1
|
Maleky F, Ahmadi L. Adhering to recommended dietary protein intake for optimizing human health benefits versus exceeding levels. RSC Adv 2025; 15:9230-9242. [PMID: 40134674 PMCID: PMC11936105 DOI: 10.1039/d4ra08221d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Proteins are essential nutrients that contribute to the structure of various cells and tissues in the body. Consuming adequate protein in our diet is crucial for optimal health and bodily function. This review article explores the role of dietary proteins by examining global consumption patterns and consumer perceptions of high-protein diets. It investigates recent research trends regarding the impact of proteins on human health and wellness across various countries and communities. The review analyzes key health outcomes associated with very high-protein diets, especially those exceeding recommended values. It includes the latest evidence on the influences of animal and plant proteins on health in different groups of participants. Furthermore, this manuscript delves into the scientific discussion surrounding the optimal amount of protein in the human diet.
Collapse
Affiliation(s)
- Farnaz Maleky
- Department of Food Science and Technology, The Ohio State University 319 Parker Food Science and Technology Building, 2015 Fyffe Court Columbus Ohio 43210 USA
| | - Latifeh Ahmadi
- Brescia School of Food and Nutritional Sciences, Faculty of Health Science at Western University 1285 Western Rd. London ON Canada
| |
Collapse
|
2
|
McMillan RK, Stock JM, Romberger NT, Wenner MM, Chai SC, Farquhar WB. The impact of dietary sodium and fructose on renal sodium handling and blood pressure in healthy adults. Physiol Rep 2025; 13:e70284. [PMID: 40129273 PMCID: PMC11933718 DOI: 10.14814/phy2.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Increased dietary sodium is linked to hypertension, but most young adults display "sodium-resistant" blood pressure (BP), meaning BP is not elevated with sodium loading. In sodium-resistant rodents, fructose induces salt-sensitive BP via increased renal sodium reabsorption. Therefore, we tested the impact of fructose and sodium on renal sodium handling and BP in healthy adults, hypothesizing that their combination would impair sodium excretion and increase BP. Thirty-six participants enrolled in a randomized, double-blind, crossover trial involving three diets varying in fructose and sodium. On day 7, participants wore ambulatory BP monitors and collected 24-h urine. Although high sodium increased urinary sodium excretion, excretion was 15% lower with high fructose plus high salt versus high salt alone (235.1 ± 85.0 vs. 277.9 ± 121.2 mmol/24 h, p = 0.05). Compared to the recommended diet, high salt alone did not significantly change 24 h. MAP; however, high fructose plus high salt modestly raised 24 h MAP (81 ± 6 vs. 84 ± 7 mmHg, p = 0.03). High fructose and high salt increased serum interleukin-6 concentrations compared to the recommended diet (0.31 ± 0.2 vs. 0.24 ± 0.19 pg/mL, p = 0.04). These findings suggest that increased sodium and fructose alter renal sodium handling and BP in young adults.
Collapse
Affiliation(s)
- Ronald K. McMillan
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Joseph M. Stock
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
- Department of KinesiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Nathan T. Romberger
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Megan M. Wenner
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Sheau C. Chai
- Department of Health Behavior and Nutrition SciencesUniversity of DelawareNewarkDelawareUSA
| | - William B. Farquhar
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
3
|
Fernández-Fígares Jiménez MDC. A Whole Plant-Foods Diet in the Prevention and Treatment of Overweight and Obesity: From Empirical Evidence to Potential Mechanisms. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025; 44:137-155. [PMID: 39401341 DOI: 10.1080/27697061.2024.2406887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 01/24/2025]
Abstract
Excess body adiposity, referred to as overweight and obesity, represents a major health concern given that it increases the risk of various diseases, including cardiovascular diseases, type 2 diabetes, and cancer. Body weight reduction can be achieved via a wide variety of dietary strategies as long as an energy deficit is achieved. However, the effect of such diets on disease risk and mortality will depend on the foods included. Increasing evidence shows that consumption of whole plant foods (e.g., fruits, vegetables, whole grains, nuts, seeds, legumes) in place of animal foods (e.g., meat, poultry, dairy, fish, eggs, and seafood and their derivatives) and non-whole plant foods (e.g., refined grains, French fries, sugar-sweetened beverages) is associated with improvements in cardiometabolic risk factors and lower risk of chronic diseases and mortality. This review focuses on the effect of a whole plant-foods diet on overweight and obesity from observational to clinical studies and discusses the potential mechanisms involved. According to existing evidence, a whole plant foods diet seems to be more advantageous than other dietary approaches for the prevention and treatment of excess adiposity given that it is composed of the foods that lead to the best health outcomes.
Collapse
|
4
|
Yu XL, Zhou LY, Huang X, Li XY, Wang MK, Yang JS. Role of nutrition in diabetes mellitus and infections. World J Clin Cases 2025; 13:94389. [PMID: 39866654 PMCID: PMC11577521 DOI: 10.12998/wjcc.v13.i3.94389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 11/12/2024] Open
Abstract
In this editorial, we have commented on the article that has been published in the recent issue of World Journal of Clinical Cases. The authors have described a case of unilateral thyroid cyst and have opined that the acute onset of infection may be linked to diabetes mellitus (DM). We have focused on the role of nutrition in the association between DM and infection. Patients with DM are at a high risk of infection, which could also be attributed to nutrition-related factors. Nutritional interventions for patients with diabetes are mainly based on a low-calorie diet, which can be achieved by adhering to a low-carbohydrate diet. However, dietary fiber supplementation is recommended to maintain the diversity of the gut microbiota. Furthermore, high-quality protein can prevent the increased risk of infection due to malnutrition. Supplementation of vitamins C, vitamins A, vitamins D, and folic acid improves blood sugar control and facilitates immune regulation. Mineral deficiencies augment the risk of infection, but the relationship with diabetes is mostly U-shaped and a good intake should be maintained.
Collapse
Affiliation(s)
- Xue-Lu Yu
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Li-Yun Zhou
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xiao Huang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Xin-Yue Li
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ming-Ke Wang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
5
|
Eckart AC, Sharma Ghimire P. Exploring Predictors of Type 2 Diabetes Within Animal-Sourced and Plant-Based Dietary Patterns with the XGBoost Machine Learning Classifier: NHANES 2013-2016. J Clin Med 2025; 14:458. [PMID: 39860464 PMCID: PMC11766419 DOI: 10.3390/jcm14020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Understanding the relationship between dietary patterns, nutrient intake, and chronic disease risk is critical for public health strategies. However, confounding from lifestyle and individual factors complicates the assessment of diet-disease associations. Emerging machine learning (ML) techniques offer novel approaches to clarifying the importance of multifactorial predictors. This study investigated the associations between animal-sourced and plant-based dietary patterns and Type 2 diabetes (T2D) history, accounting for diet-lifestyle patterns employing the XGBoost algorithm. Methods: Using data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016, individuals consuming animal-sourced foods (ASF) and plant-based foods (PBF) were propensity score-matched on key confounders, including age, gender, body mass index, energy intake, and physical activity levels. Predictors of T2D history were analyzed using the XGBoost classifier, with feature importance derived from Shapley plots. Lifestyle and dietary patterns derived from principal component analysis (PCA) were incorporated as predictors, and high multicollinearity among predictors was examined. Results: A total of 2746 respondents were included in the analysis. Among the top predictors of T2D were age, BMI, unhealthy lifestyle, and the ω6: ω3 fatty acid ratio. Higher intakes of protein from ASFs and fats from PBFs were associated with lower T2D risk. The XGBoost model achieved an accuracy of 83.4% and an AUROC of 68%. Conclusions: This study underscores the complex interactions between diet, lifestyle, and body composition in T2D risk. Machine learning techniques like XGBoost provide valuable insights into these multifactorial relationships by mitigating confounding and identifying key predictors. Future research should focus on prospective studies incorporating detailed nutrient analyses and ML approaches to refine prevention strategies and dietary recommendations for T2D.
Collapse
Affiliation(s)
- Adam C. Eckart
- Department of Health and Human Performance, Kean University, Union, NJ 07083, USA;
| | | |
Collapse
|
6
|
Pickering RT, Yiannakou I, Lara-Castor L, Bradlee ML, Singer MR, Moore LL. Individual and Joint Associations Between Animal and Plant Protein Intakes with Impaired Fasting Glucose and Type 2 Diabetes in the Framingham Offspring Study. Nutrients 2024; 17:83. [PMID: 39796517 PMCID: PMC11723152 DOI: 10.3390/nu17010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVES Given the considerable discrepancy in the literature regarding dietary protein and glucose homeostasis, we examined the prospective association between protein intake (total, animal, plant) and risk of type 2 diabetes mellitus or impaired fasting glucose (IFG). We also examined whether these associations differed by sex, body weight, or other risk factors. METHODS We included 1423 subjects, aged ≥ 30 years, in the Framingham Offspring Study cohort. Three-day dietary records at exams 3 and 5 were used to average protein intake and then adjusted for body weight residuals. Cox proportional hazard models were used to estimate hazard ratios (HR), adjusting for anthropometric, demographic, and lifestyle factors over ~16 years of follow-up. RESULTS Subjects with the highest total protein intakes (≥100 g men; ≥85 g women) had a 31% lower risk of type 2 diabetes/IFG (95% CI: 0.54, 0.87). The highest (vs. lowest) category of intake of animal protein was associated with a 32% lower risk of diabetes/IFG (95% CI: 0.55, 0.83), whereas plant protein was not. Beneficial trends of total protein, especially animal, were stronger for women (HR: 0.61; 95% CI: 0.42, 0.87) than for men (HR: 0.82; 95% CI 0.58, 1.15). Subjects with lower BMI who consumed more protein had the lowest risks of diabetes/IFG. CONCLUSIONS Overall, in this prospective study, higher intake of total dietary protein, including the consumption of animal protein, particularly among individuals with lower BMI and higher physical activity levels, was inversely associated with risk of incident type 2 diabetes and IFG.
Collapse
Affiliation(s)
- R. Taylor Pickering
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Ioanna Yiannakou
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Laura Lara-Castor
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - M. Loring Bradlee
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Martha R. Singer
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| | - Lynn L. Moore
- Preventive Medicine and Epidemiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; (I.Y.)
| |
Collapse
|
7
|
Xu X, Hu J, Pang X, Wang X, Xu H, Yan X, Zhang J, Pan S, Wei W, Li Y. Association between plant and animal protein and biological aging: findings from the UK Biobank. Eur J Nutr 2024; 63:3119-3132. [PMID: 39292264 PMCID: PMC11519226 DOI: 10.1007/s00394-024-03494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE This study aimed to evaluate the relationship between plant protein, animal protein and biological aging through different dimensions of biological aging indices. Then explore the effects of substitution of plant protein, animal protein, and their food sources on biological aging. METHODS The data came from 79,294 participants in the UK Biobank who completed at least two 24-h dietary assessments. Higher Klemera-Doubal Method Biological Age (HKDM-BA), higher PhenoAge (HPA), higher allostatic load (HAL), and longer telomere length (LTL) were estimated to assess biological aging. Logistic regression was used to estimate protein-biological aging associations. Substitution model was performed to assess the effect of dietary protein substitutions. RESULTS Plant protein intake was inversely associated with HKDM-BA, HPA, HAL, and positively associated with LTL (odds ratios after fully adjusting and comparing the highest to the lowest quartile: 0.83 (0.79-0.88) for HKDM-BA, 0.86 (0.72-0.94) for HPA, 0.90 (0.85-0.95) for HAL, 1.06 (1.01-1.12) for LTL), while animal protein was not correlated with the four indices. Substituting 5% of energy intake from animal protein with plant protein, replacing red meat or poultry with whole grains, and replacing red or processed meat with nuts, were negatively associated with HKDM-BA, HPA, HAL and positively associated with LTL. However, an inverse association was found when legumes were substituted for yogurt. Gamma glutamyltransferase, alanine aminotransferase, and aspartate aminotransferase mediated the relationship between plant protein and HKDM-BA, HPA, HAL, and LTL (mediation proportion 11.5-24.5%; 1.9-6.7%; 2.8-4.5%, respectively). CONCLUSION Higher plant protein intake is inversely associated with biological aging. Although there is no association with animal protein, food with animal proteins displayed a varied correlation.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Jinxia Hu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Xibo Pang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Huan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, The National Key Discipline, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
8
|
Samuthpongtorn C, Chan AA, Ma W, Wang F, Nguyen LH, Wang DD, Okereke OI, Huttenhower C, Chan AT, Mehta RS. F. prausnitzii potentially modulates the association between citrus intake and depression. MICROBIOME 2024; 12:237. [PMID: 39543781 PMCID: PMC11566247 DOI: 10.1186/s40168-024-01961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The gut microbiome modulates the effects of diet on host health, but it remains unclear which specific foods and microbial features interact to influence risk of depression. To understand this interplay, we leveraged decades of dietary and depression data from a longitudinal cohort of women (n = 32,427), along with fecal metagenomics and plasma metabolomics from a substudy (n = 207) nested in this cohort, as well as an independent validation cohort of men (n = 307). RESULTS We report that citrus intake and its components are prospectively associated with a lower risk of depression and altered abundance of 15 gut microbial species, including enriched Faecalibacterium prausnitzii. In turn, we found a lower abundance of F. prausnitzii and its metabolic pathway, S-adenosyl-L-methionine (SAM) cycle I in participants with depression. To explore causality, we found that lower SAM production by F. prausnitzii may decrease intestinal monoamine oxidase A gene expression implicated in serotonin and dopamine synthesis. CONCLUSIONS These data underscore the role of diet in the prevention of depression and offer a plausible explanation for how the intestinal microbiome modulates the influence of citrus on mental health. Video Abstract.
