1
|
Thobor BM, Tilstra A, Mueller B, Haas A, Hehemann JH, Wild C. Mucus carbohydrate composition correlates with scleractinian coral phylogeny. Sci Rep 2024; 14:14019. [PMID: 38890484 PMCID: PMC11189453 DOI: 10.1038/s41598-024-64828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mucus surface layer serves vital functions for scleractinian corals and consists mainly of carbohydrates. Its carbohydrate composition has been suggested to be influenced by environmental conditions (e.g., temperature, nutrients) and microbial pressures (e.g., microbial degradation, microbial coral symbionts), yet to what extend the coral mucus composition is determined by phylogeny remains to be tested. To investigate the variation of mucus carbohydrate compositions among coral species, we analyzed the composition of mucosal carbohydrate building blocks (i.e., monosaccharides) for five species of scleractinian corals, supplemented with previously reported data, to discern overall patterns using cluster analysis. Monosaccharide composition from a total of 23 species (belonging to 14 genera and 11 families) revealed significant differences between two phylogenetic clades that diverged early in the evolutionary history of scleractinian corals (i.e., complex and robust; p = 0.001, R2 = 0.20), mainly driven by the absence of arabinose in the robust clade. Despite considerable differences in environmental conditions and sample analysis protocols applied, coral phylogeny significantly correlated with monosaccharide composition (Mantel test: p < 0.001, R2 = 0.70). These results suggest that coral mucus carbohydrates display phylogenetic dependence and support their essential role in the functioning of corals.
Collapse
Affiliation(s)
- Bianca M Thobor
- Department of Marine Ecology, University of Bremen, Bremen, Germany.
| | - Arjen Tilstra
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - Benjamin Mueller
- Department of Marine Ecology, University of Bremen, Bremen, Germany
- Department of Freshwater and Marine Ecology, University of Amsterdam, Amsterdam, The Netherlands
- CARMABI Foundation, Willemstad, Curaçao
| | - Andreas Haas
- Department of Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jan-Hendrik Hehemann
- Department of Marine Glycobiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, University of Bremen, Bremen, Germany
| |
Collapse
|
2
|
Seničar M, Roubinet B, Lafite P, Legentil L, Ferrières V, Landemarre L, Daniellou R. Gal f-Specific Neolectins: Towards Promising Diagnostic Tools. Int J Mol Sci 2024; 25:4826. [PMID: 38732045 PMCID: PMC11084152 DOI: 10.3390/ijms25094826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.
Collapse
Affiliation(s)
- Mateja Seničar
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Benoît Roubinet
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Pierre Lafite
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
| | - Laurent Legentil
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | - Vincent Ferrières
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | | | - Richard Daniellou
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- Chaire de Cosmétologie, AgroParisTech, 10 Rue Léonard de Vinci, 45100 Orléans, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Micalis, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Lee S, Chung YS, Lee KW, Choi M, Sonn CH, Oh WJ, Hong HG, Shim J, Choi K, Kim SJ, Park JB, Kim TJ. Alteration of γδ T cell subsets in non-human primates transplanted with GGTA1 gene-deficient porcine blood vessels. Xenotransplantation 2024; 31:e12838. [PMID: 38112053 DOI: 10.1111/xen.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND αGal-deficient xenografts are protected from hyperacute rejection during xenotransplantation but are still rejected more rapidly than allografts. Despite studies showing the roles of non-Gal antibodies and αβ T cells in xenograft rejection, the involvement of γδ T cells in xenograft rejection has been limitedly investigated. METHODS Six male cynomolgus monkeys were transplanted with porcine vessel xenografts from wild-type (n = 3) or GGTA1 knockout (n = 3) pigs. We measured the proportions and T cell receptor (TCR) repertoires of blood γδ T cells before and after xenotransplant. Grafted porcine vessel-infiltrating immune cells were visualized at the end of experiments. RESULTS Blood γδ T cells expanded and infiltrated into the graft vessel adventitia following xenotransplantation of α-Gal-deficient pig blood vessels. Pre- and post-transplant analysis of γδ TCR repertoire revealed a transition in δ chain usage post-transplantation, with the expansion of several clonotypes of δ1, δ3, or δ7 chains. Furthermore, the distinctions between pre- and post-transplant δ chain usages were more prominent than those observed for γ chain usages. CONCLUSION γδ TCR repertoire was significantly altered by xenotransplantation, suggesting the role of γδ T cells in sustained xenoreactive immune responses.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yun Shin Chung
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Miran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Jun Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co., Ltd, Pyeongtaek, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
4
|
Karim S, Leyva-Castillo JM, Narasimhan S. Tick salivary glycans - a sugar-coated tick bite. Trends Parasitol 2023; 39:1100-1113. [PMID: 37838514 DOI: 10.1016/j.pt.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
Ticks are hematophagous arthropods that transmit disease-causing pathogens worldwide. Tick saliva deposited into the tick-bite site is composed of an array of immunomodulatory proteins that ensure successful feeding and pathogen transmission. These salivary proteins are often glycosylated, and glycosylation is potentially critical for the function of these proteins. Some salivary glycans are linked to the phenomenon of red meat allergy - an allergic response to red meat consumption in humans exposed to certain tick species. Tick salivary glycans are also invoked in the phenomenon of acquired tick resistance wherein non-natural host species exposed to tick bites develop an immune response that thwarts subsequent tick feeding. This review dwells on our current knowledge of these two phenomena, thematically linked by salivary glycans.
Collapse
Affiliation(s)
- Shahid Karim
- University of Southern Mississippi, Hattiesburg, MS, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven-06520, CT, USA.
| |
Collapse
|
5
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
6
|
Fragment-Based Lead Discovery Strategies in Antimicrobial Drug Discovery. Antibiotics (Basel) 2023; 12:antibiotics12020315. [PMID: 36830226 PMCID: PMC9951956 DOI: 10.3390/antibiotics12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100-300 Da) and their putative targets, often with low affinity (KD ~0.1-1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
Collapse
|
7
|
Cipriano M, Ruberti E, Tovani-Palone MR. Combined use of lactoferrin and vitamin D as a preventive and therapeutic supplement for SARS-CoV-2 infection: Current evidence. World J Clin Cases 2022; 10:11665-11670. [PMID: 36405280 PMCID: PMC9669848 DOI: 10.12998/wjcc.v10.i32.11665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin is a multifunctional protein that exhibits anti-inflammatory, immune regulating and anti-infective properties. One of its receptor sites is located on severe acute respiratory syndrome coronavirus 2. The binding of lactoferrin with heparin sulfate proteoglycans may prevent the first contact between the virus and host cells, thus preventing subsequent infection. Given that lactoferrin may act as a natural mucosal barrier, an intranasal treatment together with its oral intake can be hypothesized to prevent the spread, infection and inflammation caused by coronavirus disease 2019 (COVID-19). Moreover, the literature reports that vitamin D plays an essential role in promoting immune response. With its anti-inflammatory and immunoregulatory properties, vitamin D is critical for activating the immune system’s defenses, improving immune cell function. Different studies also demonstrate that lactoferrin is a potential activator of the vitamin D receptor. In this sense, the combined use of lactoferrin (through an association of oral intake and a nasal spray formulation) and vitamin D could represent a valuable therapy for COVID-19 treatment and prevention. However, further randomized clinical trials are needed before recommending/prescribing them.
