1
|
Xie Z, Zheng G, Niu L, Du K, Li R, Dan H, Duan L, Wu H, Ren G, Dou X, Dai S, Feng F, Zhang J, Zheng J. SPP1 + macrophages in colorectal cancer: Markers of malignancy and promising therapeutic targets. Genes Dis 2025; 12:101340. [PMID: 40092488 PMCID: PMC11907465 DOI: 10.1016/j.gendis.2024.101340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 03/19/2025] Open
Abstract
SPP1+ macrophages have been identified as key players in the colorectal cancer (CRC) tumor microenvironment, but their function remains unclear. This study integrated single-cell and spatial transcriptomics with bulk sequencing to investigate the roles and mechanisms of SPP1 + macrophages in CRC. Our findings revealed a pronounced elevation of SPP1 + macrophages in CRC, especially within tumor territories. These macrophages served as markers for CRC initiation, progression, metastasis, and potential prognosis. Furthermore, they showed heightened transcriptional activity in genes linked to angiogenesis, epithelial-mesenchymal transition, glycolysis, hypoxia, and immunosuppression. SPP1 protein amplified CRC cell migration and invasion, potentially mediating cellular crosstalk via the SPP1-CD44, SPP1-PTGER4, and SPP1-a4b1 complex axes. Patients with a high proportion of SPP1 + macrophages could benefit more from immune checkpoint blockade therapy. Interestingly, CSF1R expression was significantly enriched in C1QC + macrophages versus SPP1 + macrophages, possibly explaining limited anti-CSF1R monotherapy effects. In conclusion, we propose an SPP1 + macrophage model in CRC, highlighting such macrophages as a promising therapeutic target due to their malignancy markers.
Collapse
Affiliation(s)
- Zhenyu Xie
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Gaozan Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Kunli Du
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Ruikai Li
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hanjun Dan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Hongze Wu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xinyu Dou
- Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Songchen Dai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110016, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Fan Feng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Zhang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Jianyong Zheng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Cloutier G, Khalfaoui T, Carrier JC, Beaulieu JF. Expression of the RPSA-Containing and 67EBP Laminin Receptors in Relation to the Debatable Nature of the 67 kDa Laminin Receptor 67LR in Colorectal Cancer. Int J Mol Sci 2025; 26:2564. [PMID: 40141206 PMCID: PMC11942345 DOI: 10.3390/ijms26062564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The role of laminin receptors in colorectal cancer (CRC) is the subject of ongoing research. Histopathological studies have suggested that the 67 kDa laminin receptor (67LR) is involved in the carcinogenesis of various malignancies, including CRC. However, the exact composition and nature of 67LR have been a source of confusion for many years. A recent study from our group reported that the 37 kDa form of RPSA participates as a laminin receptor renamed the RPSA-containing laminin receptor (RCLR) but is not the precursor form of the 67LR since the 67 kDa protein associated with 67LR corresponds to the 67 kDa elastin-binding protein (67EBP), which also acts as a laminin receptor. The present study aims to analyze the distinct expression patterns of these two laminin receptor components in CRC. Expressions of RCLR and 67EBP were analyzed in CRC tissues using Western blot and quantitative RT-PCR analyses. The primary colorectal adenocarcinoma tissues and corresponding resection margins showed an overexpression of both RPSA and 67EBP at the protein level in the CRC tissues. An analysis of the publicly available CRC datasets confirmed the overexpression of RPSA and 67EBP in CRC tissues. In conclusion, the elevated expression of these two non-integrin laminin receptors in CRC lesions suggests their critical roles in colorectal carcinogenesis and emphasizes their potential usefulness as tissue biomarkers.
Collapse
Affiliation(s)
- Gabriel Cloutier
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Taoufik Khalfaoui
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie C. Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Pawar K, Gupta PP, Solanki PS, Niraj RRK, Kothari SL. Downregulation of solute carrier family 4 members 4 as a biomarker for colorectal cancer. Discov Oncol 2025; 16:229. [PMID: 39988623 PMCID: PMC11847767 DOI: 10.1007/s12672-025-01948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the major cancer types associated with increased mortality worldwide. Hence, identifying reliable biomarkers make it very essential for early diagnosis and prognosis of CRC. Numerous studies have been conducted to decipher molecular mechanisms underlying CRC, however more deep insightful knowledge is the need of the hour. The purpose of this study was to identify promising key candidate genes in colorectal cancer (CRC) and assess their expression and clinical significance. To clarify and verify promising key biomarkers with signal transduction pathways in colorectal cancer, we integrated 11 microarray datasets from NCBI-GEO. This study utilized multiple bioinformatics tools and databases, including OncoDB, GEO2R, UALCAN, GEIPA, TIMER, and DAVID. The gene expression profiles of eleven datasets (GSE10714, GSE113513, GSE13471, GSE15960, GSE24514, GSE32323, GSE41258, GSE4183, GSE44076, GSE44861, GSE9348) were screened. In 11 gene expression profiles, 3 downregulated genes were identified and validated by databases such as OncoDB, UALCAN, GEIPA and TIMER. Downregulation of SLC4A4 with significant predictive value was validated by multi-omic data analysis and validated by Gene Expression Omnibus (GEO). GEIPA survival analysis showed that low SLC4A4 expression correlated with poorer overall survival among CRC patients. Based on this study, we identified SLC4A4 as a potential candidate biomarker for colorectal cancer (CRC), enabling early diagnosis and prognosis with molecular targeted therapy.
Collapse
Affiliation(s)
- Krunal Pawar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Pramodkumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to Be University, Navi-Mumbai, Maharashtra, 400614, India
| | - Pooran Singh Solanki
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Off Campus Jaipur, Jaipur, India, Rajasthan, 302001
| | - Ravi Ranjan Kumar Niraj
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India.
| |
Collapse
|
4
|
Ying L, Zhang L, Chen Y, Huang C, Zhou J, Xie J, Liu L. Predicting immunotherapy prognosis and targeted therapy sensitivity of colon cancer based on a CAF-related molecular signature. Sci Rep 2025; 15:6387. [PMID: 39984646 PMCID: PMC11845748 DOI: 10.1038/s41598-025-90899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
The role of cancer-associated fibroblasts (CAFs) in modulating the tumor microenvironment (TME) is gaining attention, yet their impact on prognosis and therapeutic response in colon cancer remains unclear. Here, we identified genes associated with CAF infiltration via weighted gene co-expression network analysis (WGCNA) utilizing data from The Cancer Genome Atlas (TCGA) and GSE39582 cohorts. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were used to construct CAF molecular signatures (CAFscore). Patients were categorized into high and low CAFscore groups to analyze clinicopathological traits, somatic mutations, immune evasion, and treatment responses. In this study, a total of 244 genes were correlated with CAF infiltration, with 11 linked to overall survival. Notably, FSTL3, CRIP2, and SLC2A3 were selected for the CAFscore. A higher CAFscore was associated with poorer prognoses, increased malignancy, and therapeutic resistance, particularly among patients with high tumor mutation burden and microsatellite instability. Furthermore, elevated FSTL3 expression was associated with reduced CD8+ T cell infiltration, indicating a suppressive TME. Mechanistically, CAFs may promote immune evasion via NAMPT ligand-receptor interactions based on single-cell RNA sequencing data. Thus, the CAFscore is crucial for personalizing treatment strategies and identifying patients who require more aggressive management.
Collapse
Affiliation(s)
- Leqian Ying
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Lu Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Yanping Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Chunchun Huang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Jingyi Zhou
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
- School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Jinbing Xie
- Department of Radiology, Nurturing Center of Jiangsu Province for the State Laboratory of AI Imaging and Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China
| | - Lin Liu
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210000, China.
| |
Collapse
|
5
|
Pretzsch E, Peschel CA, Rokavec M, Torlot L, Li P, Hermeking H, Werner J, Klauschen F, Neumann J, Jung A, Kumbrink J. Five-Gene Expression Signature Associated With Acquired FOLFIRI Resistance and Survival in Metastatic Colorectal Cancer. J Transl Med 2025; 105:104107. [PMID: 39954853 DOI: 10.1016/j.labinv.2025.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
FOLFIRI, a combination of folinic acid, 5-fluorouracil, and irinotecan, is one of the recommended first-line chemotherapeutic treatments for metastatic colorectal cancer. Unfortunately, acquired FOLFIRI resistance represents a common obstacle in the treatment of metastatic colorectal cancer patients. Thus, we aimed to identify mechanisms, gene alterations, and gene expression signatures contributing to acquired FOLFIRI resistance by mimicking this problem in a cell culture model and subsequent translation in clinical data sets. Three FOLFIRI-resistant colorectal cancer (CRC) cell lines were established by continuous FOLFIRI treatment. Comparative mutation screening (161 genes) and transcriptomics (pathway and differential expression analyses) were performed in parental and resistant cells. Data reconciliation was performed in GSE62322, a clinical FOLFIRI responder data set (intrinsic resistance). Relapse-free survival (RFS) associations of identified differentially expressed genes and potential gene signatures were investigated in 8 clinical CRC data sets. No mutual genetic alterations were found in FOLFIRI-resistant derivatives. Resistant cell lines displayed activation of mitogen-activated protein kinase, immune response, and epithelial-mesenchymal transition pathways. Twelve differentially expressed genes, significantly differentially expressed in at least 2 of the 3 resistant cell lines, were identified. Comparison with GSE62322 and subsequent survival analyses revealed a 5-gene FOLFIRI signature comprised of CAV2, TNC, TACSTD2, SERPINE2, and PERP that was associated with RFS in multiple data sets including the cancer genome atlas CRC (hazard ratio [HR] =2.634, P = 4.53 × 10-6), in pooled samples of all data sets (all stages [N = 1981]: HR = 1.852, P = 6.44 × 10-13; stage IV [N = 260]: HR = 2.462, P = 5.22 × 10-9). A multivariate Cox regression analysis identified the 5-gene signature as an independent prognostic factor in the cancer genome atlas data set (HR = 1.89, P = .0202). Our analyses revealed a 5-gene FOLFIRI resistance signature associated with RFS that may help predict FOLFIRI resistance and thus avoid unnecessary ineffective treatment. Signature members might also represent targets to fight FOLFIRI resistance.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christiane A Peschel
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lucien Torlot
- Department of Anaesthesiology, LMU University Hospital, LMU Munich, Germany
| | - Pan Li
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heiko Hermeking
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Experimental and Molecular Pathology, Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Neumann
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andreas Jung
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jörg Kumbrink
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Centre (DKFZ), Heidelberg, Germany; Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
6
|
Kobayashi H, Iida T, Ochiai Y, Malagola E, Zhi X, White RA, Qian J, Wu F, Waterbury QT, Tu R, Zheng B, LaBella JS, Zamechek LB, Ogura A, Woods SL, Worthley DL, Enomoto A, Wang TC. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression. Cancer Discov 2025; 15:202-226. [PMID: 39137067 PMCID: PMC11729495 DOI: 10.1158/2159-8290.cd-24-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
SIGNIFICANCE Our work demonstrates that the bidirectional interplay between sympathetic nerves and NGF-expressing CAFs drives colorectal tumorigenesis. This study also offers novel mechanistic insights into catecholamine action in colorectal cancer. Inhibiting the neuro-mesenchymal interaction by TRK blockade could be a potential strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruth A. White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin Qian
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Quin T. Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Jonathan S. LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Leah B. Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Daniel L. Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Lutwyche, QLD, 4030, Australia
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
7
|
Saha A, Gavert N, Brabletz T, Ben-Ze’ev A. A Necessary Role for Cyclin D2 Induction During Colon Cancer Progression Mediated by L1. Cells 2024; 13:1810. [PMID: 39513917 PMCID: PMC11544798 DOI: 10.3390/cells13211810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cell adhesion molecule L1CAM (L1), mainly known for its function in brain cells, is a Wnt/β-catenin signaling target gene in colorectal cancer (CRC) cells, where it promotes invasion and liver metastasis. We interrogated which genes are expressed at increased levels in human CRC tissue and induced in CRC cell lines overexpressing L1. We found increased cyclin D2 levels in CRC tissue and LS 174T and HCT 116 human CRC cells overexpressing L1. Increased cyclin D2 in CRC cells was associated with higher proliferation rates, faster motility, tumorigenesis, and liver metastasis. The suppression of cyclin D2 expression by shRNA to cyclin D2 blocked the increase in these cellular properties of L1-expressing cells. The overexpression of cyclin D2 in the absence of L1 also conferred tumorigenic properties similar to L1 expression. The pathways involved in the elevation of cyclin D2 by L1 include NF-κB, Akt, and β-catenin signaling but not the Erk pathway. We found that in a significant percentage of human CRC tissue samples, cyclin D2 is expressed at high levels in the nuclei of cancer cells. At the same time, the adjacent normal mucosa was negative for cyclin D2 staining. The results suggest that the increased cyclin D2 expression by L1 is required to induce proliferative, motile tumor development in CRC tissue and can serve as a diagnostic marker and a target for CRC therapy.