Collapse
Affiliation(s)
- Chatpol Samuthpongtorn
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Allison A Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong D Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Li C, Bishop TRP, Imamura F, Sharp SJ, Pearce M, Brage S, Ong KK, Ahsan H, Bes-Rastrollo M, Beulens JWJ, den Braver N, Byberg L, Canhada S, Chen Z, Chung HF, Cortés-Valencia A, Djousse L, Drouin-Chartier JP, Du H, Du S, Duncan BB, Gaziano JM, Gordon-Larsen P, Goto A, Haghighatdoost F, Härkänen T, Hashemian M, Hu FB, Ittermann T, Järvinen R, Kakkoura MG, Neelakantan N, Knekt P, Lajous M, Li Y, Magliano DJ, Malekzadeh R, Le Marchand L, Marques-Vidal P, Martinez-Gonzalez MA, Maskarinec G, Mishra GD, Mohammadifard N, O'Donoghue G, O'Gorman D, Popkin B, Poustchi H, Sarrafzadegan N, Sawada N, Schmidt MI, Shaw JE, Soedamah-Muthu S, Stern D, Tong L, van Dam RM, Völzke H, Willett WC, Wolk A, Yu C, Forouhi NG, Wareham NJ. Meat consumption and incident type 2 diabetes: an individual-participant federated meta-analysis of 1·97 million adults with 100 000 incident cases from 31 cohorts in 20 countries. Lancet Diabetes Endocrinol 2024; 12:619-630. [PMID: 39174161 DOI: 10.1016/s2213-8587(24)00179-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Meat consumption could increase the risk of type 2 diabetes. However, evidence is largely based on studies of European and North American populations, with heterogeneous analysis strategies and a greater focus on red meat than on poultry. We aimed to investigate the associations of unprocessed red meat, processed meat, and poultry consumption with type 2 diabetes using data from worldwide cohorts and harmonised analytical approaches. METHODS This individual-participant federated meta-analysis involved data from 31 cohorts participating in the InterConnect project. Cohorts were from the region of the Americas (n=12) and the Eastern Mediterranean (n=2), European (n=9), South-East Asia (n=1), and Western Pacific (n=7) regions. Access to individual-participant data was provided by each cohort; participants were eligible for inclusion if they were aged 18 years or older and had available data on dietary consumption and incident type 2 diabetes and were excluded if they had a diagnosis of any type of diabetes at baseline or missing data. Cohort-specific hazard ratios (HRs) and 95% CIs were estimated for each meat type, adjusted for potential confounders (including BMI), and pooled using a random-effects meta-analysis, with meta-regression to investigate potential sources of heterogeneity. FINDINGS Among 1 966 444 adults eligible for participation, 107 271 incident cases of type 2 diabetes were identified during a median follow-up of 10 (IQR 7-15) years. Median meat consumption across cohorts was 0-110 g/day for unprocessed red meat, 0-49 g/day for processed meat, and 0-72 g/day for poultry. Greater consumption of each of the three types of meat was associated with increased incidence of type 2 diabetes, with HRs of 1·10 (95% CI 1·06-1·15) per 100 g/day of unprocessed red meat (I2=61%), 1·15 (1·11-1·20) per 50 g/day of processed meat (I2=59%), and 1·08 (1·02-1·14) per 100 g/day of poultry (I2=68%). Positive associations between meat consumption and type 2 diabetes were observed in North America and in the European and Western Pacific regions; the CIs were wide in other regions. We found no evidence that the heterogeneity was explained by age, sex, or BMI. The findings for poultry consumption were weaker under alternative modelling assumptions. Replacing processed meat with unprocessed red meat or poultry was associated with a lower incidence of type 2 diabetes. INTERPRETATION The consumption of meat, particularly processed meat and unprocessed red meat, is a risk factor for developing type 2 diabetes across populations. These findings highlight the importance of reducing meat consumption for public health and should inform dietary guidelines. FUNDING The EU, the Medical Research Council, and the National Institute of Health Research Cambridge Biomedical Research Centre.
Collapse
Affiliation(s)
- Chunxiao Li
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Tom R P Bishop
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Matthew Pearce
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Soren Brage
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ken K Ong
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Maira Bes-Rastrollo
- University of Navarra, Idisna, Department of Preventive Medicine and Public Health, CIBEROBN-Instituto de Salud Carlos III, Pamplona, Spain
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Nicole den Braver
- Department of Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Scheine Canhada
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zhengming Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hsin-Fang Chung
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Adrian Cortés-Valencia
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Luc Djousse
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Jean-Philippe Drouin-Chartier
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Faculté de Pharmacie, Université Laval, Quebec City, QC, Canada
| | - Huaidong Du
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bruce B Duncan
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Atsushi Goto
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan; Department of Public Health, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tommi Härkänen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maryam Hashemian
- Heart Disease Phenomics Laboratory, Epidemiology and Community Health Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frank B Hu
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ritva Järvinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maria G Kakkoura
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nithya Neelakantan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Paul Knekt
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin Lajous
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico; Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Yanping Li
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Jamaica Plain, MA, USA
| | | | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Miguel A Martinez-Gonzalez
- University of Navarra, Idisna, Department of Preventive Medicine and Public Health, CIBEROBN-Instituto de Salud Carlos III, Pamplona, Spain
| | | | - Gita D Mishra
- Australian Women and Girls' Health Research Centre, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gráinne O'Donoghue
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Donal O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Barry Popkin
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Sabita Soedamah-Muthu
- Centre of Research on Psychological Disorders and Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, Netherlands; Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Dalia Stern
- CONAHCyT - Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Walter C Willett
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| |
Collapse
|
10
|
Arslan N, Bozkır E, Koçak T, Akin M, Yilmaz B. From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep. Nutrients 2024; 16:2683. [PMID: 39203818 PMCID: PMC11357367 DOI: 10.3390/nu16162683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/03/2024] Open
Abstract
The effect of diet on sleep quality has been addressed in many studies; however, whether/how plant-based diets (PBDs) impact sleep-related parameters has not been explored in detail. This review aims to give an overview of the components of PBDs and the possible mechanisms through which PBDs may improve sleep quality. Studies have indicated that diets such as PBDs, which are typically high in fruits, vegetables, nuts, seeds, whole grains, and fiber, are associated with better sleep outcomes, including less fragmented sleep and improved sleep duration. Several mechanisms may explain how PBDs impact and/or improve sleep outcomes. Firstly, PBDs are characteristically rich in certain nutrients, such as magnesium and vitamin B6, which have been associated with improved sleep patterns. Secondly, PBDs are often lower in saturated fats and higher in fiber, which may contribute to better overall health, including sleep quality. Additionally, plant bioactive compounds like phytochemicals and antioxidants in fruits, vegetables, and herbs may have sleep-promoting effects. According to available data, PBD and Mediterranean diet elements promise to enhance sleep quality; however, it is crucial to note that diets should be customized based on each person's needs.
Collapse
Affiliation(s)
- Neslihan Arslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum 25050, Türkiye;
| | - Eda Bozkır
- Burhaniye Chamber of Commerce, Safe Food Analysis and Export Support Center, Balıkesir 10700, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gümüşhane University, Gümüşhane 29100, Türkiye;
| | - Meleksen Akin
- Department of Horticulture, Iğdır University, Iğdır 76000, Türkiye;
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana 01330, Türkiye
| |
Collapse
|
11
|
Fotouhi Ardakani A, Anjom-Shoae J, Sadeghi O, Marathe CS, Feinle-Bisset C, Horowitz M. Association between total, animal, and plant protein intake and type 2 diabetes risk in adults: A systematic review and dose-response meta-analysis of prospective cohort studies. Clin Nutr 2024; 43:1941-1955. [PMID: 39032197 DOI: 10.1016/j.clnu.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND AIMS While clinical studies indicate that dietary protein may benefit glucose homeostasis in type 2 diabetes (T2D), the impact of dietary protein, including whether the protein is of animal or plant origin, on the risk of T2D is uncertain. We conducted a systematic review and meta-analysis to evaluate the associations of total, animal, and plant protein intakes with the risk of T2D. METHODS A systematic search was performed using multiple data sources, including PubMed/Medline, ISI Web of Science, Scopus, and Google Scholar, with the data cut-off in May 2023. Our selection criteria focused on prospective cohort studies that reported risk estimates for the association between protein intake and T2D risk. For data synthesis, we calculated summary relative risks and 95% confidence intervals for the highest versus lowest categories of protein intake using random-effects models. Furthermore, we conducted both linear and non-linear dose-response analyses to assess the dose-response associations between protein intake and T2D risk. RESULTS Sixteen prospective cohort studies, involving 615,125 participants and 52,342 T2D cases, were identified, of which eleven studies reported data on intake of both animal and plant protein. Intakes of total (pooled effect size: 1.14, 95% CI: 1.04-1.24) and animal (pooled effect size: 1.18, 95% CI: 1.09-1.27) protein were associated with an increased risk of T2D. These effects were dose-related - each 20-g increase in total or animal protein intake increased the risk of T2D by ∼3% and ∼7%, respectively. In contrast, there was no association between intake of plant protein and T2D risk (pooled effect size: 0.98, 95% CI: 0.89-1.08), while replacing animal with plant protein intake (per each 20 g) was associated with a reduced risk of T2D (pooled effect size: 0.80, 95% CI: 0.76-0.84). CONCLUSIONS Our findings indicate that long-term consumption of animal, but not plant, protein is associated with a significant and dose-dependent increase in the risk of T2D, with the implication that replacement of animal with plant protein intake may lower the risk of T2D.
Collapse
Affiliation(s)
- Amirmahdi Fotouhi Ardakani
- Student Research Committee, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Anjom-Shoae
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia
| | - Omid Sadeghi
- Nutrition and Food Security Research Centre and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Chinmay S Marathe
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
12
|
Anjom-Shoae J, Feinle-Bisset C, Horowitz M. Impacts of dietary animal and plant protein on weight and glycemic control in health, obesity and type 2 diabetes: friend or foe? Front Endocrinol (Lausanne) 2024; 15:1412182. [PMID: 39145315 PMCID: PMC11321983 DOI: 10.3389/fendo.2024.1412182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
It is well established that high-protein diets (i.e. ~25-30% of energy intake from protein) provide benefits for achieving weight loss, and subsequent weight maintenance, in individuals with obesity, and improve glycemic control in type 2 diabetes (T2D). These effects may be attributable to the superior satiating property of protein, at least in part, through stimulation of both gastrointestinal (GI) mechanisms by protein, involving GI hormone release and slowing of gastric emptying, as well as post-absorptive mechanisms facilitated by circulating amino acids. In contrast, there is evidence that the beneficial effects of greater protein intake on body weight and glycemia may only be sustained for 6-12 months. While both suboptimal dietary compliance and metabolic adaptation, as well as substantial limitations in the design of longer-term studies are all likely to contribute to this contradiction, the source of dietary protein (i.e. animal vs. plant) has received inappropriately little attention. This issue has been highlighted by outcomes of recent epidemiological studies indicating that long-term consumption of animal-based protein may have adverse effects in relation to the development of obesity and T2D, while plant-based protein showed either protective or neutral effects. This review examines information relating to the effects of dietary protein on appetite, energy intake and postprandial glycemia, and the relevant GI functions, as reported in acute, intermediate- and long-term studies in humans. We also evaluate knowledge relating to the relevance of the dietary protein source, specifically animal or plant, to the prevention, and management, of obesity and T2D.
