1
|
Theiler-Schwetz V, Trummer C, Schmitt L, Terbuch A, Obermayer-Pietsch B, Richtig E, Pilz S. High-dose glucocorticoid treatment vs. glucocorticoid replacement in immune checkpoint inhibitor associated hypophysitis (CORTICI): an open, randomised controlled trial. Ann Med 2025; 57:2453829. [PMID: 39862267 PMCID: PMC11770865 DOI: 10.1080/07853890.2025.2453829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE One of the most severe endocrine side effects of immune checkpoint inhibitors (ICI) is hypophysitis leading to adrenal insufficiency. Recovery is rare, although it has been reported after high-dose glucocorticoid treatment. This is the first randomised study to evaluate whether hormonal recovery differs in patients treated with high-dose glucocorticoids versus glucocorticoid replacement therapy. DESIGN/METHODS In this single-centre, open, randomised controlled study, patients with ICI associated hypophysitis were randomised 1:1 to high-dose glucocorticoid treatment (1 mg/kg of prednisolone for two weeks, followed by tapering until week 7 and a switch to hydrocortisone 20 mg total daily dose in week 8) or glucocorticoid replacement therapy (hydrocortisone 20 mg total daily dose) over 8 weeks. The primary outcome was the frequency of hormonal axes recovery. RESULTS Between 17th April 2019 and 16th September 2022, 18 out of the 20 randomised patients finished the trial; eight completed high-dose, 10 glucocorticoid replacement. Nine patients presented with hyponatraemia, two had typical changes on MRI, 12 had isolated adrenal insufficiency, and six had an additional hormone deficiency. None of the patients in neither group experienced a recovery in adrenal function. One patient in each group showed amelioration of hypogonadism. There was a significant, unfavourable treatment effect of high-dose treatment on HbA1c (mean treatment effect 5.16, 95% confidence interval 0.31 to 10.02, p = 0.039). CONCLUSIONS High-dose glucocorticoid treatment was not effective in restoring adrenal function and leads to adverse effects on glucose metabolism. We therefore do not recommend its use for the treatment of ICI associated hypophysitis, except for compressive symptoms.
Collapse
Affiliation(s)
- Verena Theiler-Schwetz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Christian Trummer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lisa Schmitt
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Angelika Terbuch
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Erika Richtig
- Department of Dermatology and Venereology, Graz, Austria
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Yang J, Wang X, Meng Y, Zhu M, Kong F. Combination Immunotherapy for Mucosal Melanoma: Molecular Mechanism, Research Status, and Future Directions. Curr Treat Options Oncol 2025:10.1007/s11864-025-01321-9. [PMID: 40279090 DOI: 10.1007/s11864-025-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
OPINION STATEMENT Mucosal melanoma is a rare and aggressive subtype of melanoma, accounting for 1%-2% of new cases in the United States in 2023, and 20%-30% in China and other Asian countries. Its origin is often occult, with the lack of early clinical features, the absence of actionable driver mutations, and poor response to immunotherapy, all contributing to its poor prognosis. The rarity of this subtype leads to limited awareness and interventions. Furthermore, due to its immune evasion mechanisms, mucosal melanoma shows resistance to traditional immune checkpoint inhibitors. Consequently, new therapeutic strategies are urgently needed to improve patient outcomes. Recent clinical trials have suggested that combination immunotherapy can overcome immune evasion, reduce resistance to treatment, produce synergistic anti-tumor effects, and improve survival. Epidemiological factors and clinical characteristics play significant roles in diagnosis and prognosis, while the mutational landscape influences responses to immunotherapy. This review provides an overview of these aspects and systematically discusses current research on combination therapies and emerging immunotherapy approaches for mucosal melanoma. It also explores potential future directions for treatment, aiming to enhance therapeutic strategies for this rare cancer and improve patient outcomes.
