1
|
Aggarwal Y, Dixit AB, Siraj F, Tripathi M, Chandra PS, Banerjee J. Differential regulation of GABA A receptor-mediated hyperexcitability at different stages of brain development in focal cortical dysplasia (FCD). Exp Neurol 2025; 389:115265. [PMID: 40246010 DOI: 10.1016/j.expneurol.2025.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Focal cortical dysplasia (FCD) is a developmental abnormality of cortex commonly linked with drug-resistant seizures. Altered GABAergic activity is a key contributor to interictal discharges in FCD. In FCD, GABAA receptor associated epileptogenicity is dependent upon the age at seizure onset, as differential epileptogenic networks are observed in early and late onset FCD patients. But the contribution of GABAA receptor alteration to epileptogenic networks during development is unclear. We hypothesize that GABAergic signaling in FCD undergoes age-dependent molecular alterations, contributing to the development of distinct epileptogenic networks. In this study, we investigated age-dependent changes in GABA neurotransmitter levels, GABAA receptor α subunit expression, and GABAA receptor-mediated synaptic activity using the BCNU-rat model of FCD. GABA levels, mRNA, and protein expression of GABAA receptor α subunits were determined by HPLC, qPCR and western blot and spontaneous GABAergic activity from pyramidal neurons was recorded using whole cell patch-clamp technique. At postnatal days (P) 12 and 21, reduced expression of α1, 2 and 4 subunits were observed in FCD rats compared to control. Consistent with this, decreased amplitude and frequency of GABAergic events were observed in FCD rats. In contrast, at P30 and P65, decreased GABA levels, without changes in receptor expression, were observed in FCD rats. Consistently, reduction in the frequency of GABAergic events was observed in FCD rats compared to the control. Furthermore, treatment with tetrodotoxin (TTX) revealed that the observed alterations in GABAergic activity were predominantly action potential (AP)-dependent. Our findings indicate that distinct epileptogenic networks exist in FCD during early and late developmental stages. These networks are driven primarily by altered GABAergic activity, with early age changes linked to aberrant GABAA receptor configurations and late age changes associated with abnormal GABA levels.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India.
| | - Fouzia Siraj
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Xu S, Zhu Q, Zhou J, Ye L, Ye H, Shen C, Zheng Z, Jiang H, Wang S, Ding Y, Chen C, Guo Y, Wang Z, Wang S. Ictal scalp EEG patterns are shaped by seizure etiology in temporal lobe epilepsy. Epilepsia Open 2025; 10:466-476. [PMID: 39918427 PMCID: PMC12014931 DOI: 10.1002/epi4.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVE To investigate how etiology and seizure localization influence ictal scalp electroencephalographic (EEG) patterns in temporal lobe epilepsy (TLE). METHODS We retrospectively analyzed ictal EEG features from 504 focal seizures recorded in 189 TLE patients with various etiologies who underwent resective surgery. RESULTS For seizure onset patterns (SOPs), α/β onset was more common in the low-grade tumor group (38.4%) than in the hippocampal sclerosis (HS) group (14.1%, p < 0.001). The ictal EEG duration was shorter in the tumor group compared to the focal cortical dysplasia (FCD), HS, and non-specific groups (p < 0.05). Among mesial TLE patients, SOPs varied depending on the etiology. Within both the tumor and non-specific groups, SOPs and the spreading time to the contralateral hemisphere differed between mesial and neocortical origins. Ictal pattern (87.7%) and ictal theta activity (83.9%) correctly lateralized the seizure in most cases. SIGNIFICANCE The ictal scalp pattern in TLE is influenced by both etiology and seizure localization. TLE associated with low-grade tumors exhibits distinct ictal EEG characteristics. Furthermore, ictal pattern and ictal theta activity are equally effective in lateralizing seizures, regardless of etiology. PLAIN LANGUAGE SUMMARY This research examined how brain activity during seizures in people with temporal lobe epilepsy can be different based on what caused the epilepsy and where in the brain the seizure starts. We found that seizures caused by brain tumors have unique patterns in the brain's electrical activity. Additionally, we discovered that specific patterns and types of brain waves can help determine which side of the brain the seizure is occurring on, regardless of its cause.
Collapse
Affiliation(s)
- Sha Xu
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qianwen Zhu
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jinqi Zhou
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Lingqi Ye
- Department of NeurologySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Hongyi Ye
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Chunhong Shen
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Zhe Zheng
- Epilepsy Center, Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Hongjie Jiang
- Epilepsy Center, Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Shan Wang
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yao Ding
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Cong Chen
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yi Guo
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Zhongjin Wang
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Shuang Wang
- Epilepsy Center, Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
3
|
Kalss G, Pelliccia V, Zimmermann G, Trinka E, Tassi L. The Fingerprint of Scalp-EEG in Drug-Resistant Frontal Lobe Epilepsies. J Clin Neurophysiol 2025; 42:215-223. [PMID: 39042052 PMCID: PMC11864044 DOI: 10.1097/wnp.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
PURPOSE Scalp-EEG incompletely covers the frontal lobe cortex. Underrepresentation of frontobasal or frontomesial structures, fast ictal spreading, and false lateralization impede scalp-EEG interpretation. Hence, we investigated the significance of scalp-EEG in the presurgical workup of frontal lobe epilepsy. METHODS Using descriptive statistical methods and Pearson chi-squared test for group comparisons, we retrospectively investigated postsurgical outcome, interictal epileptiform discharges (iiEDs), and electrographic seizure patterns on scalp-EEG in 81 consecutive patients undergoing resective epilepsy surgery within the margins of the frontal lobe. RESULTS Postoperatively, patients with frontopolar iiEDs ( n = 7) or concordant frontopolar iiED focus and seizure-onset ( n = 2) were seizure free ( n = 7/7, Engel Ia). MRI-positive patients with frontopolar iiEDs or frontopolar seizure-onset ( n = 1/8 Engel Id, n = 7/8 Engel Ia) underwent surgery without stereo-EEG. Thirteen of 16 patients with frontolateral ( n = 8/10, Engel Ia), or left frontobasal ( n = 5/6, Engel Ia) seizure-onset undergoing further stereo-EEG, were seizure-free postoperatively. Seizure-onset prevalent over one electrode ( n = 37/44 Engel I, p = 0.02), fast activity (FA)/flattening at seizure-onset ( n = 29/33 Engel I, p = 0.02), FA/flattening during the seizure ( n = 38/46 Engel I, p = 0.05), or focal rhythmic sharp-/spike-/polyspike-and-slow waves during the seizure ( n = 24/31, Engel Ia, p = 0.05) were favorable prognostic markers. Interictal polyspike waves ( p = 0.006 for Engel Ia) and interictal paroxysmal FA ( p = 0.02 for Engel I) were unfavorable prognostic markers. CONCLUSIONS Frontopolar scalp-EEG findings serve as biomarkers for predicting favorable surgical outcome in lesional frontal lobe epilepsy. Consequently, careful analysis of scalp-EEG assists in bypassing stereo-EEG in these patients.
Collapse
Affiliation(s)
- Gudrun Kalss
- Department of Neurology and Centre for Cognitive Neurosciences, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria;
| | - Veronica Pelliccia
- “Claudio Munari” Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| | - Georg Zimmermann
- Department of Neurology and Centre for Cognitive Neurosciences, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria;
- Department of Mathematics, Paris-Lodron-University of Salzburg, Salzburg, Austria;
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, Salzburg, Austria; and
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neurosciences, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria;
- Neuroscience Institute, Centre for Cognitive Neurosciences, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Laura Tassi
- “Claudio Munari” Epilepsy Surgery Centre, ASST GOM Niguarda, Milan, Italy
| |
Collapse
|
4
|
Moncayo JA, Duarte-Celada WR, Davila-Siliezar P, Ferdous J. Hemifacial Spasms or Focal Aware Seizures: The Role of Video-EEG. Cureus 2025; 17:e80099. [PMID: 40196104 PMCID: PMC11973612 DOI: 10.7759/cureus.80099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Hemifacial spasms (HFS) are common in neurological practice but can be mistaken for focal aware seizures without appropriate diagnostic workup. We present the case of a man in his 60s admitted for congestive heart failure (CHF) exacerbation, who developed left-sided weakness and HFS during hospitalization. Although his motor symptoms improved after receiving tenecteplase (TNK), the HFS persisted, prompting the use of continuous video-EEG to differentiate between cortical myoclonus and HFS. Video-EEG is essential for distinguishing HFS from focal aware seizures, identifying high-frequency ipsilateral muscle artifacts in HFS versus interictal or ictal EEG patterns contralateral to facial contractions in seizures. This case highlights key features to aid neurologists in differentiating these conditions.
Collapse
Affiliation(s)
- Juan A Moncayo
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, USA
| | | | | | - Jannatul Ferdous
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, USA
| |
Collapse
|
5
|
Kim SH, Kang H, Roh YH, Hahn J, Min KL, Lee S, Yang D, Choi HS, Park S, Lee JH, Lee S, Kim SH, Chang MJ, Kim HD. Efficacy and safety of everolimus for patients with focal cortical dysplasia type 2. Epilepsia Open 2025; 10:243-257. [PMID: 39607729 PMCID: PMC11803298 DOI: 10.1002/epi4.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effectiveness and safety of everolimus in treating seizures associated with focal cortical dysplasia type 2 (FCD 2). METHODS A prospective, crossover, placebo-controlled clinical trial (ClinicalTrials.gov: NCT03198949) enrolled patients aged 4-40 years with pathologically confirmed FCD 2 and a history of ≥3 seizures per month for two out of the 3 months prior to screening. The trial included a 4-week baseline phase, two 12-week core phases, and a 29-week extension phase. Patients received everolimus or placebo in a blinded manner during core phase I, with crossover to the alternate treatment in core phase II. Everolimus dosage started at 4.5 mg/m2/day, targeting a serum level of 5-15 ng/mL. The primary outcome was the proportion of patients achieving ≥50% seizure reduction from baseline in the last month of each core phase. Safety profiles were compared between groups. RESULTS Between May 11, 2017, and June 19, 2020, 21 patients completed the core phases. There was no significant difference in the primary outcome between everolimus and placebo groups (24% vs. 19%, p = 0.66). The patients showed varied responses. Three patients with a pathogenic variant in the MTOR gene or no genetic abnormalities achieved seizure freedom with everolimus in the last month of the core phase, while none of the patients with variants in other genes did. Adverse events, such as mucositis or skin ulceration, were more common with everolimus (19/21 vs. 7/21, p < 0.001). All adverse events resolved without study drug withdrawal. SIGNIFICANCE Everolimus treatment for 12 weeks did not show overall superiority in reducing seizures compared to placebo. However, it showed promise, mostly in patients with a pathogenic variant in the MTOR gene, highlighting the need for further research into patient-specific factors influencing treatment response. The everolimus treatment was generally safe and manageable. PLAIN LANGUAGE SUMMARY This study tested everolimus for reducing seizures in patients with focal cortical dysplasia type 2 (FCD 2). While the drug was not more effective than a placebo for most, few patients showed better results, with some becoming seizure-free. Side effects were common but manageable. More research is needed to understand why certain patients respond better to treatment.