Collapse
Affiliation(s)
- Javad Anjom-Shoae
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
13
|
Del Carmen Fernández-Fígares Jiménez M. Plant foods, healthy plant-based diets, and type 2 diabetes: a review of the evidence. Nutr Rev 2024; 82:929-948. [PMID: 37550262 DOI: 10.1093/nutrit/nuad099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic chronic disease in which insulin resistance and insufficient insulin production lead to elevated blood glucose levels. The prevalence of T2D is growing worldwide, mainly due to obesity and the adoption of Western diets. Replacing animal foods with healthy plant foods is associated with a lower risk of T2D in prospective studies. In randomized controlled trials, the consumption of healthy plant foods in place of animal foods led to cardiometabolic improvements in patients with T2D or who were at high risk of the disease. Dietary patterns that limit or exclude animal foods and focus on healthy plant foods (eg, fruits, vegetables, whole grains, nuts, legumes), known as healthy, plant-based diets, are consistently associated with a lower risk of T2D in cohort studies. The aim of this review is to examine the differential effects of plant foods and animal foods on T2D risk and to describe the existing literature about the role of healthy, plant-based diets, particularly healthy vegan diets, in T2D prevention and management. The evidence from cohort studies and randomized controlled trials will be reported, in addition to the potential biological mechanisms that seem to be involved.
Collapse
|
14
|
Toh DWK, Fu AS, Mehta KA, Lam NYL, Haldar S, Henry CJ. Plant-Based Meat Analogs and Their Effects on Cardiometabolic Health: An 8-Week Randomized Controlled Trial Comparing Plant-Based Meat Analogs With Their Corresponding Animal-Based Foods. Am J Clin Nutr 2024; 119:1405-1416. [PMID: 38599522 DOI: 10.1016/j.ajcnut.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND With the growing popularity of plant-based meat analogs (PBMAs), an investigation of their effects on health is warranted in an Asian population. OBJECTIVES This research investigated the impact of consuming an omnivorous animal-based meat diet (ABMD) compared with a PBMAs diet (PBMD) on cardiometabolic health among adults with elevated risk of diabetes in Singapore. METHODS In an 8-wk parallel design randomized controlled trial, participants (n = 89) were instructed to substitute habitual protein-rich foods with fixed quantities of either PBMAs (n = 44) or their corresponding animal-based meats (n = 45; 2.5 servings/d), maintaining intake of other dietary components. Low-density lipoprotein (LDL) cholesterol served as primary outcome, whereas secondary outcomes included other cardiometabolic disease-related risk factors (e.g. glucose and fructosamine), dietary data, and within a subpopulation, ambulatory blood pressure measurements (n = 40) at baseline and postintervention, as well as a 14-d continuous glucose monitor (glucose homeostasis-related outcomes; n = 37). RESULTS Data from 82 participants (ABMD: 42 and PBMD: 40) were examined. Using linear mixed-effects model, there were significant interaction (time × treatment) effects for dietary trans-fat (increased in ABMD), dietary fiber, sodium, and potassium (all increased in PBMD; P-interaction <0.001). There were no significant effects on the lipid-lipoprotein profile, including LDL cholesterol. Diastolic blood pressure (DBP) was lower in the PBMD group (P-interaction=0.041), although the nocturnal DBP dip markedly increased in ABMD (+3.2% mean) and was reduced in PBMD (-2.6%; P-interaction=0.017). Fructosamine (P time=0.035) and homeostatic model assessment for β-cell function were improved at week 8 (P time=0.006) in both groups. Glycemic homeostasis was better regulated in the ABMD than PBMD groups as evidenced by interstitial glucose time in range (ABMD median: 94.1% (Q1:87.2%, Q3:96.7%); PBMD: 86.5% (81.7%, 89.4%); P = 0.041). The intervention had no significant effect on the other outcomes examined. CONCLUSIONS An 8-wk PBMA diet did not show widespread cardiometabolic health benefits compared with a corresponding meat based diet. Nutritional quality is a key factor to be considered for next generation PBMAs. This trial was registered at https://clinicaltrials.gov/as NCT05446753.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore.
| | - Amanda Simin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Kervyn Ajay Mehta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Nicole Yi Lin Lam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Sumanto Haldar
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
15
|
Kiesswetter E, Neuenschwander M, Stadelmaier J, Szczerba E, Hofacker L, Sedlmaier K, Kussmann M, Roeger C, Hauner H, Schlesinger S, Schwingshackl L. Substitution of Dairy Products and Risk of Death and Cardiometabolic Diseases: A Systematic Review and Meta-Analysis of Prospective Studies. Curr Dev Nutr 2024; 8:102159. [PMID: 38779038 PMCID: PMC11108848 DOI: 10.1016/j.cdnut.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Substitution models in epidemiologic studies specifying both substitute and substituted food in relation to disease risk may be useful to inform dietary guidelines. A systematic review of prospective observational studies was performed to quantify the risks of all-cause mortality, cardiovascular disease, and type 2 diabetes (T2D) associated with the substitution of dairy products with other foods and between different dairy products. We systematically searched MEDLINE, Embase, and Web of Science until 28th June, 2023. We calculated summary relative risks (SRRs) and 95% confidence intervals (95% CI) in random-effects meta-analyses. We assessed the risk of bias with the Risk Of Bias In Non-randomized Studies - of Exposure (ROBINS-E) tool and certainty of evidence (CoE) using the Grading of Recommendations Assessment, Development, and Evaluations (GRADE) approach. Fifteen studies (with 34 publications) were included. There was moderate CoE that the substitution of low-fat dairy with red meat was associated with a higher risk of mortality, coronary artery disease, and T2D [SRR (95% CI): 1.11 (1.06, 1.16), 1.13 (1.08, 1.18), and 1.20 (1.16, 1.25)]. A higher risk of mortality and T2D was also observed when substituting low-fat dairy with processed meat [SRR (95% CI): 1.19 (1.11, 1.28) and 1.41 (1.33, 1.49); moderate CoE]. A lower mortality risk was associated with the substitution of dairy and yogurt with whole grains [SRR (95% CI): 0.89 (0.84, 0.93) and 0.91 (0.85, 0.97)], and butter with olive oil [SRR (95% CI): 0.94 (0.92, 0.97); all moderate CoE]. Mainly no associations were observed when substituting dairy products against each other on disease and mortality risk. Our findings indicate associations between substituting dairy with red or processed meat and higher disease risk, whereas its substitution with whole grains was associated with a lower risk. However, there is little robust evidence that substituting whole-fat with low-fat dairy is associated with disease risk. (CRD42022303198).
Collapse
Affiliation(s)
- Eva Kiesswetter
- Institute for Evidence in Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuela Neuenschwander
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Partner Düsseldorf, Germany
| | - Julia Stadelmaier
- Institute for Evidence in Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edyta Szczerba
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
| | - Lara Hofacker
- Institute for Evidence in Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Sedlmaier
- Competence Center for Nutrition, Bavarian State Ministry for Nutrition, Agriculture and Forestry, Freising, Germany
| | - Martin Kussmann
- Competence Center for Nutrition, Bavarian State Ministry for Nutrition, Agriculture and Forestry, Freising, Germany
- Kussmann Biotech GmbH, Nordkirchen, Germany
| | - Christine Roeger
- Competence Center for Nutrition, Bavarian State Ministry for Nutrition, Agriculture and Forestry, Freising, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, ZIEL – Institute for Food and Health, Technical University of Munich, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabrina Schlesinger
- German Diabetes Center, Institute for Biometrics and Epidemiology, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Partner Düsseldorf, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Argyropoulou D, Nomikos T, Terzis G, Karakosta M, Aphamis G, Geladas ND, Paschalis V. The Effect of Chronic Dietary Protein Manipulation on Amino Acids' Profile and Position Sense in the Elderly Suffering from Type 2 Diabetes Mellitus. J Funct Morphol Kinesiol 2024; 9:62. [PMID: 38651420 PMCID: PMC11036287 DOI: 10.3390/jfmk9020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Dietary protein with adequate essential amino acids effectively stimulates protein synthesis and improves muscle mass. Musculoskeletal disorders in lower or upper limbs are not uncommon among patients with type II diabetes mellitus (T2DM). Therefore, this study primarily examines the effects of chronic dietary protein manipulation on amino acids' profile and position sense in the elderly suffering from T2DM. A total of 26 individuals suffering from non-insulin-dependent T2DM (age > 55 years old) participated in a 12 week nutritional intervention. The subjects were randomly assigned and the control group received 0.8-1.0 g protein/kg/day, while the intervention group received 1.2-1.5 g protein/kg/day. Lean body mass, muscle strength, and position sense were assessed at baseline, as well as at the 6th and 12th week of the intervention. Only in the intervention group, the essential amino acids intake met the current nutritional recommendations (p < 0.05), while, by the 12th week, only the intervention group showed significant improvement in the muscle strength of knee (p < 0.05) and shoulder (p < 0.05) extension. On the contrary, in the control group, a significant decline in appendicular lean mass (p < 0.05) was observed by the 12th week. Position sense at the knee joint revealed a tendency for improvement in the intervention group by the 12th week (main effect of time p = 0.072). In the present investigation, it was revealed that the higher protein intake in the intervention group seemed to have positive effects on muscle strength and nearly positive effects on position sense.
Collapse
Affiliation(s)
- Dionysia Argyropoulou
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.A.); (G.T.); (N.D.G.)
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece; (T.N.); (M.K.)
| | - Gerasimos Terzis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.A.); (G.T.); (N.D.G.)
| | - Myrto Karakosta
- Department of Nutrition and Dietetics, Harokopio University, 17676 Athens, Greece; (T.N.); (M.K.)
| | - George Aphamis
- Department of Life Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nickos D. Geladas
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.A.); (G.T.); (N.D.G.)
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece; (D.A.); (G.T.); (N.D.G.)
| |
Collapse
|
17
|
Mirón-Mérida VA, Soria-Hernández C, Richards-Chávez A, Ochoa-García JC, Rodríguez-López JL, Chuck-Hernández C. The Effect of Ultrasound on the Extraction and Functionality of Proteins from Duckweed ( Lemna minor). Molecules 2024; 29:1122. [PMID: 38474634 DOI: 10.3390/molecules29051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The inclusion of protein in the regular human diet is important for the prevention of several chronic diseases. In the search for novel alternative protein sources, plant-based proteins are widely explored from a sustainable and ecological point of view. Duckweed (Lemna minor), also known as water lentil, is an aquatic plant with potential applications for human consumption due to its protein content and carbohydrate contents. Among all the conventional and novel protein extraction methods, the utilization of ultrasound has attracted the attention of scientists because of its effects on improving protein extraction and its functionalities. In this work, a Box-Behnken experimental design was proposed to optimize the alkaline extraction of protein from duckweed. In addition, an exploration of the effects of ultrasound on the morphological, structural, and functional properties of the extracted protein was also addressed. The optimal extraction parameters were a pH of 11.5 and an ultrasound amplitude and processing time of 60% and 20 min, respectively. These process conditions doubled the protein content extracted in comparison to the value from the initial duckweed sample. Furthermore, the application of ultrasound during the extraction of protein generated changes in the FTIR spectra, color, and structure of the duckweed protein, which resulted in improvements in its solubility, emulsifying properties, and foaming capacity.
Collapse
Affiliation(s)
- Vicente Antonio Mirón-Mérida
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Cintya Soria-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Alejandro Richards-Chávez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Juan Carlos Ochoa-García
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Jorge Luis Rodríguez-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Colonia Tecnológico, Monterrey 64700, Mexico
| | - Cristina Chuck-Hernández
- Instituto para la Investigación en Obesidad, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Sur Tecnológico, Monterrey 64849, Mexico
| |
Collapse
|
18
|
Li M, Zou L, Zhang L, Ren G, Liu Y, Zhao X, Qin P. Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits. Crit Rev Food Sci Nutr 2024; 65:1929-1949. [PMID: 38343194 DOI: 10.1080/10408398.2024.2315448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Plant-based proteins (PBPs), which are environmentally friendly and sustainable sources of nutrition, can address the emerging challenges facing the global food supply due to the rapidly increasing population. PBPs have received much attention in recent decades as a result of high nutritional values, good functional properties, and potential health effects. This review aims to summarize the nutritional, functional and digestive profiles of PBPs, the health effects of their hydrolysates, as well as processing methods to improve the digestibility of PBPs. The diversity of plant protein sources plays an important role in improving the PBPs quality. Several types of models such as in vitro (the static and semi-dynamic INFOGEST) and in silico models have been proposed and used in simulating the digestion of PBPs. Processing methods including germination, fermentation, thermal and non-thermal treatment can be applied to improve the digestibility of PBPs. PBPs and their hydrolysates show potential health effects including antioxidant, anti-inflammatory, anti-diabetic, anti-hypertensive and anti-cancer activities. Based on the literature, diverse PBPs are ideal protein sources, and exhibit favorable digestive properties and health benefits that could be further improved by different processing technologies. Future research should explore the molecular mechanisms underlying the bioactivity of PBPs and their hydrolysates.
