDL space is maintained in part through bone modeling/remodeling by osteoclasts. Our results provide insights into cementum formation and expand our knowledge of how PPi regulates cementum. We also demonstrate for the first time that pharmacologic manipulation of PPi through an ENPP1-Fc fusion protein can regulate cementum growth, supporting therapeutic interventions targeting PPi metabolism.
Collapse
Affiliation(s)
- E Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - T D Vo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - M B Chavez
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - A Nagasaki
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - E L Mertz
- National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - F H Nociti
- Department of Prosthodontics & Periodontics, State University of Campinas, Piracicaba Dental School, Piracicaba, São Paulo, Brazil
| | - S F Aitken
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - D Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - K Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - X Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - P R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - D T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - J L Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - B L Foster
- Biosciences Division, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Bär L, Stournaras C, Lang F, Föller M. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Lett 2019; 593:1879-1900. [PMID: 31199502 DOI: 10.1002/1873-3468.13494] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is mainly produced in the bone and, upon secretion, forms a complex with a FGF receptor and coreceptor αKlotho. FGF23 can exert several endocrine functions, such as inhibiting renal phosphate reabsorption and 1,25-dihydroxyvitamin D3 production. Moreover, it has paracrine activities on several cell types, including neutrophils and hepatocytes. Klotho and Fgf23 deficiencies result in pathologies otherwise encountered in age-associated diseases, mainly as a result of hyperphosphataemia-dependent calcification. FGF23 levels are also perturbed in the plasma of patients with several disorders, including kidney or cardiovascular diseases. Here, we review mechanisms controlling FGF23 production and discuss how FGF23 regulation is perturbed in disease.
Collapse
Affiliation(s)
- Ludmilla Bär
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christos Stournaras
- Institute of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Institute of Physiology, University of Tübingen, Germany
| | - Michael Föller
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
16
|
Motch Perrine SM, Wu M, Stephens NB, Kriti D, van Bakel H, Jabs EW, Richtsmeier JT. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis Model Mech 2019; 12:dmm.038513. [PMID: 31064775 PMCID: PMC6550049 DOI: 10.1242/dmm.038513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (Fgfr2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans (Fgfr2+/S252W and Fgfr2+/P253R) showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-seq analysis revealed transcriptomic changes in mandibular bone at embryonic day 16.5 (E16.5), highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3. Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos, and found to result in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, contributing to mandibular dysmorphogenesis in craniosynostosis syndromes. This article has an associated First Person interview with the joint first authors of the paper. Summary: FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, resulting in abnormal embryonic osteogenesis of the mandible.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Weber TJ, Quarles LD. Molecular Control of Phosphorus Homeostasis and Precision Treatment of Hypophosphatemic Disorders. ACTA ACUST UNITED AC 2019; 5:75-85. [PMID: 31871877 DOI: 10.1007/s40610-019-0118-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Serum phosphorus is maintained in a narrow range by balancing dietary phosphate absorption, influx and efflux of phosphorus from bone and intracellular stores, and renal reabsorption of filtered phosphate. Acute hypophosphatemia, typically caused by transient increases in cellular uptake, can lead to severe complications such as cardiopulmonary dysfunction and rhabdomyolysis that can warrant parenteral phosphate repletion. Chronic hypophosphatemia, however, generally represents true phosphate deficiency and may result in long-term metabolic and skeletal complications, particularly in children due to the critical importance of phosphorus to skeletal mineralization and longitudinal growth. Recent Findings In addition to the well characterized roles of vitamin D and parathyroid hormone (PTH), a new bone-kidney axis has been discovered that regulates phosphate homeostasis through the bone-derived hormone Fibroblast Growth Factor 23 (FGF23) and its phosphaturic actions that are mediated by activation of fibroblast growth factor receptors (FGFRs) complexed with α-Klotho in renal tubules. Chronic hypophosphatemia can now be classified as FGF23 dependent or independent. Summary In cases of FGF23 dependent hypophosphatemia, traditional non-specific treatments with elemental phosphorus and 1,25(OH)2 vitamin D (calcitriol) can now be replaced with a targeted approach by using an FGF-23 blocking antibody (Burosumab).