Collapse
Affiliation(s)
- Se Hee Kim
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Hoon‐Chul Kang
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems InformaticsYonsei University College of MedicineSeoulRepublic of Korea
| | - Jongsung Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- School of PharmacyJeonbuk National UniversityJeonjuRepublic of Korea
| | - Kyung Lok Min
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and PharmacyYonsei UniversityIncheonRepublic of Korea
| | - Seok‐Jin Lee
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
| | - Donghwa Yang
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Division of Pediatric Neurology, Department of PediatricsNational Health Insurance Service Ilsan HospitalGoyangRepublic of Korea
| | - Han Som Choi
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsEwha Womans University Seoul Hospital, Ewha Womans University School of MedicineSeoulRepublic of Korea
| | - Soyoung Park
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsSoonchunhyang University Bucheon Hospital, Soonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)SoVarGen, Inc.DaejeonRepublic of Korea
| | - Sang‐Guk Lee
- Department of Laboratory MedicineSeverance Hospital, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Se Hoon Kim
- Department of PathologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Min Jung Chang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of PharmacyYonsei UniversityIncheonRepublic of Korea
- Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and PharmacyYonsei UniversityIncheonRepublic of Korea
- Graduate Program of Industrial Pharmaceutical ScienceYonsei UniversityIncheonRepublic of Korea
| | - Heung Dong Kim
- Pediatric Neurology, Department of PediatricsYonsei University College of Medicine, Severance Children's Hospital, Epilepsy Research InstituteSeoulRepublic of Korea
- Department of PediatricsKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
6
|
Wang T, Dong H, Li K, Feng T, Yang Y, Chen S, Lu D, Wei P, Shan Y, Zhao G. Trends and hotspots of stereoelectroencephalogram from 2002 to 2023: a bibliometric analysis. Front Neurol 2024; 15:1464657. [PMID: 39741704 PMCID: PMC11686363 DOI: 10.3389/fneur.2024.1464657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Stereoelectroencephalography (SEEG), as a minimally invasive method that can stably collect intracranial electroencephalographic information over long periods, has increasingly been applied in the diagnosis and treatment of intractable epilepsy in recent years. Over the past 20 years, with the advancement of materials science and computer science, the application scenarios of SEEG have greatly expanded. Bibliometrics, as a method of scientifically analyzing published literature, can summarize the evolutionary process in the SEEG field and offer insights into its future development prospects. Methods This article selected all the literature records retrieved on November 4, 2024, from the Web of Science Core Collection (WoSCC). The search terms were as follows: "Stereo-electroencephalography" or "Stereo electroencephalography" or "Stereo-EEG" or "Stereo EEG" or "SEEG." The document types included were research articles and reviews. For analysis, VOSviewer, CiteSpace, and the R package "bibliometrix" were employed to analyze various aspects of the SEEG field, including authors, institutions, countries and regions, and research hotspots. Results We reviewed a total of 1,383 non-duplicate literature records from 2002 to 2023, including 1,241 research articles, 116 review articles and 26 letters. Observing the annual publication trends, there has been an overall increase since 2002. The most influential journal in this field is Epilepsia. Other journals with considerable impact include Clinical Neurophysiology, Epileptic Disorders, Epilepsy Research, NeuroImage, and Epilepsy & Behavior. The top 5 most influential scholars are Bartolomei F, Tassi L, Nobili L, Russo GL, and Mc Gonigal A. As for the analysis of countries and regions, France occupies a leading position in this field with its early start, while China and the United States have also emerged as focal points since 2020. Research on SEEG has expanded beyond its initial use for localizing epileptic foci and thermo-coagulation treatments and have been employed as a medium to facilitate real-time prediction of epileptic seizures and enabling the exploration of brain network connectivity. Conclusion As a minimally invasive tool for collecting intracranial electroencephalographic signals, SEEG continues to offer vast potential for development and application. Advances in electrode materials and robotic-assisted stereotactic techniques, have enabled SEEG to simultaneously sample multiple brain regions, acquire electrical signals from deep brain structures. These advantages significantly enhance the precision of epileptic focus localization in diagnosis and treatment, addressing the limitations of subdural electrodes. Through bibliometric analysis, this paper traces the developmental trajectory of SEEG and identifying key technological milestones, thereby providing a reference for scholarly research directions.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Hengxin Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kaiwei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Di Lu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
- Institute for Brain Disorder, Beijing, China
| |
Collapse
|
7
|
Yang M, Zhang Y, Zhang T, Zhou H, Ren J, Cao X, Zhou D, Yang T. Postoperative seizure outcomes and antiseizure medication utilization based on histopathological diagnosis: A retrospective cohort study. Epilepsy Behav 2024; 161:110056. [PMID: 39306974 DOI: 10.1016/j.yebeh.2024.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 03/17/2025]
Abstract
OBJECTIVE Analyze the association between histopathology, seizure outcomes, and drug load of antiseizure medications (ASMs) 5-8 years after epilepsy surgery to inform preoperative decision-making and consultation. METHODS In this retrospective, non-interventional, single-center study, patients who visited the epilepsy clinic at West China Hospital, Sichuan University from Jan 1, 2015 to Dec 31, 2020 were assessed. Patients with postoperative histopathology after epilepsy resection were included and categorized into 13 etiological groups. The primary outcomes were achieving Engel class 1 at 1, 2, 3, 5, and 8 years postoperative. Secondary outcomes included the use of ASMs and comparison of postoperative seizure outcomes between adults and children. Univariate and multivariable analyses were conducted to explore the association between clinical characteristics such as histopathology and seizure outcomes. RESULTS A total of 315 patients were include. Patients with embryonic dysplastic neuroepithelial tumor (DNT) achieved the best seizure outcomes (84.6 % Engel class 1). DNT (odds ratio, OR=0.103, 95 %CI=0.012-0.899), cavernous hemangiomas (OR=0.140, 95 %CI=0.024-0.819) and meningioma (OR=0.137, 95 %CI=0.021-0.910) were independently associated with a higher probability of seizure-free outcome. The results of epileptic seizures in adult and pediatric groups with different pathologies were significantly different, and the preoperative and postoperative ASM dosages were also different among adult patients with various etiologies. Additionally, multivariate analysis showed that early age at onset (adjusted hazard ratio (HR) = 1.754, 95 % CI=1.049-2.934, P=0.032), late surgical age (HR=0.569, 95 %CI=0.339-0.954, P=0.032), and longer duration from seizure onset to surgery (HR=1.735, 95 % CI=1.028-2.928, P=0.039) were independent predictors of unfavorable outcomes in epileptic seizures. CONCLUSIONS we demonstrated that the seizure outcomes of focal epilepsy have high pathological specificity, with histopathological diagnosis serving as a crucial and independent determinant of seizure outcome. Surgical assessment should be contemplated for all patients with presumed refractory focal epilepsy, irrespective of their age.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yingying Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaojing Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
8
|
Bartolomei F. The epileptogenic network concept: Applications in the SEEG exploration of lesional focal epilepsies. Neurophysiol Clin 2024; 54:103023. [PMID: 39481212 DOI: 10.1016/j.neucli.2024.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
The advent of advanced brain imaging techniques has significantly enhanced the understanding and treatment of focal epilepsies, with identifiable brain lesions present in 80 % of cases. Despite this, surgical outcomes remain varied, often influenced by lesion type and location. Traditional lesion-centric approaches may overlook the complex organization of the epileptogenic zone (EZ), which often extends beyond the visible lesion, emphasizing the need for comprehensive presurgical evaluations like stereo-electroencephalography (SEEG) in some cases. This article delves into the concept of epileptogenic networks, moving beyond the notion of a lesional epileptic focus. Through SEEG, three primary network types have been identified: the Epileptogenic Zone Network (EZN), characterized by regions with heightened epileptogenicity and seizure initiation; the Propagation Zone Network (PZN), involving regions with delayed and less intense epileptic activity; and Non-Involved networks (NI). Quantitative measures, such as the epileptogenicity index (EI), aid in delineating these networks, revealing that EZN can be focal or networked, with the latter being more prevalent. The relationship between epilepsy-associated lesions and network organization is complex. Intrinsically epileptogenic lesions, like focal cortical dysplasia and periventricular nodular heterotopias, often generate epileptiform activities but may still involve broader epileptogenic networks. Non-intrinsically epileptogenic lesions, such as cavernomas and post-stroke lesions, typically lack inherent neuronal activity but can facilitate the development of extensive epileptogenic networks. Understanding the intricacies of these networks is crucial for optimizing surgical interventions. Recognizing that lesions may represent just one node within a broader epileptogenic network underscores the importance of comprehensive SEEG evaluations to achieve better surgical outcomes.
Collapse
Affiliation(s)
- Fabrice Bartolomei
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille 13005, France.
| |
Collapse
|
9
|
Zhang X, Zhang Y, Wang C, Li L, Zhu F, Sun Y, Mo T, Hu Q, Xu J, Cao D. Focal cortical dysplasia lesion segmentation using multiscale transformer. Insights Imaging 2024; 15:222. [PMID: 39266782 PMCID: PMC11393231 DOI: 10.1186/s13244-024-01803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVES Accurate segmentation of focal cortical dysplasia (FCD) lesions from MR images plays an important role in surgical planning and decision but is still challenging for radiologists and clinicians. In this study, we introduce a novel transformer-based model, designed for the end-to-end segmentation of FCD lesions from multi-channel MR images. METHODS The core innovation of our proposed model is the integration of a convolutional neural network-based encoder-decoder structure with a multiscale transformer to augment the feature representation of lesions in the global field of view. Transformer pathways, composed of memory- and computation-efficient dual-self-attention modules, leverage feature maps from varying depths of the encoder to discern long-range interdependencies among feature positions and channels, thereby emphasizing areas and channels relevant to lesions. The proposed model was trained and evaluated on a public-open dataset including MR images of 85 patients using both subject-level and voxel-level metrics. RESULTS Experimental results indicate that our model offers superior performance both quantitatively and qualitatively. It successfully identified lesions in 82.4% of patients, with a low false-positive lesion cluster rate of 0.176 ± 0.381 per patient. Furthermore, the model achieved an average Dice coefficient of 0.410 ± 0.288, outperforming five established methods. CONCLUSION Integration of the transformer could enhance the feature presentation and segmentation performance of FCD lesions. The proposed model has the potential to serve as a valuable assistive tool for physicians, enabling rapid and accurate identification of FCD lesions. The source code and pre-trained model weights are available at https://github.com/zhangxd0530/MS-DSA-NET . CRITICAL RELEVANCE STATEMENT This multiscale transformer-based model performs segmentation of focal cortical dysplasia lesions, aiming to help radiologists and clinicians make accurate and efficient preoperative evaluations of focal cortical dysplasia patients from MR images. KEY POINTS The first transformer-based model was built to explore focal cortical dysplasia lesion segmentation. Integration of global and local features enhances the segmentation performance of lesions. A valuable benchmark for model development and comparative analyses was provided.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China
| | - Yongquan Zhang
- Zhejiang University of Finance and Economics, Hangzhou, 310000, Zhejiang, China
| | - Changmiao Wang
- Shenzhen Research Institute of Big Data, Shenzhen, 518000, Guangdong, China
| | - Lin Li
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
| | - Fengjun Zhu
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
| | - Yang Sun
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
| | - Tong Mo
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China
| | - Qingmao Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China
| | - Jinping Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, Guangdong, China.
| | - Dezhi Cao
- Shenzhen Children's Hospital, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
10
|
Zauli FM, Del Vecchio M, Pigorini A, Russo S, Massimini M, Sartori I, Cardinale F, d'Orio P, Mikulan E. Localizing hidden Interictal Epileptiform Discharges with simultaneous intracerebral and scalp high-density EEG recordings. J Neurosci Methods 2024; 409:110193. [PMID: 38871302 DOI: 10.1016/j.jneumeth.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Scalp EEG is one of the main tools in the clinical evaluation of epilepsy. In some cases intracranial Interictal Epileptiform Discharges (IEDs) are not visible from the scalp. Recent studies have shown the feasibility of revealing them in the EEG if their timings are extracted from simultaneous intracranial recordings, but their potential for the localization of the epileptogenic zone is not yet well defined. NEW METHOD We recorded simultaneous high-density EEG (HD-EEG) and stereo-electroencephalography (SEEG) during interictal periods in 8 patients affected by drug-resistant focal epilepsy. We identified IEDs in the SEEG and systematically analyzed the time-locked signals on the EEG by means of evoked potentials, topographical analysis and Electrical Source Imaging (ESI). The dataset has been standardized and is being publicly shared. RESULTS Our results showed that IEDs that were not clearly visible at single-trials could be uncovered by averaging, in line with previous reports. They also showed that their topographical voltage distributions matched the position of the SEEG electrode where IEDs had been identified, and that ESI techniques can reconstruct it with an accuracy of ∼2 cm. Finally, the present dataset provides a reference to test the accuracy of different methods and parameters. COMPARISON WITH EXISTING METHODS Our study is the first to systematically compare ESI methods on simultaneously recorded IEDs, and to share a public resource with in-vivo data for their evaluation. CONCLUSIONS Simultaneous HD-EEG and SEEG recordings can unveil hidden IEDs whose origins can be reconstructed using topographical and ESI analyses, but results depend on the selected methods and parameters.
Collapse
Affiliation(s)
- Flavia Maria Zauli
- Department of Philosophy "P. Martinetti", Università degli Studi di Milano, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Ivana Sartori
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Francesco Cardinale
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Piergiorgio d'Orio
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Agarwal A, Bathla G, Soni N, Desai A, Middlebrooks E, Patel V, Gupta V, Vibhute P. Updates from the International League Against Epilepsy Classification of Epilepsy (2017) and Focal Cortical Dysplasias (2022): Imaging Phenotype and Genetic Characterization. AJNR Am J Neuroradiol 2024; 45:991-999. [PMID: 38754996 PMCID: PMC11383419 DOI: 10.3174/ajnr.a8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 05/18/2024]
Abstract
The International League Against Epilepsy (ILAE) is an organization of 120 national chapters providing the most widely accepted and updated guidelines on epilepsy. In 2022, the ILAE Task Force revised the prior (2011) classification of focal cortical dysplasias to incorporate and update clinicopathologic and genetic information, with the aim to provide an objective classification scheme. New molecular-genetic information has led to the concept of "integrated diagnosis" on the same lines as brain tumors, with a multilayered diagnostic model providing a phenotype-genotype integration. Major changes in the new update were made to type II focal cortical dysplasias, apart from identification of new entities, such as mild malformations of cortical development and cortical malformation with oligodendroglial hyperplasia. No major changes were made to type I and III focal cortical dysplasias, given the lack of significant new genetic information. This review provides the latest update on changes to the classification of focal cortical dysplasias with discussion about the new entities. The ILAE in 2017 updated the classification of seizure and epilepsy with 3 levels of diagnosis, including seizure type, epilepsy type, and epilepsy syndrome, which are also briefly discussed here.