Collapse
Affiliation(s)
- Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yang Liu
- Baotou Vocational and Technical College, Baotou, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| |
Collapse
|
19
|
Ardisson Korat AV, Shea MK, Jacques PF, Sebastiani P, Wang M, Eliassen AH, Willett WC, Sun Q. Dietary protein intake in midlife in relation to healthy aging - results from the prospective Nurses' Health Study cohort. Am J Clin Nutr 2024; 119:271-282. [PMID: 38309825 PMCID: PMC10884611 DOI: 10.1016/j.ajcnut.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Protein intake plays an important role in maintaining the health status of older adults. However, few epidemiologic studies examined midlife protein intake in relation to healthy aging. OBJECTIVES The objective of this study was to evaluate the long-term role of dietary protein intake in healthy aging among female participants in the prospective Nurses' Health Study (NHS) cohort. METHODS We included 48,762 NHS participants aged <60 y in 1984. Total protein, animal protein, dairy protein (a subset of animal protein), and plant protein were derived from validated food frequency questionnaires. Healthy aging was defined as being free from 11 major chronic diseases, having good mental health, and not having impairments in either cognitive or physical function, as assessed in the 2014 or 2016 NHS participant questionnaires. We used multivariate logistic regression adjusted for lifestyle, demographics, and health status to estimate the odds ratios (ORs) and 95% confidence intervals for protein intake in relation to healthy aging. RESULTS A total of 3721 (7.6%) NHS participants met our healthy aging definition. Protein intake was significantly associated with higher odds of healthy aging. The ORs (95% confidence intervals) per 3%-energy increment with healthy aging were 1.05 (1.01, 1.10) for total protein, 1.07 (1.02, 1.11) for animal protein, 1.14 (1.06, 1.23) for dairy protein, and 1.38 (1.24, 1.54) for plant protein. Plant protein was also associated with higher odds of absence of physical function limitations and good mental status. In substitution analyses, we observed significant positive associations for the isocaloric replacement of animal or dairy protein, carbohydrate, or fat with plant protein (ORs for healthy aging: 1.22-1.58 for 3% energy replacement with plant protein). CONCLUSIONS Dietary protein intake, especially plant protein, in midlife, is associated with higher odds of healthy aging and with several domains of positive health status in a large cohort of female nurses.
Collapse
Affiliation(s)
- Andres V Ardisson Korat
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Tufts University School of Medicine, Tufts University, Boston, MA, United States.
| | - M Kyla Shea
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Paul F Jacques
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
20
|
Schulze MB, Haardt J, Amini AM, Kalotai N, Lehmann A, Schmidt A, Buyken AE, Egert S, Ellinger S, Kroke A, Kühn T, Louis S, Nimptsch K, Schwingshackl L, Siener R, Zittermann A, Watzl B, Lorkowski S. Protein intake and type 2 diabetes mellitus: an umbrella review of systematic reviews for the evidence-based guideline for protein intake of the German Nutrition Society. Eur J Nutr 2024; 63:33-50. [PMID: 37718370 PMCID: PMC10799123 DOI: 10.1007/s00394-023-03234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Protein-rich foods show heterogeneous associations with the risk of type 2 diabetes (T2D) and it remains unclear whether habitual protein intake is related to T2D risk. We carried out an umbrella review of systematic reviews (SR) of randomised trials and/or cohort studies on protein intake in relation to risks of T2D. METHODS Following a pre-specified protocol (PROSPERO: CRD42018082395), we retrieved SRs on protein intake and T2D risk published between July 1st 2009 and May 22nd 2022, and assessed the methodological quality and outcome-specific certainty of the evidence using a modified version of AMSTAR 2 and NutriGrade, respectively. The overall certainty of evidence was rated according to predefined criteria. RESULTS Eight SRs were identified of which six contained meta-analyses. The majority of SRs on total protein intake had moderate or high methodological quality and moderate outcome-specific certainty of evidence according to NutriGrade, however, the latter was low for the majority of SRs on animal and plant protein. Six of the eight SRs reported risk increases with both total and animal protein. According to one SR, total protein intake in studies was ~ 21 energy percentage (%E) in the highest intake category and 15%E in the lowest intake category. Relative Risks comparing high versus low intake in most recent SRs ranged from 1.09 (two SRs, 95% CIs 1.02-1.15 and 1.06-1.13) to 1.11 (1.05-1.16) for total protein (between 8 and 12 cohort studies included) and from 1.13 (1.08-1.19) to 1.19 (two SRs, 1.11-1.28 and 1.11-1.28) (8-9 cohort studies) for animal protein. However, SRs on RCTs examining major glycaemic traits (HbA1c, fasting glucose, fasting insulin) do not support a clear biological link with T2D risk. For plant protein, some recent SRs pointed towards risk decreases and non-linear associations, however, the majority did not support an association with T2D risk. CONCLUSION Higher total protein intake was possibly associated with higher T2D risk, while there is insufficient evidence for a risk increase with higher intakes of animal protein and a risk decrease with plant protein intake. Given that most SRs on plant protein did not indicate an association, there is possibly a lack of an effect.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany.
| | | | | | | | | | | | - Anette E Buyken
- Institute of Nutrition, Consumption and Health; Faculty of Natural Sciences, Paderborn University, Paderborn, Germany
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Sabine Ellinger
- Department of Nutrition and Food Science, Human Nutrition, University of Bonn, Bonn, Germany
| | - Anja Kroke
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Fulda, Germany
| | - Tilman Kühn
- The Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg, Germany
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Roswitha Siener
- Department of Urology, University Stone Center, University Hospital Bonn, Bonn, Germany
| | - Armin Zittermann
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Ruhr University Bochum, Bad Oeynhausen, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
21
|
Na K, Park YJ. Protein Restriction in Metabolic Health: Lessons from Rodent Models. Nutrients 2024; 16:229. [PMID: 38257122 PMCID: PMC10819042 DOI: 10.3390/nu16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Consumption of protein-rich diets and supplements has been increasingly advocated by individuals seeking to optimize metabolic health and mitigate the effects of aging. Protein intake is postulated to support muscle mass retention and enhance longevity, underscoring its perceived benefits in age-related metabolic regulation. However, emerging evidence presents a paradox; while moderate protein consumption contributes to health maintenance, an excessive intake is associated with an elevated risk of chronic diseases, notably obesity and diabetes. Furthermore, recent studies suggest that reducing the ratio of protein intake to macronutrients improves metabolic parameters and extends lifespan. The aim of this study is to review the current evidence concerning the metabolic effects of protein-restricted diets and their potential mechanisms. Utilizing rodent models, investigations have revealed that protein-restricted diets exert a notable influence over food intake and energy consumption, ultimately leading to body weight loss, depending on the degree of dietary protein restriction. These phenotypic alterations are primarily mediated by the FGF21 signaling pathway, whose activation is likely regulated by ATF4 and the circadian clock. The evidence suggests that protein-restricted diets as an alternative approach to calorie-restricted regimes, particularly in overweight or obese adults. However, more research is needed to determine the optimal level of restriction, duration, and long-term effects of such interventions.
Collapse
Affiliation(s)
- Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
22
|
Yalcinkaya N, Isik O, Beyleroglu M, Erdogdu D, Cicek G, Novak D. Effects of 8-week alkaline diet and aerobic exercise on body composition, aerobic performance, and lipid profiles in sedentary women. Front Nutr 2024; 10:1339874. [PMID: 38239837 PMCID: PMC10794351 DOI: 10.3389/fnut.2023.1339874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Background Diet composition can affect systemic pH and acid-base regulation, which may in turn influence exercise performance. Purpose It was aimed to determine the effects of the alkaline diet and 8 weeks of aerobic exercises on body composition, aerobic performance, and blood lipid profiles in sedentary women. Methods Thirty-two sedentary women participated in the study voluntarily. The research was designed with a true-experimental design and the participants were divided into four different groups as the control group, aerobic exercise group, alkaline diet group, and alkaline diet + aerobic exercise group. The body compositions, aerobic exercise performances, and lipid profiles of sedentary women were measured as pre-test and post-test. In the analysis of the obtained data, One-Way ANOVA with Bonferroni post hoc test was used. Results It was observed that the alkaline diet consumed with 8 weeks of aerobic exercises caused a 5.17% decrease in BMI and an increase of 42.07 and 37.62% in VO2max and aerobic test durations, respectively (p < 0.05). In addition, when lipid profiles were examined, it was determined that there was no statistically significant difference in HDL-C levels (p > 0.05). Despite that, there were statistically significant differences in TG and LDL-C levels (p < 0.05). According to this result, it was determined that there was a decrease in TG and LDL-C levels by 37.61 and 20.24%, respectively. Conclusion An alkaline diet consumed with 8 weeks of aerobic exercises in sedentary women has positive effects on improving body composition, aerobic exercise performances, and TG and LDL-C levels.
Collapse
Affiliation(s)
- Nehir Yalcinkaya
- Faculty of Sports Sciences, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Ozkan Isik
- Faculty of Sports Sciences, Balıkesir University, Balikesir, Türkiye
- Directorate of Sports Sciences Application and Research Center, Balikesir University, Balikesir, Türkiye
| | - Malik Beyleroglu
- Faculty of Sports Sciences, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | | | - Guner Cicek
- Faculty of Sports Sciences, Hitit University, Çorum, Türkiye
| | - Dario Novak
- University of Zagreb Faculty of Kinesiology, Zagreb, Croatia
| |
Collapse
|
23
|
Yılmaz B, Sırbu A, Altıntaş Başar HB, Goksen G, Chabı IB, Kumagaı H, Ozogul F. Potential roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes: A review of the current knowledge. Crit Rev Food Sci Nutr 2023; 65:1326-1343. [PMID: 38148641 DOI: 10.1080/10408398.2023.2292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Diabetes is one of the most common non-communicable diseases in both developed and underdeveloped countries with a 9.3% prevalence. Unhealthy diets and sedentary lifestyles are among the most common reasons for type 2 diabetes mellitus (T2DM). Diet plays a crucial role in both the etiology and treatment of T2DM. There are several recommendations regarding the carbohydrate intake of patients with T2DM. One of them is about reducing the total carbohydrate intake and/or changing the type of carbohydrate to reduce the glycaemic index. Cereals are good sources of carbohydrates in the diet with a significant amount of soluble and non-soluble fiber content. Apart from fiber, it has been shown that the bioactive compounds present in cereals such as proteins, phenolic compounds, carotenoids, and tocols have beneficial impacts in the prevention and treatment of T2DM. Moreover, cereal by-products especially the by-products of milling processes, which are bran and germ, have been reported to have anti-diabetic activities mainly because of their fiber and polyphenols content. Considering the potential functions of cereals in patients with T2DM, this review focuses on the roles of cereal bioactive compounds in the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Birsen Yılmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | - Alexandrina Sırbu
- FMMAE Ramnicu Valcea, Constantin Brancoveanu University of Pitesti, Valcea, Romania
| | | | - Gülden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye
| | - Ifagbémi Bienvenue Chabı
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Jericho Cotonou, Benin
| | - Hitomi Kumagaı
- Nihon University College of Bioresource Sciences Graduate School of Bioresource Sciences, Fujisawa, Japan
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Turkiye
| |
Collapse
|
24
|
Kibera PW, Ofei-Tenkorang NA, Mullen C, Lear AM, Davidson EB. Food as medicine: a quasi-randomized control trial of two healthy food interventions for chronic disease management among ambulatory patients at an urban academic center. Prim Health Care Res Dev 2023; 24:e72. [PMID: 38126528 PMCID: PMC10790366 DOI: 10.1017/s1463423623000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Globally, poor nutrition is a driver of many chronic diseases and is responsible for more deaths than any other risk factor. Accordingly, there is growing interest in the direct provision of healthy foods to patients to tackle diet-linked chronic diseases and mortality. AIM To assess the effect of two healthy food interventions in conjunction with nutrition counseling and education on select chronic disease markers, food insecurity, diet quality, depression, and on self-efficacy for healthy eating, healthy weight, and chronic disease management. METHODS This parallel-arm quasi-randomized control trial will be conducted between January 2022 and December 2023. Seventy adult patients recruited from a single academic medical center will be randomly assigned to receive either: i) daily ready-made frozen healthy meals or ii) a weekly produce box and recipes for 15 weeks. Participants will, additionally, take part in one individual nutrition therapy session and watch videos on healthy eating, weight loss, type 2 diabetes, and hypertension. Data on weight, height, glycated hemoglobin, blood pressure, and diabetes and blood pressure medications will be collected in-person at the baseline visit and at 16 weeks from baseline and via medical chart review at six months and 12 months from enrollment. The primary outcome of the study is weight loss at 16 weeks from baseline. Pre- and post-intervention survey data will be analyzed for changes in food insecurity, diet quality, depression, as well as self-efficacy for health eating, healthy weight, and chronic disease management. Through retrospective chart review, patients who received standard of care will be matched to intervention group participants as controls based on body mass index, type 2 diabetes, and/or hypertension. FINDINGS By elucidating the healthy food intervention with better health outcomes, this study aims to offer evidence that can guide providers in their recommendations for healthy eating options to patients.