Collapse
Affiliation(s)
- Thomas J Weber
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, 303 Baker House, DUMC 3470, Duke University Medical Center, Durham, NC 27710
| | - L Darryl Quarles
- Department of Medicine, Division of Nephrology 956 Court Ave, Suite B266, University of Tennessee Health Sciences Center, Memphis, TN 38163
| |
Collapse
|
18
|
Kanaujiya J, Bastow E, Luxmi R, Hao Z, Zattas D, Hochstrasser M, Reichenberger EJ, Chen IP. Rapid degradation of progressive ankylosis protein (ANKH) in craniometaphyseal dysplasia. Sci Rep 2018; 8:15710. [PMID: 30356088 PMCID: PMC6200807 DOI: 10.1038/s41598-018-34157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the progressive ankylosis protein (NP_473368, human ANKH) cause craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and widened metaphyses in long bones. The pathogenesis of CMD remains largely unknown, and treatment for CMD is limited to surgical intervention. We have reported that knock-in mice (AnkKI/KI) carrying a F377del mutation in ANK (NM_020332, mouse ANK) replicate many features of CMD. Interestingly, ablation of the Ank gene in AnkKO/KO mice also leads to several CMD-like phenotypes. Mutations causing CMD led to decreased steady-state levels of ANK/ANKH protein due to rapid degradation. While wild type (wt) ANK was mostly associated with plasma membranes, endoplasmic reticulum (ER), Golgi apparatus and lysosomes, CMD-linked mutant ANK was aberrantly localized in cytoplasm. Inhibitors of proteasomal degradation significantly restored levels of overexpressed mutant ANK, whereas endogenous CMD-mutant ANK/ANKH levels were more strongly increased by inhibitors of lysosomal degradation. However, these inhibitors do not correct the mislocalization of mutant ANK. Co-expressing wt and CMD-mutant ANK in cells showed that CMD-mutant ANK does not negatively affect wt ANK expression and localization, and vice versa. In conclusion, our finding that CMD mutant ANK/ANKH protein is short-lived and mislocalized in cells may be part of the CMD pathogenesis.
Collapse
Affiliation(s)
- Jitendra Kanaujiya
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Edward Bastow
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Raj Luxmi
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Zhifang Hao
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States
| | - Dimitrios Zattas
- Program in Structural Biology, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Department of Molecular, Cellular and Development Biology, Yale University, New Haven, CT, 06520, United States
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, 06030, United States
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, United States.
| |
Collapse
|
19
|
Abstract
The group of sclerosing bone dysplasia's is a clinically and genetically heterogeneous group of rare bone disorders which, according to the latest Nosology and classification of genetic skeletal disorders (2015), can be subdivided in three subgroups; the neonatal osteosclerotic dysplasias, the osteopetroses and related disorders and the other sclerosing bone disorders. Here, we give an overview of the most important radiographic and clinical symptoms, the underlying genetic defect and potential treatment options of the different sclerosing dysplasias included in these subgroups.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
21
|
Courbebaisse M, Lanske B. Biology of Fibroblast Growth Factor 23: From Physiology to Pathology. Cold Spring Harb Perspect Med 2018; 8:a031260. [PMID: 28778965 PMCID: PMC5932574 DOI: 10.1101/cshperspect.a031260] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor (FGF)23 is a phosphaturic hormone produced by osteocytes and osteoblasts that binds to FGF receptors in the presence of the transmembrane protein αKlotho. FGF23 mainly targets the renal proximal tubule to inhibit calcitriol production and the expression of the sodium/phosphate cotransporters NaPi2a and NaPi2c, thus inhibiting renal phosphate reabsorption. FGF23 also acts on the parathyroid glands to inhibit parathyroid hormone synthesis and secretion. FGF23 regulation involves many systemic and local factors, among them calcitriol, phosphate, and parathyroid hormone. Increased FGF23 is primarily observed in rare acquired or genetic disorders, but chronic kidney disease is associated with a reactional increase in FGF23 to combat hyperphosphatemia. However, high FGF23 levels induce left ventricular hypertrophy (LVH) and are associated with an increased risk of mortality. In this review, we describe FGF23 physiology and the pathological consequences of high or low FGF23 levels.
Collapse
Affiliation(s)
- Marie Courbebaisse
- Division of Bone and Mineral Research OMII, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Paris Descartes University, Paris 75006, France
| | - Beate Lanske
- Division of Bone and Mineral Research OMII, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
22
|
Couto AR, Parreira B, Thomson R, Soares M, Power DM, Stankovich J, Armas JB, Brown MA. Combined approach for finding susceptibility genes in DISH/chondrocalcinosis families: whole-genome-wide linkage and IBS/IBD studies. Hum Genome Var 2017; 4:17041. [PMID: 29104755 PMCID: PMC5666909 DOI: 10.1038/hgv.2017.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/29/2017] [Indexed: 11/27/2022] Open
Abstract
Twelve families with exuberant and early-onset calcium pyrophosphate dehydrate chondrocalcinosis (CC) and diffuse idiopathic skeletal hyperostosis (DISH), hereafter designated DISH/CC, were identified in Terceira Island, the Azores, Portugal. Ninety-two (92) individuals from these families were selected for whole-genome-wide linkage analysis. An identity-by-descent (IBD) analysis was performed in 10 individuals from 5 of the investigated pedigrees. The chromosome area with the maximal logarithm of the odds score (1.32; P=0.007) was not identified using the IBD/identity-by-state (IBS) analysis; therefore, it was not investigated further. From the IBD/IBS analysis, two candidate genes, LEMD3 and RSPO4, were identified and sequenced. Nine genetic variants were identified in the RSPO4 gene; one regulatory variant (rs146447064) was significantly more frequent in control individuals than in DISH/CC patients (P=0.03). Four variants were identified in LEMD3, and the rs201930700 variant was further investigated using segregation analysis. None of the genetic variants in RSPO4 or LEMD3 segregated within the studied families. Therefore, although a major genetic effect was shown to determine DISH/CC occurrence within these families, the specific genetic variants involved were not identified.