Collapse
Affiliation(s)
- Amit Agarwal
- From the Department of Radiology (A.A., G.B., N.S., E.M.), Mayo Clinic, Jacksonville, Florida
| | - Girish Bathla
- From the Department of Radiology (A.A., G.B., N.S., E.M.), Mayo Clinic, Jacksonville, Florida
| | - Neetu Soni
- From the Department of Radiology (A.A., G.B., N.S., E.M.), Mayo Clinic, Jacksonville, Florida
| | - Amit Desai
- Neuroradiology (A.D., V.P., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Erik Middlebrooks
- From the Department of Radiology (A.A., G.B., N.S., E.M.), Mayo Clinic, Jacksonville, Florida
| | - Vishal Patel
- Neuroradiology (A.D., V.P., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Vivek Gupta
- Neuroradiology (A.D., V.P., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| | - Prasanna Vibhute
- Neuroradiology (A.D., V.P., V.G., P.V.), Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
12
|
Guo J, Wang Z, van 't Klooster MA, Van Der Salm SM, Leijten FS, Braun KP, Zijlmans M. Seizure Outcome After Intraoperative Electrocorticography-Tailored Epilepsy Surgery: A Systematic Review and Meta-Analysis. Neurology 2024; 102:e209430. [PMID: 38768406 PMCID: PMC11175635 DOI: 10.1212/wnl.0000000000209430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tailoring epilepsy surgery using intraoperative electrocorticography (ioECoG) has been debated, and modest number of epilepsy surgery centers apply this diagnostic method. We assessed the current evidence to use ioECoG-tailored epilepsy surgery for improving postsurgical outcome. METHODS PubMed and Embase were searched for original studies reporting on ≥10 cases who underwent ioECoG-tailored surgery for epilepsy, with a follow-up of at least 6 months. We used a random-effects model to calculate the overall rate of patients achieving favorable seizure outcome (FSO), defined as Engel class I, ILAE class 1, or seizure-free status. Meta-regression was used to investigate potential sources of heterogeneity. We calculated the odds ratio (OR) for estimating variables on FSO:ioECoG vs non-ioECoG-tailored surgery (if included studies contained patients with non-ioECoG-tailored surgery), ioECoG-tailored epilepsy surgery in children vs adults, temporal (TL) vs extratemporal lobe (eTL), MRI-positive vs MRI-negative, and complete vs incomplete resection of tissue that generated interictal epileptiform discharges (IEDs). A Bayesian network meta-analysis was conducted for underlying pathologies. We assessed the evidence certainty using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS Eighty-three studies (82 observational studies, 1 trial) comprising 3,631 patients with ioECoG-tailored surgery were included. The overall pooled rate of patients who attained FSO after ioECoG-tailored surgery was 74% (95% CI 71-77) with significant heterogeneity, which was predominantly attributed to pathologies and seizure outcome classifications. Twenty-two studies contained non-ioECoG-tailored surgeries. IoECoG-tailored surgeries reached a higher rate of FSO than non-ioECoG-tailored surgeries (OR 2.10 [95% CI 1.37-3.24]; p < 0.01; very low certainty). Complete resection of tissue that displayed IEDs in ioECoG predicted FSO better compared with incomplete resection (OR 3.04 [1.76-5.25]; p < 0.01; low certainty). We found insignificant difference in FSO after ioECoG-tailored surgery in children vs adults, TL vs eTL, or MRI-positive vs MRI-negative. The network meta-analysis showed that the odds of FSO was lower for malformations of cortical development than for tumors (OR 0.47 95% credible interval 0.25-0.87). DISCUSSION Although limited by low-quality evidence, our meta-analysis shows a relatively good surgical outcome (74% FSO) after epilepsy surgery with ioECoG, especially in tumors, with better outcome for ioECoG-tailored surgeries in studies describing both and better outcome after complete removal of IED areas.
Collapse
Affiliation(s)
- Jiaojiao Guo
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Ziyi Wang
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Maryse A van 't Klooster
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Sandra M Van Der Salm
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Frans S Leijten
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Kees P Braun
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| | - Maeike Zijlmans
- From the Department of Neurology and Neurosurgery (J.G., Z.W., M.A.K., S.M.V.D.S., F.S.L., K.P.B., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), the Netherlands
| |
Collapse
|
13
|
Bolzan A, Benoit J, Pizzo F, Makhalova J, Villeneuve N, Carron R, Scavarda D, Bartolomei F, Lagarde S. Correspondence between scalp-EEG and stereoelectroencephalography seizure-onset patterns in patients with MRI-negative drug-resistant focal epilepsy. Epilepsia Open 2024; 9:568-581. [PMID: 38148028 PMCID: PMC10984298 DOI: 10.1002/epi4.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Our objective was to evaluate the relationship between scalp-EEG and stereoelectroencephalography (SEEG) seizure-onset patterns (SOP) in patients with MRI-negative drug-resistant focal epilepsy. METHODS We analyzed retrospectively 41 patients without visible lesion on brain MRI who underwent video-EEG followed by SEEG. We defined five types of SOPs on scalp-EEG and eight types on SEEG. We examined how various clinical variables affected scalp-EEG SOPs. RESULTS The most prevalent scalp SOPs were rhythmic sinusoidal activity (56.8%), repetitive epileptiform discharges (22.7%), and paroxysmal fast activity (15.9%). The presence of paroxysmal fast activity on scalp-EEG was always seen without delay from clinical onset and correlated with the presence of low-voltage fast activity in SEEG (sensitivity = 22.6%, specificity = 100%). The main factor explaining the discrepancy between the scalp and SEEG SOPs was the delay between clinical and scalp-EEG onset. There was a correlation between the scalp and SEEG SOPs when the scalp onset was simultaneous with the clinical onset (p = 0.026). A significant delay between clinical and scalp discharge onset was observed in 25% of patients and featured always with a rhythmic sinusoidal activity on scalp, corresponding to similar morphology of the discharge on SEEG. The presence of repetitive epileptiform discharges on scalp was associated with an underlying focal cortical dysplasia (sensitivity = 30%, specificity = 90%). There was no significant association between the scalp SOP and the epileptogenic zone location (deep or superficial), or surgical outcome. SIGNIFICANCE In patients with MRI-negative focal epilepsy, scalp SOP could suggest the SEEG SOP and some etiology (focal cortical dysplasia) but has no correlation with surgical prognosis. Scalp SOP correlates with the SEEG SOP in cases of simultaneous EEG and clinical onset; otherwise, scalp SOP reflects the propagation of the SEEG discharge. PLAIN LANGUAGE SUMMARY We looked at the correspondence between the electrical activity recorded during the start of focal seizure using scalp and intracerebral electrodes in patients with no visible lesion on MRI. If there is a fast activity on scalp, it reflects similar activity inside the brain. We found a good correspondence between scalp and intracerebral electrical activity for cases without significant delay between clinical and scalp electrical onset (seen in 75% of the cases we studied). Visualizing repetitive epileptic activity on scalp could suggest a particular cause of the epilepsy: a subtype of brain malformation called focal cortical dysplasia.
Collapse
Affiliation(s)
- Anna Bolzan
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Jeanne Benoit
- CHU de Nice, Epileptology DepartmentUniversité Côte d'Azur, UMR2CA (URRIS)NiceFrance
| | - Francesca Pizzo
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, CEMEREMMarseilleFrance
| | | | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Gamma UnitMarseilleFrance
| | - Didier Scavarda
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- APHM, Timone Hospital, Paediatric NeurosurgeryMarseilleFrance
| | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- University Hospitals of Geneva (HUG), University of Geneva (UNIGE)GenevaSwitzerland
| |
Collapse
|
14
|
Fila M, Przyslo L, Derwich M, Pawlowska E, Blasiak J. Potential of focal cortical dysplasia in migraine pathogenesis. Cereb Cortex 2024; 34:bhae158. [PMID: 38615241 DOI: 10.1093/cercor/bhae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/15/2024] Open
Abstract
Focal cortical dysplasias are abnormalities of the cerebral cortex associated with an elevated risk of neurological disturbances. Cortical spreading depolarization/depression is a correlate of migraine aura/headache and a trigger of migraine pain mechanisms. However, cortical spreading depolarization/depression is associated with cortical structural changes, which can be classified as transient focal cortical dysplasias. Migraine is reported to be associated with changes in various brain structures, including malformations and lesions in the cortex. Such malformations may be related to focal cortical dysplasias, which may play a role in migraine pathogenesis. Results obtained so far suggest that focal cortical dysplasias may belong to the causes and consequences of migraine. Certain focal cortical dysplasias may lower the threshold of cortical excitability and facilitate the action of migraine triggers. Migraine prevalence in epileptic patients is higher than in the general population, and focal cortical dysplasias are an established element of epilepsy pathogenesis. In this narrative/hypothesis review, we present mainly information on cortical structural changes in migraine, but studies on structural alterations in deep white matter and other brain regions are also presented. We develop the hypothesis that focal cortical dysplasias may be causally associated with migraine and link pathogeneses of migraine and epilepsy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Lukasz Przyslo
- Department of Developmental Neurology and Epileptology, Polish Mother's Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Łódzkie, Poland
| | - Marcin Derwich
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Ezbieta Pawlowska
- Department of Developmental Dentistry, Medical University of Lodz, Pomorska 251, 90-647 Lodz, Łódzkie, Poland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plac Generała Dabrowskiego 2, 09-420 Plock, Mazowieckie, Poland
| |
Collapse
|
15
|
Yao Y, Wang X, Zhao B, Mo J, Guo Z, Yang B, Li Z, Fan X, Cai D, Sang L, Zheng Z, Shao X, Ai L, Hu W, Zhang C, Zhang K. Hypometabolic patterns are related to post-surgical seizure outcomes in focal cortical dysplasia: A semi-quantitative study. Epilepsia Open 2024; 9:653-664. [PMID: 38265725 PMCID: PMC10984320 DOI: 10.1002/epi4.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Fluorine-18-fluorodeoxyglucose-positron emission tomography (FDG-PET) is routinely used for presurgical evaluation in many epilepsy centers. Hypometabolic characteristics have been extensively examined in prior studies, but the metabolic patterns associated with specific pathological types of drug-resistant epilepsy remain to be fully defined. This study was developed to explore the relationship between metabolic patterns or characteristics and surgical outcomes in type I and II focal cortical dysplasia (FCD) patients based on results from a large cohort. METHODS Data from individuals who underwent epilepsy surgery from 2014 to 2019 with a follow-up duration of over 3 years and a pathological classification of type I or II FCD in our hospital were retrospectively analyzed. Hypometabolic patterns were quantitatively identified via statistical parametric mapping (SPM) and qualitatively analyzed via visual examination of PET-MRI co-registration images. Univariate analyses were used to explore the relationship between metabolic patterns and surgical outcomes. RESULTS In total, this study included data from 210 patients. Following SPM calculations, four hypometabolic patterns were defined including unilobar, multi-lobar, and remote patterns as well as cases where no pattern was evident. In type II FCD patients, the unilobar pattern was associated with the best surgical outcomes (p = 0.014). In visual analysis, single gyrus (p = 0.032) and Clear-cut hypometabolism edge (p = 0.040) patterns exhibited better surgery outcomes in the type II FCD group. CONCLUSIONS PET metabolic patterns are well-correlated with the prognosis of type II FCD patients. However, similar correlations were not observed in type I FCD, potentially owing to the complex distribution of the epileptogenic region. PLAIN LANGUAGE SUMMARY In this study, we demonstrated that FDG-PET was a crucial examination for patients with FCD, which was a common cause of epilepsy. We compared the surgical prognosis for patients with different hypometabolism distribution patterns and found that clear and focal abnormal region in PET was correlated with good surgical outcome in type II FCD patients.
Collapse
Affiliation(s)
- Yuan Yao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zhihao Guo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Bowen Yang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zilin Li
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiuliang Fan
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Du Cai
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Sang
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Zhong Zheng
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Xiaoqiu Shao
- Department of NeurologyBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Ai
- Department of Nuclear MedicineBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Wenhan Hu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Kai Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Ferri L, Menghi V, Licchetta L, Dimartino P, Minardi R, Davì C, Di Vito L, Cifaldi E, Zenesini C, Gozzo F, Pelliccia V, Mariani V, de Spelorzi YCC, Gustincich S, Seri M, Tassi L, Pippucci T, Bisulli F. Detection of somatic and germline pathogenic variants in adult cohort of drug-resistant focal epilepsies. Epilepsy Behav 2024; 153:109716. [PMID: 38508103 DOI: 10.1016/j.yebeh.2024.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.