Collapse
Affiliation(s)
- Peris W. Kibera
- Center for Family Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | | | - Chanda Mullen
- Department of Pharmacy, Cleveland Clinic Foundation, Akron, OH, USA
| | - Aaron M. Lear
- Center for Family Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| | - Elliot B. Davidson
- Center for Family Medicine, Cleveland Clinic Akron General, Akron, OH, USA
| |
Collapse
|
25
|
Minari TP, Tácito LHB, Yugar LBT, Ferreira-Melo SE, Manzano CF, Pires AC, Moreno H, Vilela-Martin JF, Cosenso-Martin LN, Yugar-Toledo JC. Nutritional Strategies for the Management of Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023; 15:5096. [PMID: 38140355 PMCID: PMC10746081 DOI: 10.3390/nu15245096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Thinking about greater adherence to dietary planning, it is extremely important to be aware of all nutritional strategies and dietary prescriptions available in the literature, and of which of them is the most efficient for the management of T2DM. METHODS A search was carried out in 2023 for randomized clinical trials, systematic reviews, meta-analyses, and guidelines in the following databases: Pubmed, Scielo, Web of Science, CrossRef and Google Scholar. In total, 202 articles were collected and analyzed. The period of publications was 1983-2023. RESULTS There is still no consensus on what the best nutritional strategy or ideal dietary prescription is, and individuality is necessary. In any case, these references suggest that Mediterranean Diet may of greater interest for the management of T2DM, with the following recommended dietary prescription: 40-50% carbohydrates; 15-25% proteins; 25-35% fats (<7% saturated, 10% polyunsaturated, and 10% monounsaturated); at least 14 g of fiber for every 1000 kcal consumed; and <2300 mg sodium. CONCLUSIONS Individuality is the gold standard for dietary prescriptions, however, the Mediterranean diet with low levels of carbohydrates and fats seems to be the most promising strategy for the management of T2DM.
Collapse
Affiliation(s)
- Tatiana Palotta Minari
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Lúcia Helena Bonalume Tácito
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | | | - Sílvia Elaine Ferreira-Melo
- Cardiovascular Pharmacology & Hypertension Laboratory, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Carolina Freitas Manzano
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Antônio Carlos Pires
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Heitor Moreno
- Cardiovascular Pharmacology & Hypertension Laboratory, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - José Fernando Vilela-Martin
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Luciana Neves Cosenso-Martin
- Department of Endocrinology, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Juan Carlos Yugar-Toledo
- Department of Hypertension, State Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| |
Collapse
|
26
|
Torki SA, Bahadori E, Aghakhaninejad Z, Mohseni GK, Tajadod S, Rajabi Harsini A, Azaryan F, Saeedirad Z, Askarpour SA, Mahmoudi Z, Khoshdooz S, Bahar B, Shafaei H, Mosavi Jarrahi SA, Doaei S, Nazemi S, Gholamalizadeh M. Association between type 2 diabetes and branched chain amino acids (BCAA); a case-control study. J Diabetes Metab Disord 2023; 22:1291-1297. [PMID: 37975111 PMCID: PMC10638320 DOI: 10.1007/s40200-023-01247-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/03/2023] [Indexed: 11/19/2023]
Abstract
Background Several amino acids and their derivatives have been implicated in insulin resistance (IR) and Type 2 Diabetes Mellitus (T2DM). This research sought to establish a relationship between the dietary levels of branched-chain amino acids (BCAA) and the risk of T2DM. Methods This case-control study was carried out on 4200 participants consisting of 589 people with T2DM and 3611 non-diabetic aged 35 to 70 years residents in Sabzevar, Iran. Data on the economic-social, employment status, medical history, lifestyle, and sleep habits were collected via interview. The food frequency questionnaire (FFQ) was used to check the nutritional status. Participants' dietary BCAA consumption was estimated using Nutritionist IV software. Results A significant negative association between the incidence of T2DM and the dietary levels of BCAAs after adjustment for age and sex (OR = 0.972, CI 95%:0.648-0.996, P = 0.022). The negative association remained significant after additional adjustments for body mass index (BMI) and physical activity (OR = 0.967, CI 95%: 0.943-0.992, P = 0.010). Interestingly, a positive association was found between T2DM and total BCAAs (OR = 1.067, CI 95%: 1.017-1.119, P = 0.008), Isoleucine (OR = 1.248, CI 95%: 1.043-1.494, P = 0.016), Leucine (OR = 1.165, CI 95%: 1.046-1.299, P = 0.006) and Valine (OR = 1.274, CI 95%: 1.088-1.492, P = 0.003) after further adjustment for calorie intake. Conclusions Our results demonstrate branched-chain amino acids (BCAAs) including isoleucine, leucine, and valine are negatively associated with the incidence of type 2 diabetes (T2DM) after adjusting for age and sex, BMI, and physical activity. However, adjusting for calorie intake reversed the association between T2DM and BCAAs. These findings suggest that the association between BCAAs and T2DM may be influenced by calorie intake. Future longitudinal studies are warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01247-9.
Collapse
Affiliation(s)
- Saheb Abbas Torki
- Department of Nutrition, Faculty of Nutrition Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Effat Bahadori
- Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Aghakhaninejad
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Golsa Khalatbari Mohseni
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Tajadod
- Department of Nutrition, School of Public Health, International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azaryan
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mahmoudi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport and Health Sciences, University of Central Lancashire, Preston, UK
| | - Hanieh Shafaei
- Nursing and Midwifery School, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Sabzevar University of Medical Science, Sabzevar, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Neuenschwander M, Stadelmaier J, Eble J, Grummich K, Szczerba E, Kiesswetter E, Schlesinger S, Schwingshackl L. Substitution of animal-based with plant-based foods on cardiometabolic health and all-cause mortality: a systematic review and meta-analysis of prospective studies. BMC Med 2023; 21:404. [PMID: 37968628 PMCID: PMC10652524 DOI: 10.1186/s12916-023-03093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND There is growing evidence that substituting animal-based with plant-based foods is associated with a lower risk of cardiovascular diseases (CVD), type 2 diabetes (T2D), and all-cause mortality. Our aim was to summarize and evaluate the evidence for the substitution of any animal-based foods with plant-based foods on cardiometabolic health and all-cause mortality in a systematic review and meta-analysis. METHODS We systematically searched MEDLINE, Embase, and Web of Science to March 2023 for prospective studies investigating the substitution of animal-based with plant-based foods on CVD, T2D, and all-cause mortality. We calculated summary hazard ratios (SHRs) and 95% confidence intervals (95% CI) using random-effects meta-analyses. We assessed the certainty of evidence (CoE) using the GRADE approach. RESULTS In total, 37 publications based on 24 cohorts were included. There was moderate CoE for a lower risk of CVD when substituting processed meat with nuts [SHR (95% CI): 0.73 (0.59, 0.91), n = 8 cohorts], legumes [0.77 (0.68, 0.87), n = 8], and whole grains [0.64 (0.54, 0.75), n = 7], as well as eggs with nuts [0.83 (0.78, 0.89), n = 8] and butter with olive oil [0.96 (0.95, 0.98), n = 3]. Furthermore, we found moderate CoE for an inverse association with T2D incidence when substituting red meat with whole grains/cereals [0.90 (0.84, 0.96), n = 6] and red meat or processed meat with nuts [0.92 (0.90, 0.94), n = 6 or 0.78 (0.69, 0.88), n = 6], as well as for replacing poultry with whole grains [0.87 (0.83, 0.90), n = 2] and eggs with nuts or whole grains [0.82 (0.79, 0.86), n = 2 or 0.79 (0.76, 0.83), n = 2]. Moreover, replacing red meat for nuts [0.93 (0.91, 0.95), n = 9] and whole grains [0.96 (0.95, 0.98), n = 3], processed meat with nuts [0.79 (0.71, 0.88), n = 9] and legumes [0.91 (0.85, 0.98), n = 9], dairy with nuts [0.94 (0.91, 0.97), n = 3], and eggs with nuts [0.85 (0.82, 0.89), n = 8] and legumes [0.90 (0.89, 0.91), n = 7] was associated with a reduced risk of all-cause mortality. CONCLUSIONS Our findings indicate that a shift from animal-based (e.g., red and processed meat, eggs, dairy, poultry, butter) to plant-based (e.g., nuts, legumes, whole grains, olive oil) foods is beneficially associated with cardiometabolic health and all-cause mortality.
Collapse
Affiliation(s)
- Manuela Neuenschwander
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Julia Stadelmaier
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Grummich
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Edyta Szczerba
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Eva Kiesswetter
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany.
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Yang W, Jiang W, Guo S. Regulation of Macronutrients in Insulin Resistance and Glucose Homeostasis during Type 2 Diabetes Mellitus. Nutrients 2023; 15:4671. [PMID: 37960324 PMCID: PMC10647592 DOI: 10.3390/nu15214671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Insulin resistance is an important feature of metabolic syndrome and a precursor of type 2 diabetes mellitus (T2DM). Overnutrition-induced obesity is a major risk factor for the development of insulin resistance and T2DM. The intake of macronutrients plays a key role in maintaining energy balance. The components of macronutrients distinctly regulate insulin sensitivity and glucose homeostasis. Precisely adjusting the beneficial food compound intake is important for the prevention of insulin resistance and T2DM. Here, we reviewed the effects of different components of macronutrients on insulin sensitivity and their underlying mechanisms, including fructose, dietary fiber, saturated and unsaturated fatty acids, and amino acids. Understanding the diet-gene interaction will help us to better uncover the molecular mechanisms of T2DM and promote the application of precision nutrition in practice by integrating multi-omics analysis.
Collapse
Affiliation(s)
| | | | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA; (W.Y.); (W.J.)
| |
Collapse
|
29
|
Toujgani H, Brunin J, Perraud E, Allès B, Touvier M, Lairon D, Mariotti F, Pointereau P, Baudry J, Kesse-Guyot E. The nature of protein intake as a discriminating factor of diet sustainability: a multi-criteria approach. Sci Rep 2023; 13:17850. [PMID: 37857699 PMCID: PMC10587119 DOI: 10.1038/s41598-023-44872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Animal production is responsible for 56-58% of the GHG emissions and limiting meat consumption would strongly contribute to reducing human health risks in Western countries. This study aimed to investigate the nature of protein intake as a discriminating factor for diets' sustainability. Using data from 29,210 French adults involved in the NutriNet-Santé cohort, we identified clusters according to 23 protein sources. A multicriteria (environmental, economic, nutritional and health) sustainability analysis was then conducted on the identified clusters. The economic analysis focused on both food and protein expenditure structures, using a budget coefficient approach. Relative values of clusters compared to the whole sample were calculated. We identified five clusters: milk-based, meat-based, fast food-based, healthy-fish-based, and healthy-plant-based. We found that the healthy-plant-based and healthy-fish-based clusters were the most sustainable, conciliating the compromise between human health (0.25 and 0.53 respectively for the Health Risk Score) and the protection of the environment (- 62% and - 19% respectively for the pReCiPe indicator). Conversely, the highest environmental impacts (+ 33% for the pReCiPe indicator) and the highest health risk (0.95 for the HRS) were observed for the meat-based cluster, which was associated with the lowest nutritional scores (- 61% for the PNNS-GS2 score). The economic analysis showed that the healthy-plant-based cluster was the one with the highest food budget coefficient (+ 46%), followed by the healthy-fish-based cluster (+ 8%), partly explained by a strong share of organic food in the diet. However, the meat-based cluster spent more of their food budget on their protein intake (+ 13%), while the healthy-plant-based cluster exhibited the lowest expenditure for this intake (- 41%). Our results demonstrate that the nature of protein intake is a discriminating factor in diet sustainability. Also, reducing animal protein consumption would generate co-benefits beyond environmental impacts, by being favorable for health, while reducing the monetary cost associated with protein intake.