Collapse
Affiliation(s)
- Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Bruna Parreira
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Russell Thomson
- Center for Research in Mathematics, Western Sydney University, Penrith, Australia
| | - Marta Soares
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal
| | - Deborah M Power
- Center of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Jim Stankovich
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jácome Bruges Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira (HSEIT), Angra do Heroísmo, Portugal.,CEDOC-Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Chen IP, Luxmi R, Kanaujiya J, Hao Z, Reichenberger EJ. Craniometaphyseal Dysplasia Mutations in ANKH Negatively Affect Human Induced Pluripotent Stem Cell Differentiation into Osteoclasts. Stem Cell Reports 2017; 9:1369-1376. [PMID: 29056330 PMCID: PMC5830990 DOI: 10.1016/j.stemcr.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023] Open
Abstract
We identified osteoclast defects in craniometaphyseal dysplasia (CMD) using an easy-to-use protocol for differentiating osteoclasts from human induced pluripotent stem cells (hiPSCs). CMD is a rare genetic bone disorder, characterized by life-long progressive thickening of craniofacial bones and abnormal shape of long bones. hiPSCs from CMD patients with an in-frame deletion of Phe377 or Ser375 in ANKH are more refractory to in vitro osteoclast differentiation than control hiPSCs. To exclude differentiation effects due to genetic variability, we generated isogenic hiPSCs, which have identical genetic background except for the ANKH mutation. Isogenic hiPSCs with ANKH mutations formed fewer osteoclasts, resorbed less bone, expressed lower levels of osteoclast marker genes, and showed decreased protein levels of ANKH and vacuolar proton pump v-ATP6v0d2. This proof-of-concept study demonstrates that efficient and reproducible differentiation of isogenic hiPSCs into osteoclasts is possible and a promising tool for investigating mechanisms of CMD or other osteoclast-related disorders.
Collapse
Affiliation(s)
- I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Raj Luxmi
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Jitendra Kanaujiya
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| | - Zhifang Hao
- Department of Cell Biology, Center for Vascular Biology, University of Connecticut Health, Farmington, CT 06030, USA
| | - Ernst J Reichenberger
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Liu Y, Dutra EH, Reichenberger EJ, Chen IP. Dietary phosphate supplement does not rescue skeletal phenotype in a mouse model for craniometaphyseal dysplasia. J Negat Results Biomed 2016; 15:18. [PMID: 27784318 PMCID: PMC5080755 DOI: 10.1186/s12952-016-0061-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 01/22/2023] Open
Abstract
Background Mutations in the human progressive ankylosis gene (ANKH; Mus musculus ortholog Ank) have been identified as cause for craniometaphyseal dysplasia (CMD), characterized by progressive thickening of craniofacial bones and flared metaphyses of long bones. We previously reported a knock-in (KI) mouse model (AnkKI/KI) for CMD and showed transiently lower serum phosphate (Pi) as well as significantly higher mRNA levels of fibroblast growth factor 23 (Fgf23) in AnkKI/KI mice. FGF23 is secreted by bone and acts in kidney to promote Pi wasting which leads to lower serum Pi levels. Here, we examined whether increasing the Pi level can partially rescue the CMD-like skeletal phenotype by feeding Ank+/+ and AnkKI/KI mice with high Pi (1.7 %) diet from birth for 6 weeks. We studied the Pi metabolism in AnkKI/KI mice and CMD patients by examining the Pi regulators FGF23 and parathyroid hormone (PTH). Results High Pi diet did not correct CMD-like features, including massive jawbone, increased endosteal and periosteal perimeters and extensive trabeculation of femurs in AnkKI/KI mice shown by computed microtomography (μCT). This unexpected negative result is, however, consistent with normal serum/plasma levels of the intact/active form of FGF23 and PTH in AnkKI/KI mice and in CMD patients. In addition, FGF23 protein expression was unexpectedly normal in AnkKI/KI femoral cortical bone as shown by immunohistochemistry despite increased mRNA levels for Fgf23. Renal expression of genes involved in the FGF23 bone-kidney axis, including mFgfr1, mKlotho, mNpt2a, mCyp24a1 and m1αOHase, were comparable between Ank+/+ and AnkKI/KI mice as shown by quantitative real-time PCR. Different from normal FGF23 and PTH, serum 25-hydroxyvitamin D was significantly lower in AnkKI/KI mice and vitamin D insufficiency was found in four out of seven CMD patients. Conclusions Our data suggests that FGF23 signaling and Pi metabolism are not significantly affected in CMD and transiently low Pi level is not a major contributor to CMD.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Eliane H Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, 06030, USA. .,Department of Oral Health and Diagnostic Sciences, University of Connecticut Health (UConn Health), 263 Farmington Avenue, Farmington, CT, 06030-3705, USA.