Collapse
Grants
- 2025011 Tianjin Key Research Projects in Traditional Chinese Medicine
- 2025011 Tianjin Key Research Projects in Traditional Chinese Medicine
- 2025011 Tianjin Key Research Projects in Traditional Chinese Medicine
- 2025011 Tianjin Key Research Projects in Traditional Chinese Medicine
- 2025011 Tianjin Key Research Projects in Traditional Chinese Medicine
- T2025083 Hebei Provincial Administration of Traditional Chinese Medicine Research Project
- T2025083 Hebei Provincial Administration of Traditional Chinese Medicine Research Project
- T2025083 Hebei Provincial Administration of Traditional Chinese Medicine Research Project
- T2025083 Hebei Provincial Administration of Traditional Chinese Medicine Research Project
- T2025083 Hebei Provincial Administration of Traditional Chinese Medicine Research Project
- 2024ZD0521103 Tianjin Public Health Science and Technology Major Youth Project, National Science and Technology Innovation 2030 -- Major program of 'Research on the prevention and treatment of cancer, cardiovascular, respiratory and metabolic diseases'
- 2024ZD0521103 Tianjin Public Health Science and Technology Major Youth Project, National Science and Technology Innovation 2030 -- Major program of 'Research on the prevention and treatment of cancer, cardiovascular, respiratory and metabolic diseases'
- 2024ZD0521103 Tianjin Public Health Science and Technology Major Youth Project, National Science and Technology Innovation 2030 -- Major program of 'Research on the prevention and treatment of cancer, cardiovascular, respiratory and metabolic diseases'
- 2024ZD0521103 Tianjin Public Health Science and Technology Major Youth Project, National Science and Technology Innovation 2030 -- Major program of 'Research on the prevention and treatment of cancer, cardiovascular, respiratory and metabolic diseases'
- 2024ZD0521103 Tianjin Public Health Science and Technology Major Youth Project, National Science and Technology Innovation 2030 -- Major program of 'Research on the prevention and treatment of cancer, cardiovascular, respiratory and metabolic diseases'
Collapse
Affiliation(s)
- Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
3
|
Chang RS, Walker J, Mujeeb AA, Kadiyala P, Pisupati K, Jamison J, Schwendeman A, Haggag Y, Antonetti DA, Castro MG, Schwendeman SP. Local controlled release of stabilized monoclonal antibodies. J Control Release 2025:113743. [PMID: 40250626 DOI: 10.1016/j.jconrel.2025.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Monoclonal antibody (mAb) therapeutics have become widely successful for treatment of any number of diseases. However, for certain hard-to-reach tissues, e.g., eye, brain, tumors, and joints, local delivery is desired and long-term controlled release is necessary to avoid frequent injections and poor patient compliance. If local and sustained exposure of mAbs (or their Fab or nanobody fragments) could be accomplished by injectable polymer long-acting release (LAR) systems, the incredible potential of mAb therapeutics could be extended to additional diseases, e.g., neovascular age-related macular degeneration (wet AMD) and glioblastoma multiforme (GBM). In prior studies, long-acting delivery of mAbs has been limited by the inability to design a delivery system prepared from a biodegradable polymer used in FDA-approved LARs that achieves long-term continuous release of structurally stable and immunoreactive mAb with a low initial burst release that is easily injectable and avoids material build-up upon repeated injection. Here, we present for the first time a long-acting delivery system capable of delivering several different mAbs for multiple indications by developing a novel process to stabilize mAbs through the combination of formulation, micronization and encapsulation conditions, and to control stabilized mAb exposure in vivo for months by formulation with an appropriate biodegradable polymer (poly(lactic-co-glycolic acid) (PLGA)), utilization of a pH- and pore-modifying agent, and development of a novel PLGA coating layer to control osmotic pressure induced by elevated levels of critical co-encapsulated stabilizers, particularly mAb-stabilizing-trehalose. The resulting implants showed long-term efficacy in animal models for both wet AMD and GBM after single local injections. Although much more work needs to be done before their clinical application to these two diseases, the injectable PLGA platform meets several important benchmarks for controlled mAb delivery and can be developed further for delivery of a wide array of mAbs and other cofactors, offering an improved therapeutic option for treating diseases amenable to local antibody therapy. One Sentence Summary: A generalizable injectable biodegradable PLGA implant platform for site-specific and long-term slow and continuous release of stabilized monoclonal antibody drugs demonstrates improved in vivo efficacy for wet AMD and glioblastoma.
Collapse
Affiliation(s)
- Rae Sung Chang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anzar A Mujeeb
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Karthik Pisupati
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusuf Haggag
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Maria G Castro
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Nahm WJ, Sakunchotpanit G, Nambudiri VE. Abscopal Effects and Immunomodulation in Skin Cancer Therapy. Am J Clin Dermatol 2025:10.1007/s40257-025-00943-x. [PMID: 40180765 DOI: 10.1007/s40257-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Radiation therapy (RT) is a crucial modality in cancer treatment, functioning through direct DNA damage and immune stimulation. However, RT's effects extend beyond targeted cells, influencing neighboring cells through the bystander effect (ByE) and distant sites via the abscopal effect (AbE). The AbE, first described by Mole in 1953, encompasses biological reactions at sites distant from the irradiation field. While RT can enhance antitumor immune responses, it may also contribute to an immunosuppressive microenvironment. To address this limitation, combining RT with immune checkpoint inhibitors (ICIs) has gained renewed interest, aiming to amplify antitumor immune responses. Evidence of AbEs has been observed in various metastatic or advanced cutaneous cancers, including melanoma, basal cell carcinoma, cutaneous lymphoma, Merkel cell carcinoma, and cutaneous squamous cell carcinoma. Clinical studies suggest combining RT with ICIs targeting CTLA-4 and PD-1/PD-L1 may enhance AbE incidence in these cancers. This review primarily explores the current understanding of AbEs in skin cancers, briefly acknowledging the ByE focusing on combining RT with immunomodulation. It focuses on proposed mechanisms, preclinical and clinical evidence, challenges in clinical translation, and future directions for harnessing AbEs in managing advanced skin malignancies. Alternative modalities for inducing abscopal-like responses are also explored. While promising, challenges remain in consistently reproducing AbEs in clinical practice, necessitating further research to optimize treatment combinations, timing, and patient selection.