Collapse
Affiliation(s)
- Massimiliano Cipriano
- Department of Laparoscopic Surgery, Umberto I General Hospital, Medical School Sapienza University, Rome 161, Italy
| | - Enzo Ruberti
- Department of Human Neuroscience, Sapienza University of Rome, Rome 00185, Italy
| | - Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| |
Collapse
|
8
|
Piacentini R, Centi L, Miotto M, Milanetti E, Di Rienzo L, Pitea M, Piazza P, Ruocco G, Boffi A, Parisi G. Lactoferrin Inhibition of the Complex Formation between ACE2 Receptor and SARS CoV-2 Recognition Binding Domain. Int J Mol Sci 2022; 23:ijms23105436. [PMID: 35628247 PMCID: PMC9141661 DOI: 10.3390/ijms23105436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
The present investigation focuses on the analysis of the interactions among human lactoferrin (LF), SARS-CoV-2 receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptor in order to assess possible mutual interactions that could provide a molecular basis of the reported preventative effect of lactoferrin against CoV-2 infection. In particular, kinetic and thermodynamic parameters for the pairwise interactions among the three proteins were measured via two independent techniques, biolayer interferometry and latex nanoparticle-enhanced turbidimetry. The results obtained clearly indicate that LF is able to bind the ACE2 receptor ectodomain with significantly high affinity, whereas no binding to the RBD was observed up to the maximum “physiological” lactoferrin concentration range. Lactoferrin, above 1 µM concentration, thus appears to directly interfere with RBD–ACE2 binding, bringing about a measurable, up to 300-fold increase of the KD value relative to RBD–ACE2 complex formation.
Collapse
Affiliation(s)
- Roberta Piacentini
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
| | - Laura Centi
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
| | - Mattia Miotto
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Milanetti
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Di Rienzo
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
| | - Martina Pitea
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- D-Tails s.r.l., Via di Torre Rossa 66, 00165 Rome, Italy
| | - Paolo Piazza
- EDIF Instruments s.r.l., Via Ardeatina 132, 00147 Rome, Italy;
| | - Giancarlo Ruocco
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Department of Biochemistry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy; (R.P.); (L.C.); (A.B.)
| | - Giacomo Parisi
- Center of Life Nano and Neuro Science, Institute of Italian Technology, Viale Regina Elena 291, 00181 Rome, Italy; (M.M.); (E.M.); (L.D.R.); (M.P.); (G.R.)
- Correspondence:
| |
Collapse
|
9
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Allosterische, Wirkstoff‐zugängliche Bindestellen in β‐Propeller‐Lektinen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Department of Biochemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
- Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kanhaya Lal
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Dipartimento di Chimica via Golgi 19 Università degli Studi di Milano 20133 Milano Italien
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anne Imberty
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| |
Collapse
|
10
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Druggable Allosteric Sites in β-Propeller Lectins. Angew Chem Int Ed Engl 2022; 61:e202109339. [PMID: 34713573 PMCID: PMC9298952 DOI: 10.1002/anie.202109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrate‐binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non‐carbohydrate drug‐like inhibitors are still unavailable. Here, we present a druggable pocket in a β‐propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure–activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol−1 HA−1 that affected the orthosteric site. This effect was substantiated by site‐directed mutagenesis in the orthosteric and secondary pockets. Future drug‐discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic‐resistant pathogens.
Collapse
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanhaya Lal
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Dipartimento di Chimica via Golgi 19, Universita" degli Studi di Milano, 20133, Milano, Italy
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1080, Vienna, Austria.,Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
11
|
The Mean of Milk: A Review of Human Milk Oligosaccharide Concentrations throughout Lactation. Nutrients 2021; 13:nu13082737. [PMID: 34444897 PMCID: PMC8398195 DOI: 10.3390/nu13082737] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are non-digestible and structurally diverse complex carbohydrates that are highly abundant in human milk. To date, more than 200 different HMO structures have been identified. Their concentrations in human milk vary according to various factors such as lactation period, mother’s genetic secretor status, and length of gestation (term or preterm). The objective of this review is to assess and rank HMO concentrations from healthy mothers throughout lactation at a global level. To this aim, published data from pooled (secretor and non-secretor) human milk samples were used. When samples were reported as secretor or non-secretor, means were converted to a pooled level, using the reported mean of approximately 80/20% secretor/non-secretor frequency in the global population. This approach provides an estimate of HMO concentrations in the milk of an average, healthy mother independent of secretor status. Mean concentrations of HMOs were extracted and categorized by pre-defined lactation periods of colostrum (0–5 days), transitional milk (6–14 days), mature milk (15–90 days), and late milk (>90 days). Further categorizations were made by gestational length at birth, mother’s ethnicity, and analytical methodology. Data were excluded if they were from preterm milk, unknown sample size and mothers with any known disease status. A total of 57 peer-reviewed articles reporting individual HMO concentrations published between 1996 and 2020 were included in the review. Pooled HMO means reported from 31 countries were analyzed. In addition to individual HMO concentrations, 12 articles reporting total HMO concentrations were also analyzed as a basis for relative HMO abundance. Total HMOs were found as 17.7 g/L in colostrum, 13.3 g/L in transitional milk, and 11.3 g/L in mature milk. The results show that HMO concentrations differ largely for each individual HMO and vary with lactation stages. For instance, while 2′-FL significantly decreased from colostrum (3.18 g/L ± 0.9) to late milk (1.64 g/L ± 0.67), 3-FL showed a significant increase from colostrum (0.37 g/L ± 0.1) to late milk (0.92 g/L ± 0.5). Although pooled human milk contains a diverse HMO profile with more than 200 structures identified, the top 10 individual HMOs make up over 70% of total HMO concentration. In mature pooled human milk, the top 15 HMOs in decreasing order of magnitude are 2′-FL, LNDFH-I (DFLNT), LNFP-I, LNFP-II, LNT, 3-FL, 6′-SL, DSLNT, LNnT, DFL (LDFT), FDS-LNH, LNFP-III, 3′-SL, LST c, and TF-LNH.