Collapse
Affiliation(s)
- Arka Saha
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Feibiger-Center for Molecular Medicine, University of Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Avri Ben-Ze’ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.S.); (N.G.)
| |
Collapse
|
8
|
Zhang Y, Jin Y, Wang Y, Wang S, Niu Y, Ma B, Li J. Insights of Expression Profile of Chemokine Family in Inflammatory Bowel Diseases and Carcinogenesis. Int J Mol Sci 2024; 25:10857. [PMID: 39409185 PMCID: PMC11476924 DOI: 10.3390/ijms251910857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Chemokines are integral components of the immune system and deeply involved in the pathogenesis and progression of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although a considerable amount of transcriptome data has been accumulated on these diseases, most of them are limited to a specific stage of the disease. The purpose of this study is to visually demonstrate the dynamic changes in chemokines across various stages of bowel diseases by integrating relevant datasets. Integrating the existing datasets for IBD and CRC, we compare the expression changes of chemokines across different pathological stages. This study collected 11 clinical databases from various medical centers around the world. Patients: Data of patient tissue types were classified into IBD, colorectal adenoma, primary carcinoma, metastasis, and healthy control according to the publisher's annotation. The expression changes in chemokines in various pathological stages are statistically analyzed. The chemokines were clustered by different expression patterns. The chemokine family was clustered into four distinct expression patterns, which correspond to varying expression changes in different stages of colitis and tumor development. Certain chemokines and receptors associated with inflammation and tumorigenesis have been identified. Furthermore, it was confirmed that the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model and the azoxymethane (AOM)/ dextran sulfate sodium (DSS)-induced colon cancer model shows stronger correlations with the clinical data in terms of chemokine expression levels. This study paints a panoramic picture of the expression profiles of chemokine families at multiple stages from IBD to advanced colon cancer, facilitating a comprehensive understanding of the regulation patterns of chemokines and guiding the direction of drug development. This study provides researchers with a clear atlas of chemokine expression in the pathological processes of inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Yinjie Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yue Jin
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Siyi Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Yuchen Niu
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| |
Collapse
|
9
|
Li Y, Ding Y, Hou Y, Liu L, Liu Z, Yao Z, Shi P, Li J, Chen K, Hu J. Single-cell analysis reveals alternations between the aged and young mice prostates. Biomark Res 2024; 12:117. [PMID: 39385256 PMCID: PMC11462726 DOI: 10.1186/s40364-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Aging of the male prostate is an inevitable process in which the prostate undergoes hyperplasia, and this growth may lead to compression of the urethra, resulting in voiding dysfunction and associated symptoms, and an increased risk of prostate cancer. Despite the significance of prostate aging, the molecular mechanisms involved are still not fully understood. METHODS Prostate split by lobes from young (2 months) and aged (24 months) mice were collected for single-cell RNA sequencing (scRNA-seq) analysis. Tissues from both anterior prostate (AP) and ventral/dorsal/lateral prostate (VDLP) were included in the study. Data analysis included unsupervised clustering using the uniform manifold approximation and projection (UMAP) algorithm to identify distinct cell types based on marker gene expression. Differential gene expression analysis was performed to identify age-related changes in gene expression across different cell types. Functional enrichment analysis was conducted to elucidate biological pathways associated with differentially expressed genes. Additionally, cellular interactions and developmental trajectories were analyzed to characterize cellular dynamics during prostate aging. RESULTS The single-cell transcriptome analysis of the mouse prostate during aging revealed heterogeneity across various cell types and their changes during the aging process. We found a significant increase in the proportion of mesenchymal and immune cells in aged mice. Our study unveiled alterations in genes and pathways associated with cellular senescence, oxidative stress, and regeneration in epithelial cells. Furthermore, we observed that basal cells may undergo epithelial-mesenchymal transition (EMT) to become mesenchymal cells, particularly prominent in aged mice. Additionally, immune cells, notably macrophages and T cells, exhibited a heightened inflammatory response in aged mice. CONCLUSION In summary, our study provides a comparative analysis of the single-cell transcriptome of the aged and young mice prostates, elucidating cellular and molecular changes between the aged and young mice prostates.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenghao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengjie Shi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Robert A, Crottès D, Bourgeais J, Gueguen N, Chevrollier A, Dumas JF, Servais S, Domingo I, Chadet S, Sobilo J, Hérault O, Lecomte T, Vandier C, Raoul W, Guéguinou M. MICU2 up-regulation enhances tumor aggressiveness and metabolic reprogramming during colorectal cancer development. PLoS Biol 2024; 22:e3002854. [PMID: 39466877 PMCID: PMC11542858 DOI: 10.1371/journal.pbio.3002854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
Collapse
Affiliation(s)
- Alison Robert
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - David Crottès
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Jérôme Bourgeais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Naig Gueguen
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Arnaud Chevrollier
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Jean-François Dumas
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphane Servais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Isabelle Domingo
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphanie Chadet
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | | | - Olivier Hérault
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Thierry Lecomte
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Christophe Vandier
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - William Raoul
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Maxime Guéguinou
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| |
Collapse
|
11
|
Jiang J, Meng X, Wang Y, Zhuang Z, Du T, Yan J. Effect of aberrant fructose metabolism following SARS-CoV-2 infection on colorectal cancer patients' poor prognosis. PLoS Comput Biol 2024; 20:e1012412. [PMID: 39331675 PMCID: PMC11463760 DOI: 10.1371/journal.pcbi.1012412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024] Open
Abstract
Most COVID-19 patients have a positive prognosis, but patients with additional underlying diseases are more likely to have severe illness and increased fatality rates. Numerous studies indicate that cancer patients are more prone to contract SARS-CoV-2 and develop severe COVID-19 or even dying. In the recent transcriptome investigations, it is demonstrated that the fructose metabolism is altered in patients with SARS-CoV-2 infection. However, cancer cells can use fructose as an extra source of energy for growth and metastasis. Furthermore, enhanced living conditions have resulted in a notable rise in fructose consumption in individuals' daily dietary habits. We therefore hypothesize that the poor prognosis of cancer patients caused by SARS-CoV-2 may therefore be mediated through fructose metabolism. Using CRC cases from four distinct cohorts, we built and validated a predictive model based on SARS-CoV-2 producing fructose metabolic anomalies by coupling Cox univariate regression and lasso regression feature selection algorithms to identify hallmark genes in colorectal cancer. We also developed a composite prognostic nomogram to improve clinical practice by integrating the characteristics of aberrant fructose metabolism produced by this novel coronavirus with age and tumor stage. To obtain the genes with the greatest potential prognostic values, LASSO regression analysis was performed, In the TCGA training cohort, patients were randomly separated into training and validation sets in the ratio of 4: 1, and the best risk score value for each sample was acquired by lasso regression analysis for further analysis, and the fifteen genes CLEC4A, FDFT1, CTNNB1, GPI, PMM2, PTPRD, IL7, ALDH3B1, AASS, AOC3, SEPINE1, PFKFB1, FTCD, TIMP1 and GATM were finally selected. In order to validate the model's accuracy, ROC curve analysis was performed on an external dataset, and the results indicated that the model had a high predictive power for the prognosis prediction of patients. Our study provides a theoretical foundation for the future targeted regulation of fructose metabolism in colorectal cancer patients, while simultaneously optimizing dietary guidance and therapeutic care for colorectal cancer patients in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang, China
| | - Yibo Wang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ziqian Zhuang
- Department of Bioinformatics, China Medical University, Shenyang, China
| | - Ting Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jing Yan
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Xie SA, Zhang W, Du F, Liu S, Ning TT, Zhang N, Zhang ST, Zhu ST. PTOV1 facilitates colorectal cancer cell proliferation through activating AKT1 signaling pathway. Heliyon 2024; 10:e36017. [PMID: 39229496 PMCID: PMC11369455 DOI: 10.1016/j.heliyon.2024.e36017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Background Colorectal cancer is a predominant contributor to global cancer-related morbidity and mortality. The oncogene PTOV1 has been linked to various human malignancies, yet its specific role in CRC pathogenesis requires further elucidation. Methods Our study used a comprehensive array of authoritative bioinformatics tools, such as TIMER, UCSC Xena, GEO, Human Protein Atlas, UALCAN, CIBERSORTx and others which used to investigate the complex effects of PTOV1 on gene expression profiles, diagnostic and prognostic biomarkers, tumor immunology, signaling pathways, epigenetic alterations, and genetic mutations. Gene expression validation was conducted using Western blot and qRT-PCR. The in vitro proliferative and migratory potentials of CRC cells were evaluated using CCK-8 assays, colony formation, and transwell migration assays, respectively. MSP was applied to assess the methylation status of the PTOV1 promoter region. Results Our results reveal a significant association between increased PTOV1 expression, driven by promoter hypomethylation, and poor patient prognosis in CRC. Elevated PTOV1 levels were positively correlated with the enrichment of diverse immune cell subsets and immune-related molecules within the tumor microenvironment. In vitro assays demonstrated that PTOV1 knockdown markedly reduced CRC cell proliferation, colony formation, and migration, while ectopic PTOV1 expression had the opposite effect. Importantly, PTOV1 was shown to regulate the PI3K-AKT signaling pathway, significantly influencing the phosphorylation of AKT1 and the expression of cell cycle regulators P21 and P27. The pharmacological inhibition of AKT1 phosphorylation using MK2206 effectively counteracted the proliferative effects induced by PTOV1 overexpression. Conclusion The ability of PTOV1 to enhance CRC cell proliferation via modulation of the AKT1 signaling pathway establishes it as a potential therapeutic target and a promising biomarker for prognostic stratification in CRC.