Collapse
Affiliation(s)
- L Ferri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy
| | - V Menghi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; Neurology Unit, Rimini "Infermi" Hospital-AUSL Romagna, Rimini, Italy
| | - L Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - P Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy
| | - R Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - C Davì
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - L Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - E Cifaldi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - C Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy
| | - F Gozzo
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - V Pelliccia
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - V Mariani
- Neurology and Stroke Unit, ASST Santi Paolo e Carlo, Presidio San Carlo Borromeo, Milano, Italy
| | - Y C C de Spelorzi
- Genomics Facility, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - S Gustincich
- Center for Human Technologies, Non-coding RNAs and RNA-based Therapeutics, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - M Seri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - L Tassi
- Claudio Munari Epilepsy Surgery Center, Niguarda Hospital, Milano, Italy
| | - T Pippucci
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - F Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (full member of the European Reference Network EpiCARE), Via Altura 3, Bologna 40139, Italy; Department of Biomedical and NeuroMotor Sciences, University of Bologna, Via Massarenti, 9 - Pad. 11 - 40138 Bologna, Italy.
| |
Collapse
|
17
|
Attyé A, Renard F, Anglade V, Krainik A, Kahane P, Mansencal B, Coupé P, Calamante F. Data-driven normative values based on generative manifold learning for quantitative MRI. Sci Rep 2024; 14:7563. [PMID: 38555415 PMCID: PMC10981723 DOI: 10.1038/s41598-024-58141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
In medicine, abnormalities in quantitative metrics such as the volume reduction of one brain region of an individual versus a control group are often provided as deviations from so-called normal values. These normative reference values are traditionally calculated based on the quantitative values from a control group, which can be adjusted for relevant clinical co-variables, such as age or sex. However, these average normative values do not take into account the globality of the available quantitative information. For example, quantitative analysis of T1-weighted magnetic resonance images based on anatomical structure segmentation frequently includes over 100 cerebral structures in the quantitative reports, and these tend to be analyzed separately. In this study, we propose a global approach to personalized normative values for each brain structure using an unsupervised Artificial Intelligence technique known as generative manifold learning. We test the potential benefit of these personalized normative values in comparison with the more traditional average normative values on a population of patients with drug-resistant epilepsy operated for focal cortical dysplasia, as well as on a supplementary healthy group and on patients with Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Vanina Anglade
- Department of Neuroradiology and MRI, SFR RMN Neurosciences, University Grenoble Alpes Hospital, Grenoble, France
| | - Alexandre Krainik
- Department of Neuroradiology and MRI, SFR RMN Neurosciences, University Grenoble Alpes Hospital, Grenoble, France
| | - Philippe Kahane
- Department of Neurology, University Grenoble Alpes Hospital, Grenoble, France
| | - Boris Mansencal
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, 33400, Talence, France
| | - Pierrick Coupé
- CNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, 33400, Talence, France
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Imaging-The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Mellor S, Timms RC, O'Neill GC, Tierney TM, Spedden ME, Brookes MJ, Wagstyl K, Barnes GR. Combining OPM and lesion mapping data for epilepsy surgery planning: a simulation study. Sci Rep 2024; 14:2882. [PMID: 38311614 PMCID: PMC10838931 DOI: 10.1038/s41598-024-51857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG. We investigate a number of scenarios: whether to use rigid or flexible sensor arrays, with or without a-priori source information and with or without source modelling errors. We simulated OP-MEG recordings for 1309 potential lesion sites identified from anatomical images in the Multi-centre Epilepsy Lesion Detection (MELD) project. To localise the simulated data, we used three source inversion schemes: unconstrained, prior source locations at centre of the candidate sites, and prior source locations within a volume around the lesion location. We found that prior knowledge of the candidate lesion zones made the inversion robust to errors in sensor gain, orientation and even location. When the reconstruction was too highly restricted and the source assumptions were inaccurate, the utility of this a-priori information was undermined. Overall, we found that constraining the reconstruction to the region including and around the participant's potential lesion sites provided the best compromise of robustness against modelling or measurement error.
Collapse
Affiliation(s)
- Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK.
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - George C O'Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
- UCL Great Ormond Street Institute for Child Health, University College London, 30 Guilford St, London, WC1N 1EH, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
19
|
Honke J, Hoffmann L, Coras R, Kobow K, Leu C, Pieper T, Hartlieb T, Bien CG, Woermann F, Cloppenborg T, Kalbhenn T, Gaballa A, Hamer H, Brandner S, Rössler K, Dörfler A, Rampp S, Lemke JR, Baldassari S, Baulac S, Lal D, Nürnberg P, Blümcke I. Deep histopathology genotype-phenotype analysis of focal cortical dysplasia type II differentiates between the GATOR1-altered autophagocytic subtype IIa and MTOR-altered migration deficient subtype IIb. Acta Neuropathol Commun 2023; 11:179. [PMID: 37946310 PMCID: PMC10633947 DOI: 10.1186/s40478-023-01675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Focal cortical dysplasia type II (FCDII) is the most common cause of drug-resistant focal epilepsy in children. Herein, we performed a deep histopathology-based genotype-phenotype analysis to further elucidate the clinico-pathological and genetic presentation of FCDIIa compared to FCDIIb. Seventeen individuals with histopathologically confirmed diagnosis of FCD ILAE Type II and a pathogenic variant detected in brain derived DNA whole-exome sequencing or mTOR gene panel sequencing were included in this study. Clinical data were directly available from each contributing centre. Histopathological analyses were performed from formalin-fixed, paraffin-embedded tissue samples using haematoxylin-eosin and immunohistochemistry for NF-SMI32, NeuN, pS6, p62, and vimentin. Ten individuals carried loss-of-function variants in the GATOR1 complex encoding genes DEPDC5 (n = 7) and NPRL3 (n = 3), or gain-of-function variants in MTOR (n = 7). Whereas individuals with GATOR1 variants only presented with FCDIIa, i.e., lack of balloon cells, individuals with MTOR variants presented with both histopathology subtypes, FCDIIa and FCDIIb. Interestingly, 50% of GATOR1-positive cases showed a unique and predominantly vacuolizing phenotype with p62 immunofluorescent aggregates in autophagosomes. All cases with GATOR1 alterations had neurosurgery in the frontal lobe and the majority was confined to the cortical ribbon not affecting the white matter. This pattern was reflected by subtle or negative MRI findings in seven individuals with GATOR1 variants. Nonetheless, all individuals were seizure-free after surgery except four individuals carrying a DEPDC5 variant. We describe a yet underrecognized genotype-phenotype correlation of GATOR1 variants with FCDIIa in the frontal lobe. These lesions were histopathologically characterized by abnormally vacuolizing cells suggestive of an autophagy-altered phenotype. In contrast, individuals with FCDIIb and brain somatic MTOR variants showed larger lesions on MRI including the white matter, suggesting compromised neural cell migration.
Collapse
Affiliation(s)
- Jonas Honke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Lucas Hoffmann
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, Germany
- Research Institute for Rehabilitation, Transition, and Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Friedrich Woermann
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, Germany
| | - Ahmed Gaballa
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, Germany
| | - Hajo Hamer
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain
- Epilepsy Center, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Arnd Dörfler
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sara Baldassari
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Stéphanie Baulac
- Inserm, CNRS, APHP, Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de La Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
- Department of Neurology, McGovern Medical School, UTHealth Houston, University of Texas, Houston, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931, Cologne, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Partner of the European Reference Network (ERN) EpiCARE, Barcelona, Spain.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, 02142, USA.
| |
Collapse
|
20
|
Ghulaxe Y, Joshi A, Chavada J, Huse S, Kalbande B, Sarda PP. Understanding Focal Seizures in Adults: A Comprehensive Review. Cureus 2023; 15:e48173. [PMID: 38046728 PMCID: PMC10693312 DOI: 10.7759/cureus.48173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Focal or partial seizures are a common neurological disorder affecting adults. This review aims to provide an in-depth understanding of focal seizures in adults, including their classification, clinical presentation, etiology, diagnosis, and management. This article seeks to enhance awareness and knowledge among medical professionals and the general public by exploring the latest research and clinical insights. Standard electroencephalography (EEG) and recordings in presurgical electrode depth in humans provide a clear definition of patterns similar to focal seizures. Models of animals with partial seizures and epilepsy mimic seizure patterns with comparable characteristics. However, the network factors supporting interictal spikes, as well as the start, development, and end of seizures remain obscure. According to recent research, inhibitory networks are heavily implicated at the beginning of seizures, and extracellular potassium alterations help start and maintain seizure continuation. An increase in network synchronization, which may be caused by both excitatory and inhibitory pathways, is correlated with the cessation of a partial seizure. Recent research on temporal lobe focal seizures in human and animal models leads to the hypothesis that the active blocking of subcortical arousal processes brings on unconsciousness. Brainstem, basal forebrain, and thalamic arousal networks' neuronal firing is diminished during focal limbic seizures, and cortical arousal can be recovered when subcortical arousal circuits are engaged. These results suggest that thalamic neurostimulation may be therapeutic to restore arousal and consciousness during and after seizures. Targeted subcortical stimulation may increase arousal and consciousness when current treatments cannot halt seizures, enhancing safety and psychosocial function for epileptic patients. We embark on an investigation into adult focal seizures in this thorough review that goes beyond a cursory knowledge of their clinical symptoms.
Collapse
Affiliation(s)
- Yash Ghulaxe
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhishek Joshi
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jay Chavada
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shreyash Huse
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhakti Kalbande
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Prayas P Sarda
- Department of Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
Abarrategui B, Mariani V, Rizzi M, Berta L, Scarpa P, Zauli FM, Squarza S, Banfi P, d’Orio P, Cardinale F, Del Vecchio M, Caruana F, Avanzini P, Sartori I. Language lateralization mapping (reversibly) masked by non-dominant focal epilepsy: a case report. Front Hum Neurosci 2023; 17:1254779. [PMID: 37900727 PMCID: PMC10600519 DOI: 10.3389/fnhum.2023.1254779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Language lateralization in patients with focal epilepsy frequently diverges from the left-lateralized pattern that prevails in healthy right-handed people, but the mechanistic explanations are still a matter of debate. Here, we debate the complex interaction between focal epilepsy, language lateralization, and functional neuroimaging techniques by introducing the case of a right-handed patient with unaware focal seizures preceded by aphasia, in whom video-EEG and PET examination suggested the presence of focal cortical dysplasia in the right superior temporal gyrus, despite a normal structural MRI. The functional MRI for language was inconclusive, and the neuropsychological evaluation showed mild deficits in language functions. A bilateral stereo-EEG was proposed confirming the right superior temporal gyrus origin of seizures, revealing how ictal aphasia emerged only once seizures propagated to the left superior temporal gyrus and confirming, by cortical mapping, the left lateralization of the posterior language region. Stereo-EEG-guided radiofrequency thermocoagulations of the (right) focal cortical dysplasia not only reduced seizure frequency but led to the normalization of the neuropsychological assessment and the "restoring" of a classical left-lateralized functional MRI pattern of language. This representative case demonstrates that epileptiform activity in the superior temporal gyrus can interfere with the functioning of the contralateral homologous cortex and its associated network. In the case of presurgical evaluation in patients with epilepsy, this interference effect must be carefully taken into consideration. The multimodal language lateralization assessment reported for this patient further suggests the sensitivity of different explorations to this interference effect. Finally, the neuropsychological and functional MRI changes after thermocoagulations provide unique cues on the network pathophysiology of focal cortical dysplasia and the role of diverse techniques in indexing language lateralization in complex scenarios.
Collapse
Affiliation(s)
- Belén Abarrategui
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Valeria Mariani
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Neurology and Stroke Unit, ASST Santi Paolo e Carlo, Presidio San Carlo Borromeo, Milan, Italy
| | - Michele Rizzi
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Berta
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Pina Scarpa
- Cognitive Neuropsychology Centre, Department of Neuroscience, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Flavia Maria Zauli
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
- Department of Philosophy “P. Martinetti”, Università degli Studi di Milano, Milan, Italy
| | - Silvia Squarza
- Department of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Paola Banfi
- Neurology and Stroke Unit, ASST Sette Laghi Ospedale di Circolo, Varese, Italy
| | - Piergiorgio d’Orio
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Francesco Cardinale
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Fausto Caruana
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Ivana Sartori
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
22
|
Kundu S, Barsoum S, Ariza J, Nolan AL, Latimer CS, Keene CD, Basser PJ, Benjamini D. Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun 2023; 5:fcad258. [PMID: 37953850 PMCID: PMC10638106 DOI: 10.1093/braincomms/fcad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
Collapse
Affiliation(s)
- Shinjini Kundu
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
23
|
Chameh HM, Falby M, Movahed M, Arbabi K, Rich S, Zhang L, Lefebvre J, Tripathy SJ, De Pittà M, Valiante TA. Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue. Front Synaptic Neurosci 2023; 15:1250834. [PMID: 37860223 PMCID: PMC10584155 DOI: 10.3389/fnsyn.2023.1250834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Electrophysiological characterization of live human tissue from epilepsy patients has been performed for many decades. Although initially these studies sought to understand the biophysical and synaptic changes associated with human epilepsy, recently, it has become the mainstay for exploring the distinctive biophysical and synaptic features of human cell-types. Both epochs of these human cellular electrophysiological explorations have faced criticism. Early studies revealed that cortical pyramidal neurons obtained from individuals with epilepsy appeared to function "normally" in comparison to neurons from non-epilepsy controls or neurons from other species and thus there was little to gain from the study of human neurons from epilepsy patients. On the other hand, contemporary studies are often questioned for the "normalcy" of the recorded neurons since they are derived from epilepsy patients. In this review, we discuss our current understanding of the distinct biophysical features of human cortical neurons and glia obtained from tissue removed from patients with epilepsy and tumors. We then explore the concept of within cell-type diversity and its loss (i.e., "neural homogenization"). We introduce neural homogenization to help reconcile the epileptogenicity of seemingly "normal" human cortical cells and circuits. We propose that there should be continued efforts to study cortical tissue from epilepsy patients in the quest to understand what makes human cell-types "human".