Collapse
|
12
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
13
|
Siukstaite L, Imberty A, Römer W. Structural Diversities of Lectins Binding to the Glycosphingolipid Gb3. Front Mol Biosci 2021; 8:704685. [PMID: 34381814 PMCID: PMC8350385 DOI: 10.3389/fmolb.2021.704685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glycolipids are present on the surfaces of all living cells and thereby represent targets for many protein receptors, such as lectins. Understanding the interactions between lectins and glycolipids is essential for investigating the functions of lectins and the dynamics of glycolipids in living membranes. This review focuses on lectins binding to the glycosphingolipid globotriaosylceramide (Gb3), an attractive host cell receptor, particularly for pathogens and pathogenic products. Shiga toxin (Stx), from Shigella dysenteriae or Escherichia coli, which is one of the most virulent bacterial toxins, binds and clusters Gb3, leading to local negative membrane curvature and the formation of tubular plasma membrane invaginations as the initial step for clathrin-independent endocytosis. After internalization, it is embracing the retrograde transport pathway. In comparison, the homotetrameric lectin LecA from Pseudomonas aeruginosa can also bind to Gb3, triggering the so-called lipid zipper mechanism, which results in membrane engulfment of the bacterium as an important step for its cellular uptake. Notably, both lectins bind to Gb3 but induce distinct plasma membrane domains and exploit mainly different transport pathways. Not only, several other Gb3-binding lectins have been described from bacterial origins, such as the adhesins SadP (from Streptococcus suis) and PapG (from E. coli), but also from animal, fungal, or plant origins. The variety of amino acid sequences and folds demonstrates the structural versatilities of Gb3-binding lectins and asks the question of the evolution of specificity and carbohydrate recognition in different kingdoms of life.
Collapse
Affiliation(s)
- Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Miotto M, Di Rienzo L, Gosti G, Milanetti E, Ruocco G. Does blood type affect the COVID-19 infection pattern? PLoS One 2021; 16:e0251535. [PMID: 33984040 PMCID: PMC8118288 DOI: 10.1371/journal.pone.0251535] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: i) the great geographical differences in the degree of virus contagiousness and lethality that were found in the different phases of the epidemic progression, and, ii) the potential role of the infected people's blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that, in the subject-to-subject transfer, SARS-CoV-2 conserves on its capsid the erythrocytes' antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account, and we compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Rome, Italy
- Center for Life Nano & Neuroscience, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
15
|
Miotto M, Di Rienzo L, Bò L, Boffi A, Ruocco G, Milanetti E. Molecular Mechanisms Behind Anti SARS-CoV-2 Action of Lactoferrin. Front Mol Biosci 2021; 8:607443. [PMID: 33659275 PMCID: PMC7917183 DOI: 10.3389/fmolb.2021.607443] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the huge effort to contain the infection, the novel SARS-CoV-2 coronavirus has rapidly become pandemic, mainly due to its extremely high human-to-human transmission capability, and a surprisingly high viral charge of symptom-less people. While the seek for a vaccine is still ongoing, promising results have been obtained with antiviral compounds. In particular, lactoferrin is regarded to have beneficial effects both in preventing and soothing the infection. Here, we explore the possible molecular mechanisms with which lactoferrin interferes with SARS-CoV-2 cell invasion, preventing attachment and/or entry of the virus. To this aim, we search for possible interactions lactoferrin may have with virus structural proteins and host receptors. Representing the molecular iso-electron surface of proteins in terms of 2D-Zernike descriptors, we 1) identified putative regions on the lactoferrin surface able to bind sialic acid present on the host cell membrane, sheltering the cell from the virus attachment; 2) showed that no significant shape complementarity is present between lactoferrin and the ACE2 receptor, while 3) two high complementarity regions are found on the N- and C-terminal domains of the SARS-CoV-2 spike protein, hinting at a possible competition between lactoferrin and ACE2 for the binding to the spike protein.
Collapse
Affiliation(s)
- Mattia Miotto
- Department of Physics, University of Rome `La Sapienza', Rome, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
| | - Lorenzo Di Rienzo
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
| | - Leonardo Bò
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
| | - Alberto Boffi
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, University of Rome `La Sapienza', Rome, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
| | - Edoardo Milanetti
- Department of Physics, University of Rome `La Sapienza', Rome, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano Science, Rome, Italy
| |
Collapse
|
16
|
Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2506-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Farabi K, Manabe Y, Ichikawa H, Miyake S, Tsutsui M, Kabayama K, Yamaji T, Tanaka K, Hung SC, Fukase K. Concise and Reliable Syntheses of Glycodendrimers via Self-Activating Click Chemistry: A Robust Strategy for Mimicking Multivalent Glycan-Pathogen Interactions. J Org Chem 2020; 85:16014-16023. [PMID: 33058668 DOI: 10.1021/acs.joc.0c01547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individual interactions between glycans and their receptors are usually weak, although these weak interactions can combine to realize a strong interaction (multivalency). Such multivalency plays a crucial role in the recognition of host cells by pathogens. Glycodendrimers are useful materials for the reconstruction of this multivalent interaction. However, the introduction of a large number of glycans to a dendrimer core is fraught with difficulties. We herein synthesized antipathogenic glycodendrimers using the self-activating click chemistry (SACC) method developed by our group. The excellent reactivity of SACC enabled the efficient preparation of sialyl glycan and Gb3 glycan dendrimers, which exhibited strong avidity toward hemagglutinin on influenza virus and Shiga toxin B subunit produced by Escherichia coli, respectively. We demonstrated the usefulness of SACC-based glycodendrimers as antipathogenic compounds.
Collapse
Affiliation(s)
- Kindi Farabi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Ichikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masato Tsutsui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Bonnardel F, Mariethoz J, Salentin S, Robin X, Schroeder M, Perez S, Lisacek F, Imberty A. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Res 2020; 47:D1236-D1244. [PMID: 30239928 PMCID: PMC6323968 DOI: 10.1093/nar/gky832] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
Lectins, and related receptors such as adhesins and toxins, are glycan-binding proteins from all origins that decipher the glycocode, i.e. the structural information encoded in the conformation of complex carbohydrates present on the surface of all cells. Lectins are still poorly classified and annotated, but since their functions are based on ligand recognition, their 3D-structures provide a solid foundation for characterization. UniLectin3D is a curated database that classifies lectins on origin and fold, with cross-links to literature, other databases in glycosciences and functional data such as known specificity. The database provides detailed information on lectins, their bound glycan ligands, and features their interactions using the Protein–Ligand Interaction Profiler (PLIP) server. Special care was devoted to the description of the bound glycan ligands with the use of simple graphical representation and numerical format for cross-linking to other databases in glycoscience. We conceived the design of the database architecture and the navigation tools to account for all organisms, as well as to search for oligosaccharide epitopes complexed within specified binding sites. UniLectin3D is accessible at https://www.unilectin.eu/unilectin3D.
Collapse
Affiliation(s)
- François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.,Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Xavier Robin
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,Computational Structural Biology Group, SIB Swiss Institute of Bioinformatics, CH-4056 Basel, Switzerland
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, 01307 Dresden, Germany
| | - Serge Perez
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland.,Department of Computer Science, University of Geneva, Route de Drize 7, CH-1227 Geneva, Switzerland.,Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| |
Collapse
|
19
|
Seničar M, Lafite P, Eliseeva SV, Petoud S, Landemarre L, Daniellou R. Galactofuranose-Related Enzymes: Challenges and Hopes. Int J Mol Sci 2020; 21:ijms21103465. [PMID: 32423053 PMCID: PMC7278926 DOI: 10.3390/ijms21103465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Galactofuranose is a rare form of the well-known galactose sugar, and its occurrence in numerous pathogenic micro-organisms makes the enzymes responsible for its biosynthesis interesting targets. Herein, we review the role of these carbohydrate-related proteins with a special emphasis on the galactofuranosidases we recently characterized as an efficient recombinant biocatalyst.