Collapse
Affiliation(s)
- Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Wen Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
| | - Feng Du
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Ting-Ting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, PR China
- National Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, PR China
| |
Collapse
|
13
|
Zhu X, Zhang Z, Xiao Y, Wang H, Zhang J, Wang M, Jiang M, Xu Y. A pan-cancer cuproptosis signature predicting immunotherapy response and prognosis. Heliyon 2024; 10:e35404. [PMID: 39170145 PMCID: PMC11336580 DOI: 10.1016/j.heliyon.2024.e35404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background Cuproptosis may represent a potential biomarker for predicting prognosis and immunotherapy response, but the available evidence is insufficient. Methods The multiple single-cell RNA sequencing (scRNA-seq) datasets were analyzed to investigate the specific occurrence of cuproptosis in distinct cell populations. Utilizing 28 scRNA-seq datasets, TCGA pan-cancer cohort, and 10 immunotherapy cohorts, we developed a cuproptosis signature (Cup.Sig). This signature was used to construct prediction models for immunotherapy response and identify potential prognostic biomarkers for pan-cancer using 11 different machine learning algorithms. Results Malignant cells demonstrate the higher cuproptosis scores in comparison to other cell types across diverse cancer types. The Cup.Sig exhibits significant associations with cancer hallmarks and immune cell response in multiple cancer types. Leveraging the Cup.Sig, the robust pan-cancer immunotherapy prediction model and prognostic biomarker have been established and validated using diverse datasets from various platforms. Conclusions We developed a pan-cancer cuproptosis signature for predicting survival and immunotherapy response.
Collapse
Affiliation(s)
- Xiaojing Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zixin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanqi Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaxing Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Minghui Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Cui L, Yang L, Lai B, Luo L, Deng H, Chen Z, Wang Z. Integrative and comprehensive pan-cancer analysis of ubiquitin specific peptidase 11 ( USP11) as a prognostic and immunological biomarker. Heliyon 2024; 10:e34523. [PMID: 39114046 PMCID: PMC11305246 DOI: 10.1016/j.heliyon.2024.e34523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.
Collapse
Affiliation(s)
- Lijuan Cui
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Ling Yang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Boan Lai
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Lingzhi Luo
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Haoyue Deng
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zhongyi Chen
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zixing Wang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| |
Collapse
|
15
|
Alali U, Al-Tu’ma MMK, Jawad AF, Ahmed ST, Ali HA, Abdulzehra S, Al-Tu’ma FJ. Synthesis, Characterization, and In-Vitro Evaluation of Silibinin-loaded PEGylated Niosomal Nanoparticles: Potential Anti-Cancer Effects on SW480 Colon Cancer Cells. Asian Pac J Cancer Prev 2024; 25:2539-2550. [PMID: 39068589 PMCID: PMC11480629 DOI: 10.31557/apjcp.2024.25.7.2539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE Colorectal cancer is a significant global health concern with high mortality rates. Silibinin is a compound derived from milk thistle with anticancer properties and may be a potential treatment option for colorectal cancer. Its poor solubility limits its clinical application, but various strategies, such as nanoparticle encapsulation, have shown promise. In this study, a PEGylated niosomal drug delivery system was used to enhance the solubility of silibinin, and its anti-proliferative effects were evaluated against human colorectal cancer cell lines. METHODS The silibinin-loaded PEGylated niosomal nanoparticles (NIO-SIL) were fabricated using the thin-film hydration method and characterized with dialysis bag, AFM, SEM, DLS, and FTIR systems. Finally, the cancerous cells and human normal cells were treated with NIO-SIL and pure silibinin. The proliferation, apoptosis, and cell cycle of these cells were evaluated. Subsequently, the expression of Bax, Bcl-2, p53, and cyclin D1 genes was measured using real-time PCR. RESULT The drug release profile, size, morphology, and chemical interactions of the synthesized PEGylated niosomal nanoparticles were suitable for use as a drug delivery system. Both pure silibinin and NIO-SIL could reduce the proliferation of cancerous cells, induce apoptosis, and cause cell cycle arrest, with no significant negative effects reported on human normal cells. Both pure silibinin and NIO-SIL reduced the expression of the Bcl-2 and cyclin D1 genes while increasing the expression of Bax and p53. (p-value < 0.05 *). CONCLUSION The outcomes of this study indicate the high potential of PEGylated niosomal nanoparticles for encapsulation and delivery of silibinin to cancer cells, with no negative effects on normal cells.
Collapse
Affiliation(s)
- Urjwan Alali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala, Kerbala, Iraq.
| | - Maha Mohammed Kadhim Al-Tu’ma
- Department of Anesthesia Techniques, College of Health and Medical Techniques, Al-Zahraa University for Women, Kerbala, Iraq.
| | - Ammar Fadhil Jawad
- Department of Pharmacognesy, College of Pharmacy, University of Kerbala, Kerbala, Iraq.
| | - Saja Talib Ahmed
- Department of Chemistry, College of Science, University of Kufa, Kufa, Iraq.
| | - Hanaa Addai Ali
- Department of Chemistry, College of Science, University of Kufa, Kufa, Iraq.
| | - Siham Abdulzehra
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil Jawad Al-Tu’ma
- Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Kerbala, Iraq.
| |
Collapse
|
16
|
Carey-Smith SL, Kotecha RS, Cheung LC, Malinge S. Insights into the Clinical, Biological and Therapeutic Impact of Copy Number Alteration in Cancer. Int J Mol Sci 2024; 25:6815. [PMID: 38999925 PMCID: PMC11241182 DOI: 10.3390/ijms25136815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Copy number alterations (CNAs), resulting from the gain or loss of genetic material from as little as 50 base pairs or as big as entire chromosome(s), have been associated with many congenital diseases, de novo syndromes and cancer. It is established that CNAs disturb the dosage of genomic regions including enhancers/promoters, long non-coding RNA and gene(s) among others, ultimately leading to an altered balance of key cellular functions. In cancer, CNAs have been associated with almost all steps of the disease: predisposition, initiation, development, maintenance, response to treatment, resistance, and relapse. Therefore, understanding how specific CNAs contribute to tumourigenesis may provide prognostic insight and ultimately lead to the development of new therapeutic approaches to improve patient outcomes. In this review, we provide a snapshot of what is currently known about CNAs and cancer, incorporating topics regarding their detection, clinical impact, origin, and nature, and discuss the integration of innovative genetic engineering strategies, to highlight the potential for targeting CNAs using novel, dosage-sensitive and less toxic therapies for CNA-driven cancer.
Collapse
Affiliation(s)
- Shannon L. Carey-Smith
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sébastien Malinge
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (S.L.C.-S.); (R.S.K.); (L.C.C.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Harrold E, Keane F, Walch H, Chou JF, Sinopoli J, Palladino S, Al-Rawi DH, Chadalavada K, Manca P, Chalasani S, Yang J, Cercek A, Shia J, Capanu M, Bakhoum SF, Schultz N, Chatila WK, Yaeger R. Molecular and Clinical Determinants of Acquired Resistance and Treatment Duration for Targeted Therapies in Colorectal Cancer. Clin Cancer Res 2024; 30:2672-2683. [PMID: 38502113 PMCID: PMC11176917 DOI: 10.1158/1078-0432.ccr-23-4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Targeted therapies have improved outcomes for patients with metastatic colorectal cancer, but their impact is limited by rapid emergence of resistance. We hypothesized that an understanding of the underlying genetic mechanisms and intrinsic tumor features that mediate resistance to therapy will guide new therapeutic strategies and ultimately allow the prevention of resistance. EXPERIMENTAL DESIGN We assembled a series of 52 patients with paired pretreatment and progression samples who received therapy targeting EGFR (n = 17), BRAF V600E (n = 17), KRAS G12C (n = 15), or amplified HER2 (n = 3) to identify molecular and clinical factors associated with time on treatment (TOT). RESULTS All patients stopped treatment for progression and TOT did not vary by oncogenic driver (P = 0.5). Baseline disease burden (≥3 vs. <3 sites, P = 0.02), the presence of hepatic metastases (P = 0.02), and gene amplification on baseline tissue (P = 0.03) were each associated with shorter TOT. We found evidence of chromosomal instability (CIN) at progression in patients with baseline MAPK pathway amplifications and those with acquired gene amplifications. At resistance, copy-number changes (P = 0.008) and high number (≥5) of acquired alterations (P = 0.04) were associated with shorter TOT. Patients with hepatic metastases demonstrated both higher number of emergent alterations at resistance and enrichment of mutations involving receptor tyrosine kinases. CONCLUSIONS Our genomic analysis suggests that high baseline CIN or effective induction of enhanced mutagenesis on targeted therapy underlies rapid progression. Longer response appears to result from a progressive acquisition of genomic or chromosomal instability in the underlying cancer or from the chance event of a new resistance alteration.
Collapse
Affiliation(s)
- Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F. Chou
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Sinopoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Palladino
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Duaa H. Al-Rawi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Manca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sree Chalasani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jessica Yang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
18
|
Tsumuraya H, Okayama H, Katagata M, Matsuishi A, Fukai S, Ito M, Sakamoto W, Saito M, Momma T, Nakajima S, Mimura K, Kono K. TGFβ-Responsive Stromal Activation Occurs Early in Serrated Colorectal Carcinogenesis. Int J Mol Sci 2024; 25:4626. [PMID: 38731846 PMCID: PMC11083568 DOI: 10.3390/ijms25094626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Activated TGFβ signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFβ-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFβ-responsive, stroma-specific genes to infer TGFβ-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFβ-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFβ-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.