Collapse
Affiliation(s)
- Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Madeleine Falby
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Mandana Movahed
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Scott Rich
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liang Zhang
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Jérémie Lefebvre
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J. Tripathy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Maurizio De Pittà
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Basque Center for Applied Mathematics, Bilbao, Spain
- Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | - Taufik A. Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Guo M, Zhang J, Wang J, Wang X, Gao Q, Tang C, Deng J, Xiong Z, Kong X, Guan Y, Zhou J, Boison D, Luan G, Li T. Aberrant adenosine signaling in patients with focal cortical dysplasia. Mol Neurobiol 2023; 60:4396-4417. [PMID: 37103687 PMCID: PMC10330374 DOI: 10.1007/s12035-023-03351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Focal cortical dysplasia (FCD), a common malformation of cortical development, is frequently associated with pharmacoresistant epilepsy in both children and adults. Adenosine is an inhibitory modulator of brain activity and a prospective anti-seizure agent with potential for clinical translation. Our previous results demonstrated that the major adenosine-metabolizing enzyme adenosine kinase (ADK) was upregulated in balloon cells (BCs) within FCD type IIB lesions, suggesting that dysfunction of the adenosine system is implicated in the pathophysiology of FCD. In our current study, we therefore performed a comprehensive analysis of adenosine signaling in surgically resected cortical specimens from patients with FCD type I and type II via immunohistochemistry and immunoblot analysis. Adenosine enzyme signaling was assessed by quantifying the levels of the key enzymes of adenosine metabolism, i.e., ADK, adenosine deaminase (ADA), and ecto-5'-nucleotidase (CD73). Adenosine receptor signaling was assessed by quantifying the levels of adenosine A2A receptor (A2AR) and putative downstream mediators of adenosine, namely, glutamate transporter-1 (GLT-1) and mammalian target of rapamycin (mTOR). Within lesions in FCD specimens, we found that the adenosine-metabolizing enzymes ADK and ADA, as well as the adenosine-producing enzyme CD73, were upregulated. We also observed an increase in A2AR density, as well as a decrease in GLT-1 levels and an increase in mTOR levels, in FCD specimens compared with control tissue. These results suggest that dysregulation of the adenosine system is a common pathologic feature of both FCD type I and type II. The adenosine system might therefore be a therapeutic target for the treatment of epilepsy associated with FCD.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Zhang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiongfei Wang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Qing Gao
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zhonghua Xiong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Xiangru Kong
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yuguang Guan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Jian Zhou
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
25
|
Boßelmann CM, Leu C, Lal D. Technological and computational approaches to detect somatic mosaicism in epilepsy. Neurobiol Dis 2023:106208. [PMID: 37343892 DOI: 10.1016/j.nbd.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Lesional epilepsy is a common and severe disease commonly associated with malformations of cortical development, including focal cortical dysplasia and hemimegalencephaly. Recent advances in sequencing and variant calling technologies have identified several genetic causes, including both short/single nucleotide and structural somatic variation. In this review, we aim to provide a comprehensive overview of the methodological advancements in this field while highlighting the unresolved technological and computational challenges that persist, including ultra-low variant allele fractions in bulk tissue, low availability of paired control samples, spatial variability of mutational burden within the lesion, and the issue of false-positive calls and validation procedures. Information from genetic testing in focal epilepsy may be integrated into clinical care to inform histopathological diagnosis, postoperative prognosis, and candidate precision therapies.
Collapse
Affiliation(s)
- Christian M Boßelmann
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, DE, USA
| |
Collapse
|
26
|
Ricci L, Tamilia E, Mercier M, Pepi C, Carfì-Pavia G, De Benedictis A, Assenza G, Di Lazzaro V, Vigevano F, Specchio N, de Palma L. Phase-amplitude coupling between low- and high-frequency activities as preoperative biomarker of focal cortical dysplasia subtypes. Clin Neurophysiol 2023; 150:40-48. [PMID: 37002979 DOI: 10.1016/j.clinph.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 03/02/2023] [Indexed: 04/01/2023]
Abstract
OBJECTIVE To evaluate whether ictal phase-amplitude coupling (PAC) between high-frequency activity and low-frequency activity could be used as a preoperative biomarker of Focal Cortical Dysplasia (FCD) subtypes. We hypothesize that FCD seizures present unique PAC characteristics that may be linked to their specific histopathological features. METHODS We retrospectively examined 12 children with FCD and refractory epilepsy who underwent successful epilepsy surgery. We identified ictal onsets recorded with stereo-EEG. We estimated the strength of PAC between low-frequencies and high-frequencies for each seizure by means of modulation index. Generalized mixed effect models and receiver operating characteristic (ROC) curve analysis were used to test the association between ictal PAC and FCD subtypes. RESULTS Ictal PAC was significantly higher in patients with FCD type II compared to type I, only on SOZ-electrodes (p < 0.005). No differences in ictal PAC were found on non-SOZ electrodes. Pre-ictal PAC registered on SOZ electrodes predicted FCD histopathology with a classification accuracy > 0.9 (p < 0.05). CONCLUSIONS The correlations between histopathology and neurophysiology provide evidence for the contribution of ictal PAC as a preoperative biomarker of FCD subtypes. SIGNIFICANCE Developed into a proper clinical application, such a technique may help improve clinical management and facilitate the prediction of surgical outcome in patients with FCD undergoing stereo-EEG monitoring.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging Developmental Science Center, Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattia Mercier
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Chiara Pepi
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Giusy Carfì-Pavia
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Federico Vigevano
- Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy.
| | - Luca de Palma
- Rare and Complex Epilepsies, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, 00165 Rome, Italy
| |
Collapse
|
27
|
Fountain C, Ghuman H, Paldino M, Tamber M, Panigrahy A, Modo M. Acquisition and Analysis of Excised Neocortex from Pediatric Patients with Focal Cortical Dysplasia Using Mesoscale Diffusion MRI. Diagnostics (Basel) 2023; 13:1529. [PMID: 37174921 PMCID: PMC10177920 DOI: 10.3390/diagnostics13091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Non-invasive classification of focal cortical dysplasia (FCD) subtypes remains challenging from a radiology perspective. Quantitative imaging biomarkers (QIBs) have the potential to distinguish subtypes that lack pathognomonic features and might help in defining the extent of abnormal connectivity associated with each FCD subtype. A key motivation of diagnostic imaging is to improve the localization of a "lesion" that can guide the surgical resection of affected tissue, which is thought to cause seizures. Conversely, surgical resections to eliminate or reduce seizures provided unique opportunities to develop magnetic resonance imaging (MRI)-based QIBs by affording long scan times to evaluate multiple contrast mechanisms at the mesoscale (0.5 mm isotropic voxel dimensions). Using ex vivo hybrid diffusion tensor imaging on a 9.4 T MRI scanner, the grey to white matter ratio of scalar indices was lower in the resected middle temporal gyrus (MTG) of two neuropathologically confirmed cases of FCD compared to non-diseased control postmortem fixed temporal lobes. In contrast, fractional anisotropy was increased within FCD and also adjacent white matter tracts. Connectivity (streamlines/mm3) in the MTG was higher in FCD, suggesting that an altered connectivity at the lesion locus can potentially provide a tangible QIB to distinguish and characterize FCD abnormalities. However, as illustrated here, a major challenge for a robust tractographical comparison lies in the considerable differences in the ex vivo processing of bioptic and postmortem samples. Mesoscale diffusion MRI has the potential to better define and characterize epileptic tissues obtained from surgical resection to advance our understanding of disease etiology and treatment.
Collapse
Affiliation(s)
- Chandler Fountain
- Department of Radiology and Medical Imaging, University of Virginia Health System, 1215 Lee St, Chartlottesville, VA 22903, USA
| | - Harmanvir Ghuman
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pititsburgh, PA 15260, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Michael Paldino
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Mandeep Tamber
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite B 400, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Michel Modo
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pititsburgh, PA 15260, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Centre for the Neural Basis of Behavior, University of Pittsburgh and Carnegie Mellon University, 4074 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Azzony S, Moria K, Alghamdi J. Detecting Cortical Thickness Changes in Epileptogenic Lesions Using Machine Learning. Brain Sci 2023; 13:brainsci13030487. [PMID: 36979297 PMCID: PMC10046408 DOI: 10.3390/brainsci13030487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by abnormal brain activity. Epileptic patients suffer from unpredictable seizures, which may cause a loss of awareness. Seizures are considered drug resistant if treatment does not affect success. This leads practitioners to calculate the cortical thickness to measure the distance between the brain’s white and grey matter surfaces at various locations to perform a surgical intervention. In this study, we introduce using machine learning as an approach to classify extracted measurements from T1-weighted magnetic resonance imaging. Data were collected from the epilepsy unit at King Abdulaziz University Hospital. We applied two trials to classify the extracted measurements from T1-weighted MRI for drug-resistant epilepsy and healthy control subjects. The preprocessing sequence on T1-weighted MRI images was performed using C++ through BrainSuite’s pipeline. The first trial was performed on seven different combinations of four commonly selected measurements. The best performance was achieved in Exp6 and Exp7, with 80.00% accuracy, 83.00% recall score, and 83.88% precision. It is noticeable that grey matter volume and white matter volume measurements are more significant than the cortical thickness measurement. The second trial applied four different machine learning classifiers after applying 10-fold cross-validation and principal component analysis on all extracted measurements as in the first trial based on the mentioned previous works. The K-nearest neighbours model outperformed the other machine learning classifiers with 97.11% accuracy, 75.00% recall score, and 75.00% precision.
Collapse
Affiliation(s)
- Sumayya Azzony
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | - Kawthar Moria
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamaan Alghamdi
- Diagnostic Radiology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Balestrini S, Barba C, Thom M, Guerrini R. Focal cortical dysplasia: a practical guide for neurologists. Pract Neurol 2023:pn-2022-003404. [PMID: 36823117 DOI: 10.1136/pn-2022-003404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.
Collapse
Affiliation(s)
- Simona Balestrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy .,University of Florence, Florence, Italy.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Carmen Barba
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Meyer Children's Hospital IRCCS, Florence, Italy.,University of Florence, Florence, Italy
| |
Collapse
|
30
|
Macdonald‐Laurs E, Warren AEL, Lee WS, Yang JY, MacGregor D, Lockhart PJ, Leventer RJ, Neal A, Harvey AS. Intrinsic and secondary epileptogenicity in focal cortical dysplasia type II. Epilepsia 2023; 64:348-363. [PMID: 36527426 PMCID: PMC10952144 DOI: 10.1111/epi.17495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Favorable seizure outcome is reported following resection of bottom-of-sulcus dysplasia (BOSD). We assessed the distribution of epileptogenicity and dysplasia in and around BOSD to better understand this clinical outcome and the optimal surgical approach. METHODS We studied 27 children and adolescents with magnetic resonance imaging (MRI)-positive BOSD who underwent epilepsy surgery; 85% became seizure-free postresection (median = 5.0 years follow-up). All patients had resection of the dysplastic sulcus, and 11 had additional resection of the gyral crown (GC) or adjacent gyri (AG). Markers of epileptogenicity were relative cortical hypometabolism on preoperative 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and spiking, ripples, fast ripples, spike-high-frequency oscillation cross-rate, and phase amplitude coupling (PAC) on preresection and postresection electrocorticography (ECoG), all analyzed at the bottom-of-sulcus (BOS), top-of-sulcus (TOS), GC, and AG. Markers of dysplasia were increased cortical thickness on preoperative MRI, and dysmorphic neuron density and variant allele frequency of somatic MTOR mutations in resected tissue, analyzed at similar locations. RESULTS Relative cortical metabolism was significantly reduced and ECoG markers were significantly increased at the BOS compared to other regions. Apart from spiking and PAC, which were greater at the TOS compared to the GC, there were no significant differences in PET and other ECoG markers between the TOS, GC, and AG, suggesting a cutoff of epileptogenicity at the TOS rather than a tapering gradient on the cortical surface. MRI and tissue markers of dysplasia were all maximal in the BOS, reduced in the TOS, and mostly absent in the GC. Spiking and PAC reduced significantly over the GC after resection of the dysplastic sulcus. SIGNIFICANCE These findings support the concept that dysplasia and intrinsic epileptogenicity are mostly limited to the dysplastic sulcus in BOSD and support resection or ablation confined to the MRI-visible lesion as a first-line surgical approach. 18 F-FDG PET and ECoG abnormalities in surrounding cortex seem to be secondary phenomena.