Collapse
Affiliation(s)
- Hafsa Toujgani
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France.
| | - Joséphine Brunin
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France
- ADEME, (Agence de l'Environnement et de la Maîtrise de l'Energie), 49004, Angers, France
| | - Elie Perraud
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Benjamin Allès
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | | | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), 74 Rue Marcel Cachin, 93017, Bobigny, France
| |
Collapse
|
30
|
Kim SY, Kim M. What is on plates for school meals: focusing on animal- vs. plant-based protein foods. Nutr Res Pract 2023; 17:1028-1041. [PMID: 37780218 PMCID: PMC10522810 DOI: 10.4162/nrp.2023.17.5.1028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to analyze the potential of school meals in South Korea as a sustainable tool to reduce carbon emissions by focusing on animal- vs. plant-based protein foods. MATERIALS/METHODS By using a stratified proportional allocation method, 536 out of the 11,082 schools nationwide were selected including 21 kindergartens, 287 elementary-, 120 middle- and 108 high schools. A total of 2,680 meals served for 5 consecutive days (June 21-25, 2021) were collected. We analyzed the average serving amounts of protein foods (animal- vs. plant-based) per meal and then, calculated the estimated average amounts of carbon emission equivalents per meal by applying the conversion coefficients. The t-test and analysis of variance were used for statistical analyses (α = 0.05). RESULTS The average serving amount of animal-based protein foods per meal was 12.5 g, which was approximately 3 times higher than that of plant-based ones (3.8 g) (P < 0.001); the Meat-group had the highest average amount of 17.0 g, followed by Egg-group (9.6 g), Fish-group (7.6 g), and Beans-and-Nuts-group (3.8 g) (P < 0.05). Specifically, pork (25.1 g) was ranked first, followed by poultry (19.6 g), processed meat products (18.0 g). The estimated average amount of carbon emission equivalents of animal-based protein foods per meal was 80.1 g CO2e, which was approximately 31 times higher than that of plant-based ones (2.6 g CO2e) (P < 0.001); the Meat-group had the highest average amount of 120.3 g CO2e, followed by Fish-group (44.5 g CO2e), Egg-group (25.9 g CO2e), and Beans-and-Nuts-group (2.6 g CO2e) (P < 0.05). Specifically, processed meat products (270.8 g CO2e) were ranked first, followed by pork (91.7 g CO2e), and processed fish products (86.6 g CO2e). CONCLUSIONS The results implied that school meals with plant-based alternatives could be a sustainable tool to improve carbon footprint.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Food Science and Nutrition, Soonchunhyang University, Asan 31538, Korea
| | - Meeyoung Kim
- Department of Food and Nutrition, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
31
|
Wang T, Masedunskas A, Willett WC, Fontana L. Vegetarian and vegan diets: benefits and drawbacks. Eur Heart J 2023; 44:3423-3439. [PMID: 37450568 PMCID: PMC10516628 DOI: 10.1093/eurheartj/ehad436] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Plant-based diets have become increasingly popular thanks to their purported health benefits and more recently for their positive environmental impact. Prospective studies suggest that consuming vegetarian diets is associated with a reduced risk of developing cardiovascular disease (CVD), diabetes, hypertension, dementia, and cancer. Data from randomized clinical trials have confirmed a protective effect of vegetarian diets for the prevention of diabetes and reductions in weight, blood pressure, glycosylated haemoglobin and low-density lipoprotein cholesterol, but to date, no data are available for cardiovascular event rates and cognitive impairment, and there are very limited data for cancer. Moreover, not all plant-based foods are equally healthy. Unhealthy vegetarian diets poor in specific nutrients (vitamin B12, iron, zinc, and calcium) and/or rich in highly processed and refined foods increase morbidity and mortality. Further mechanistic studies are desirable to understand whether the advantages of healthy, minimally processed vegetarian diets represent an all-or-nothing phenomenon and whether consuming primarily plant-based diets containing small quantities of animal products (e.g. pesco-vegetarian or Mediterranean diets) has beneficial, detrimental, or neutral effects on cardiometabolic health outcomes. Further, mechanistic studies are warranted to enhance our understanding about healthy plant-based food patterns and the biological mechanisms linking dietary factors, CVD, and other metabolic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Charles Perkins Center, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Andrius Masedunskas
- Charles Perkins Center, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Walter C Willett
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Luigi Fontana
- Charles Perkins Center, University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Brescia, Lombardy, Italy
| |
Collapse
|
32
|
Daley TC, Cousineau BA, Nesbeth PDC, Ivie EA, Bellissimo MP, Easley KA, Vellanki P, Vos MB, Hunt WR, Stecenko AA, Ziegler TR, Alvarez JA. Quality of dietary macronutrients is associated with glycemic outcomes in adults with cystic fibrosis. Front Nutr 2023; 10:1158452. [PMID: 37799765 PMCID: PMC10548231 DOI: 10.3389/fnut.2023.1158452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Poor diet quality contributes to metabolic dysfunction. This study aimed to gain a greater understanding of the relationship between dietary macronutrient quality and glucose homeostasis in adults with cystic fibrosis (CF). Design This was a cross-sectional study of N = 27 adults with CF with glucose tolerance ranging from normal (n = 9) to prediabetes (n = 6) to being classified as having cystic fibrosis-related diabetes (CFRD, n = 12). Fasted blood was collected for analysis of glucose, insulin, and C-peptide. Insulin resistance was assessed by Homeostatic Model Assessment for Insulin Resistance (HOMA2-IR). Subjects without known CFRD also underwent a 2-h oral glucose tolerance test. Three-day food records were used to assess macronutrient sources. Dietary variables were adjusted for energy intake. Statistical analyses included ANOVA, Spearman correlations, and multiple linear regression. Results Individuals with CFRD consumed less total fat and monounsaturated fatty acids (MUFA) compared to those with normal glucose tolerance (p < 0.05). In Spearman correlation analyses, dietary glycemic load was inversely associated with C-peptide (rho = -0.28, p = 0.05). Total dietary fat, MUFA, and polyunsaturated fatty acids (PUFA) were positively associated with C-peptide (rho = 0.39-0.41, all p < 0.05). Plant protein intake was inversely related to HOMA2-IR (rho = -0.28, p = 0.048). Associations remained significant after adjustment for age and sex. Discussion Improvements in diet quality are needed in people with CF. This study suggests that higher unsaturated dietary fat, higher plant protein, and higher carbohydrate quality were associated with better glucose tolerance indicators in adults with CF. Larger, prospective studies in individuals with CF are needed to determine the impact of diet quality on the development of CFRD.
Collapse
Affiliation(s)
- Tanicia C. Daley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Benjamin A. Cousineau
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Paula-Dene C. Nesbeth
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Elizabeth A. Ivie
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Moriah P. Bellissimo
- Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University School of Medicine, Atlanta, GA, United States
| | - Priyathama Vellanki
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Miriam B. Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - William R. Hunt
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Arlene A. Stecenko
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Thomas R. Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica A. Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
33
|
Huang Y, Li X, Zhang T, Zeng X, Li M, Li H, Yang H, Zhang C, Zhou Z, Zhu Y, Tang M, Zhang Z, Yang W. Associations of healthful and unhealthful plant-based diets with plasma markers of cardiometabolic risk. Eur J Nutr 2023; 62:2567-2579. [PMID: 37199769 DOI: 10.1007/s00394-023-03170-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE Plant-based diets, particularly when rich in healthy plant foods, have been associated with a lower risk of type 2 diabetes and cardiovascular disease. However, the impact of plant-based diets that distinguish between healthy and unhealthy plant foods on cardiometabolic biomarkers remains unclear. METHODS Dietary information was collected by two 24-h recalls among 34,785 adults from a nationwide cross-sectional study. Plasma levels of insulin, C-peptide, glucose, C-reactive protein (CRP), white blood cell (WBC) count, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) were measured. Linear regression was used to evaluate the percentage difference in plasma marker concentrations by three plant-based diet indices, namely the overall plant-based diet index (PDI), the healthful PDI (hPDI), and the unhealthful PDI (uPDI). RESULTS Greater hPDI-adherence scores (comparing extreme quartiles) were associated with lower levels of insulin, Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), TG/HDL-C ratio, CRP, WBC count, and TG, and higher levels of HDL-C, with the percentage differences of - 14.55, - 15.72, - 11.57, - 14.95, - 5.26, - 7.10, and 5.01, respectively (all Ptrend ≤ 0.001). Conversely, uPDI was associated with higher levels of insulin, C-peptide, HOMA-IR, TG/HDL-C ratio, CRP, WBC count, and TG, but lower HDL-C, with the percentage differences of 13.71, 14.00, 14.10, 10.43, 3.32, 8.00, and - 4.98 (all Ptrend ≤ 0.001), respectively. Overall PDI was only associated with lower levels of CRP and WBC count (all Ptrend ≤ 0.001). CONCLUSION Our findings suggest that hPDI may have positive, whereas uPDI may have negative impacts on multiple cardiometabolic risk markers, and underscore the need to consider the quality of plant foods in future PDI studies.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Xiude Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Tengfei Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xueke Zeng
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Meiling Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Haowei Li
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hu Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenghao Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhihao Zhou
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yu Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Tang
- Department of Gastroenterology and Hepatology and Clinical Nutrition, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Zhuang Zhang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
34
|
Attaye I, Lassen PB, Adriouch S, Steinbach E, Patiño-Navarrete R, Davids M, Alili R, Jacques F, Benzeguir S, Belda E, Nemet I, Anderson JT, Alexandre-Heymann L, Greyling A, Larger E, Hazen SL, van Oppenraaij SL, Tremaroli V, Beck K, Bergh PO, Bäckhed F, ten Brincke SP, Herrema H, Groen AK, Pinto-Sietsma SJ, Clément K, Nieuwdorp M. Protein supplementation changes gut microbial diversity and derived metabolites in subjects with type 2 diabetes. iScience 2023; 26:107471. [PMID: 37599833 PMCID: PMC10432813 DOI: 10.1016/j.isci.2023.107471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Emilie Steinbach
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Rafael Patiño-Navarrete
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Rohia Alili
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Flavien Jacques
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Sara Benzeguir
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - James T. Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Arno Greyling
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Etienne Larger
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH, USA
| | - Sophie L. van Oppenraaij
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Katharina Beck
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Suzan P.M. ten Brincke
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Nosworthy MG, Medina G, Lu ZH, House JD. Plant Proteins: Methods of Quality Assessment and the Human Health Benefits of Pulses. Foods 2023; 12:2816. [PMID: 37569085 PMCID: PMC10417564 DOI: 10.3390/foods12152816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
As countries increase their standard of living and individual income levels rise, there is a concomitant increase in the demand for animal-based protein. However, there are alternative sources. One of the alternatives available is that of increased direct human consumption of plant proteins. The quality of a dietary protein is an important consideration when discussing the merits of one protein source over another. The three most commonly used methods to express protein quality are the protein efficiency ratio (PER), a weight gain measurement; protein digestibility-corrected amino acid score (PDCAAS); and the digestible indispensable amino acid score (DIAAS). The possibility that alterations in the quality and quantity of protein in the diet could generate specific health outcomes is one being actively researched. Plant-based proteins may have additional beneficial properties for human health when compared to animal protein sources, including reductions in risk factors for cardiovascular disease and contributions to increased satiety. In this paper, the methods for the determination of protein quality and the potential beneficial qualities of plant proteins to human health will be described.