Collapse
Affiliation(s)
- Hideaki Tsumuraya
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Misato Ito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
19
|
Wen X, Qin J, Zhang X, Ye L, Wang Y, Yang R, Di Y, He W, Wang Z. MEK-mediated CHPF2 phosphorylation promotes colorectal cancer cell proliferation and metastasis by activating NF-κB signaling. Cancer Lett 2024; 584:216644. [PMID: 38253217 DOI: 10.1016/j.canlet.2024.216644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays a crucial role in the proliferation and metastasis of colorectal cancer (CRC) cells, but the underlying mechanisms remain poorly understood. Here, we report that chondroitin polymerizing factor 2 (CHPF2) promotes CRC cell proliferation and metastasis mediated by TNF, independently of its enzymatic activity. CHPF2 is highly expressed in CRC, and its elevated expression is associated with poor prognosis of CRC patients. Mechanistically, upon TNF stimulation, CHPF2 is phosphorylated at the T588 residue by MEK, enabling CHPF2 to interact with both TAK1 and IKKα. This interaction enhances the binding of TAK1 and IKKα, leading to increased phosphorylation of the IKK complex and activation of NF-κB signaling. As a result, the expression of early growth factors (EGR1) is upregulated to promote CRC cell proliferation and metastasis. In contrast, introduction of a phospho-deficient T588A mutation in CHPF2 weakened the interaction between CHPF2 and TAK1, thus impairing NF-κB signaling. CHPF2 T588A mutation reduced the ability of CHPF2 to promote the proliferation and metastasis of CRC in vitro and in vivo. Furthermore, the NF-κB RELA subunit promotes CHPF2 expression, further amplifying TNF-induced NF-κB signaling activation. These findings identify a moonlighting function of CHPF2 in promoting tumor cell proliferation and metastasis and provide insights into the mechanism by which CHPF2 amplifies TNF-mediated NF-κB signaling activation. Our study provides a molecular basic for the development of therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ranran Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
20
|
Jaiswal S, Wang F, Wu X, Chang TS, Shirazi A, Lee M, Dame MK, Spence JR, Wang TD. Near-Infrared In Vivo Imaging of Claudin-1 Expression by Orthotopically Implanted Patient-Derived Colonic Adenoma Organoids. Diagnostics (Basel) 2024; 14:273. [PMID: 38337789 PMCID: PMC10854921 DOI: 10.3390/diagnostics14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Claudin-1 becomes overexpressed during the transformation of normal colonic mucosa to colorectal cancer (CRC). METHODS Patient-derived organoids expressed clinically relevant target levels and genetic heterogeneity, and were established from human adenoma and normal colons. Colonoids were implanted orthotopically in the colon of immunocompromised mice. This pre-clinical model of CRC provides an intact microenvironment and representative vasculature. Colonoid growth was monitored using white light endoscopy. A peptide specific for claudin-1 was fluorescently labeled for intravenous administration. NIR fluorescence images were collected using endoscopy and endomicroscopy. RESULTS NIR fluorescence images collected using wide-field endoscopy showed a significantly greater target-to-background (T/B) ratio for adenoma versus normal (1.89 ± 0.35 and 1.26 ± 0.06) colonoids at 1 h post-injection. These results were confirmed by optical sections collected using endomicroscopy. Optical sections were collected in vivo with sub-cellular resolution in vertical and horizontal planes. Greater claudin-1 expression by individual epithelial cells in adenomatous versus normal crypts was visualized. A human-specific cytokeratin stain ex vivo verified the presence of human tissues implanted adjacent to normal mouse colonic mucosa. CONCLUSIONS Increased claudin-1 expression was observed from adenoma versus normal colonoids in vivo using imaging with wide field endoscopy and endomicrosopy.
Collapse
Affiliation(s)
- Sangeeta Jaiswal
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Fa Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Xiaoli Wu
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Tse-Shao Chang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ahmad Shirazi
- Division of Integrative System and Design, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Miki Lee
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Michael K. Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
| | - Thomas D. Wang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.); (F.W.); (X.W.); (M.L.); (M.K.D.); (J.R.S.)
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Liu Y, Xu Y, Li X, Chen M, Wang X, Zhang N, Zhang H, Zhang Z. Towards precision oncology discovery: four less known genes and their unknown interactions as highest-performed biomarkers for colorectal cancer. NPJ Precis Oncol 2024; 8:13. [PMID: 38243058 PMCID: PMC10799029 DOI: 10.1038/s41698-024-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
The goal of this study was to use a new interpretable machine-learning framework based on max-logistic competing risk factor models to identify a parsimonious set of differentially expressed genes (DEGs) that play a pivotal role in the development of colorectal cancer (CRC). Transcriptome data from nine public datasets were analyzed, and a new Chinese cohort was collected to validate the findings. The study discovered a set of four critical DEGs - CXCL8, PSMC2, APP, and SLC20A1 - that exhibit the highest accuracy in detecting CRC in diverse populations and ethnicities. Notably, PSMC2 and CXCL8 appear to play a central role in CRC, and CXCL8 alone could potentially serve as an early-stage marker for CRC. This work represents a pioneering effort in applying the max-logistic competing risk factor model to identify critical genes for human malignancies, and the interpretability and reproducibility of the results across diverse populations suggests that the four DEGs identified can provide a comprehensive description of the transcriptomic features of CRC. The practical implications of this research include the potential for personalized risk assessment and precision diagnosis and tailored treatment plans for patients.
Collapse
Affiliation(s)
- Yongjun Liu
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Yuqing Xu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Mengke Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xueqin Wang
- Department of Statistics and Finance, University of Science and Technology of China, Hefei, China
| | - Ning Zhang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heping Zhang
- Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Zhengjun Zhang
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- School of Economics and Management, and MOE Social Science Laboratory of Digital Economic Forecasts and Policy Simulation, University of Chinese Academy of Sciences, Center for Forecasting Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Robles J, Prakash A, Vizcaíno JA, Casal JI. Integrated meta-analysis of colorectal cancer public proteomic datasets for biomarker discovery and validation. PLoS Comput Biol 2024; 20:e1011828. [PMID: 38252632 PMCID: PMC10833860 DOI: 10.1371/journal.pcbi.1011828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The cancer biomarker field has been an object of thorough investigation in the last decades. Despite this, colorectal cancer (CRC) heterogeneity makes it challenging to identify and validate effective prognostic biomarkers for patient classification according to outcome and treatment response. Although a massive amount of proteomics data has been deposited in public data repositories, this rich source of information is vastly underused. Here, we attempted to reuse public proteomics datasets with two main objectives: i) to generate hypotheses (detection of biomarkers) for their posterior/downstream validation, and (ii) to validate, using an orthogonal approach, a previously described biomarker panel. Twelve CRC public proteomics datasets (mostly from the PRIDE database) were re-analysed and integrated to create a landscape of protein expression. Samples from both solid and liquid biopsies were included in the reanalysis. Integrating this data with survival annotation data, we have validated in silico a six-gene signature for CRC classification at the protein level, and identified five new blood-detectable biomarkers (CD14, PPIA, MRC2, PRDX1, and TXNDC5) associated with CRC prognosis. The prognostic value of these blood-derived proteins was confirmed using additional public datasets, supporting their potential clinical value. As a conclusion, this proof-of-the-concept study demonstrates the value of re-using public proteomics datasets as the basis to create a useful resource for biomarker discovery and validation. The protein expression data has been made available in the public resource Expression Atlas.
Collapse
Affiliation(s)
- Javier Robles
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Protein Alternatives SL, Tres Cantos, Madrid, Spain
| | - Ananth Prakash
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - J. Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
23
|
Heiser CN, Simmons AJ, Revetta F, McKinley ET, Ramirez-Solano MA, Wang J, Kaur H, Shao J, Ayers GD, Wang Y, Glass SE, Tasneem N, Chen Z, Qin Y, Kim W, Rolong A, Chen B, Vega PN, Drewes JL, Markham NO, Saleh N, Nikolos F, Vandekar S, Jones AL, Washington MK, Roland JT, Chan KS, Schürpf T, Sears CL, Liu Q, Shrubsole MJ, Coffey RJ, Lau KS. Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic colorectal tumors. Cell 2023; 186:5620-5637.e16. [PMID: 38065082 PMCID: PMC10756562 DOI: 10.1016/j.cell.2023.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.
Collapse
Affiliation(s)
- Cody N Heiser
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jiawei Wang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin Shao
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Gregory D Ayers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Sarah E Glass
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Qin
- Incendia Therapeutics, Inc., Boston, MA 02135, USA
| | - William Kim
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bob Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas O Markham
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nabil Saleh
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fotis Nikolos
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Simon Vandekar
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith S Chan
- Department of Urology, Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Cynthia L Sears
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Wang Y, Wang S, Niu Y, Ma B, Li J. Data Mining Suggests That CXCL14 Gene Silencing in Colon Cancer Is Due to Promoter Methylation. Int J Mol Sci 2023; 24:16027. [PMID: 38003215 PMCID: PMC10671198 DOI: 10.3390/ijms242216027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
CXCL14 is one of the most evolutionarily conserved members of the chemokine family and is constitutionally expressed in multiple organs, suggesting that it is involved in the homeostasis maintenance of the system. CXCL14 is highly expressed in colon epithelial cells and shows obvious gene silencing in clinical colon cancer samples, suggesting that its silencing is related to the immune escape of cancer cells. In this paper, we analyzed the expression profiles of multiple human clinical colon cancer datasets and mouse colon cancer models to reveal the variation trend of CXCL14 expression during colitis, colon polyps, primary colon cancer, and liver metastases. The relationship between CXCL14 gene silencing and promoter hypermethylation was revealed through the colorectal carcinoma methylation database. The results suggest that CXCL14 is a tumor suppressor gene in colorectal carcinoma which is activated first and then silenced during the process of tumor occurrence and deterioration. Promoter hypermethylation is the main cause of CXCL14 silencing. The methylation level of CXCL14 is correlated with the anatomic site of tumor occurrence, positively correlated with patient age, and associated with prognosis. Reversing the hypermethylation of CXCL14 may be an epigenetic therapy for colon cancer.
Collapse
Affiliation(s)
| | | | | | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (S.W.); (Y.N.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.W.); (S.W.); (Y.N.)
| |
Collapse
|
25
|
Xu Y, Bao Y, Qiu G, Ye H, He M, Wei X. METTL3 promotes proliferation and migration of colorectal cancer cells by increasing SNHG1 stability. Mol Med Rep 2023; 28:217. [PMID: 37772373 PMCID: PMC10568253 DOI: 10.3892/mmr.2023.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
N6‑methyladenosine (m6A) serves an essential role in RNA modulation and is implicated in multiple malignancies, including colorectal cancer (CRC). Methyltransferase‑like 3 (METTL3) is an important writer in m6A modification, however its role in CRC in modifying small nucleolar RNA host gene 1 (SNHG1), an oncogenic long noncoding RNA, remains unclear. In the present study, METTL3 expression in CRC was assessed using online bioinformatics analysis, immunohistochemistry staining, western blotting, reverse transcription (RT)‑quantitative PCR (qPCR) and cell transfections. Cell proliferation, migration and invasion were determined using functional Cell Counting Kit‑8 (CCK‑8) and Transwell assays. SNHG1 expression in CRC was evaluated using online bioinformatics analysis and RT‑qPCR. Methylated RNA immunoprecipitation qPCR was performed to assess m6A modification changes of SNHG1 mRNA. The present study demonstrated that METTL3 is upregulated in CRC tissues and cell lines. Moreover, METTL3 expression was associated with several unfavourable clinical features in patients with CRC, including the stage of lymph node metastases and overall survival. Functional Transwell and CCK‑8 assays demonstrated that knockdown of METTL3 suppressed CRC cell proliferation and migration. Furthermore, METTL3 was positively correlated with SNHG1 in CRC tissue, as indicated by analysis of data from The Cancer Genome Atlas. Mechanistically, SNHG1 contains 18 m6A modification sites. Through cell transfections and actinomycin D assays, the present study found that METTL3‑mediated m6A modification at these sites enhances the stability of SNHG1 in CRC cells. Finally, it was demonstrated that SNHG1 knockdown partially diminished the facilitative effect of METTL3 on CRC cell migration and proliferation. The present study concluded that METTL3, a potential biomarker for assessing overall survival and metastasis in CRC, may serve as an oncogene, promote SNHG1 m6A modification, improve the stability of SNHG1 and enhance SNHG1‑mediated oncogenic function in CRC.