Collapse
Affiliation(s)
- Emma Macdonald‐Laurs
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Aaron E. L. Warren
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of MedicineUniversity of MelbourneParkvilleVictoriaAustralia
| | - Wei Shern Lee
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Joseph Yuan‐Mou Yang
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of NeurosurgeryRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Duncan MacGregor
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PathologyRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Paul J. Lockhart
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Richard J. Leventer
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Andrew Neal
- Department of Neuroscience, Faculty of Medicine, Nursing, and Health Sciences, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - A. Simon Harvey
- Department of NeurologyRoyal Children's HospitalParkvilleVictoriaAustralia
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
31
|
Singh A, Hadjinicolaou A, Peters JM, Salussolia CL. Treatment-Resistant Epilepsy and Tuberous Sclerosis Complex: Treatment, Maintenance, and Future Directions. Neuropsychiatr Dis Treat 2023; 19:733-748. [PMID: 37041855 PMCID: PMC10083014 DOI: 10.2147/ndt.s347327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurogenetic disorder that affects multiple organ systems, including the heart, kidneys, eyes, skin, and central nervous system. The neurologic manifestations have the highest morbidity and mortality, in particular in children. Clinically, patients with TSC often present with new-onset seizures within the first year of life. TSC-associated epilepsy is often difficult to treat and refractory to multiple antiseizure medications. Refractory TSC-associated epilepsy is associated with increased risk of neurodevelopmental comorbidities, including developmental delay, intellectual disability, autism spectrum disorder, and attention hyperactivity disorder. An increasing body of research suggests that early, effective treatment of TSC-associated epilepsy during critical neurodevelopmental periods can potentially improve cognitive outcomes. Therefore, it is important to treat TSC-associated epilepsy aggressively, whether it be with pharmacological therapy, surgical intervention, and/or neuromodulation. This review discusses current and future pharmacological treatments for TSC-associated epilepsy, as well as the importance of early surgical evaluation for refractory epilepsy in children with TSC and consideration of neuromodulatory interventions in young adults.
Collapse
Affiliation(s)
- Avantika Singh
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aristides Hadjinicolaou
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Correspondence: Catherine L Salussolia, 3 Blackfan Circle, Center for Life Sciences 14060, Boston, MA, 02115, USA, Tel +617-355-7970, Email
| |
Collapse
|
32
|
Xu Y, Hu WH, Shao XQ, Ma YS, Lou L, Zhang K, Zhang JG. Long-term seizure outcome with the surgically remediable syndrome of frontal lobe epilepsy associated with superior frontal sulcus-related dysplasia. Front Neurol 2023; 14:1096712. [PMID: 37034087 PMCID: PMC10076633 DOI: 10.3389/fneur.2023.1096712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Objective To assess the long-term outcome of the surgically remediable syndrome of frontal lobe epilepsy (FLE) associated with superior frontal sulcus (SFS)-related dysplasia. Methods We retrospectively reviewed the medical charts and surgical features of 31 patients with drug-resistant frontal lobe epilepsy in our centers between 2016 and 2018. All patients underwent surgical resection. According to the epileptogenic zone (EZ), localization and resection extent were classified as (1) pure SFS group (PS group), (2) associated SFS group (AS group), and (3) no SFS group (NS group). The general characteristics, neuroradiological findings, morbidity, pathology, and long-term seizure outcome after surgery were analyzed to extract the potential value of the surgery for SFS-related dysplasia. Results Of 31 patients with FLE who underwent epilepsy surgery, 15 patients (nine men) were included PS group, five patients (five men) in the AS group, and 11 patients (eight men) in the NS group. Eleven patients detected abnormal focal signals in the presurgical MRI. Six patients in the PS group demonstrated the suspected focal cortical dysplasia (FCD) in the SFS detected with MRI. All patients demonstrated focal abnormal hypometabolism foci in the PET-MR co-registration. Twenty-five patients (80.6%) were seizure-free since surgery, including all 15 patients (100%) of the PS group, three in five patients (60%) of the AS group, and seven in 11 patients (63.6%) of the NS group. The difference in outcome between different groups was significant (p = 0.004, PS vs. AS group; p = 0.005, PS vs. NS group). As of the last follow-up (mean 66.2 ± 9.7months), 25 patients (80.6%) were seizure-free since surgery (Engel's class I). In addition, antiseizure medication was withdrawn in 19 patients (61.3%). Histologic examination of resected specimens revealed FCD in all 31 patients. The percentage of FCD II type was 100, 60, and 63.6% in the three different groups, respectively. Conclusion SFS-related dysplasia is a neuropathologic entity with a favorable postoperative outcome. FCD II is the most common type of SFS-related dysplasia. FDG-PET co-registered with MRI should be performed in patients with suspected SFS-related dysplasia, since it may depict areas of hypometabolism suggestive of dysplasia in the absence of MRI abnormalities.
Collapse
Affiliation(s)
- Yan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional and Stereotactic Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Epilepsy Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- *Correspondence: Yan Xu
| | - Wen-Han Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional and Stereotactic Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Qiu Shao
- Department of Epilepsy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Shan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Lin Lou
- Department of Neurosurgery, Epilepsy Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional and Stereotactic Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional and Stereotactic Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Jian-Guo Zhang
| |
Collapse
|
33
|
SATO T, HIRAISHI T, TADA M, NATSUMEDA M, ON J, TAKAHASHI H, SAITO T, OKUBO N, OISHI M, KAKITA A, FUJII Y. Meningoencephalocele in the Lateral Sphenoid Sinus Showing Malformation of Cortical Development: A Case Report. NMC Case Rep J 2022; 9:281-287. [PMID: 36238606 PMCID: PMC9512490 DOI: 10.2176/jns-nmc.2022-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Meningoencephalocele in the lateral sphenoid sinus (SS) has been determined to be a rare entity often detected by cerebrospinal fluid (CSF) rhinorrhea. To date, the pathology of meningoencephalocele in the lateral SS has remained to be unclear in many cases. In this study, we report on a case of a 72-year-old woman with an arteriovenous malformation who presented with CSF rhinorrhea. Radiologic investigations revealed a left temporal meningoencephalocele in the lateral SS. We removed the meningoencephalocele and performed skull base repair, after which the CSF rhinorrhea resolved. Pathological examination showed congenital cortical abnormalities with dysmorphic neurons in various shapes and acquired chronic tissue alterations including fibrillary gliosis and scattered Rosenthal fibers. These findings may further aid in understanding the etiopathogenesis of meningoencephalocele in the lateral SS.
Collapse
Affiliation(s)
- Taro SATO
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Tetsuya HIRAISHI
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Mari TADA
- Department of Pathology, Brain Research Institute, Niigata University
| | - Manabu NATSUMEDA
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Jotaro ON
- Department of Pathology, Brain Research Institute, Niigata University
| | - Haruhiko TAKAHASHI
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Taiki SAITO
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Noritaka OKUBO
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Makoto OISHI
- Department of Neurosurgery, Brain Research Institute, Niigata University
| | - Akiyoshi KAKITA
- Department of Pathology, Brain Research Institute, Niigata University
| | - Yukihiko FUJII
- Department of Neurosurgery, Brain Research Institute, Niigata University
| |
Collapse
|
34
|
Hu L, Xiong K, Ye L, Yang Y, Chen C, Wang S, Ding Y, Wang Z, Ming W, Zheng Z, Jiang H, Li H, Zhu J, Xu C, Wang Y, Ding M, Chen Z, Wu Y, Wang S. Ictal EEG desynchronization during low-voltage fast activity for prediction of surgical outcomes in focal epilepsy. J Neurosurg 2022:1-10. [PMID: 36681967 DOI: 10.3171/2022.11.jns221469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The authors investigated alterations in functional connectivity (FC) and EEG power during ictal onset patterns of low-voltage fast activity (LVFA) in drug-resistant focal epilepsy. They hypothesized that such changes would be useful to classify epilepsy surgical outcomes. METHODS In a cohort of 79 patients with drug-resistant focal epilepsy who underwent stereoelectroencephalography (SEEG) evaluation as well as resective surgery, FC changes during the peri-LVFA period were measured using nonlinear regression (h2) and power spectral properties within/between three regions: the seizure onset zone (SOZ), early propagation zone (PZ), and noninvolved zone (NIZ). Desynchronization and power desynchronization h2 indices were calculated to assess the degree of EEG desynchronization during LVFA. Multivariate logistic regression was employed to control for confounding factors. Finally, receiver operating characteristic curves were generated to evaluate the performance of desynchronization indices in predicting surgical outcome. RESULTS Fifty-three patients showed ictal LVFA and distinct zones of the SOZ, PZ, and NIZ. Among them, 39 patients (73.6%) achieved seizure freedom by the final follow-up. EEG desynchronization, measured by h2 analysis, was found in the seizure-free group during LVFA: FC decreased within the SOZ and between regions compared with the pre-LVFA and post-LVFA periods. In contrast, the non-seizure-free group showed no prominent EEG desynchronization. The h2 desynchronization index, but not the power desynchronization index, enabled classification of seizure-free versus non-seizure-free patients after resective surgery. CONCLUSIONS EEG desynchronization during the peri-LVFA period, measured by within-zone and between-zone h2 analysis, may be helpful for identifying patients with favorable postsurgical outcomes and also may potentially improve epileptogenic zone identification in the future.
Collapse
Affiliation(s)
- Lingli Hu
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Kai Xiong
- 2School of Computer Science and Technology, Zhejiang University, Hangzhou
| | - Lingqi Ye
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Yuyu Yang
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Cong Chen
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Shan Wang
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Yao Ding
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Zhongjin Wang
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Wenjie Ming
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Zhe Zheng
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Hongjie Jiang
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Hong Li
- 3Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou; and
| | - Junming Zhu
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Cenglin Xu
- 4Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- 4Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiping Ding
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Zhong Chen
- 4Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingcai Wu
- 2School of Computer Science and Technology, Zhejiang University, Hangzhou
| | - Shuang Wang
- 1Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou
| |
Collapse
|
35
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
36
|
Focal cortical dysplasia as a cause of epilepsy: The current evidence of associated genes and future therapeutic treatments. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Fasano G, Compagnucci C, Dallapiccola B, Tartaglia M, Lauri A. Teleost Fish and Organoids: Alternative Windows Into the Development of Healthy and Diseased Brains. Front Mol Neurosci 2022; 15:855786. [PMID: 36034498 PMCID: PMC9403253 DOI: 10.3389/fnmol.2022.855786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The variety in the display of animals’ cognition, emotions, and behaviors, typical of humans, has its roots within the anterior-most part of the brain: the forebrain, giving rise to the neocortex in mammals. Our understanding of cellular and molecular events instructing the development of this domain and its multiple adaptations within the vertebrate lineage has progressed in the last decade. Expanding and detailing the available knowledge on regionalization, progenitors’ behavior and functional sophistication of the forebrain derivatives is also key to generating informative models to improve our characterization of heterogeneous and mechanistically unexplored cortical malformations. Classical and emerging mammalian models are irreplaceable to accurately elucidate mechanisms of stem cells expansion and impairments of cortex development. Nevertheless, alternative systems, allowing a considerable reduction of the burden associated with animal experimentation, are gaining popularity to dissect basic strategies of neural stem cells biology and morphogenesis in health and disease and to speed up preclinical drug testing. Teleost vertebrates such as zebrafish, showing conserved core programs of forebrain development, together with patients-derived in vitro 2D and 3D models, recapitulating more accurately human neurogenesis, are now accepted within translational workflows spanning from genetic analysis to functional investigation. Here, we review the current knowledge of common and divergent mechanisms shaping the forebrain in vertebrates, and causing cortical malformations in humans. We next address the utility, benefits and limitations of whole-brain/organism-based fish models or neuronal ensembles in vitro for translational research to unravel key genes and pathological mechanisms involved in neurodevelopmental diseases.
Collapse
|
38
|
Tang Y, Blümcke I, Su TY, Choi JY, Krishnan B, Murakami H, Alexopoulos AV, Najm IM, Jones SE, Wang ZI. Black Line Sign in Focal Cortical Dysplasia IIB: A 7T MRI and Electroclinicopathologic Study. Neurology 2022; 99:e616-e626. [PMID: 35940890 PMCID: PMC9442623 DOI: 10.1212/wnl.0000000000200702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We aim to provide detailed imaging-electroclinicopathologic characterization of the black line sign, a novel MRI marker for focal cortical dysplasia (FCD) IIB. METHODS 7T T2*-weighted gradient-echo (T2*w-GRE) images were retrospectively reviewed in a consecutive cohort of patients with medically intractable epilepsy with pathology-proven FCD II, for the occurrence of the black line sign. We examined the overlap between the black line region and the seizure-onset zone (SOZ) defined by intracranial EEG (ICEEG) and additionally assessed whether complete inclusion of the black line region in the surgical resection was associated with postoperative seizure freedom. The histopathologic specimen was aligned with the MRI to investigate the pathologic underpinning of the black line sign. Region-of-interest-based quantitative MRI (qMRI) analysis on the 7T T1 map was performed in the black line region, entire lesional gray matter (GM), and contralateral/ipsilateral normal gray and white matter (WM). RESULTS We included 20 patients with FCD II (14 IIB and 6 IIA). The black line sign was identified in 12/14 (85.7%) of FCD IIB and 0/6 of FCD IIA on 7T T2*w-GRE. The black line region was highly concordant with the ICEEG-defined SOZ (5/7 complete and 2/7 partial overlap). Seizure freedom was seen in 8/8 patients whose black line region was completely included in the surgical resection; in the 2 patients whose resection did not completely include the black line region, both had recurring seizures. Inclusion of the black line region in the surgical resection was significantly associated with seizure freedom (p = 0.02). QMRI analyses showed that the T1 mean value of the black line region was significantly different from the WM (p < 0.001), but similar to the GM. Well-matched histopathologic slices in one case revealed accumulated dysmorphic neurons and balloon cells in the black line region. DISCUSSION The black line sign may serve as a noninvasive marker for FCD IIB. Both MRI-pathology and qMRI analyses suggest that the black line region was an abnormal GM component within the FCD. Being highly concordant with ICEEG-defined SOZ and significantly associated with seizure freedom when included in resection, the black line sign may contribute to the planning of ICEEG/surgery of patients with medically intractable epilepsy with FCD IIB. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in individuals with intractable focal epilepsy undergoing resection who have a 7T MRI with adequate image quality, the presence of the black line sign may suggest FCD IIB, be concordant with SOZ from ICEEG, and be associated with more seizure freedom if fully included in resection.