Collapse
Affiliation(s)
- Mateja Seničar
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron CS 8005, 45071 Orléans, France; (S.V.E.); (S.P.)
| | | | - Richard Daniellou
- Institut de Chimie Organique et Analytique, CNRS UMR 7311, Université d’Orléans, Rue de Chartres, BP 6759, CEDEX 2, 45067 Orléans, France; (M.S.); (P.L.)
- Correspondence: ; Tel.: +33-238-494-978
| |
Collapse
|
20
|
Breiman A, Ruvën-Clouet N, Le Pendu J. Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathog 2020; 16:e1008556. [PMID: 32437478 PMCID: PMC7241692 DOI: 10.1371/journal.ppat.1008556] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Adrien Breiman
- Université de Nantes, Inserm, CRCINA, Nantes, France
- CHU de Nantes, Nantes, France
| | - Nathalie Ruvën-Clouet
- Université de Nantes, Inserm, CRCINA, Nantes, France
- Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation, Nantes, France
| | | |
Collapse
|
21
|
Suzuki N. Glycan diversity in the course of vertebrate evolution. Glycobiology 2020; 29:625-644. [PMID: 31287538 DOI: 10.1093/glycob/cwz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vertebrates are estimated to have arisen over 500 million years ago in the Cambrian Period. Species that survived the Big Five extinction events at a global scale underwent repeated adaptive radiations along with habitat expansions from the sea to the land and sky. The development of the endoskeleton and neural tube enabled more complex body shapes. At the same time, vertebrates became suitable for the invasion and proliferation of foreign organisms. Adaptive immune systems were acquired for responses to a wide variety of pathogens, and more sophisticated systems developed during the evolution of mammals and birds. Vertebrate glycans consist of common core structures and various elongated structures, such as Neu5Gc, Galα1-3Gal, Galα1-4Gal, and Galβ1-4Gal epitopes, depending on the species. During species diversification, complex glycan structures were generated, maintained or lost. Whole-genome sequencing has revealed that vertebrates harbor numerous and even redundant glycosyltransferase genes. The production of various glycan structures is controlled at the genetic level in a species-specific manner. Because cell surface glycans are often targets of bacterial and viral infections, glycan structural diversity is presumed to be protective against infections. However, the maintenance of apparently redundant glycosyltransferase genes and investment in species-specific glycan structures, even in higher vertebrates with highly developed immune systems, are not well explained. This fact suggests that glycans play important roles in unknown biological processes.
Collapse
Affiliation(s)
- Noriko Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
22
|
Rausch P, Rühlemann M, Hermes BM, Doms S, Dagan T, Dierking K, Domin H, Fraune S, von Frieling J, Hentschel U, Heinsen FA, Höppner M, Jahn MT, Jaspers C, Kissoyan KAB, Langfeldt D, Rehman A, Reusch TBH, Roeder T, Schmitz RA, Schulenburg H, Soluch R, Sommer F, Stukenbrock E, Weiland-Bräuer N, Rosenstiel P, Franke A, Bosch T, Baines JF. Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. MICROBIOME 2019; 7:133. [PMID: 31521200 PMCID: PMC6744666 DOI: 10.1186/s40168-019-0743-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/23/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution, and development of both players. These interdependencies inspired a new view of multicellular organisms as "metaorganisms." The goal of the Collaborative Research Center "Origin and Function of Metaorganisms" is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants. METHODS In order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample. CONCLUSION While 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Overall, we recommend single- over multi-step amplification procedures, and although exceptions and trade-offs exist, the V3 V4 over the V1 V2 region of the 16S rRNA gene. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.
Collapse
Affiliation(s)
- Philipp Rausch
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen Ø, Denmark
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Britt M. Hermes
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Shauni Doms
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Hanna Domin
- Zoological Institute, Kiel University, Kiel, Germany
| | | | - Jakob von Frieling
- Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
- Kiel University, Kiel, Germany
| | | | - Marc Höppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Martin T. Jahn
- Marine Ecology, Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Cornelia Jaspers
- Kiel University, Kiel, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Kohar Annie B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | | | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thorsten B. H. Reusch
- Kiel University, Kiel, Germany
- Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Thomas Roeder
- Molecular Physiology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Ryszard Soluch
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Eva Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Botanical Institute, Kiel University, Kiel, Germany
| | | | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Thomas Bosch
- Zoological Institute, Kiel University, Kiel, Germany
| | - John F. Baines
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| |
Collapse
|
23
|
Affinity war: forging immunoglobulin repertoires. Curr Opin Immunol 2019; 57:32-39. [PMID: 30690255 DOI: 10.1016/j.coi.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
B cell immunoglobulin (Ig) repertoire composition shapes immune responses. The generation of Ig diversity begins with Ig variable region exon assembly from gene segments, random inter-segment junction sequence diversity, and combinations of Ig heavy and light chain. This generates vast preemptive sequence freedom in early developing B lineage cell Ig genes that can anticipate a great diversity of threats. This freedom is met with large restrictions that ultimately define the naïve (i.e. preimmune) Ig repertoire. Activation-induced somatic hypermutation (SHM), which further diversifies Ig V regions, is also met with strong selection that shapes Ig affinity maturation. While individual repertoire features, such as affinity for self and competition for foreign antigen, are known to drive selection, the selection filters themselves may be subject to regulation. Large sequence freedom coupled with strong selection for each diversification process provides flexibility for demand-driven regulation to dynamically balance antigen recognition capacities and associated autoimmune risks according to host needs.
Collapse
|
24
|
Dagur RS, Branch-Woods A, Mathews S, Joshi PS, Quadros RM, Harms DW, Cheng Y, Miles SM, Pirruccello SJ, Gurumurthy CB, Gorantla S, Poluektova LY. Human-like NSG mouse glycoproteins sialylation pattern changes the phenotype of human lymphocytes and sensitivity to HIV-1 infection. BMC Immunol 2019; 20:2. [PMID: 30616506 PMCID: PMC6322283 DOI: 10.1186/s12865-018-0279-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/30/2018] [Indexed: 01/14/2023] Open
Abstract
Background The use of immunodeficient mice transplanted with human hematopoietic stem cells is an accepted approach to study human-specific infectious diseases such as HIV-1 and to investigate multiple aspects of human immune system development. However, mouse and human are different in sialylation patterns of proteins due to evolutionary mutations of the CMP-N-acetylneuraminic acid hydroxylase (CMAH) gene that prevent formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. How changes in the mouse glycoproteins’ chemistry affect phenotype and function of transplanted human hematopoietic stem cells and mature human immune cells in the course of HIV-1 infection are not known. Results We mutated mouse CMAH in the NOD/scid-IL2Rγc−/− (NSG) mouse strain, which is widely used for the transplantation of human cells, using the CRISPR/Cas9 system. The new strain provides a better environment for human immune cells. Transplantation of human hematopoietic stem cells leads to broad B cells repertoire, higher sensitivity to HIV-1 infection, and enhanced proliferation of transplanted peripheral blood lymphocytes. The mice showed no effect on the clearance of human immunoglobulins and enhanced transduction efficiency of recombinant adeno-associated viral vector rAAV2/DJ8. Conclusion NSG-cmah−/− mice expand the mouse models suitable for human cells transplantation, and this new model has advantages in generating a human B cell repertoire. This strain is suitable to study different aspects of the human immune system development, provide advantages in patient-derived tissue and cell transplantation, and could allow studies of viral vectors and infectious agents that are sensitive to human-like sialylation of mouse glycoproteins. Electronic supplementary material The online version of this article (10.1186/s12865-018-0279-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amanda Branch-Woods
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Poonam S Joshi
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA
| | - Yan Cheng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, Omaha, NE, USA.,Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, of University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
25
|
Tick galactosyltransferases are involved in α-Gal synthesis and play a role during Anaplasma phagocytophilum infection and Ixodes scapularis tick vector development. Sci Rep 2018; 8:14224. [PMID: 30242261 PMCID: PMC6154994 DOI: 10.1038/s41598-018-32664-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.