| |
Collapse
|
25
|
Rifaey HS, Villa M, Zhu Q, Wang YH, Safavi K, Chen IP. Comparison of the Osteogenic Potential of Mineral Trioxide Aggregate and Endosequence Root Repair Material in a 3-dimensional Culture System. J Endod 2016; 42:760-5. [DOI: 10.1016/j.joen.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
|
26
|
|
27
|
Abstract
Shaping of the skeleton (modeling) and its maintenance throughout life (remodeling) require coordinated activity among bone forming (osteoblasts) and resorbing cells (osteoclasts) and osteocytes (bone embedded cells). The gap junction protein connexin43 (Cx43) has emerged as a key modulator of skeletal growth and homeostasis. The skeletal developmental abnormalities present in oculodentodigital and craniometaphyseal dysplasias, both linked to Cx43 gene (GJA1) mutations, demonstrate that the skeleton is a major site of Cx43 action. Via direct action on osteolineage cells, including altering production of pro-osteoclastogenic factors, Cx43 contributes to peak bone mass acquisition, cortical modeling of long bones, and maintenance of bone quality. Cx43 also contributes in diverse ways to bone responsiveness to hormonal and mechanical signals. Skeletal biology research has revealed the complexity of Cx43 function; in addition to forming gap junctions and "hemichannels", Cx43 provides a scaffold for signaling molecules. Hence, Cx43 actively participates in generation and modulation of cellular signals driving skeletal development and homeostasis. Pharmacological interference with Cx43 may in the future help remedy deterioration of bone quality occurring with aging, disuse and hormonal imbalances.
Collapse
Affiliation(s)
- Joseph P Stains
- Department of Orthopaedics, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University in St. Louis, Campus Box 8301, 425 South Euclid, St. Louis, MO 63110, United States.
| |
Collapse
|
28
|
Wu B, Jiang Y, Wang O, Li M, Xing XP, Xia WB. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features. Clin Chim Acta 2016; 456:122-127. [PMID: 26820766 DOI: 10.1016/j.cca.2016.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. CASE REPORT A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. CONCLUSIONS Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert.
Collapse
Affiliation(s)
- Bo Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
29
|
The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders. J Clin Med 2015; 3:1490-510. [PMID: 25621177 PMCID: PMC4300535 DOI: 10.3390/jcm3041490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.
Collapse
|
30
|
Allard L, Demoncheaux N, Machuca-Gayet I, Georgess D, Coury-Lucas F, Jurdic P, Bacchetta J. Biphasic Effects of Vitamin D and FGF23 on Human Osteoclast Biology. Calcif Tissue Int 2015; 97:69-79. [PMID: 25987164 DOI: 10.1007/s00223-015-0013-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/08/2015] [Indexed: 01/17/2023]
Abstract
Vitamin D and FGF23 play a major role in calcium/phosphate balance. Vitamin D may control bone resorption but the potential role of FGF23 has never been evaluated. The objective of this study was therefore to compare the effects of vitamin D and FGF23 on osteoclast differentiation and activity in human monocyte-derived osteoclasts. Human monocytes, purified from blood of healthy donors, were incubated with M-CSF and RANKL to obtain mature multinucleated osteoclasts (MNC). Experiments were carried out to assess the effects of FGF23 as compared to native vitamin D (25-D) and active vitamin D (1,25-D) on osteoclast differentiation and on bone-resorbing osteoclast activity. Additional experiments with the pan fibroblast growth factor receptor inhibitor (FGFR-i) were performed. Phosphorylation Akt and Erk pathways were analyzed by Western blot analyses. Both 1,25-D and FGF23, to a lesser extent, significantly inhibited osteoclastogenesis at early stages; when adding FGFR-i, osteoclast formation was restored. Biochemical experiments showed an activation of the Akt and Erk pathways under FGF23 treatment. In contrast, in terms of activity, 1,25-D had no effect on resorption, whereas FGF23 slightly but significantly increased bone resorption; 25-D had no effects on either differentiation or on activity. These data show that 1,25-D inhibits osteoclastogenesis without regulating osteoclast-mediated bone resorption activity; FGF23 has biphasic effects on osteoclast physiology, inhibiting osteoclast formation while stimulating slightly osteoclast activity. These results may be of importance and taken into account in chronic kidney disease when therapies modulating FGF23 are available.