Collapse
Affiliation(s)
- Matthew G. Nosworthy
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gerardo Medina
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada;
| | - Zhan-Hui Lu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
| | - James D. House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Richardson Centre for Food Technology and Research, 196 Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
36
|
Fouillet H, Dussiot A, Perraud E, Wang J, Huneau JF, Kesse-Guyot E, Mariotti F. Plant to animal protein ratio in the diet: nutrient adequacy, long-term health and environmental pressure. Front Nutr 2023; 10:1178121. [PMID: 37396122 PMCID: PMC10311446 DOI: 10.3389/fnut.2023.1178121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Background Animal and plant protein sources have contrasting relationships with nutrient adequacy and long-term health, and their adequate ratio is highly debated. Objective We aimed to explore how the percentage of plant protein in the diet (%PP) relates to nutrient adequacy and long-term health but also to environmental pressures, to determine the adequate and potentially optimal %PP values. Methods Observed diets were extracted from the dietary intakes of French adults (INCA3, n = 1,125). Using reference values for nutrients and disease burden risks for foods, we modeled diets with graded %PP values that simultaneously ensure nutrient adequacy, minimize long-term health risks and preserve at best dietary habits. This multi-criteria diet optimization was conducted in a hierarchical manner, giving priority to long-term health over diet proximity, under the constraints of ensuring nutrient adequacy and food cultural acceptability. We explored the tensions between objectives and identified the most critical nutrients and influential constraints by sensitivity analysis. Finally, environmental pressures related to the modeled diets were estimated using the AGRIBALYSE database. Results We find that nutrient-adequate diets must fall within the ~15-80% %PP range, a slightly wider range being nevertheless identifiable by waiving the food acceptability constraints. Fully healthy diets, also achieving the minimum-risk exposure levels for both unhealthy and healthy foods, must fall within the 25-70% %PP range. All of these healthy diets were very distant from current typical diet. Those with higher %PP had lower environmental impacts, notably on climate change and land use, while being as far from current diet. Conclusion There is no single optimal %PP value when considering only nutrition and health, but high %PP diets are more sustainable. For %PP > 80%, nutrient fortification/supplementation and/or new foods are required.
Collapse
Affiliation(s)
- Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Alison Dussiot
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Elie Perraud
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Juhui Wang
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Jean-François Huneau
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| |
Collapse
|
37
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023; 15:2749. [PMID: 37375654 PMCID: PMC10302286 DOI: 10.3390/nu15122749] [Citation(s) in RCA: 182] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
38
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
39
|
Miksza U, Adamska-Patruno E, Bauer W, Fiedorczuk J, Czajkowski P, Moroz M, Drygalski K, Ustymowicz A, Tomkiewicz E, Gorska M, Kretowski A. Obesity-related parameters in carriers of some BDNF genetic variants may depend on daily dietary macronutrients intake. Sci Rep 2023; 13:6585. [PMID: 37085692 PMCID: PMC10121660 DOI: 10.1038/s41598-023-33842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Some common single-nucleotide polymorphisms of the brain-derived neurotrophic factor (BDNF) gene have been associated not only with the neurodegenerative diseases but also with some eating disorders. The aim of this study was to assess the possible differences in the obesity-related and glucose metabolism parameters between some BDNF genotypes', that may depend on the daily energy and macronutrients intake. In 484 adult participants we performed the anthropometric measurements, body composition analysis, and body fat distribution. The daily dietary intake was assessed using the 3-day food intake diaries. Blood glucose and insulin concentrations were measured at fasting and during oral glucose tolerance tests. Moreover, the visceral adipose tissue/subcutaneous adipose tissue (VAT/SAT) ratio and homeostatic model assessment of insulin resistance were calculated. We noted that participants carrying the GG genotype had lower skeletal muscle mass and fat free mass (FFM) when carbohydrate intake was > 48%, whereas they presented higher fat-free mass (FFM), and surprisingly higher total cholesterol and LDL-C concentrations when daily fiber intake was > 18 g. Moreover, in these subjects we noted higher waist circumference, BMI, and fasting glucose and insulin concentrations, when > 18% of total daily energy intake was delivered from proteins, and higher VAT content and HDL-C concentrations when > 30% of energy intake was derived from dietary fat. Our results suggest that glucose homeostasis and obesity-related parameters in carriers of some common variants of BDNF gene, especially in the GG (rs10835211) genotype carriers, may differ dependently on daily energy, dietary macronutrients and fiber intake.
Collapse
Affiliation(s)
- Urszula Miksza
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
- Clinical Research Support Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
| | - Edyta Adamska-Patruno
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
- Clinical Research Support Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland.
| | - Witold Bauer
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Joanna Fiedorczuk
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Przemyslaw Czajkowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Monika Moroz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Krzysztof Drygalski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Ustymowicz
- Department of Radiology, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Elwira Tomkiewicz
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Maria Gorska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Adam Kretowski
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
- Clinical Research Support Centre, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Marii Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| |
Collapse
|
40
|
Mantzouranis E, Kakargia E, Kakargias F, Lazaros G, Tsioufis K. The Impact of High Protein Diets on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutrients 2023; 15:1372. [PMID: 36986102 PMCID: PMC10058321 DOI: 10.3390/nu15061372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
High protein diets have gained increased popularity as a means of losing weight, increasing muscle mass and strength, and improving cardiometabolic parameters. Only a few meta-analyses have addressed their impact on cardiovascular morbidity and mortality and failed to show any significant associations without applying strict values to define high protein intake. Due to the conflicting research background, we conducted a meta-analysis to assess the impact of high protein diets compared to normal protein consumption on cardiovascular outcomes in adults without established cardiovascular disease. Fourteen prospective cohort studies were included. A total of 6 studies, including 221,583 participants, reported data about cardiovascular death, without showing a statistically significant difference in the random effect model (odds ratio: 0.94; confidence interval: 0.60-1.46; I2 = 98%; p = 0.77). Analysis of three studies, which included 90,231 participants showed that a high protein diet was not associated with a lower risk of stroke (odds ratio: 1.02; confidence interval: 0.94-1.10; I2 = 0%; p = 0.66). Regarding the secondary outcome of non-fatal myocardial infarction, stroke, or cardiovascular death, 13 studies that included 525,047 participants showed no statistically significant difference (odds ratio; 0.87; confidence interval: 0.70-1.07; I2 = 97%; p = 0.19). In conclusion, according to our study results, high protein consumption does not affect cardiovascular prognosis.
Collapse
Affiliation(s)
- Emmanouil Mantzouranis
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| | - Eleftheria Kakargia
- Internal Medicine Clinic, 401 General Military Hospital, 115 25 Athens, Greece
| | - Fotis Kakargias
- Internal Medicine Clinic, 401 General Military Hospital, 115 25 Athens, Greece
| | - George Lazaros
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, Hippokration Hospital, University of Athens, 115 27 Athens, Greece
| |
Collapse
|
41
|
Jarvis SE, Malik VS. Healthy and Environmentally Sustainable Dietary Patterns for Type 2 Diabetes: Dietary Approaches as Co-benefits to the Overlapping Crises. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-023-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
42
|
Maeta A, Katsukawa M, Hayase Y, Takahashi K. Intake of Soymilk-Okara Powder for 12 Weeks Decreases Body Fat and Increases Body Muscle in Japanese Adults: a Single-Arm Intervention Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:173-178. [PMID: 36472712 DOI: 10.1007/s11130-022-01030-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
Okara is a by-product of soymilk manufacturing and a rich source of protein and dietary fiber. This study investigates whether dietary soymilk-okara powder intake in the long term affects the body composition and gut microbiota flora in healthy Japanese adults. In total, 46 subjects (43 women) were enrolled. All subjects ingested 15 g of soymilk-okara powder every day for 12 weeks. Subjects' body composition was assessed over four weeks. At baseline and after intervention for 12 weeks, fecal short-chain fatty acid concentrations and microbiota percentages were measured. The body muscle weight significantly increased, and the percentage of body fat significantly decreased at 4, 8, and 12 weeks after the intervention. The increase in body muscle after 12 weeks was 0.6 kg (interquartile range:-0.03 to 1.0). The decrease in body fat was -0.9% (interquartile range: -1.6 to -0.2). There was a significant negative correlation between the changes in body fat and body muscle. For the fecal percentages of Coriobacteriaceae, Lactobacillales, Bacteroides, Clostridium cluster IV, and Clostridium cluster XI, there were significant differences between the baseline and 12 weeks after the intervention. Furthermore, there were significant negative correlations between the changes in body fat percentage and fecal acetic acid and propionic acid levels. Therefore, a dietary intake of 15 g of soymilk-okara powder for 12 weeks induced a decrease in body fat, an increase in body muscle, and a change in fecal microbiota flora. Soymilk-okara powder is effective in improving body composition and changing the intestinal microbiota flora in healthy Japanese adults.
Collapse
Affiliation(s)
- Akihiro Maeta
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Masahiro Katsukawa
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Yaeko Hayase
- Product Development Division, Kikkoman Food Products Company, 250, Noda, Noda, Chiba, 278-0037, Japan
| | - Kyoko Takahashi
- Department of Food Science and Nutrition, School of Food Science and Nutrition, Mukogawa Women's University, 6-46, Ikebiraki-Cho, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
43
|
Ogawa A, Tsujiguchi H, Nakamura M, Hayashi K, Hara A, Suzuki K, Miyagi S, Kannon T, Takazawa C, Zhao J, Kambayashi Y, Shimizu Y, Shibata A, Konoshita T, Suzuki F, Tsuboi H, Tajima A, Nakamura H. Higher Intake of Vegetable Protein and Lower Intake of Animal Fats Reduce the Incidence of Diabetes in Non-Drinking Males: A Prospective Epidemiological Analysis of the Shika Study. Nutrients 2023; 15:nu15041040. [PMID: 36839398 PMCID: PMC9966791 DOI: 10.3390/nu15041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Although nutrient intake and alcohol consumption are both closely associated with the incidence of diabetes, their interrelationships remain unclear. Therefore, we herein have investigated the interrelationships among nutrient intake, alcohol consumption, and the incidence of diabetes using longitudinal data. This study included 969 residents ≥40 years living in Japan. In 2011 and 2012, a baseline study was conducted using questionnaires on basic demographics, diabetes, nutrient intake, and lifestyle habits. In 2018 and 2019, a follow-up study was performed using questionnaires and medical records on diabetes. Two-way analysis of covariance (two-way ANCOVA) was used to test the interactions of drinking habits and diabetes incidence on nutrients intake. The prospective relationship between nutrient intake at baseline and the incidence of diabetes in the follow-up stratified by drinkers and non-drinkers was evaluated using multiple logistic regression analysis. Interactions were observed for vegetable protein intake (p = 0.023) and animal fat intake (p = 0.016) in males. Vegetable protein intake negatively correlated with the incidence of diabetes in non-drinkers (odds ratio (OR): 0.208; 95% confidence interval (95% CI): 0.046-0.935; p = 0.041). Furthermore, animal fat intake positively correlated with the incidence of diabetes in non-drinkers (OR: 1.625; 95% CI: 1.020-2.589; p = 0.041). Therefore, vegetable protein and animal fat intakes in combination with drinking habits need to be considered for the prevention of diabetes.