Collapse
|
26
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
27
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
28
|
Aguilar R, Ubillos I, Vidal M, Balanza N, Crespo N, Jiménez A, Nhabomba A, Jairoce C, Dosoo D, Gyan B, Ayestaran A, Sanz H, Campo JJ, Gómez-Pérez GP, Izquierdo L, Dobaño C. Antibody responses to α-Gal in African children vary with age and site and are associated with malaria protection. Sci Rep 2018; 8:9999. [PMID: 29968771 PMCID: PMC6030195 DOI: 10.1038/s41598-018-28325-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023] Open
Abstract
Naturally-acquired antibody responses to malaria parasites are not only directed to protein antigens but also to carbohydrates on the surface of Plasmodium protozoa. Immunoglobulin M responses to α-galactose (α-Gal) (Galα1-3Galβ1-4GlcNAc-R)-containing glycoconjugates have been associated with protection from P. falciparum infection and, as a result, these molecules are under consideration as vaccine targets; however there are limited field studies in endemic populations. We assessed a wide breadth of isotype and subclass antibody response to α-Gal in children from Mozambique (South East Africa) and Ghana (West Africa) by quantitative suspension array technology. We showed that anti-α-Gal IgM, IgG and IgG1–4 levels vary mainly depending on the age of the child, and also differ in magnitude in the two sites. At an individual level, the intensity of malaria exposure to P. falciparum and maternally-transferred antibodies affected the magnitude of α-Gal responses. There was evidence for a possible protective role of anti-α-Gal IgG3 and IgG4 antibodies. However, the most consistent findings were that the magnitude of IgM responses to α-Gal was associated with protection against clinical malaria over a one-year follow up period, especially in the first months of life, while IgG levels correlated with malaria risk.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Balanza
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Núria Crespo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - David Dosoo
- Kintampo Health Research Center, Kintampo, Ghana
| | - Ben Gyan
- Kintampo Health Research Center, Kintampo, Ghana
| | - Aintzane Ayestaran
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Luis Izquierdo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int J Mol Sci 2018; 19:ijms19030721. [PMID: 29510476 PMCID: PMC5877582 DOI: 10.3390/ijms19030721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs–PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.
Collapse
|
30
|
Petit D, Teppa E, Cenci U, Ball S, Harduin-Lepers A. Reconstruction of the sialylation pathway in the ancestor of eukaryotes. Sci Rep 2018; 8:2946. [PMID: 29440651 PMCID: PMC5811610 DOI: 10.1038/s41598-018-20920-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists. We conducted phylogenomic and protein sequence analyses to gain insights into the origin and ancient evolution of ST and sialic acid pathway in eukaryotes, Bacteria and Archaea. Our study uncovered the unreported occurrence of bacterial GT29 ST and evidenced the existence of 2 ST groups in the LECA, likely originating from the endosymbiotic event that generated mitochondria. Furthermore, distribution of the major actors of the sialic acid pathway in the different eukaryotic phyla indicated that these were already present in the LECA, which could also access to this essential monosaccharide either endogenously or via a sialin/sialidase uptake mechanism involving vesicles. This pathway was lost in several basal eukaryotic lineages including Archaeplastida despite the presence of two different ST groups likely assigned to other functions.
Collapse
Affiliation(s)
- Daniel Petit
- Université de Limoges, Laboratoire Pereine 123, av. A. Thomas, 87060, Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir -IIBBA CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Ugo Cenci
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France
| | - Steven Ball
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France
| | - Anne Harduin-Lepers
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000, Lille, France.
- UGSF, Bât. C9, Université de Lille - Sciences et Technologies, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
31
|
Reichardt NC, Martín-Lomas M, Penadés S. Opportunities for glyconanomaterials in personalized medicine. Chem Commun (Camb) 2018; 52:13430-13439. [PMID: 27709147 DOI: 10.1039/c6cc04445j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this feature article we discuss the particular relevance of glycans as components or targets of functionalized nanoparticles (NPs) for potential applications in personalized medicine but we will not enter into descriptions for their preparation. For a more general view covering the preparation and applications of glyconanomaterials the reader is referred to a number of recent reviews. The combination of glyco- and nanotechnology is already providing promising new tools for more personalized solutions to diagnostics and therapy. Current applications relevant to personalized medicine include drug targeting, localized radiation therapy, imaging of glycan expression of cancer cells, point of care diagnostics, cancer vaccines, photodynamic therapy, biosensors, and glycoproteomics.
Collapse
Affiliation(s)
- Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain. and CIBER BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Manuel Martín-Lomas
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| | - Soledad Penadés
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain.
| |
Collapse
|
32
|
Kim HS, Hyun JY, Park SH, Shin I. Analysis of binding properties of pathogens and toxins using multivalent glycan microarrays. RSC Adv 2018; 8:14898-14905. [PMID: 35541319 PMCID: PMC9080041 DOI: 10.1039/c8ra01285g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/15/2018] [Indexed: 11/28/2022] Open
Abstract
Pathogens infect hosts often through initial binding of their cell surface lectins to glycans expressed on the exterior of host cells. Thus, methods to evaluate the glycan-binding properties of pathogens are of great importance. Because of the multivalent nature of interactions of pathogens with glycans, the ability to assess the glycan density-dependent binding of pathogens is particularly important. In this study, we developed a facile technique to construct multivalent carbohydrate microarrays through immobilization of unmodified glycans on multivalent hydrazide-derivatized glass surfaces. This immobilization strategy does not require the use of multivalent glycoconjugates, which are typically prepared by using multistep sequences. The results of analysis of microarray images, obtained after incubation of multivalent glycan microarrays with cholera toxin B and pathogens such as uropathogenic E. coli and H. pylori, show that the binding affinities of toxins and pathogens for glycans are highly glycan density-dependent. Specifically, toxins and pathogens bind to glycans more strongly as the valency of the glycans on the microarrays is increased from 1 to 4. It is anticipated that the newly developed immobilization method will be applicable to the preparation of multivalent carbohydrate microarrays that are employed to evaluate multivalent glycan binding properties of a variety of pathogens and toxins. Microarrays constructed by immobilizing free glycans on multivalent hydrazide-coated surfaces were applied to evaluate multivalent glycan binding properties of pathogens.![]()
Collapse
Affiliation(s)
- Hyoung Sub Kim
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Ji Young Hyun
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Seong-Hyun Park
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| | - Injae Shin
- Center for Biofunctional Molecules
- Department of Chemistry
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
33
|
Kononova SV. How Fucose of Blood Group Glycotopes Programs Human Gut Microbiota. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:973-989. [PMID: 28988527 DOI: 10.1134/s0006297917090012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Formation of appropriate gut microbiota is essential for human health. The first two years of life is the critical period for this process. Selection of mutualistic microorganisms of the intestinal microbiota is controlled by the FUT2 and FUT3 genes that encode fucosyltransferases, enzymes responsible for the synthesis of fucosylated glycan structures of mucins and milk oligosaccharides. In this review, the mechanisms of the selection and maintenance of intestinal microorganisms that involve fucosylated oligosaccharides of breast milk and mucins of the newborn's intestine are described. Possible reasons for the use of fucose, and not sialic acid, as the major biological signal for the selection are also discussed.