Collapse
Affiliation(s)
- Lise Allard
- Institut de Génomique Fonctionnelle de Lyon, ENS UMR 5242, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Ito N, Wijenayaka AR, Prideaux M, Kogawa M, Ormsby RT, Evdokiou A, Bonewald LF, Findlay DM, Atkins GJ. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol Cell Endocrinol 2015; 399:208-18. [PMID: 25458698 DOI: 10.1016/j.mce.2014.10.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/19/2014] [Accepted: 10/11/2014] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor-23 (FGF23), produced by osteocytes, is the key physiological regulator of phosphate homeostasis. Sepsis patients often experience transient hypophosphataemia, suggesting the regulation of FGF23 levels by pro-inflammatory factors. Here, we used the osteocyte-like cell line IDG-SW3 to investigate the effect of pro-inflammatory stimuli on FGF23 production. In differentiated IDG-SW3 cultures, basal Fgf23 mRNA was dose-dependently up-regulated by pro-inflammatory cytokines TNF, IL-1β and TWEAK, and bacterial LPS. Similar effects were observed in human bone samples. TNF- and IL-1β-induced Fgf23 expression was NF-κB-dependent. Conversely, mRNA encoding negative regulators of FGF23, Phex, Dmp1 and Enpp1, were suppressed by TNF, IL-1β, TWEAK and LPS, independent of NF-κβ signalling. Galnt3, the protein product of which protects intact FGF23 protein from furin/furin-like proprotein convertase cleavage, increased in response to these treatments. C-terminal FGF23 and intact FGF23 protein levels also increased, the latter only in the presence of Furin inhibitors, suggesting that enzymatic cleavage exerts critical control of active FGF23 secretion by osteocytes. Our results demonstrate in principle that pro-inflammatory stimuli are capable of increasing osteocyte secretion of FGF23, which may contribute to hypophosphataemia during sepsis and possibly other inflammatory conditions.
Collapse
Affiliation(s)
- Nobuaki Ito
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Asiri R Wijenayaka
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Matthew Prideaux
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Masakazu Kogawa
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Renee T Ormsby
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, The University of Adelaide, Woodville, SA 5011, Australia
| | - Lynda F Bonewald
- Department of Oral Biology, University of Missouri-Kansas City School of Dentistry, Kansas, MO 64108, United States
| | - David M Findlay
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gerald J Atkins
- Bone Cell Biology Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
32
|
Chen IP, Tadinada A, Dutra EH, Utreja A, Uribe F, Reichenberger EJ. Dental Anomalies Associated with Craniometaphyseal Dysplasia. J Dent Res 2014; 93:553-8. [PMID: 24663682 DOI: 10.1177/0022034514529304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Craniometaphyseal dysplasia (CMD) is a rare genetic disorder encompassing hyperostosis of craniofacial bones and metaphyseal widening of tubular bones. Dental abnormalities are features of CMD that have been little discussed in the literature. We performed dentofacial examination of patients with CMD and evaluated consequences of orthodontic movement in a mouse model carrying a CMD knock-in (KI) mutation (Phe377del) in the Ank gene. All patients have a history of delayed eruption of permanent teeth. Analysis of data obtained by cone-beam computed tomography showed significant bucco-lingual expansion of jawbones, more pronounced in mandibles than in maxillae. There was no measurable increase in bone density compared with that in unaffected individuals. Orthodontic cephalometric analysis showed that patients with CMD tend to have a short anterior cranial base, short upper facial height, and short maxillary length. Microcomputed tomography (micro-CT) analysis in homozygous Ank (KI/KI) mice, a model for CMD, showed that molars can be moved by orthodontic force without ankylosis, however, at a slower rate compared with those in wild-type Ank (+/+) mice (p < .05). Histological analysis of molars in Ank (KI/KI) mice revealed decreased numbers of TRAP(+) osteoclasts on the bone surface of pressure sides. Based on these findings, recommendations for the dental treatment of patients with CMD are provided.