Collapse
Affiliation(s)
- Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yuxin Bao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Huinan Ye
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110024, P.R. China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110024, P.R. China
| | - Xilin Wei
- Third Department of General Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|
26
|
Gu X, Chen S, Wang Z, Bu Q, An S. LZTS3/TAGLN Suppresses Cancer Progression in Human Colorectal Adenocarcinoma Through Regulating Cell Proliferation, Migration, and Actin Cytoskeleton. Arch Med Res 2023; 54:102894. [PMID: 37806182 DOI: 10.1016/j.arcmed.2023.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Numerous studies have confirmed that the leucine zipper tumor suppressor (LZTS) gene family plays a vital role in modulating transcription and cell cycle control, especially in colorectal cancer. This study aimed to evaluate the potential of leucine zipper tumor suppressor family member 3 (LZTS3) as a marker for COAD. METHODS Bioinformatics, immunohistochemistry, and Western blotting were applied to assess the expression of LZTS3 in tissues. Gene overexpression or silencing was used to examine the biological roles of LZTS3 and validated using an in vivo nude mouse-human tumor model. RESULTS The results obtained in this study indicate that LZTS3 is highly expressed in COAD. RTCA, Transwell, actin stain, and in vitro transfection experiments confirmed that LZTS3 expression inhibits tumor cell proliferation and cell migration. The results obtained in the nude mouse-human tumor model are consistent with those obtained in vitro. In particular, LZTS3 may exert biological effects by targeting the NOTCH signaling pathway. Furthermore, TAGLN was demonstrated to be a downstream target of LZTS3. CONCLUSION This is the first study to demonstrate the important role of LZTS3 in the proliferation and migration of COAD and to shed light on the molecular mechanism underlying the tumor-suppressing role of LZTS3.
Collapse
Affiliation(s)
- Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China; School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| | - Shuhui Chen
- Department of Gastrointestinal surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Qianwen Bu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China.
| |
Collapse
|
27
|
Ye J, Guo W, Wang C, Egelston CA, D'Apuzzo M, Shankar G, Fakih MG, Lee PP. Peritumoral Immune-suppressive Mechanisms Impede Intratumoral Lymphocyte Infiltration into Colorectal Cancer Liver versus Lung Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:2082-2095. [PMID: 37768208 PMCID: PMC10569153 DOI: 10.1158/2767-9764.crc-23-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Patients with microsatellite stable (MSS) colorectal cancer with liver metastases are resistant to immune checkpoint inhibitor (ICI) therapy, while about one-third of patients with colorectal cancer without liver metastases, particularly those with lung-only metastases, respond to ICI. We analyzed primary colorectal cancer tumors and major metastatic sites (liver, lung, peritoneal) using multiplex immunofluorescence and whole-slide spatial analyses to identify variations in immune contexture and regional localization within the tumor microenvironment. While levels of T and B cells within peritumoral regions were similar, their levels were significantly lower within the tumor core of liver and peritoneal metastases compared with lung metastases. In contrast, antigen-presenting cells (APC) and APC-T cell interactions were more abundant in all regions of lung metastases. We also identified an abundance of lymphoid aggregates throughout lung metastases, but these were present only within peritumoral regions of liver and peritoneal metastases. Larger lymphoid aggregates consistent with features of tertiary lymphoid structures were observed within or adjacent to primary tumors, but not metastatic lesions. Our findings were validated using NanoString GeoMx DSP, which further showed that liver metastases had higher expression of immune-suppressive markers, while lung metastases showed higher proinflammatory activity and T-cell activation markers. Peritoneal metastases demonstrated higher expression of cancer-associated fibroblast-related proteins and upregulated PD-1/PD-L1 signaling molecules. Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer. SIGNIFICANCE Our results demonstrate that functional status and spatial distribution of immune cells vary significantly across different metastatic sites in MSS colorectal cancer. These findings suggest that metastatic site-dependent immune contexture may underlie discordant responses to ICI therapy in patients with MSS colorectal cancer.
Collapse
Affiliation(s)
- Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Weihua Guo
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Colt A. Egelston
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | | | - Marwan G. Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Peter P. Lee
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
28
|
Cao Y, Wang D, Wu J, Yao Z, Shen S, Niu C, Liu Y, Zhang P, Wang Q, Wang J, Li H, Wei X, Wang X, Dong Q. MSI-XGNN: an explainable GNN computational framework integrating transcription- and methylation-level biomarkers for microsatellite instability detection. Brief Bioinform 2023; 24:bbad362. [PMID: 37833839 DOI: 10.1093/bib/bbad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.
Collapse
Affiliation(s)
- Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dan Wang
- Department of Bioinformatics, Yicon (Beijing) Biomedical Technology Inc
| | - Jin Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300050, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | | | - Jinhao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xinxing Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
29
|
Hosseini-Abgir A, Naghizadeh MM, Igder S, Miladpour B. Insilco prediction of the role of the FriZZled5 gene in colorectal cancer. Cancer Treat Res Commun 2023; 36:100751. [PMID: 37595345 DOI: 10.1016/j.ctarc.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION In this study, we aimed to elucidate the crosstalk between the Wnt/β-catenin signaling pathway and colorectal cancer (CRC) associated with inflammatory bowel disease (IBD) using a bioinformatics analysis of putative common biomarkers and a systems biology approach. MATERIALS AND METHODS The following criteria were used to search the GEO and ArrayExpress databases for terms related to CRC and IBD: 1. The dataset containing the transcriptomic data, and 2. Untreated samples by medications or drugs. A total of 42 datasets were selected for additional analysis. The GEO2R identified the differentially expressed genes. The genes involved in the Wnt signaling pathway were extracted from the KEGG database. Enrichment analysis and miRNA target prediction were conducted through the ToppGene online tool. RESULTS In CRC datasets, there were 1168 up- and 998 down-regulated probes, whereas, in IBD datasets, there were 256 up- and 200 down-regulated probes. There were 65 upregulated and 57 downregulated genes shared by CRC and IBD. According to KEGG, there were 166 genes in the Wnt pathway. FriZZled5 (FZD5) was a down-regulated gene in both CRC and IBD, as determined by the intersection of CRC- and IBD-related DEGs with the Wnt pathway. It was also demonstrated that miR-191, miR-885-5p, miR-378a-3p, and miR-396-3p affect the FriZZled5 gene expression. CONCLUSION It is possible that increased expression of miR-191 and miR-885-5p, or decreased expression of miR-378a -3p and miR396-3, in IBD and CRC results in decreased expression of the FZD5 gene. Based on the function of this gene, FZD5 may be a potential therapeutic target in IBD that progresses to CRC.
Collapse
Affiliation(s)
| | | | - Somayeh Igder
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Behnoosh Miladpour
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
30
|
Domínguez-Zorita S, Cuezva JM. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel) 2023; 15:3775. [PMID: 37568591 PMCID: PMC10417293 DOI: 10.3390/cancers15153775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer poses a significant global health problem with profound personal and economic implications on National Health Care Systems. The reprograming of metabolism is a major trait of the cancer phenotype with a clear potential for developing effective therapeutic strategies to combat the disease. Herein, we summarize the relevant role that the mitochondrial ATP synthase and its physiological inhibitor, ATPase Inhibitory Factor 1 (IF1), play in metabolic reprogramming to an enhanced glycolytic phenotype. We stress that the interplay in the ATP synthase/IF1 axis has additional functional roles in signaling mitohormetic programs, pro-oncogenic or anti-metastatic phenotypes depending on the cell type. Moreover, the same axis also participates in cell death resistance of cancer cells by restrained mitochondrial permeability transition pore opening. We emphasize the relevance of the different post-transcriptional mechanisms that regulate the specific expression and activity of ATP synthase/IF1, to stimulate further investigations in the field because of their potential as future targets to treat cancer. In addition, we review recent findings stressing that mitochondria metabolism is the primary altered target in lung adenocarcinomas and that the ATP synthase/IF1 axis of OXPHOS is included in the most significant signature of metastatic disease. Finally, we stress that targeting mitochondrial OXPHOS in pre-clinical mouse models affords a most effective therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, 28029 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, 28041 Madrid, Spain
| |
Collapse
|
31
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Huang LJ, Zhan ST, Pan YQ, Bao W, Yang Y. The role of Vps4 in cancer development. Front Oncol 2023; 13:1203359. [PMID: 37404768 PMCID: PMC10315677 DOI: 10.3389/fonc.2023.1203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
VPS4 series proteins play a crucial role in the endosomal sorting complexes required for the transport (ESCRT) pathway, which is responsible for sorting and trafficking cellular proteins and is involved in various cellular processes, including cytokinesis, membrane repair, and viral budding. VPS4 proteins are ATPases that mediate the final steps of membrane fission and protein sorting as part of the ESCRT machinery. They disassemble ESCRT-III filaments, which are vital for forming multivesicular bodies (MVBs) and the release of intraluminal vesicles (ILVs), ultimately leading to the sorting and degradation of various cellular proteins, including those involved in cancer development and progression. Recent studies have shown a potential relationship between VPS4 series proteins and cancer. Evidence suggests that these proteins may have crucial roles in cancer development and progression. Several experiments have explored the association between VPS4 and different types of cancer, including gastrointestinal and reproductive system tumors, providing insight into the underlying mechanisms. Understanding the structure and function of VPS4 series proteins is critical in assessing their potential role in cancer. The evidence supporting the involvement of VPS4 series proteins in cancer provides a promising avenue for future research and therapeutic development. However, further researches are necessary to fully understand the mechanisms underlying the relationship between VPS4 series proteins and cancer and to develop effective strategies for targeting these proteins in cancer therapy. This article aims to review the structures and functions of VPS4 series proteins and the previous experiments to analyze the relationship between VPS4 series proteins and cancer.