Collapse
Affiliation(s)
- Yingying Tang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ingmar Blümcke
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ting-Yu Su
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Joon Yul Choi
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Balu Krishnan
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Hiroatsu Murakami
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Andreas V Alexopoulos
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Imad M Najm
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Stephen E Jones
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Zhong Irene Wang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH.
| |
Collapse
|
39
|
Najm I, Lal D, Alonso Vanegas M, Cendes F, Lopes-Cendes I, Palmini A, Paglioli E, Sarnat HB, Walsh CA, Wiebe S, Aronica E, Baulac S, Coras R, Kobow K, Cross JH, Garbelli R, Holthausen H, Rössler K, Thom M, El-Osta A, Lee JH, Miyata H, Guerrini R, Piao YS, Zhou D, Blümcke I. The ILAE consensus classification of focal cortical dysplasia: An update proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 2022; 63:1899-1919. [PMID: 35706131 PMCID: PMC9545778 DOI: 10.1111/epi.17301] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023]
Abstract
Ongoing challenges in diagnosing focal cortical dysplasia (FCD) mandate continuous research and consensus agreement to improve disease definition and classification. An International League Against Epilepsy (ILAE) Task Force (TF) reviewed the FCD classification of 2011 to identify existing gaps and provide a timely update. The following methodology was applied to achieve this goal: a survey of published literature indexed with ((Focal Cortical Dysplasia) AND (epilepsy)) between 01/01/2012 and 06/30/2021 (n = 1349) in PubMed identified the knowledge gained since 2012 and new developments in the field. An online survey consulted the ILAE community about the current use of the FCD classification scheme with 367 people answering. The TF performed an iterative clinico-pathological and genetic agreement study to objectively measure the diagnostic gap in blood/brain samples from 22 patients suspicious for FCD and submitted to epilepsy surgery. The literature confirmed new molecular-genetic characterizations involving the mechanistic Target Of Rapamycin (mTOR) pathway in FCD type II (FCDII), and SLC35A2 in mild malformations of cortical development (mMCDs) with oligodendroglial hyperplasia (MOGHE). The electro-clinical-imaging phenotypes and surgical outcomes were better defined and validated for FCDII. Little new information was acquired on clinical, histopathological, or genetic characteristics of FCD type I (FCDI) and FCD type III (FCDIII). The survey identified mMCDs, FCDI, and genetic characterization as fields for improvement in an updated classification. Our iterative clinico-pathological and genetic agreement study confirmed the importance of immunohistochemical staining, neuroimaging, and genetic tests to improve the diagnostic yield. The TF proposes to include mMCDs, MOGHE, and "no definite FCD on histopathology" as new categories in the updated FCD classification. The histopathological classification can be further augmented by advanced neuroimaging and genetic studies to comprehensively diagnose FCD subtypes; these different levels should then be integrated into a multi-layered diagnostic scheme. This update may help to foster multidisciplinary efforts toward a better understanding of FCD and the development of novel targeted treatment options.
Collapse
Affiliation(s)
- Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA
| | - Dennis Lal
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Fernando Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Neurology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Iscia Lopes-Cendes
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil.,Department of Translational Medicine, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Andre Palmini
- Department of Clinical Neurosciences, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Porto Alegre Epilepsy Surgery Program, Hospital São Lucas PUCRS, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Harvey B Sarnat
- Department of Paediatrics, Department of Pathology (Neuropathology) and Department of Clinical Neurosciences, University of Calgary Faculty of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Roland Coras
- Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katja Kobow
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Helen Cross
- Developmental Neurosciences Programme, UCL NIHR BRC Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Hans Holthausen
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen-Clinic, Vogtareuth, Germany
| | - Karl Rössler
- Department of Neurosurgery, Allgemeines Krankenhaus Wien, Vienna Medical University, Wien, Austria
| | - Maria Thom
- Department of Neuropathology, Institute of Neurology, University College London, UK
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST and SoVarGen, Daejeon, South Korea
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer- University of Florence, Florence, Italy
| | - Yue-Shan Piao
- National Center for Neurological Disorders, Department of Pathology, Xuanwu Hospital, Capital Medical University, and Clinical Research Center for Epilepsy, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ingmar Blümcke
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland, Ohio, USA.,Department of Neuropathology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Chassoux F, Mellerio C, Laurent A, Landre E, Turak B, Devaux B. Benefits and Risks of Epilepsy Surgery in Patients With Focal Cortical Dysplasia Type 2 in the Central Region. Neurology 2022; 99:e11-e22. [PMID: 35418453 DOI: 10.1212/wnl.0000000000200345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Focal cortical dysplasia type 2 (FCD2) in the central region can cause drug-resistant epilepsy for which surgery remains challenging because of subsequent functional deficits. Advances in imaging and surgical techniques have progressively improved outcome. We aimed to assess the benefits on epilepsy and the functional risks after FCD2 resections in these highly eloquent areas. METHODS We retrospectively studied all consecutive patients with histologically confirmed FCD2 located in the central region operated on between 2000 and 2019 at a single center. We analyzed electroclinical and imaging features (including fMRI), seizure outcome, and early and late postoperative neurologic status correlating to anatomo-functional areas (primary motor cortex [PMC], paracentral lobule [PCL], supplementary motor area [SMA], precentral gyrus [PrCG], postcentral gyrus [PoCG], central operculum [COp]). RESULTS Sixty patients (35 female, age 7-65 years) were included in the study. Epilepsy was characterized by early onset, high seizure frequency with clusters (30-90/d), drop attacks, and status epilepticus. Ictal semiology included sensory-motor auras, motor and postural manifestations, and postictal motor deficits. EEG and stereo-EEG patterns were like those typically recorded in FCD2. MRI was positive in 63% and 18F-fluorodeoxyglucose-PET was positive in 86% of the patients. fMRI demonstrated activations close to the FCD2 (59%) or minor reorganization (41%) but none within the lesion. Seizure-free outcome (2- to 20-year follow-up) was obtained in 53 patients (88%), including 37 achieving Engel class IA (62%), correlating with complete FCD2 removal. Early transitory postoperative deficits occurred in 52 patients (87%), which were severe in 19, mostly after PMC, PCL, and SMA resections, while PrCG, PoCG, and COp resections were associated with minor/moderate deficits. Total recovery was observed in 21 of 52 patients (40%), while a permanent deficit (>2 years) persisted in 31 (minor 19, moderate 9, major 3). The best outcome (seizure freedom without deficit [48%] or with minor deficit (28%]) was significantly more frequent in children (p = 0.025). Antiseizure medications were discontinued in 28 patients (47%). Quality of life correlated with seizure-free outcome and absence of postoperative deficit; 43 patients (72%) reported a schooling or socio-professional improvement. DISCUSSION Excellent seizure outcome and low rates of major permanent disability can be achieved after central FCD2 resections despite functional risks. CLASSIFICATION OF EVIDENCE Due to its retrospective nature, this study provides Class IV evidence that good seizure outcomes with minor additional deficits can be achieved after epilepsy surgery in the central region.
Collapse
Affiliation(s)
- Francine Chassoux
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France.
| | - Charles Mellerio
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France
| | - Agathe Laurent
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France
| | - Elisabeth Landre
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France
| | - Baris Turak
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France
| | - Bertrand Devaux
- From the Departments of Neurosurgery (F.C., A.L., E.L., B.T., B.D.) and Neuroradiology (C.M.), GHU Paris Psychiatrie et Neurosciences, France
| |
Collapse
|
41
|
Schaaf ZA, Tat L, Cannizzaro N, Panoutsopoulos AA, Green R, Rülicke T, Hippenmeyer S, Zarbalis KS. WDFY3 mutation alters laminar position and morphology of cortical neurons. Mol Autism 2022; 13:27. [PMID: 35733184 PMCID: PMC9219247 DOI: 10.1186/s13229-022-00508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. METHODS Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. RESULTS We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. LIMITATIONS While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. CONCLUSIONS Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.
Collapse
Affiliation(s)
- Zachary A Schaaf
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
| | - Lyvin Tat
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Noemi Cannizzaro
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Alexios A Panoutsopoulos
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA
- University of California at Davis, Department of Physiology and Membrane Biology, Sacramento, CA, 95817, USA
| | - Ralph Green
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Konstantinos S Zarbalis
- University of California at Davis, Department of Pathology and Laboratory Medicine, Sacramento, CA, 95817, USA.
- Shriners Hospitals for Children Northern California, Sacramento, CA, 95817, USA.
- UC Davis MIND Institute, Sacramento, CA, 95817, USA.
| |
Collapse
|
42
|
Thamcharoenvipas T, Takahashi Y, Kimura N, Matsuda K, Usui N. Localizing and Lateralizing Value of Seizure Onset Pattern on Surface EEG in FCD Type II. Pediatr Neurol 2022; 129:48-54. [PMID: 35231790 DOI: 10.1016/j.pediatrneurol.2022.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/26/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Surface ictal electroencephalographic (EEG) monitoring has an important role in the presurgical evaluation of patients with focal cortical dysplasia (FCD). This study aimed to examine the characteristics of seizure onset pattern (SOP) on surface ictal EEG. This information will be useful for invasive monitoring planning. METHODS We reviewed 290 seizures from 31 patients with intractable seizures related to FCD type II (6 patients with FCD IIa and 25 patients with FCD IIb). We categorized the SOPs into five patterns and evaluated the relationships between the SOPs and the location and pathology of the FCD II subtype. RESULTS The most common SOP was no apparent change (39.0%), followed by rhythmic slow wave and repetitive spikes/sharp waves. The SOP of rhythmic slow wave was associated with FCD II in the temporal lobe (P < 0.001), and the SOP of no apparent change was associated with FCD II in the occipital lobe (P = 0.012). The SOPs of rhythmic slow waves and fast activity were most common in FCD IIa, P < 0.001 and 0.031, respectively. The repetitive spikes/sharp waves SOP was the most common pattern in FCD IIb (P < 0.001). The surface SOPs provided correct localization and lateralization of epileptic foci in FCD in 62.1% and 62.7%, respectively. In 61.3% of the patients, over 50% of the SOPs in each patient indicated accurate localization. CONCLUSIONS SOPs in surface EEG monitoring are beneficial for presurgical evaluation and lead to localization of epileptic foci and pathologic subtypes of FCD.
Collapse
Affiliation(s)
- Titaporn Thamcharoenvipas
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan; Division of Neurology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan; Department of Pediatrics, Gifu University School of Medicine, Gifu, Japan; School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Nobusuke Kimura
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Kazumi Matsuda
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Naotaka Usui
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| |
Collapse
|
43
|
Menghi V, Bisulli F, Cardinale F, Vignatelli L, Zenesini C, Mai R, Proserpio P, Francione S, Sartori I, Tinuper P, Nobili L. Predictors of hyperkinetic seizures. Epilepsy Behav 2022; 129:108629. [PMID: 35272206 DOI: 10.1016/j.yebeh.2022.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify predisposing factors for hyperkinetic seizure occurrence in a representative cohort of surgically treated patients with drug-resistant focal epilepsy. METHODS We retrospectively recruited all seizure-free patients after epilepsy surgery with a postoperative follow-up ≥12 months. Patients were classified as presenting with hyperkinetic seizures if at least 2 episodes occurred during their disease history, based on clear-cut anamnestic description and/or video-EEG/stereo-EEG recordings. We performed univariable and multivariable logistic regression models to study the association between the occurrence of hyperkinetic seizures and some predictors. RESULTS From a pool of 1758 consecutive patients who underwent surgery from 1996 to 2017, we identified 974 seizure-free cases. Considering at least 1-year follow-up, 937 cases were included (511 males, 91 patients with hyperkinetic seizures). Variables significantly associated with an increased risk of hyperkinetic seizure occurrence were (1) presence of epilepsy with sleep-related seizures (SRE) (P < 0.001); (2) histological diagnosis of type II focal cortical dysplasia (FCD) (P < 0.001); (3) resection including the frontal lobe (P = 0.002) (4) duration of epilepsy at surgery (P < 0.001) and (5) high seizure frequency at surgery (weekly: P = 0.02 - daily: P = 0.05). A resection including the occipital lobe reduced the risk of hyperkinetic seizures (P = 0.05). About 63% of patients had hyperkinetic seizure onset before 12 years and it was rarely reported before 5 years of age. SIGNIFICANCE Our findings underlie the role of SRE, type II FCD and frontal epileptogenic zone as predictors of hyperkinetic seizure occurrence and highlight an age-dependent effect in favoring hyperkinetic manifestations.