Collapse
Affiliation(s)
- I-P Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - A Tadinada
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - E H Dutra
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - A Utreja
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - F Uribe
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - E J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
33
|
Waterval JJ, Borra VM, Van Hul W, Stokroos RJ, Manni JJ. Sclerosing bone dysplasias with involvement of the craniofacial skeleton. Bone 2014; 60:48-67. [PMID: 24325978 DOI: 10.1016/j.bone.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
In this review we provide a complete overview of the existing sclerosing bone dysplasias with craniofacial involvement. Clinical presentation, disease course, the craniofacial symptoms, genetic transmission pattern and pathophysiology are discussed. There is an emphasis on radiologic features with a large collection of CT and MRI images. In previous reviews the craniofacial area of the sclerosing bone dysplasias was underexposed. However, craniofacial symptoms are often the first symptoms to address a physician. The embryology of the skull and skull base is explained and illustrated for a better understanding of the affected areas.
Collapse
Affiliation(s)
- J J Waterval
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - V M Borra
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - W Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - R J Stokroos
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - J J Manni
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| |
Collapse
|
34
|
Osteocyte Communication with the Kidney Via the Production of FGF23: Remote Control of Phosphate Homeostasis. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9155-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Sousa SB, Jenkins D, Chanudet E, Tasseva G, Ishida M, Anderson G, Docker J, Ryten M, Sa J, Saraiva JM, Barnicoat A, Scott R, Calder A, Wattanasirichaigoon D, Chrzanowska K, Simandlová M, Van Maldergem L, Stanier P, Beales PL, Vance JE, Moore GE. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat Genet 2014; 46:70-6. [PMID: 24241535 DOI: 10.1038/ng.2829] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 10/23/2013] [Indexed: 12/21/2022]
Abstract
Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.
Collapse
Affiliation(s)
- Sérgio B Sousa
- 1] Clinical and Molecular Genetics Unit, University College London (UCL) Institute of Child Health, London, UK. [2] Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Dagan Jenkins
- 1] Molecular Medicine Unit, UCL Institute of Child Health, London, UK. [2]
| | - Estelle Chanudet
- 1] Centre for Translational Genomics-GOSgene, UCL Institute of Child Health, London, UK. [2]
| | - Guergana Tasseva
- 1] Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. [2]
| | - Miho Ishida
- Clinical and Molecular Genetics Unit, University College London (UCL) Institute of Child Health, London, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, UK
| | - James Docker
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Mina Ryten
- 1] Reta Lila Weston Institute, UCL Institute of Neurology, London, UK. [2] Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Joaquim Sa
- Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jorge M Saraiva
- 1] Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. [2] University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Angela Barnicoat
- Clinical Genetics Department, Great Ormond Street Hospital, London, UK
| | - Richard Scott
- Clinical Genetics Department, Great Ormond Street Hospital, London, UK
| | - Alistair Calder
- Radiology Department, Great Ormond Street Hospital, London, UK
| | | | - Krystyna Chrzanowska
- Department of Medical Genetics, Children's Memorial Health Institute, Warsaw, Poland
| | - Martina Simandlová
- Department of Biology and Medical Genetics, University Hospital Motol and Second Faculty of Medicine, Prague, Czech Republic
| | - Lionel Van Maldergem
- 1] Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France. [2] Cutis Laxa Study Group, University of Franche-Comté, Besancon, France
| | - Philip Stanier
- Neural Development Unit, UCL Institute of Child Health, London, UK
| | - Philip L Beales
- 1] Molecular Medicine Unit, UCL Institute of Child Health, London, UK. [2] Centre for Translational Genomics-GOSgene, UCL Institute of Child Health, London, UK
| | - Jean E Vance
- Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gudrun E Moore
- Clinical and Molecular Genetics Unit, University College London (UCL) Institute of Child Health, London, UK
| |
Collapse
|
36
|
Chen IP, Fukuda K, Fusaki N, Iida A, Hasegawa M, Lichtler A, Reichenberger EJ. Induced pluripotent stem cell reprogramming by integration-free Sendai virus vectors from peripheral blood of patients with craniometaphyseal dysplasia. Cell Reprogram 2013; 15:503-13. [PMID: 24219578 DOI: 10.1089/cell.2013.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies of rare genetic bone disorders are often limited due to unavailability of tissue specimens and the lack of animal models fully replicating phenotypic features. Craniometaphyseal dysplasia (CMD) is a rare monogenic disorder characterized by hyperostosis of craniofacial bones concurrent with abnormal shape of long bones. Mutations for autosomal dominant CMD have been identified in the ANK gene (ANKH). Here we describe a simple and efficient method to reprogram adherent cells cultured from peripheral blood to human induced pluripotent stem cells (hiPSCs) from eight CMD patients and five healthy controls. Peripheral blood mononuclear cells (PBMCs) were separated from 5-7 mL of whole blood by Ficoll gradient, expanded in the presence of cytokines and transduced with Sendai virus (SeV) vectors encoding OCT3/4, SOX2, KLF4, and c-MYC. SeV vector, a cytoplasmic RNA vector, is lost from host cells after propagation for 10-13 passages. These hiPSCs express stem cell markers, have normal karyotypes, and are capable of forming embryoid bodies in vitro as well as teratomas in vivo. Further differentiation of these patient-specific iPSCs into osteoblasts and osteoclasts can provide a useful tool to study the effects CMD mutations on bone, and this approach can be applied for disease modeling of other rare genetic musculoskeletal disorders.