Collapse
Affiliation(s)
- Li Juan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Shi Tong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Yu Qin Pan
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| |
Collapse
|
33
|
Long C, Li G, Meng Y, Huang X, Chen J, Liu J. Weighted gene co-expression network analysis identifies the prognosis-related models of left- and right-sided colon cancer. Medicine (Baltimore) 2023; 102:e33390. [PMID: 37144998 PMCID: PMC10158920 DOI: 10.1097/md.0000000000033390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Left-sided colon cancer (LC) and right-sided colon cancer (RC) are 2 essentially different diseases, and the potential mechanisms regulating them remain unidentified. In this study, we applied weighted gene co-expression network analysis (WGCNA) to confirm a yellow module, mainly enriched in metabolism-related signaling pathways related to LC and RC. Based on the RNA-seq data of colon cancer in The Cancer Genome Atlas (TCGA) and GSE41258 dataset with their corresponding clinical information, a training set (TCGA: LC: n = 171; RC: n = 260) and a validation set (GSE41258: LC: n = 94; RC: n = 77) were divided. Least absolute shrinkage and selection operator (LASSO) penalized COX regression analysis identified 20 prognosis-related genes (PRGs) and helped constructed 2 risk (LC-R and RC-R) models in LC and RC, respectively. The model-based risk scores accurately performed in risk stratification for colon cancer patients. The high-risk group of the LC-R model showed associations with ECM-receptor interaction, focal adhesion, and PI3K-AKT signaling pathway. Interestingly, the low-risk group of the LC-R model showed associations with immune-related signaling pathways like antigen processing and presentation. On the other hand, the high-risk group of the RC-R model showed enrichment for cell adhesion molecules and axon guidance signaling pathways. Furthermore, we identified 20 differentially expressed PRGs between LC and RC. Our findings provide new insights into the difference between LC and RC, and uncover the potential biomarkers for the treatment of LC and RC.
Collapse
Affiliation(s)
- Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Yongsheng Meng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jianhong Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| |
Collapse
|
34
|
Du M, Gu D, Xin J, Peters U, Song M, Cai G, Li S, Ben S, Meng Y, Chu H, Chen L, Wang Q, Zhu L, Fu Z, Zhang Z, Wang M. Integrated multi-omics approach to distinct molecular characterization and classification of early-onset colorectal cancer. Cell Rep Med 2023; 4:100974. [PMID: 36921601 PMCID: PMC10040411 DOI: 10.1016/j.xcrm.2023.100974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Incidence of early-onset colorectal cancer (EOCRC), defined by a diagnosed age under 50 years, is increasing, but its heterogeneous etiologies that differ from general CRC remain undetermined. We initially characterize the genome, epigenome, transcriptome, and proteome of tumors from 79 patients in a Chinese CRC cohort. Data for an additional 126 EOCRC subjects are obtained from the International Cancer Genome Consortium Chinese cohort and The Cancer Genome Atlas European cohort. We observe that early-onset tumors have a high tumor mutation burden; increased DNA repair features by mutational signature 3 and multi-layer pathway enrichments; strong perturbations at effects of DNA methylation and somatic copy-number alteration on gene expression; and upregulated immune infiltration as hot tumors underlying immunophenotypes. Notably, LMTK3 exhibits ancestral mutation disparity, potentially being a functional modulator and biomarker that drives molecular alterations in EOCRC development and immunotherapies. This integrative omics study provides valuable knowledge for precision oncology of CRC.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yixuan Meng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215005, China.
| |
Collapse
|
35
|
Song S, Feng L, Xi K, Sun Z, Kong D, Luo Z, Pei W, Zhang H. Single-cell profiling of the copy-number heterogeneity in colorectal cancer. Chin Med J (Engl) 2023; 136:707-718. [PMID: 36914941 PMCID: PMC10129169 DOI: 10.1097/cm9.0000000000002469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND With functionally heterogeneous cells, tumors comprise a complex ecosystem to promote tumor adaptability and evolution under strong selective pressure from the given microenvironment. Diversifying tumor cells or intra-tumor heterogeneity is essential for tumor growth, invasion, and immune evasion. However, no reliable method to classify tumor cell subtypes is yet available. In this study, we introduced the single-cell sequencing combined with copy number characteristics to identify the types of tumor cells in microsatellite stable (MSS) colorectal cancer (CRC). METHODS To characterize the somatic copy number alteration (SCNA) of MSS CRC in a single cell profile, we analyzed 26 tissue samples from 19 Korean patients (GSE132465, the Samsung Medical Center [SMC] dataset) and then verified our findings with 15 tissue samples from five Belgian patients (GSE144735, the Katholieke Universiteit Leuven 3 [KUL3] dataset). The Cancer Genome Atlas (TCGA) cohort, GSE39582 cohort, and National Cancer Center (NCC) cohort (24 MSS CRC patients were enrolled in this study between March 2017 and October 2017) were used to validate the clinical features of prognostic signatures. RESULTS We employed single cell RNA-sequencing data to identify three types of tumor cells in MSS CRC by their SCNA characteristics. Among these three types of tumor cells, C1 and C3 had a higher SCNA burden; C1 had significant chromosome 13 and 20 amplification, whereas C3 was the polar opposite of C1, which exhibited deletion in chromosome 13 and 20. The three types of tumor cells exhibited various functions in the tumor microenvironment and harbored different mutations. C1 and C2 were linked to the immune response and hypoxia, respectively, while C3 was critical for cell adhesion activity and tumor angiogenesis. Additionally, one gene ( OLFM4 ) was identified as epithelium-specific biomarker of better prognosis of CRC (TCGA cohort: P = 0.0110; GSE39582 cohort: P = 0.0098; NCC cohort: P = 0.0360). CONCLUSIONS On the basis of copy number characteristics, we illustrated tumor heterogeneity in MSS CRC and identified three types of tumor cells with distinct roles in tumor microenvironment. By understanding heterogeneity in the intricate tumor microenvironment, we gained an insight into the mechanisms of tumor evolution, which may support the development of therapeutic strategies.
Collapse
Affiliation(s)
- Shiyu Song
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kexing Xi
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhigang Sun
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Deyang Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenkai Luo
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Pei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haizeng Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
36
|
Santhanam B, Oikonomou P, Tavazoie S. Systematic assessment of prognostic molecular features across cancers. CELL GENOMICS 2023; 3:100262. [PMID: 36950380 PMCID: PMC10025453 DOI: 10.1016/j.xgen.2023.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Extending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in more than 82% of cancers, modules substantially improve survival stratification compared with conventional clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes to external cohorts better than conventionally used single-gene features. Finally, a machine-learning framework demonstrates the combined predictive power of multiple modules, yielding prognostic models that perform substantially better than existing histopathological and clinical factors in common use.
Collapse
Affiliation(s)
- Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
37
|
Chai R, Su Z, Zhao Y, Liang W. Extracellular matrix-based gene signature for predicting prognosis in colon cancer and immune microenvironment. Transl Cancer Res 2023; 12:321-339. [PMID: 36915600 PMCID: PMC10007896 DOI: 10.21037/tcr-22-2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023]
Abstract
Background The extracellular matrix (ECM) plays a vital role in progression, expansion, and prognosis of malignancies. In this study, we aimed to explore a novel ECM-based prognostic model for patients with colon cancer (CC). Methods ECM-related genes were obtained from Molecular Signatures database. Differential expression analysis was performed using the CC dataset from The Cancer Genome Atlas (TCGA) database. Four ECM-related genes related to overall survival were identified using the Cox regression and LASSO analysis. Then an ECM-related signature was developed and verified in three independent CC cohorts (GSE33882, GSE39582 and GSE29621) from the Gene Expression Omnibus (GEO). A prognostic nomogram was developed incorporating the ECM-related gene signature with clinical risk factors. CIBERSORT was used to explore the immune cell infiltration level. Human Protein Atlas (HPA) database was utilized to validate the expression levels of identified prognostic ECM genes. Results Four ECM-related genes (CXCL13, CXCL14, SFRP5 and THBS4) were identified to develop an ECM-based gene signature and demarcated CC patients into the high- and low-risk groups. In training and validation datasets, patients in the low-risk group had better overall survival outcomes than those in the high-risk group (log-rank P<0.001). In addition, ECM-related signature was significantly associated with consensus molecular subtype 4 (CMS4) as well as other known clinical risk factors such as a higher Tumor, Nodal Involvement, Metastasis (TNM) stage. Moreover, the risk score derived from the ECM-based gene signature could be utilized as an independent prognostic factor for CC patients. A nomogram including the ECM-related gene signature, age and stage was developed to serve clinical practice. CIBERSORT analysis showed immune cell infiltration was different between high- and low-risk groups. The immunohistochemical results derived from HPA indicated differential expression of prognosis-related ECM genes in CC and normal tissues. Conclusions In the present study, a novel risk model based on ECM-signature could effectively reflect individual risk classification and provide potential therapeutic targets for CC patients. Moreover, the prognostic nomogram may help predict individualized survival.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Nygaard V, Ree AH, Dagenborg VJ, Børresen-Dale AL, Edwin B, Fretland ÅA, Grzyb K, Haugen MH, Mælandsmo GM, Flatmark K. A PRRX1 Signature Identifies TIM-3 and VISTA as Potential Immune Checkpoint Targets in a Subgroup of Microsatellite Stable Colorectal Cancer Liver Metastases. CANCER RESEARCH COMMUNICATIONS 2023; 3:235-244. [PMID: 36968142 PMCID: PMC10035516 DOI: 10.1158/2767-9764.crc-22-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Disease recurrence and drug resistance are major challenges in the clinical management of patients with colorectal cancer liver metastases (CLM), and because tumors are generally microsatellite stable (MSS), responses to immune therapies are poor. The mesenchymal phenotype is overrepresented in treatment-resistant cancers and is associated with an immunosuppressed microenvironment. The aim of this work was to molecularly identify and characterize a mesenchymal subgroup of MSS CLM to identify novel therapeutic approaches. We here generated a mesenchymal gene expression signature by analysis of resection specimens from 38 patients with CLM using ranked expression level of the epithelial-to-mesenchymal transition-related transcription factor PRRX1. Downstream pathway analysis based on the resulting gene signature was performed and independent, publicly available datasets were used to validate the findings. A subgroup comprising 16% of the analyzed CLM samples were classified as mesenchymal, or belonging to the PRRX1 high group. Analysis of the PRRX1 signature genes revealed a distinct immunosuppressive phenotype with high expression of immune checkpoints HAVCR2/TIM-3 and VISTA, in addition to the M2 macrophage marker CD163. The findings were convincingly validated in datasets from three external CLM cohorts. Upregulation of immune checkpoints HAVCR2/TIM-3 and VISTA in the PRRX1 high subgroup is a novel finding, and suggests immune evasion beyond the PD-1/PD-L1 axis, which may contribute to poor response to PD-1/PD-L1-directed immune therapy in MSS colorectal cancer. Importantly, these checkpoints represent potential novel opportunities for immune-based therapy approaches in a subset of MSS CLM. Significance CLM is an important cause of colorectal cancer mortality where the majority of patients have yet to benefit from immunotherapies. In this study of gene expression profiling analyses, we uncovered novel immune checkpoint targets in a subgroup of patients with MSS CLMs harboring a mesenchymal phenotype.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Vegar Johansen Dagenborg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Åsmund Avdem Fretland
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
- The Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Krzysztof Grzyb
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mads H. Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunhild M. Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Flatmark
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Qi TF, Tang F, Yin J, Miao W, Wang Y. Parallel-reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Proteomics 2023; 23:e2200059. [PMID: 35443089 PMCID: PMC9582037 DOI: 10.1002/pmic.202200059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
RNA contains more than 170 types of chemical modifications, and these modified nucleosides are recognized, installed and removed by their reader, writer, and eraser (RWE) proteins, respectively. Here, we employed a parallel-reaction monitoring (PRM)-based targeted proteomic method, in conjunction with stable isotope labeling by amino acids in cell culture (SILAC), to examine comprehensively the differential expression of epitranscriptomic RWE proteins in a matched pair of primary/metastatic colorectal cancer (CRC) cells, namely SW480/SW620. We were able to quantify 113 nonredundant epitranscriptomic RWE proteins; among them, 48 and 5 were up- and down-regulated by >1.5-fold in SW620 over SW480 cells, respectively. Some of those proteins with marked up-regulation in metastatic CRC cells, including NAT10, hnRNPC, and DKC1, were documented to assume important roles in the metastasis of CRC and other types of cancer. Interrogation of the Clinical Proteomic Tumor Analysis Consortium data revealed the involvement of DUS1L in the initiation and metastatic transformation of CRC. It can be envisaged that the PRM method can be utilized, in the future, to identify epitranscriptomic RWE proteins involved in the metastatic transformations of other types of cancer.