Collapse
Affiliation(s)
- Veronica Menghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Neurology Unit, Rimini "Infermi" Hospital-AUSL Romagna, Rimini, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy (Reference Center for Rare and Complex Epilepsies-EpiCARE), Italy
| | | | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy (Reference Center for Rare and Complex Epilepsies-EpiCARE), Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy (Reference Center for Rare and Complex Epilepsies-EpiCARE), Italy
| | - Roberto Mai
- Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | - Paola Proserpio
- Centre of Sleep Medicine, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | | | - Ivana Sartori
- Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy (Reference Center for Rare and Complex Epilepsies-EpiCARE), Italy
| | - Lino Nobili
- IRCCS, Child Neuropsychiatry, Istituto G. Gaslini, Italy (Reference Center for Rare and Complex Epilepsies-EpiCARE), Italy; DINOGMI, University of Genoa, Genoa, Italy.
| |
Collapse
|
44
|
Frazzini V, Mathon B, Donneger F, Cousyn L, Hanin A, Nguyen-Michel VH, Adam C, Lambrecq V, Dupont S, Poncer JC, Bielle F, Navarro V. Epilepsy related to focal neuronal lipofuscinosis: extra-frontal localization, EEG signatures and GABA involvement. J Neurol 2022; 269:4102-4109. [DOI: 10.1007/s00415-022-11024-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
45
|
Boop S, Barkley A, Emerson S, Prolo LM, Goldstein H, Ojemann JG, Hauptman JS. Robot-assisted stereoelectroencephalography in young children: technical challenges and considerations. Childs Nerv Syst 2022; 38:263-267. [PMID: 34716458 DOI: 10.1007/s00381-021-05384-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022]
Abstract
Robot-assisted stereoelectroencephalography (sEEG) is frequently employed to localize epileptogenic zones in patients with medically refractory epilepsy (MRE). Its methodology is well described in adults, but less so in children. Given the limited information available on pediatric applications, the objective is to describe the unique technical challenges and considerations of sEEG in the pediatric population. In this report, we describe our institutional experience with the technical aspects of robot-assisted sEEG in an exclusively pediatric epilepsy surgery unit, focusing on pre-, intra-, and post-operative nuances that are particular to the pediatric population. The pediatric population presents several unique challenges in sEEG, including reduced skull thickness relative to adults, incomplete neurologic development, and often special behavioral considerations. Pre-operative selection of putative epileptogenic zones requires careful multidisciplinary decision-making. Intraoperative attention to nuances in positioning, clamp selection, registration, and electrode placement are necessary. Activity considerations and electrode migration and removal are key post-operative considerations. Robot-assisted sEEG is a valuable tool in the armamentarium of techniques to characterize MRE. However, special considerations must be given to the pediatric population to optimize safety and efficacy.
Collapse
Affiliation(s)
- Scott Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Ariana Barkley
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Samuel Emerson
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Laura M Prolo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Hannah Goldstein
- Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.,Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA
| | - Jason S Hauptman
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA. .,Department of Neurosurgery, Seattle Children's Hospital, 4800 Sand Point Way NE, OA.9.220, Seattle, WA, 98105, USA.
| |
Collapse
|
46
|
Zhang L, Zhou H, Zhang W, Ling X, Zeng C, Tang Y, Gan J, Tan Q, Hu X, Li H, Cheng B, Xu H, Guo Q. Electroclinical and Multimodality Neuroimaging Characteristics and Predictors of Post-Surgical Outcome in Focal Cortical Dysplasia Type IIIa. Front Bioeng Biotechnol 2022; 9:810897. [PMID: 35083208 PMCID: PMC8784525 DOI: 10.3389/fbioe.2021.810897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Focal cortical dysplasia (FCD) type IIIa is an easily ignored cause of intractable temporal lobe epilepsy. This study aimed to analyze the clinical, electrophysiological, and imaging characteristics in FCD type IIIa and to search for predictors associated with postoperative outcome in order to identify potential candidates for epilepsy surgery. We performed a retrospective review including sixty-six patients with FCD type IIIa who underwent resection for drug-resistant epilepsy. We evaluated the clinical, electrophysiological, and neuroimaging features for potential association with seizure outcome. Univariate and multivariate analyses were conducted to explore their predictive role on the seizure outcome. We demonstrated that thirty-nine (59.1%) patients had seizure freedom outcomes (Engel class Ia) with a median postsurgical follow-up lasting 29.5 months. By univariate analysis, duration of epilepsy (less than 12 years) (p = 0.044), absence of contralateral insular lobe hypometabolism on PET/MRI (pLog-rank = 0.025), and complete resection of epileptogenic area (pLog-rank = 0.004) were associated with seizure outcome. The incomplete resection of the epileptogenic area (hazard ratio = 2.977, 95% CI 1.218–7.277, p = 0.017) was the only independent predictor for seizure recurrence after surgery by multivariate analysis. The results of past history, semiology, electrophysiological, and MRI were not associated with seizure outcomes. Carefully included patients with FCD type IIIa through a comprehensive evaluation of their clinical, electrophysiological, and neuroimaging characteristics can be good candidates for resection. Several preoperative factors appear to be predictive of the postoperative outcome and may help in optimizing the selection of ideal candidates to benefit from epilepsy surgery.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Hailing Zhou
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xueying Ling
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunyuan Zeng
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjin Tang
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiefeng Gan
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qinghua Tan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xiangshu Hu
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Hainan Li
- Department of Pathology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Baijie Cheng
- Department of Pathology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, Center of Cyclotron and PET Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Guo
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| |
Collapse
|
47
|
You J, Huang H, Chan CTY, Li L. Pathological Targets for Treating Temporal Lobe Epilepsy: Discoveries From Microscale to Macroscale. Front Neurol 2022; 12:779558. [PMID: 35069411 PMCID: PMC8777077 DOI: 10.3389/fneur.2021.779558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common and severe types of epilepsy, characterized by intractable, recurrent, and pharmacoresistant seizures. Histopathology of TLE is mostly investigated through observing hippocampal sclerosis (HS) in adults, which provides a robust means to analyze the related histopathological lesions. However, most pathological processes underlying the formation of these lesions remain elusive, as they are difficult to detect and observe. In recent years, significant efforts have been put in elucidating the pathophysiological pathways contributing to TLE epileptogenesis. In this review, we aimed to address the new and unrecognized neuropathological discoveries within the last 5 years, focusing on gene expression (miRNA and DNA methylation), neuronal peptides (neuropeptide Y), cellular metabolism (mitochondria and ion transport), cellular structure (microtubule and extracellular matrix), and tissue-level abnormalities (enlarged amygdala). Herein, we describe a range of biochemical mechanisms and their implication for epileptogenesis. Furthermore, we discuss their potential role as a target for TLE prevention and treatment. This review article summarizes the latest neuropathological discoveries at the molecular, cellular, and tissue levels involving both animal and patient studies, aiming to explore epileptogenesis and highlight new potential targets in the diagnosis and treatment of TLE.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Haiyan Huang
- Department of Nutrition and Food Science, Texas Women University, Denton, TX, United States
| | - Clement T Y Chan
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States.,Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Salemdawod A, Wach J, Banat M, Borger V, Hamed M, Haberl H, Sassen R, Radbruch A, Becker AJ, Vatter H, Surges R, Sarikaya-Seiwert S. Predictors of postoperative long-term seizure outcome in pediatric patients with focal cortical dysplasia type II at a German tertiary epilepsy center. J Neurosurg Pediatr 2022; 29:83-91. [PMID: 34653986 DOI: 10.3171/2021.7.peds21219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Focal cortical dysplasia (FCD) is a common cause of early-onset intractable epilepsy, and resection is a highly sufficient treatment option. In this study, the authors aimed to provide a retrospective analysis of pre- and postoperative factors and their impact on postoperative long-term seizure outcome. METHODS The postoperative seizure outcomes of 50 patients with a mean age of 8 ± 4.49 years and histologically proven FCD type II were retrospectively analyzed. Furthermore, pre- and postoperative predictors of long-term seizure freedom were assessed. The seizure outcome was evaluated based on the International League Against Epilepsy (ILAE) classification. RESULTS Complete resection of FCD according to MRI criteria was achieved in 74% (n = 37) of patients. ILAE class 1 at the last follow-up was achieved in 76% (n = 38) of patients. A reduction of antiepileptic drugs (AEDs) to monotherapy or complete withdrawal was achieved in 60% (n = 30) of patients. Twelve patients (24%) had a late seizure recurrence, 50% (n = 6) of which occurred after reduction of AEDs. A lower number of AEDs prior to surgery significantly predicted a favorable seizure outcome (p = 0.013, HR 7.63). Furthermore, younger age at the time of surgery, shorter duration of epilepsy prior to surgery, and complete resection were positive predictors for long-term seizure freedom. CONCLUSIONS The duration of epilepsy, completeness of resection, number of AEDs prior to surgery, and younger age at the time of surgery served as predictors of postoperative long-term seizure outcome, and, as such, may improve clinical practice when selecting and counseling appropriate candidates for resective epilepsy surgery. The study results also underscored that epilepsy surgery should be considered early in the disease course of pediatric patients with FCD type II.
Collapse
Affiliation(s)
| | | | | | | | - Motaz Hamed
- 1Department of Neurosurgery, University of Bonn
| | | | | | | | - Albert J Becker
- 5Institute of Neuropathology, University of Bonn, Bonn, Germany
| | | | - Rainer Surges
- 4Department of Epileptology, University of Bonn; and
| | | |
Collapse
|
49
|
Frazzini V, Cousyn L, Navarro V. Semiology, EEG, and neuroimaging findings in temporal lobe epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:489-518. [PMID: 35964989 DOI: 10.1016/b978-0-12-823493-8.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common type of focal epilepsy. First descriptions of TLE date back in time and detailed portraits of epileptic seizures of temporal origin can be found in early medical reports as well as in the works of various artists and dramatists. Depending on the seizure onset zone, several subtypes of TLE have been identified, each one associated with peculiar ictal semiology. TLE can result from multiple etiological causes, ranging from genetic to lesional ones. While the diagnosis of TLE relies on detailed analysis of clinical as well as electroencephalographic (EEG) features, the lesions responsible for seizure generation can be highlighted by multiple brain imaging modalities or, in selected cases, by genetic investigations. TLE is the most common cause of refractory epilepsy and despite the great advances in diagnostic tools, no lesion is found in around one-third of patients. Surgical treatment is a safe and effective option, requiring presurgical investigations to accurately identify the seizure onset zone (SOZ). In selected cases, presurgical investigations need intracerebral investigations (such as stereoelectroencephalography) or dedicated metabolic imaging techniques (interictal PET and ictal SPECT) to correctly identify the brain structures to be removed.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Louis Cousyn
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France
| | - Vincent Navarro
- AP-HP, Department of Neurology and Department of Clinical Neurophysiology, Epilepsy and EEG Unit, Reference Center for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Université, Paris Brain Institute, Team "Dynamics of Neuronal Networks and Neuronal Excitability", Paris, France.
| |
Collapse
|
50
|
Achiriloaie A, Deisch J, Boling W, Bannout F. Striking MRI Changes of Focal Cortical Dysplasia Over Time: A Case Series and Literature Review. Neurol Clin Pract 2021; 11:445-451. [PMID: 34840871 DOI: 10.1212/cpj.0000000000001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 11/15/2022]
Abstract
Purpose of Review Brain MRI findings of focal cortical dysplasia (FCD) can undergo dramatic changes over time, which may be related to long-term epilepsy or a combination of histopathologic changes that necessitate further investigation. Recent Findings We describe 2 cases of FCD type IIb that initially displayed inconspicuous findings on MRI, however progressed to obvious signal changes on subsequent MRI 10-17 years later. Pathologic analysis indicates that the interval changes are likely attributed to reactive astrogliosis and diffuse parenchymal rarefaction. A few case reports and case series showing similar MRI changes have been described in the literature, the majority in pediatric patients. The adult cases we present add to the scientific evidence of these changes occurring in the adult population. Summary Our observations lead to several clinical suggestions, including closer interval follow-up imaging for nonlesional cases, the addition of postprocessing imaging methods, earlier surgical intervention, and meticulous surgical planning.
Collapse
Affiliation(s)
- Adina Achiriloaie
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Jeremy Deisch
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Warren Boling
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| | - Firas Bannout
- Loma Linda University Medical Center (AA), Department of Radiology, Loma Linda, CA; Loma Linda University Medical Center (JD), Department of Pathology, Loma Linda, CA; Loma Linda University Medical Center (WB), Department of Neurosurgery, Loma Linda, CA; and Loma Linda University Medical Center (FB), Department of Neurology, Loma Linda, CA
| |
Collapse
|