Collapse
Affiliation(s)
- I-Ping Chen
- 1 Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health Center , Farmington, CT, 06030
| | | | | | | | | | | | | |
Collapse
|
37
|
Hu Y, Chen IP, de Almeida S, Tiziani V, Do Amaral CMR, Gowrishankar K, Passos-Bueno MR, Reichenberger EJ. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia. PLoS One 2013; 8:e73576. [PMID: 23951358 PMCID: PMC3741164 DOI: 10.1371/journal.pone.0073576] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated.
Collapse
Affiliation(s)
- Ying Hu
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Salome de Almeida
- Medical Genetics Service, Centro Hospitalar de Lisboa, Central, Portugal
| | | | | | - Kalpana Gowrishankar
- Department of Medical Genetics, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | | | - Ernst J. Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zhou X, Cui Y, Zhou X, Han J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int J Biol Sci 2012; 8:778-90. [PMID: 22719218 PMCID: PMC3372882 DOI: 10.7150/ijbs.4538] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 12/22/2022] Open
Abstract
During the process of matrix vesicle (MV)-mediated initiation of mineralisation, chondrocytes and osteoblasts mineralise the extracellular matrix by promoting the seeding of basic calcium phosphate crystals of hydroxyapatite (HA) along the collagen fibrils. This orchestrated process is carefully regulated by the balanced action of propagators and inhibitors of calcification. The primary antagonistic regulators of extracellular matrix mineralisation are phosphate (Pi) and inorganic pyrophosphate (PPi). Studies in mouse models and in humans have established critical roles for Pi/PPi homeostasis in biomineralisation. In this review, we present the regulators of Pi/PPi, as derived from animal models, and discuss their clinical relevance to physiological and pathological mineralisation.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Shandong Academy of Medical Sciences, Shandong Medical Biotechnological Center, Key Laboratory for Rare Disease Research of Shandong Province, Shandong, China
| | | | | | | |
Collapse
|
39
|
Mackenzie NCW, Zhu D, Milne EM, van 't Hof R, Martin A, Quarles DL, Millán JL, Farquharson C, MacRae VE. Altered bone development and an increase in FGF-23 expression in Enpp1(-/-) mice. PLoS One 2012; 7:e32177. [PMID: 22359666 PMCID: PMC3281127 DOI: 10.1371/journal.pone.0032177] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/22/2012] [Indexed: 01/18/2023] Open
Abstract
Nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) is required for the conversion of extracellular ATP into inorganic pyrophosphate (PP(i)), a recognised inhibitor of hydroxyapatite (HA) crystal formation. A detailed phenotypic assessment of a mouse model lacking NPP1 (Enpp1(-/-)) was completed to determine the role of NPP1 in skeletal and soft tissue mineralization in juvenile and adult mice. Histopathological assessment of Enpp1(-/-) mice at 22 weeks of age revealed calcification in the aorta and kidney and ectopic cartilage formation in the joints and spine. Radiographic assessment of the hind-limb showed hyper-mineralization in the talocrural joint and hypo-mineralization in the femur and tibia. MicroCT analysis of the tibia and femur disclosed altered trabecular architecture and bone geometry at 6 and 22 weeks of age in Enpp1(-/-) mice. Trabecular number, trabecular bone volume, structure model index, trabecular and cortical thickness were all significantly reduced in tibiae and femurs from Enpp1(-/-) mice (P<0.05). Bone stiffness as determined by 3-point bending was significantly reduced in Enpp1(-/-) tibiae and femurs from 22-week-old mice (P<0.05). Circulating phosphate and calcium levels were reduced (P<0.05) in the Enpp1(-/-) null mice. Plasma levels of osteocalcin were significantly decreased at 6 weeks of age (P<0.05) in Enpp1(-/-) mice, with no differences noted at 22 weeks of age. Plasma levels of CTx (Ratlaps™) and the phosphaturic hormone FGF-23 were significantly increased in the Enpp1(-/-) mice at 22 weeks of age (P<0.05). Fgf-23 messenger RNA expression in cavarial osteoblasts was increased 12-fold in Enpp1(-/-) mice compared to controls. These results indicate that Enpp1(-/-) mice are characterized by severe disruption to the architecture and mineralization of long-bones, dysregulation of calcium/phosphate homeostasis and changes in Fgf-23 expression. We conclude that NPP1 is essential for normal bone development and control of physiological bone mineralization.