Collapse
Affiliation(s)
- S V Kononova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
34
|
Franz-Oberdorf K, Eberlein B, Edelmann K, Bleicher P, Kurze E, Helm D, Olbricht K, Darsow U, Ring J, Schwab W. White-fruited strawberry genotypes are not per se hypoallergenic. Food Res Int 2017; 100:748-756. [PMID: 28873746 DOI: 10.1016/j.foodres.2017.07.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
Abstract
The strawberry fruit Fra a 1-proteins are homologues of the major birch pollen allergen Bet v 1 and have essential biological functions in pigment formation during fruit ripening. Patients affected by allergy against birch pollen tolerated fruits of a naturally occurring white-fruited F.×ananassa genotype, which showed reduced levels of Fra a 1 proteins along with enzymes of the anthocyanin pigment pathway. We evaluated the cross-reactive allergenic potential of a number of naturally occurring white- and red-fruited strawberry varieties to detect genotypes with low allergenic reactivity, whose fruit might be tolerated by patients with mild allergy. Protein extracts of 51 different strawberry varieties (Fragaria×ananassa, F. vesca, and F. nilgerensis) were screened by Western blot analysis with a polyclonal Fra a 1.02 antibody. Besides, activation of basophils of eight atopic patients allergic to birch pollen were studied using Bet v 1a and different concentrations of 15 selected strawberry protein extracts out of the 51 strawberry genotypes. Median percentages of activated basophils stimulated by extracts from white- and red-fruited genotypes ranged from 36 to 84% and 44 to 76%, respectively indicating that white-fruited strawberry are not per se hypoallergenic. Protein extracts from white-fruited F. vesca cv. Yellow Wonder showed the lowest cross-reactivity but high biological variability. The knowledge about the allergenic potential of different strawberry genotypes may help to improve food safety and can serve as starting point for the development of red-fruited hypoallergenic strawberry cultivars.
Collapse
Affiliation(s)
- Katrin Franz-Oberdorf
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | - Kathrin Edelmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Philip Bleicher
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Dominic Helm
- Chair of Proteomics and Bioanalytics, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Klaus Olbricht
- The Strawberry Breeding Company Hansabred GmbH & Co. KG, Radeburger Landstr. 12, 01108 Dresden, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy Biederstein, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| |
Collapse
|
35
|
Jaurigue JA, Seeberger PH. Parasite Carbohydrate Vaccines. Front Cell Infect Microbiol 2017; 7:248. [PMID: 28660174 PMCID: PMC5467010 DOI: 10.3389/fcimb.2017.00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.
Collapse
Affiliation(s)
- Jonnel A. Jaurigue
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
36
|
Moonens K, Remaut H. Evolution and structural dynamics of bacterial glycan binding adhesins. Curr Opin Struct Biol 2017; 44:48-58. [DOI: 10.1016/j.sbi.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/25/2023]
|
37
|
Heggelund JE, Varrot A, Imberty A, Krengel U. Histo-blood group antigens as mediators of infections. Curr Opin Struct Biol 2017; 44:190-200. [PMID: 28544984 DOI: 10.1016/j.sbi.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
Abstract
The critical first step of a microbial infection is usually the attachment of pathogens to host cell glycans. Targets on host tissues are in particular the histo-blood group antigens (HBGAs), which are present in rich diversity in the mucus layer and on the underlying mucosa. Recent structural and functional studies have revealed significant new insight into the molecular mechanisms, explaining why individuals with certain blood groups are at increased risk of some infections. The most prominent example of blood-group-associated diseases is cholera, caused by infection with Vibrio cholerae. Many other microbial pathogens, for example Pseudomonas aeruginosa infecting the airways, and enterotoxigenic Escherichia coli (ETEC) causing traveler's diarrhea, also bind to histo-blood group antigens, but show a less clear correlation with blood group phenotype. Yet other pathogens, for example norovirus and Helicobacter pylori, recognize HBGAs differently depending on the strain. In all cases, milk oligosaccharides can aid the hosts' defenses, acting as natural receptor decoys, and anti-infectious therapy can be designed along similar strategies. In this review, we focus on important infections of humans, but the molecular mechanisms are of general relevance to a broad range of microbial infections of humans and animals.
Collapse
Affiliation(s)
- Julie E Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Blindern, Norway
| | - Annabelle Varrot
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Université Grenoble Alpes, 38000 Grenoble, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRS and Université Grenoble Alpes, 38000 Grenoble, France
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Blindern, Norway.