Collapse
Affiliation(s)
- Tianyu F Qi
- Environmental Toxicology Graduate Program, Riverside, California, USA
| | - Feng Tang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, Riverside, California, USA
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, Riverside, California, USA
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
40
|
Copy Number Variations as Determinants of Colorectal Tumor Progression in Liquid Biopsies. Int J Mol Sci 2023; 24:ijms24021738. [PMID: 36675253 PMCID: PMC9866722 DOI: 10.3390/ijms24021738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Over the years, increasing evidence has shown that copy number variations (CNVs) play an important role in the pathogenesis and prognosis of Colorectal Cancer (CRC). Colorectal adenomas are highly prevalent lesions, but only 5% of these adenomas ever progress to carcinoma. This review summarizes the different CNVs associated with adenoma-carcinoma CRC progression and with CRC staging. Characterization of CNVs in circulating free-RNA and in blood-derived exosomes augers well with the potential of using such assays for patient management and early detection of metastasis. To overcome the limitations related to tissue biopsies and tumor heterogeneity, using CNVs to characterize tumor-derived materials in biofluids provides less invasive sampling methods and a sample that collectively represents multiple tumor sites in heterogeneous samples. Liquid biopsies provide a source of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), tumor-derived exosomes (TDE), circulating free RNA, and non-coding RNA. This review provides an overview of the current diagnostic and predictive models from liquid biopsies.
Collapse
|
41
|
The c-MYC-WDR43 signalling axis promotes chemoresistance and tumour growth in colorectal cancer by inhibiting p53 activity. Drug Resist Updat 2023; 66:100909. [PMID: 36525936 DOI: 10.1016/j.drup.2022.100909] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/27/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Oxaliplatin chemoresistance is a major challenge in the clinical treatment of colorectal cancer (CRC), which is one of the most common malignancies worldwide. In this study, we identified the tryptophan-aspartate repeat domain 43 (WDR43) as a potentially critical oncogenic factor in CRC pathogenesis through bioinformatics analysis. It was found that WDR43 is highly expressed in CRC tissues, and WDR43 overexpression is associated with poor prognosis of CRC patients. WDR43 knockdown significantly inhibits cell growth by arresting cell cycle and enhancing the effect of oxaliplatin chemotherapy both in vitro and in vivo. Mechanistically, upon oxaliplatin stimulation, c-MYC promotes the transcriptional regulation and expression of WDR43. WDR43 enhances the ubiquitination of p53 by MDM2 through binding to RPL11, thereby reducing the stability of the p53 protein, which induces proliferation and chemoresistance of CRC cells. Thus, the overexpression of WDR43 promotes CRC progression, and could be a potential therapeutic target of chemoresistance in CRC.
Collapse
|
42
|
Ma H, Qiu Q, Tan D, Chen Q, Liu Y, Chen B, Wang M. The Cancer-Associated Fibroblasts-Related Gene COMP Is a Novel Predictor for Prognosis and Immunotherapy Efficacy and Is Correlated with M2 Macrophage Infiltration in Colon Cancer. Biomolecules 2022; 13:biom13010062. [PMID: 36671447 PMCID: PMC9856124 DOI: 10.3390/biom13010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Colon cancer is characterized by a sophisticated tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which make up the majority of the stromal cells in TME, participate in tumor development and immune regulation. Further investigations of CAFs would facilitate an in-depth understanding of its role in colon cancer TME. METHODS In this study, we estimated CAF abundance based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases using the Microenvironment Cell Populations-counter (MCP-counter) algorithm. CAF-related genes were identified by differential gene expression analysis combined with weighted gene coexpression network analysis. For further selection, the least absolute shrinkage and selection operator (LASSO)-Cox regression was used, and the prognostic value of the selected gene was confirmed in numerous external cohorts. The function enrichment, immunological characteristics, tumor mutation signature, immunotherapy response, and drug sensitivity of the selected gene were subsequently explored. The bioinformatics analysis results were validated using immunohistochemistry on clinical samples from our institution. RESULTS According to our findings, cartilage oligomeric matrix protein (COMP) was uncovered as a candidate CAFs-driven biomarker in colon cancer and plays an important role in predicting prognosis in colon cancer. COMP upregulation was associated with enhanced stromal and immune activation, and immune cell infiltration, especially M2 macrophages. Genes that mutated differently between the high- and low-COMP expression subgroups may be correlated with TME change. Following verification, COMP reliably predicted the immunotherapy response and drug response. In addition, our experimental validation demonstrated that COMP overexpression is associated with colon cancer carcinogenesis and is strongly associated with CAFs and M2 macrophage infiltration. CONCLUSION Our study uncovered that COMP was a key CAFs-driven gene associated with M2 macrophage infiltration and acted as a convincing predictor for prognosis and immunotherapy response in colon cancer patients.
Collapse
Affiliation(s)
- He Ma
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Qingqing Qiu
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Dan Tan
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Qiaofeng Chen
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Yaping Liu
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
| | - Bing Chen
- Central Laboratory, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (B.C.); (M.W.)
| | - Mingliang Wang
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200020, China
- Department of General Surgery, RuiJin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Correspondence: (B.C.); (M.W.)
| |
Collapse
|
43
|
Matani H, Sahu D, Paskewicz M, Gorbunova A, Omstead AN, Wegner R, Finley GG, Jobe BA, Kelly RJ, Zaidi AH, Goel A. Prognostic and predictive biomarkers for response to neoadjuvant chemoradiation in esophageal adenocarcinoma. Biomark Res 2022; 10:81. [PMCID: PMC9664643 DOI: 10.1186/s40364-022-00429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Esophageal adenocarcinoma is a lethal disease. For locally advanced patients, neoadjuvant chemoradiotherapy followed by surgery is the standard of care. Risk stratification relies heavily on clinicopathologic features, particularly pathologic response, which is inadequate, therefore establishing the need for new and reliable biomarkers for risk stratification.
Methods
Thirty four patients with locally advanced esophageal adenocarcinoma were analyzed, of which 21 received a CROSS regimen with carboplatin, paclitaxel, and radiation. Capture-based targeted sequencing was performed on the paired baseline and post-treatment samples. Differentially mutated gene analysis between responders and non-responders of treatment was performed to determine predictors of response. A univariate Cox proportional hazard regression was used to examine associations between gene mutation status and overall survival.
Results
A 3-gene signature, based on mutations in EPHA5, BCL6, and ERBB2, was identified that robustly predicts response to the CROSS regimen. For this model, sensitivity was 84.6% and specificity was 100%. Independently, a 9 gene signature was created using APC, MAP3K6, ETS1, CSF3R, PDGFRB, GATA2, ARID1A, PML, and FGF6, which significantly stratifies patients into risk categories, prognosticating for improved relapse-free (p = 4.73E-03) and overall survival (p = 3.325E-06). The sensitivity for this model was 73.33% and the specificity was 94.74%.
Conclusion
We have identified a 3-gene signature (EPHA5, BCL6, and ERBB2) that is predictive of response to neoadjuvant chemoradiotherapy and a separate prognostic 9-gene classifier that predicts survival outcomes. These panels provide significant potential for personalized management of locally advanced esophageal cancer.
Collapse
|
44
|
De Robertis M, Greco MR, Cardone RA, Mazza T, Marzano F, Mehterov N, Kazakova M, Belev N, Tullo A, Pesole G, Sarafian V, Signori E. Upregulation of YKL-40 Promotes Metastatic Phenotype and Correlates with Poor Prognosis and Therapy Response in Patients with Colorectal Cancer. Cells 2022; 11:cells11223568. [PMID: 36428997 PMCID: PMC9688424 DOI: 10.3390/cells11223568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
YKL-40 is a heparin- and chitin-binding glycoprotein that belongs to the family of glycosyl hydrolases but lacks enzymatic properties. It affects different (patho)physiological processes, including cancer. In different tumors, YKL-40 gene overexpression has been linked to higher cell proliferation, angiogenesis, and vasculogenic mimicry, migration, and invasion. Because, in colorectal cancer (CRC), the serological YKL-40 level may serve as a risk predictor and prognostic biomarker, we investigated the underlying mechanisms by which it may contribute to tumor progression and the clinical significance of its tissue expression in metastatic CRC. We demonstrated that high-YKL-40-expressing HCT116 and Caco2 cells showed increased motility, invasion, and proliferation. YKL-40 upregulation was associated with EMT signaling activation. In the AOM/DSS mouse model, as well as in tumors and sera from CRC patients, elevated YKL-40 levels correlated with high-grade tumors. In retrospective analyses of six independent cohorts of CRC patients, elevated YKL-40 expression correlated with shorter survival in patients with advanced CRC. Strikingly, high YKL-40 tissue levels showed a predictive value for a better response to cetuximab, even in patients with stage IV CRC and mutant KRAS, and worse sensitivity to oxaliplatin. Taken together, our findings establish that tissue YKL-40 overexpression enhances CRC metastatic potential, highlighting this gene as a novel prognostic candidate, a predictive biomarker for therapy response, and an attractive target for future therapy in CRC.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kazakova
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Nikolay Belev
- University Hospital Eurohospital, 4000 Plovdiv, Bulgaria
- Department of Propedeutics of Surgical Diseases, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘A. Moro’, 70125 Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
- Correspondence: (M.D.R.); (E.S.); Tel.: +39-06-4993-4232 (E.S.)