Collapse
Affiliation(s)
- Neil Charles Wallace Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Elspeth M. Milne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Rob van 't Hof
- Rheumatic Diseases Unit, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Darryl Leigh Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Vicky Elisabeth MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| |
Collapse
|
40
|
Abstract
The discovery of fibroblast growth factor 23 (FGF-23) has expanded our understanding of phosphate and vitamin D homeostasis and provided new insights into the pathogenesis of hereditary hypophosphatemic and hyperphosphatemic disorders, as well as acquired disorders of phosphate metabolism, such as chronic kidney disease. FGF-23 is secreted by osteoblasts and osteocytes in bone and principally targets the kidney to regulate the reabsorption of phosphate, the production and catabolism of 1,25-dihydroxyvitamin D and the expression of α-Klotho, an anti-ageing hormone. Secreted FGF-23 plays a central role in complex endocrine networks involving local bone-derived factors that regulate mineralization of extracellular matrix and systemic hormones involved in mineral metabolism. Inactivating mutations of PHEX, DMP1 and ENPP1, which cause hereditary hypophosphatemic disorders and primary defects in bone mineralization, stimulate FGF23 gene transcription in osteoblasts and osteocytes, at least in part, through canonical and intracrine FGF receptor pathways. These FGF-23 regulatory pathways may enable systemic phosphate and vitamin D homeostasis to be coordinated with bone mineralization. FGF-23 also functions as a counter-regulatory hormone for 1,25-dihydroxyvitamin D in a bone-kidney endocrine loop. FGF-23, through regulation of additional genes in the kidney and extrarenal tissues, probably has broader physiological functions beyond regulation of mineral metabolism that account for the association between FGF-23 and increased mortality and morbidity in chronic kidney disease.
Collapse
Affiliation(s)
- L Darryl Quarles
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, 19 South Manassas Street, Memphis, TN 38163, USA.
| |
Collapse
|
41
|
Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, Fujitab T. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone 2011; 49:913-6. [PMID: 21745613 DOI: 10.1016/j.bone.2011.06.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/13/2023]
Abstract
X-linked hypophosphatemic rickets/osteomalacia (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and autosomal recessive hypophosphatemic rickets/osteomalacia (ARHR1 or ARHR2) are hereditary fibroblast growth factor 23 (FGF23)-related hypophosphatemic rickets showing similar clinical features. We here show a patient with hypophosphatemic rickets and widespread ossification of posterior longitudinal ligament (OPLL). The proband is a 62-year-old female. Her parents are first cousins and showed no signs of rickets or osteomalacia. She showed hypophosphatemic rickets with elevated FGF23 level and had been clinically considered to be suffering from XLH. However, direct sequencing of all coding exons and exon-intron junctions of phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX), FGF23 and dentin matrix protein 1 (DMP1) genes, responsible genes for XLH, ADHR and ARHR1, respectively, showed no mutation. A novel homozygous splice donor site mutation was found at the exon-intron junction of exon 21 of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene responsible for ARHR2 (IVS21+1_3(GTA>CACC)). Subsequent analysis of mRNA revealed that this mutation caused skipping of exon 21 which created a premature stop codon in exon 22. These results indicate that genetic analysis is mandatory for the correct diagnosis of hereditary FGF23-related hypophosphatemic rickets. Because Enpp1 knockout mouse is a model of OPLL, this case also suggests that OPLL is associated with ARHR2.
Collapse
Affiliation(s)
- Tasuku Saito
- Division of Pediatrics, University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Rivero-Garvía M, Márquez-Rivas FJ, García-Iglesias A, Gutiérrez-González R. Intracranial hypertension in 2 cases of craniometaphyseal dysplasia: differing surgical options. Neurosurg Focus 2011; 31:E6. [DOI: 10.3171/2011.4.focus1126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Craniometaphyseal dysplasia (CMD) is a very rare bone disorder characterized by abnormally developed metaphyses in long bones and sclerosis of the craniofacial bones. In this paper, the authors report 2 cases of children diagnosed with CMD and chronic intracranial hypertension with deletion in exon 9 of the human ANK gene (ANKH). After intracranial monitoring, a different treatment was chosen for each patient. One of the patients was treated using CSF shunting because ventriculomegaly in the absence of a Chiari malformation was also observed on cerebral MR imaging. The other patient underwent cranial expansion and decompressive craniotomy of the posterior fossa, because ventriculomegaly was excluded after cerebral MR imaging and cervical MR imaging showed a Chiari malformation Type I. The origin of intracranial hypertension in CMD is multifactorial. Previous intracranial pressure monitoring and a thorough understanding of neuroimaging studies are essential to achieve an accurate diagnosis and effective treatment.
Collapse
|