| |
Collapse
|
38
|
Sprenger N, Lee LY, De Castro CA, Steenhout P, Thakkar SK. Longitudinal change of selected human milk oligosaccharides and association to infants' growth, an observatory, single center, longitudinal cohort study. PLoS One 2017; 12:e0171814. [PMID: 28182762 PMCID: PMC5300226 DOI: 10.1371/journal.pone.0171814] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Background Human milk is the recommended and sole nutrient source for newborns. One of the largest components of human milk is oligosaccharides (HMOs) with major constituents determined by the mother genotype for the fucosyltransferase 2 (FUT2, secretor) gene. HMO variation has been related with infant microbiota establishment, diarrhea incidence, morbidity and mortality, IgE associated eczema and body composition. Objectives We investigated the (i) dependence of several major representative HMOs on the FUT2 status assessed through breast milk 2’Fucosyllactose (2’FL) and (ii) the relation of the 2’FL status with infant growth up to 4 months of life. Design From an open observatory, single center, longitudinal cohort study with quantitative human milk collection at 30, 60, and 120 days postpartum from 50 mothers, who gave birth to 25 female and 25 male singleton infants, we collected a representative sample of human milk. We quantified the following 5 representative HMOs: 2’FL, Lacto-N-tetraose (LNT), Lacto-N-neotetraose (LNnT), 3’Sialyllactose (3’SL) and 6’Sialyllactose (6’SL). We grouped the milk samples and corresponding infants according to the measured milk 2’FL concentrations at 30 days of lactation, which clustered around low concentrations (95% CI of mean 12–42 mg/L) and high concentrations (95% CI of mean 1880–2460 mg/L) with the former likely representing Secretor negative mothers. Infant anthropometric measures were recorded at birth, 1, 2 and 4 months of age. Relations among the quantified HMOs and the relation of the high and low 2’FL HMOs groups with infant growth parameters were investigated via linear mixed models. Results The milk samples with low 2’FL concentration had higher LNT and lower LNnT concentrations compared to the samples with high 2’FL. The milk 3’- and 6’SL concentrations were independent of 2’FL. Over lactation time we observed a drop in the concentration of 2’FL, LNT, LNnT and 6’SL, especially from 1 to 2 months, while 3’SL remained at relatively constant concentration from 1 month onwards. Up to 4 months of age, we did not observe significant differences in body weight, body length, body mass index and head circumference of the infants who consumed breast milk with low or high FUT2 associated HMO concentrations and composition. Conclusions Our findings on HMO concentrations over time of lactation and clusters based on 2’FL concentrations confirm previous observations and suggest that LNnT and LNT are ‘co-regulated’ with the FUT2 dependent 2’FL concentration, with LNnT showing a positive and LNT a negative relation. Further, our findings also suggest that the relatively substantial variation in HMOs between the high and low 2’FL clusters do not impact infant growth of either sex up to 4 months of age. The study was registered in www.ClinicalTrial.gov (NCT01805011).
Collapse
Affiliation(s)
- Norbert Sprenger
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Switzerland
- * E-mail:
| | - Le Ye Lee
- Consultant Neonatologist, Department of Neonatology, Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore
- Assistant Professor, Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Sagar K. Thakkar
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Switzerland
| |
Collapse
|
39
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
40
|
Galili U. Natural anti-carbohydrate antibodies contributing to evolutionary survival of primates in viral epidemics? Glycobiology 2016; 26:1140-1150. [PMID: 27567275 DOI: 10.1093/glycob/cww088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
Abstract
Humans produce multiple natural antibodies against carbohydrate antigens on gastrointestinal bacteria. Two such antibodies appeared in primates in recent geological times. Anti-Gal, abundant in humans, apes and Old-World monkeys, appeared 20-30 million years ago (mya) following inactivation of the α1,3GT gene (GGTA1). This gene encodes in other mammals the enzyme α1,3galactosyltransferase (α1,3GT) that synthesizes α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) which bind anti-Gal. Anti-Neu5Gc, found only in humans, appeared in hominins <6 mya, following elimination of N-glycolylneuraminic-acid (Neu5Gc) because of inactivation of CMAH, the gene encoding hydroxylase that converts N-acetylneuraminic-acid (Neu5Ac) into Neu5Gc. These antibodies, were initially produced in few individuals that acquired random mutations inactivating the corresponding genes and eliminating α-gal epitopes or Neu5Gc, which became nonself antigens. It is suggested that these evolutionary selection events were induced by epidemics of enveloped viruses, lethal to ancestral Old World primates or hominins. Such viruses presented α-gal epitopes or Neu5Gc, synthesized in primates that conserved active GGTA1 or CMAH, respectively, and were lethal to their hosts. The natural anti-Gal or anti-Neu5Gc antibodies, produced in offspring lacking the corresponding carbohydrate antigens, neutralized and destroyed viruses presenting α-gal epitopes or Neu5Gc. These antibodies further induced rapid, effective immune responses against virus antigens, thus preventing infections from reaching lethal stages. These epidemics ultimately resulted in extinction of primate populations synthesizing these carbohydrate antigens and their replacement with offspring populations lacking the antigens and producing protective antibodies against them. Similar events could mediate the elimination of various carbohydrate antigens, thus preventing the complete extinction of other vertebrate species.
Collapse
Affiliation(s)
- Uri Galili
- University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
41
|
Brzezicka K, Vogel U, Serna S, Johannssen T, Lepenies B, Reichardt NC. Influence of Core β-1,2-Xylosylation on Glycoprotein Recognition by Murine C-type Lectin Receptors and Its Impact on Dendritic Cell Targeting. ACS Chem Biol 2016; 11:2347-56. [PMID: 27314276 DOI: 10.1021/acschembio.6b00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeting antigens to dendritic cell subsets is a promising strategy to enhance the efficacy of vaccines. C-type lectin receptors (CLRs) expressed by dendritic cells are particularly attractive candidates since CLR engagement may promote cell uptake and may further stimulate antigen presentation and subsequent T cell activation. While most previous approaches have involved antibody-mediated CLR-targeting, glycan-based CLR targeting has become more and more attractive in recent years. In the present study, we show that small structural glycan modifications may markedly influence CLR recognition, dendritic cell targeting, and subsequent T cell activation. A biantennary N-glycan (G0) and its analogous O-2 core xylosylated N-glycan (XG0) were synthesized, covalently conjugated to the model antigen ovalbumin, and analyzed for binding to a set of murine CLR-Fc fusion proteins using lectin microarray. To evaluate whether the differential binding of G0 and XG0 to CLRs impacted dendritic cell targeting, uptake studies using murine dendritic cells were performed. Finally, effects of the ovalbumin glycoconjugates on T cell activation were measured in a dendritic cell/T cell cocultivation assay. Our results highlight the utility of glycan-based dendritic cell targeting and demonstrate that small structural differences may have a major impact on dendritic cell targeting efficacy.
Collapse
Affiliation(s)
- Katarzyna Brzezicka
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Uwe Vogel
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sonia Serna
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Timo Johannssen
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- University of Veterinary Medicine Hannover, Immunology
Group, Research Center of Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute of
Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- University of Veterinary Medicine Hannover, Immunology
Group, Research Center of Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Niels-Christian Reichardt
- CIC biomaGUNE, Glycotechnology Laboratory, Paseo Miramón 182, 20009 San Sebastian, Spain
- CIBER-BBN, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
42
|
Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Sci Rep 2016; 6:29525. [PMID: 27389966 PMCID: PMC4937416 DOI: 10.1038/srep29525] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. Gene expression analysis indicated that the host cell responded by regulating more than 50 genes resulting in remodeled glycans in response to Salmonella treatment. This study established the glycan structures on colonic epithelial cells, determined that Salmonella required two keystone GHs for internalization, and left remodeled host glycans as a result of infection. These data indicate that microbial GHs are undiscovered virulence factors.
Collapse
|
43
|
Soares MP, Yilmaz B. Microbiota Control of Malaria Transmission. Trends Parasitol 2016; 32:120-130. [PMID: 26774793 DOI: 10.1016/j.pt.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
Stable mutualistic interactions between multicellular organisms and microbes are an evolutionarily conserved process with a major impact on host physiology and fitness. Humans establish such interactions with a consortium of microorganisms known as the microbiota. Despite the mutualistic nature of these interactions, some bacterial components of the human microbiota express immunogenic glycans that elicit glycan-specific antibody (Ab) responses. The ensuing circulating Abs are protective against infections by pathogens that express those glycans, as demonstrated for Plasmodium, the causative agent of malaria. Presumably, a similar protective Ab response acts against other vector-borne diseases.