| |
Collapse
|
45
|
Hu N, Wang C, Zhang T, Su H, Liu H, Yang HH, Giffen C, Hu Y, Taylor PR, Goldstein AM. CSMD1 Shows Complex Patterns of Somatic Copy Number Alterations and Expressions of mRNAs and Target Micro RNAs in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14205001. [PMID: 36291785 PMCID: PMC9599939 DOI: 10.3390/cancers14205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis of somatic DNA alterations (i.e., copy number alteration, allelic imbalance, and loss of heterozygosity) with RNA expressions (mRNA and target miRNAs) on specimens from the same ESCC patients, using data from SNP, miRNA, and RT-PCR arrays. Our results indicate that the CSMD1 gene may play a role in the development of ESCC through complex patterns involving somatic alterations and mRNA expression. Furthermore, somatic copy number alterations in SNPs located in non-coding regions of CSMD1 appear to influence expression of both this gene and its target miRNAs. Abstract Background: Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene that codes for multiple domains, including complement regulatory and adhesion proteins, and has recently been shown to have alterations in multiple cancers. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis on somatic copy number alterations (CNAs), including copy-number gain or loss, allelic imbalance (AI), loss of heterozygosity (LOH), and the expressions of mRNA and its target miRNAs on specimens from the same patients with ESCC. Results: (i) Two-thirds of ESCC patients had all three types of alterations studied—somatic DNA alterations in 70%, and abnormal expressions of CSMD1 RNA in 69% and in target miRNAs in 66%; patterns among these alterations were complex. (ii) In total, 97% of 888 CSMD1 SNPs studied showed somatic DNA alterations, with most located near exons 4–11, 24–25, 39–40, 55–56, and 69–70. (iii) In total, 68% of SNPs with a CNA were correlated with expression of CSMD1. (iv) A total of 33 correlations between non-coding SNPs and expression of CSMD1 target miRs were found. Conclusions: Our results indicate that the CSMD1 gene may play a role in ESCC through complex patterns of DNA alterations and RNA and miRNA expressions. Alterations in some somatic SNPs in non-coding regions of CSMD1 appear to influence expression of this gene and its target miRNAs.
Collapse
Affiliation(s)
- Nan Hu
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Hua Su
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Huaitian Liu
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Howard H. Yang
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Carol Giffen
- Information Management Services, Inc., Silver Spring, Bethesda, MD 20904, USA
| | - Ying Hu
- Computational Genomics & Bioinformatics Branch (CGBB), Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
46
|
Jin Y, Han Y, Yang S, Cao J, Jiang M, Liang J. Endoplasmic reticulum-resident protein Sec62 drives colorectal cancer metastasis via MAPK/ATF2/UCA1 axis. Cell Prolif 2022; 55:e13253. [PMID: 36200182 DOI: 10.1111/cpr.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Metastasis is responsible for the poor prognosis of patients with colorectal cancer (CRC), and the role of aberrant expression of endoplasmic reticulum (ER) receptors in tumour metastasis has not been fully elucidated. The aim of the study is to ensure the role of ER-resident protein Sec62 in CRC metastasis and illuminate associated molecular mechanisms. MATERIALS AND METHODS Bioinformatics analysis, qRT-PCR, western blot and immunohistochemistry assays were performed to evaluate the expression level and clinical significance of Sec62 in CRC. The specific role of Sec62 in CRC was identified by a series of functional experiments. We conducted RNA sequencing and rescue experiments to analyse the differentially expressed genes and identified UCA1 as a novel pro-metastasis target of Sec62 in CRC. Besides, the efficacy of MAPK/JNK inhibitor or agonist on Sec62-mediated CRC metastasis was evaluated by trans-well and wound healing assays. Finally, luciferase reporter and ChIP assay were employed to further explore the potential mechanisms. RESULTS The abnormally elevated expression of Sec62 predicted poor prognosis of CRC patients and facilitated malignant metastasis of CRC cells. Mechanistically, Sec62 enhanced UCA1 expression through activating MAPK/JNK signalling pathway. And the p-JNK activating ATF2 could transcriptionally regulate UCA1 expression. Furthermore, blocking or activating MAPK/JNK signalling with JNK inhibitor or agonist potently suppressed or enhanced Sec62 mediated CRC metastatic process. CONCLUSIONS Our study reports for the first time that the Sec62/MAPK/ATF2 /UCA1 axis exists in CRC metastatic process, which could be a potential treatment target of metastatic CRC.
Collapse
Affiliation(s)
- Yirong Jin
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Yuying Han
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Suzhen Yang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, China
| | - Jiayi Cao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, China
| | - Mingzuo Jiang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Liang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| |
Collapse
|
47
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
48
|
Deng Y, Gao J, Xu G, Yao Y, Sun Y, Shi Y, Hao X, Niu L, Li H. HDAC6-dependent deacetylation of AKAP12 dictates its ubiquitination and promotes colon cancer metastasis. Cancer Lett 2022; 549:215911. [PMID: 36122629 DOI: 10.1016/j.canlet.2022.215911] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Aberrant expression of histone deacetylase 6 (HDAC6) is greatly involved in neoplasm metastasis, which is a leading cause of colon cancer related death. Thus, deep understanding of the regulatory mechanisms of HDAC6 in the metastasis of colon cancer is warranted. In this study, we firstly found that HDAC6 expression was highly expressed in metastatic colon cancer tissues and inhibition or knockdown of HDAC6 suppressed colon cancer metastasis. Next, based on proteomic analysis we uncovered A-kinase anchoring protein 12 (AKAP12) was a novel substrate of HDAC6. HDAC6 interacted with AKAP12 and deacetylated the K526/K531 residues of AKAP12. Moreover, deacetylation of AKAP12 at K531 by HDAC6 increased its ubiquitination level, which facilitated AKAP12 proteasome-dependent degradation. Importantly, we observed an inverse correlation between AKAP12 and HDAC6 protein levels with human colon cancer specimens. Further deletion of AKAP12 in HDAC6 knockdown cells restored the cell motility defects and reactivated the protein kinase C isoforms, repression of which were responsible for the inhibition of cancer metastasis of AKAP12. Our study identified AKAP12 was a new interactor and substrate of HDAC6 and uncovered a novel mechanism through which HDAC6-dependent AKAP12 deacetylation led to its ubiquitination mediated degradation and promoted colon cancer metastasis.
Collapse
Affiliation(s)
- Yilin Deng
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jinjin Gao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guangying Xu
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yehui Shi
- Phase I Clinical Trial Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xishan Hao
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
49
|
Routh ED, Van Swearingen AED, Sambade MJ, Vensko S, McClure MB, Woodcock MG, Chai S, Cuaboy LA, Wheless A, Garrett A, Carey LA, Hoyle AP, Parker JS, Vincent BG, Anders CK. Comprehensive Analysis of the Immunogenomics of Triple-Negative Breast Cancer Brain Metastases From LCCC1419. Front Oncol 2022; 12:818693. [PMID: 35992833 PMCID: PMC9387304 DOI: 10.3389/fonc.2022.818693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive variant of breast cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM), commonly with progressive extracranial disease. Immunotherapy has shown promise in the treatment of advanced TNBC; however, the immune contexture of BrM remains largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched primary tumors to characterize the genomic and immune landscape of TNBC BrM to inform the development of immunotherapy strategies in this aggressive disease. Methods Whole-exome sequencing (WES) and RNA sequencing were conducted on formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with clinical TNBC (n = 25, n = 9 matched pairs) from the LCCC1419 biobank at UNC—Chapel Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for the identification of somatic variants. A comprehensive genomics assessment, including mutational and copy number alteration analyses, neoantigen prediction, and transcriptomic analysis of the tumor immune microenvironment were performed. Results Primary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM) by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19 BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor mutational burden. TP53 was the most frequently mutated gene and was altered in 50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly higher in BrM. BrM demonstrated a reduced immune gene signature expression, although a signature associated with fibroblast-associated wound healing was elevated in BrM. Metrics of T and B cell receptor diversity were also reduced in BrM. Conclusions BrM harbored higher mutational burden and SNV-derived neoantigen expression along with reduced immune gene signature expression relative to primary TNBC. Immune signatures correlated with improved survival, including T cell signatures. Further research will expand these findings to other breast cancer subtypes in the same biobank. Exploration of immunomodulatory approaches including vaccine applications and immune checkpoint inhibition to enhance anti-tumor immunity in TNBC BrM is warranted.
Collapse
Affiliation(s)
- Eric D. Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda E. D. Van Swearingen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maria J. Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marni B. McClure
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- National Cancer Center Research Institute, Tokyo, Japan
| | - Mark G. Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
| | - Luz A. Cuaboy
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Wheless
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amy Garrett
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa A. Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alan P. Hoyle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin G. Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carey K. Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Carey K. Anders,
| |
Collapse
|
50
|
Identification of Six Genes as Diagnostic Markers for Colorectal Cancer Detection by Integrating Multiple Expression Profiles. JOURNAL OF ONCOLOGY 2022; 2022:3850674. [PMID: 35909904 PMCID: PMC9337943 DOI: 10.1155/2022/3850674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
Background Many studies have demonstrated the promising utility of DNA methylation and miRNA as biomarkers for colorectal cancer (CRC) early detection. However, mRNA is rarely reported. This study aimed to identify novel fecal-based mRNA signatures. Methods The differentially expressed genes (DEGs) were first determined between CRCs and matched normal samples by integrating multiple datasets. Then, Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to reduce the number of candidates of aberrantly expressed genes. Next, the potential functions were investigated for the candidate signatures and their ability to detect CRC and pan-cancers was comprehensively evaluated. Results We identified 1841 common DEGs in two independent datasets. Functional enrichment analysis revealed they were mainly related to extracellular structure, biosynthesis, and cell adhesion. The CRC classifier was established based on six genes screened by LASSO regression. Sensitivity, specificity, and area under the ROC curve (AUC) for CRC detection were 79.30%, 80.40%, and 0.85 (0.76–0.92) in the training set, and these indexes achieved 93.20%, 41.80%, and 0.73 (0.65–0.83) in the testing set. For validation set, the sensitivity, specificity, and AUC were 98.90%, 98.00%, and 0.97 (0.94–0.99). The average sensitivities exceeded 90.00% for CRCs with different clinical features. For adenomas detection, the sensitivity and specificity were 74.50% and 64.00%. Besides, the six genes obtained an average AUC of 0.855 for pan-cancer detection. Conclusion The six-gene signatures showed ability to detect CRC and pan-cancer samples, which could be served as potential diagnostic markers.
Collapse
|