Collapse
Affiliation(s)
- Aya Ogawa
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Faculty of Nutrition, Osaka Seikei College, 3-10-62 Aikawa, Higashiyodogawa-ku, Osaka 533-0007, Osaka, Japan
| | - Hiromasa Tsujiguchi
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Koichi Hayashi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebirakicho, Nishinomiya 663-8558, Hyogo, Japan
| | - Akinori Hara
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Keita Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Takayuki Kannon
- Department of Biomedical Data Science, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| | - Chie Takazawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Jiaye Zhao
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Yasuhiro Kambayashi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoi-no-oka, Imabari 794-8555, Ehime, Japan
| | - Yukari Shimizu
- Department of Nursing, Faculty of Health Sciences, Komatsu University, 14-1 He Mukai-Motoori-Machi, Komatsu 923-0961, Ishikawa, Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaiduki, Eiheiji 910-1104, Fukui, Japan
| | - Fumihiko Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Community Medicine Support Dentistry, Ohu University Hospital, 31-1 Misumidou, Tomitamachi, Kohriyama 963-8611, Fukushima, Japan
| | - Hirohito Tsuboi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Graduate School of Human Nursing, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8640, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-265-2288
| |
Collapse
|
44
|
Zhang Y, Meng Y, Wang J. Higher Adherence to Plant-Based Diet Lowers Type 2 Diabetes Risk among High and Non-High Cardiovascular Risk Populations: A Cross-Sectional Study in Shanxi, China. Nutrients 2023; 15:786. [PMID: 36771492 PMCID: PMC9920686 DOI: 10.3390/nu15030786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the association between the plant-based diet index (PDI) score and T2D risk among residents of Shanxi Province, China, and explore whether the association was influenced by different levels of cardiovascular risk. A total of 50,694 participants aged 35-75 years were recruited between 2017 and 2019, and they were further divided into the high cardiovascular risk population (HCRP; n = 17,255) and the non-high cardiovascular risk population (non-HCRP; n = 33,439). The PDI was calculated based on food frequency from a food frequency questionnaire (FFQ). Incident T2D was defined based on elevated plasma glucose (≥7 mmol/L) or hypoglycemic medicine use. We investigated the association of the PDI andT2D risk using a two-level generalized estimating equation and restricted cubic splines model. The results showed that quartile 4 of the PDI indicated significantly reduced T2D risk in the total population (OR: 0.83; 95% CI: 0.75-0.92), HCRP (OR: 0.80; 95% CI: 0.71-0.91), and non-HCRP (OR: 0.80; 95% CI: 0.74-0.87) compared with corresponding quartile 1 (OR = 1). In stratified analysis, the negative associations between PDI and T2D risk were stronger in the total population with the elderly (age > 60 years), BMI < 24, and men, and in the non-HCRP with men and BMI 24-28, and in the HCRP with the elderly and BMI < 24 than those with corresponding subgroups (pinteraction < 0.05). Linear curves were observed for the total population and non-HCRP, but an L-shaped association was observed for the HCRP. Therefore, our results suggest that higher PDI scores may effectively attenuate the T2D risk in the Chinese population and non-HCRP, and a beneficial association of PDI with T2D risk was observed in the HCRP at a certain threshold level. Longitudinal studies and intervention trials are required to validate our study findings.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Yaqing Meng
- Shanxi Provincial Center for Disease Control and Prevention, Taiyuan 030012, China
| | - Junbo Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
45
|
Sanders LM, Wilcox ML, Maki KC. Red meat consumption and risk factors for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2023; 77:156-165. [PMID: 35513448 PMCID: PMC9908545 DOI: 10.1038/s41430-022-01150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Results from observational studies suggest an association of red meat intake with risk of type 2 diabetes mellitus (T2D). However, results from randomized controlled trials (RCTs) have not clearly supported a mechanistic link between red meat intake and T2D risk factors. Therefore, a systematic review and meta-analysis were conducted on RCTs evaluating the effects of diets containing red meat (beef, pork, lamb, etc.), compared to diets with lower or no red meat, on markers of glucose homeostasis in adults. METHODS A search of PubMed and CENTRAL yielded 21 relevant RCTs. Pooled estimates were expressed as standardized mean differences (SMDs) between the red meat intervention and the comparator intervention with less or no red meat. RESULTS Compared to diets with reduced or no red meat intake, there was no significant impact of red meat intake on insulin sensitivity (SMD: -0.11; 95% CI: -0.39, 0.16), insulin resistance (SMD: 0.11; 95% CI: -0.24, 0.45), fasting glucose (SMD: 0.13; 95% CI: -0.04, 0.29), fasting insulin (SMD: 0.08; 95% CI: -0.16, 0.32), glycated hemoglobin (HbA1c; SMD: 0.10; 95% CI: -0.37, 0.58), pancreatic beta-cell function (SMD: -0.13; 95% CI: -0.37, 0.10), or glucagon-like peptide-1 (GLP-1; SMD: 0.10; 95% CI: -0.37, 0.58). Red meat intake modestly reduced postprandial glucose (SMD: -0.44; 95% CI: -0.67, -0.22; P < 0.001) compared to meals with reduced or no red meat intake. The quality of evidence was low to moderate for all outcomes. CONCLUSIONS The results of this meta-analysis suggest red meat intake does not impact most glycemic and insulinemic risk factors for T2D. Further investigations are needed on other markers of glucose homeostasis to better understand whether a causal relationship exists between red meat intake and risk of T2D. PROSPERO REGISTRATION CRD42020176059.
Collapse
Affiliation(s)
| | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, 60101, USA.
- Indiana University, Department of Applied Health Science, School of Public Health, Bloomington, IN, 47401, USA.
| |
Collapse
|
46
|
Njike VY, Kela GCM, Treu JA, Ayettey RG, Kussaga FM, Khan N, Comerford B, Agboola O. Egg Consumption in the Context of Plant-Based Diets and Diet Quality in Adults at Risk for Type 2 Diabetes: A Randomized Single Blind Cross-over Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:130-139. [PMID: 35512755 DOI: 10.1080/07315724.2021.2006824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lifestyle changes that emphasis on plant-based diets (PBD) are typically recommended for those at risk for type 2 diabetes mellitus (T2DM) to mitigate their cardo-metabolic risk. We examined the impact of the inclusion of eggs compared with their exclusion from PBD on diet quality among adults at risk for T2DM. This was a randomized, controlled, single-blind, crossover trial of 35 adults (mean age 60.7 years; 25 women, 10 men; 34 Caucasians, 1 African-American) at risk for T2DM (i.e., pre- diabetes or metabolic syndrome) assigned to one of two possible sequence permutations of two treatments (PBD with eggs and exclusively PBD), with a 4-week washout period. Participants received dietary counseling from a dietitian to exclude or to include 2 eggs daily in the context of PBD for a 6-week period. Diet quality was assessed using the Healthy Eating Index 2015 (HEI-2015) at baseline and 6 weeks. Compared with the exclusion of eggs, the inclusion of eggs in the context of PBD improved the diet quality score for intake of total protein foods (1.0 ± 1.1 vs. -0.4 ± 1.0; p <.0001); seafood and plant proteins (0.2 ± 1.2 vs. -0.4 ± 1.1; p = 0.0338); and fatty acids (0.8 ± 2.5 vs. -0.7 ± 2.7; p = 0.0260). Overall diet quality score depreciated with the adoption of exclusively PBD without eggs (-3.1 ± 8.3; p = 0.0411), while it was unaffected with the adoption of a PBD with the inclusion of eggs (-0.6 ± 7.9; p = 0.6892). Eggs could be used as an adjuvant to enhance the diet quality among those at risk for T2DM who adopt plant-based dietary patterns.
Collapse
Affiliation(s)
- Valentine Y Njike
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| | | | - Judith A Treu
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| | - Rockiy G Ayettey
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| | | | - Nisar Khan
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| | - Beth Comerford
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| | - Olayinka Agboola
- Yale-Griffin Prevention Research Center, Griffin Hospital, Derby, CT, USA
| |
Collapse
|
47
|
Nutrient density and cost of commonly consumed foods: a South African perspective. J Nutr Sci 2023; 12:e10. [PMID: 36721720 PMCID: PMC9879879 DOI: 10.1017/jns.2022.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Food-based dietary guidelines promote consumption of a variety of nutritious foods for optimal health and prevention of chronic disease. However, adherence to these guidelines is challenging because of high food costs. The present study aimed to determine the nutrient density of foods relative to cost in South Africa, with the aim to identify foods within food groups with the best nutritional value per cost. A checklist of 116 food items was developed to record the type, unit, brand and cost of foods. Food prices were obtained from the websites of three national supermarkets and the average cost per 100 g edible portion was used to calculate cost per 100 kcal (418 kJ) for each food item. Nutrient content of the food items was obtained from the South African Food Composition Tables. Nutrient density was calculated using the Nutrient Rich Food (NRF9.3) Index. Nutrient density relative to cost was calculated as NRF9.3/price per 100 kcal. Vegetables and fruits had the highest NRF9.3 score and cost per 100 kcal. Overall, pulses had the highest nutritional value per cost. Fortified maizemeal porridge and bread had the best nutritional value per cost within the starchy food group. Foods with the least nutritional value per cost were fats, oils, foods high in fat and sugar, and foods and drinks high in sugar. Analysis of nutrient density and cost of foods can be used to develop tools to guide low-income consumers to make healthier food choices by identifying foods with the best nutritional value per cost.
Collapse
|
48
|
Woodside JV, Sun Q, de Roos B, Rimm EB, Hu FB, Heinen MM, McEvoy CT, Piernas C, Scheelbeek PFD, Rushton J, Ensaff H, Brennan SF, Brennan L. Meeting report: plant-rich dietary patterns and health. Proc Nutr Soc 2022; 81:288-305. [PMID: 35996940 PMCID: PMC9839575 DOI: 10.1017/s002966512200266x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dietary patterns (DP) rich in plant foods are associated with improved health and reduced non-communicable disease risk. In October 2021, the Nutrition Society hosted a member-led conference, held online over 2 half days, exploring the latest research findings examining plant-rich DP and health. The aim of the present paper is to summarise the content of the conference and synopses of the individual speaker presentations are included. Topics included epidemiological analysis of plant-rich DP and health outcomes, the effects of dietary interventions which have increased fruit and vegetable (FV) intake on a range of health outcomes, how adherence to plant-rich DP is assessed, the use of biomarkers to assess FV intake and a consideration of how modifying behaviour towards increased FV intake could impact environmental outcomes, planetary health and food systems. In conclusion, although there are still considerable uncertainties which require further research, which were considered as part of the conference and are summarised in this review, adopting a plant-rich DP at a population level could have a considerable impact on diet and health outcomes, as well as planetary health.
Collapse
Affiliation(s)
- Jayne V. Woodside
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
- Corresponding author: Jayne V. Woodside,
| | - Qi Sun
- Harvard TH Chan School of Public Health, Boston, USA
| | - Baukje de Roos
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Eric B. Rimm
- Harvard TH Chan School of Public Health, Boston, USA
| | - Frank B. Hu
- Harvard TH Chan School of Public Health, Boston, USA
| | - Mirjam M. Heinen
- WHO European Office for Prevention and Control of Noncommunicable Diseases, Department of Country Health Programmes, WHO Regional Office for Europe, Geneva, Switzerland
| | - Claire T. McEvoy
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Carmen Piernas
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pauline F. D. Scheelbeek
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Jonathan Rushton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Hannah Ensaff
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Sarah F. Brennan
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Lorraine Brennan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Ferrari L, Panaite SA, Bertazzo A, Visioli F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022; 14:5115. [PMID: 36501146 PMCID: PMC9741334 DOI: 10.3390/nu14235115] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Dietary proteins are indispensable to human nutrition. In addition to their tissue-building function, they affect body composition and regulate various metabolic pathways, as well as satiety and immune system activity. Protein use can be examined from a quantitative or qualitative viewpoint. In this scoping review, we compare animal- and plant-based protein sources in terms of their effects on human health and the environment. We conclude that the consumption of vegetable protein sources is associated with better health outcomes overall (namely, on the cardiovascular system) than animal-based product use. The healthier outcomes of vegetable protein sources dovetail with their lower environmental impact, which must be considered when designing an optimal diet. Indeed, the health of the planet cannot be disjointed from the health of the human being. Future research will clarify the mechanisms of action underlying the health effects of plant-based protein sources when compared with animal sources, fostering better agronomic practices and influencing public health in a direction that will benefit both the planet and its inhabitants.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy
| | - Stefan-Alexandru Panaite
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, School of Hygiene and Preventive Medicine, University of Padova, 35122 Padova, Italy
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy
- IMDEA-Food, CEI UAM+CSIC, 28001 Madrid, Spain
| |
Collapse
|
50
|
Abstract
Although a decrease in carbohydrate intake and an increase in fat intake among Koreans have been reported, investigations of changes in protein intake have been limited. Thus, this study aimed to explore trends in the dietary intake of total, plant and animal proteins overall and by socio-demographic subgroups in Korea over the past two decades. A total of 78 716 Korean adults aged ≥ 19 years who participated in the seven survey cycles of the Korea National Health and Nutrition Examination Survey 1998-2018 were included. Dietary protein intake, overall and by source, was calculated using a single 24-h dietary recall data. Changes in dietary protein over 20 years were estimated using multiple linear regression analysis after adjusting for potential covariates. For total protein intake, a significant decrease was reported from 1998 to 2016-2018 (P for trendlinearity < 0·001), whereas an increasing trend was observed from 2007-2009 to 2016-2018 (P for trendlinearity < 0·001). In terms of protein intake by source, plant protein intake decreased while animal protein intake increased over the past two decades, indicating steeper trends during the recent decade (P for trendlinearity < 0·001). These trends were more pronounced among younger adults and those with higher household income and education levels. These findings suggest that continuous monitoring of dietary protein intake overall and by source (plant v. animal) across socio-demographic group is needed.
Collapse
|