Collapse
Affiliation(s)
- Miguel P Soares
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | - Bahtiyar Yilmaz
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Current address: Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, Murtenstrasse 35, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
44
|
Springer SA, Gagneux P. Glycomics: revealing the dynamic ecology and evolution of sugar molecules. J Proteomics 2015; 135:90-100. [PMID: 26626628 DOI: 10.1016/j.jprot.2015.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/11/2023]
Abstract
Sugars are the most functionally and structurally diverse molecules in the biological world. Glycan structures range from tiny single monosaccharide units to giant chains thousands of units long. Some glycans are branched, their monosaccharides linked together in many different combinations and orientations. Some exist as solitary molecules; others are conjugated to proteins and lipids and alter their collective functional properties. In addition to structural and storage roles, glycan molecules participate in and actively regulate physiological and developmental processes. Glycans also mediate cellular interactions within and between individuals. Their roles in ecology and evolution are pivotal, but not well studied because glycan biochemistry requires different methods than standard molecular biology practice. The properties of glycans are in some ways convenient, and in others challenging. Glycans vary on organismal timescales, and in direct response to physiological and ecological conditions. Their mature structures are physical records of both genetic and environmental influences during maturation. We describe the scope of natural glycan variation and discuss how studying glycans will allow researchers to further integrate the fields of ecology and evolution.
Collapse
Affiliation(s)
- Stevan A Springer
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92039, USA.
| | - Pascal Gagneux
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92039, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|
45
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
46
|
Arama C, Skinner J, Doumtabe D, Portugal S, Tran TM, Jain A, Traore B, Doumbo OK, Davies DH, Troye-Blomberg M, Dolo A, Felgner PL, Crompton PD. Genetic Resistance to Malaria Is Associated With Greater Enhancement of Immunoglobulin (Ig)M Than IgG Responses to a Broad Array of Plasmodium falciparum Antigens. Open Forum Infect Dis 2015; 2:ofv118. [PMID: 26361633 PMCID: PMC4564391 DOI: 10.1093/ofid/ofv118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
The breadth and magnitude of P. falciparum-specific IgM and IgG responses are greater in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and P. falciparum-specific IgM responses more strongly distinguish the two ethnic groups. Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Silvia Portugal
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | - Tuan M Tran
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | | | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | | | | | - Amagana Dolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | | | - Peter D Crompton
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| |
Collapse
|
47
|
Wesener DA, Wangkanont K, McBride R, Song X, Kraft MB, Hodges HL, Zarling LC, Splain RA, Smith DF, Cummings RD, Paulson JC, Forest KT, Kiessling LL. Recognition of microbial glycans by human intelectin-1. Nat Struct Mol Biol 2015; 22:603-10. [PMID: 26148048 PMCID: PMC4526365 DOI: 10.1038/nsmb.3053] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 01/07/2023]
Abstract
The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be 'read' by carbohydrate-binding proteins, or lectins. We used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but does interact with multiple glycan epitopes found exclusively on microbes: β-linked D-galactofuranose (β-Galf), D-phosphoglycerol-modified glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-oct-2-ulosonic acid (KDO). The 1.6-Å-resolution crystal structure of hIntL-1 complexed with β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-acetylneuraminic acid (Neu5Ac), a sialic acid widespread in human glycans, has an exocyclic 1,2-diol but does not bind hIntL-1, probably owing to unfavorable steric and electronic effects. hIntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. This ligand selectivity suggests that hIntL-1 functions in microbial surveillance.
Collapse
Affiliation(s)
- Darryl A Wesener
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan McBride
- 1] Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - Xuezheng Song
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew B Kraft
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heather L Hodges
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucas C Zarling
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rebecca A Splain
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David F Smith
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard D Cummings
- 1] Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA. [2] Glycomics Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James C Paulson
- 1] Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, Scripps Research Institute, La Jolla, California, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura L Kiessling
- 1] Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA. [2] Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Chromek M. The role of the antimicrobial peptide cathelicidin in renal diseases. Pediatr Nephrol 2015; 30:1225-32. [PMID: 25159719 DOI: 10.1007/s00467-014-2895-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
The balance between the human body and surrounding microorganisms is crucial for homeostasis and health. A disturbance in host-pathogen interactions causes disease. Two important diseases of the kidney and urinary tract are directly caused by bacteria or bacterial toxins: urinary tract infection (UTI) and diarrhea-associated hemolytic uremic syndrome (HUS). In the majority of cases, UTIs are caused by bacteria ascending from the perineum through the urethra to the urinary tract. In contrast, HUS is caused by non-invasive bacteria, such as enterohemorrhagic Escherichia coli, which colonize the gut and do not enter the blood stream. In this latter case, the bacteria release Shiga toxin, which binds to blood cells and thus reaches the target organs, mainly kidneys. Interactions between Shiga toxin, blood cells and endothelial cells in the kidney lead to cell apoptosis and inflammation. Innate immunity and the antimicrobial peptide cathelicidin seem to play important roles in the pathogenesis of both UTI and HUS. Moreover, influencing cathelicidin production and release might offer new therapeutic and prophylactic strategies for both diseases.
Collapse
Affiliation(s)
- Milan Chromek
- Paediatric Nephrology Unit, Astrid Lindgren Children's Hospital, Karolinska University Hospital Huddinge, B57, SE-14186, Stockholm, Sweden,
| |
Collapse
|
49
|
Tecle E, Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 2015; 82:635-50. [PMID: 26061344 PMCID: PMC4744710 DOI: 10.1002/mrd.22500] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/30/2015] [Indexed: 01/05/2023]
Abstract
Mammalian spermatozoa are coated with a thick glycocalyx that is assembled during sperm development, maturation, and upon contact with seminal fluid. The sperm glycocalyx is critical for sperm survival in the female reproductive tract and is modified during capacitation. The complex interplay among the various glycoconjugates generates numerous signaling motifs that may regulate sperm function and, as a result, fertility. Nascent spermatozoa assemble their own glycans while the cells still possess a functional endoplasmic reticulum and Golgi in the seminiferous tubule, but once spermatogenesis is complete, they lose the capacity to produce glycoconjugates de novo. Sperm glycans continue to be modified, during epididymal transit by extracellular glycosidases and glycosyltransferases. Furthermore, epididymal cells secrete glycoconjugates (glycophosphatidylinositol-anchored glycoproteins and glycolipids) and glycan-rich microvesicles that can fuse with the maturing sperm membrane. The sperm glycocalyx mediates numerous functions in the female reproductive tract, including the following: inhibition of premature capacitation; passage through the cervical mucus; protection from innate and adaptive female immunity; formation of the sperm reservoir; and masking sperm proteins involved in fertilization. The immense diversity in sperm-associated glycans within and between species forms a remarkable challenge to our understanding of essential sperm glycan functions.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| | - Pascal Gagneux
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| |
Collapse
|
50
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|