Collapse
Affiliation(s)
- William J Nahm
- New York University Grossman School of Medicine, New York, NY, USA.
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA.
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Esmaeli B, Ogden T, Nichols M, Lu T, Debnam JM, Dimitriou F, McQuade J, Oliva ICG. Rate of response to immune checkpoint inhibitor therapy in patients with conjunctival melanoma. Melanoma Res 2025; 35:130-144. [PMID: 39656585 DOI: 10.1097/cmr.0000000000001016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Our primary objective was to estimate the overall response rate to immune checkpoint inhibitors (ICIs) in patients with locally advanced, multiply recurrent, or metastatic conjunctival melanoma treated with ICIs. A retrospective review of all consecutive conjunctival melanoma patients who were treated with ICI between October 2017 and January 2024 was carried out. The study included 16 patients with a median age of 66 years. The indications for ICI were locally extensive conjunctival melanoma in the eye/orbital area without nodal or distant metastasis in 10 patients, local recurrence of conjunctival melanoma and simultaneous nodal or distant metastasis in four patients, and metastatic conjunctival melanoma without local recurrence in two patients. Five patients received PD-1 inhibitor monotherapy with nivolumab or pembrolizumab; the other 11 received ipilimumab (CTLA-4 inhibitor) and nivolumab for several cycles and were then continued on nivolumab monotherapy ( n = 6) or not given additional ICI therapy ( n = 3). The number of cycles of ICI ranged from 2 to 25 (median, 13). Eight patients achieved a complete response. Six patients had progressive disease. The overall rate of objective response to ICI therapy was 63% (10 of 16), and for the subset of patients with local disease only, the objective response rate was 70% (7 of 10). In 14 patients (88%), orbital exenteration or additional extensive surgery was avoided; two patients had progression despite ICI and eventually needed an orbital exenteration. Future studies should aim to correlate biomarker data with response to ICI therapy in patients with conjunctival melanoma.
Collapse
Affiliation(s)
- Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Tyler Ogden
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio
| | - Matthew Nichols
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
- Department of Ophthalmology, Brooke Army Medical Center, San Antonio
| | - Tracy Lu
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Florentia Dimitriou
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jennifer McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Gasimova Z, Khandanpour C, Luley K, von Bubnoff NCC. [Which Immunotherapies are Standard Today? And What Side Effects Should be Expected?]. Zentralbl Chir 2025; 150:170-174. [PMID: 40199376 DOI: 10.1055/a-2544-9630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
In comparison to earlier treatment standards (including chemotherapy, radiation therapy, and surgery), immunotherapy has significantly improved patients' survival and quality of life. Immunotherapy is ultimately a broad term that encompasses a variety of therapeutics. Immunotherapeutic approaches have firmly established themselves as a new pillar of cancer care, ranging from neoadjuvant and adjuvant strategies to the metastatic phase in various entities. In this review article, we highlight which immunotherapies are currently standard in oncological care, with a strong focus on immune checkpoint inhibitors (ICIs), their limitations, and the commonly occurring side effects.
Collapse
Affiliation(s)
| | - Cyrus Khandanpour
- Klinik für Hämatoonkologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | - Kim Luley
- Klinik für Hämatoonkologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Deutschland
| | | |
Collapse
|
7
|
Deng Z, Tian Y, Wang J, Xu Y, Liu Z, Xiao Z, Wang Z, Hu M, Liu R, Yang P. Enhanced Antitumor Immunity Through T Cell Activation with Optimized Tandem Double-OX40L mRNAs. Int J Nanomedicine 2025; 20:3607-3621. [PMID: 40125432 PMCID: PMC11930255 DOI: 10.2147/ijn.s479434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/05/2024] [Indexed: 03/25/2025] Open
Abstract
Purpose The tumor immune microenvironment (TIME) is often dysfunctional and complex, contributing to tumor metastasis and drug resistance. This study investigates the use of mRNA-based cancer agents as promising tools to combat and reverse refractory TIME conditions. Methods We optimized and engineered an mRNA cancer agent encoding double tandemly repeated sequences of the T cell costimulator Oxford 40 ligand (diOX40L). The diOX40L mRNAs were encapsulated into lipid nanoparticles (LNPs) for effective delivery. The research explored its safety and antitumor effects through a series of in vivo and in vivo experiments. Results Our results demonstrate that diOX40L mRNAs efficiently express increased levels of OX40L proteins. The optimized diOX40L mRNA cancer agent generated potent immune costimulatory signals within the TIME, leading to decreased tumor growth and improved survival compared to the original sequence agent. OX40L expression in subcutaneous tumors promoted CD4+ and CD8+ T cell activation, resulting in heightened IFN-γ and IL-2 secretion and robust immune responses. Combination therapy involving PD-1 antibodies and diOX40L substantially enhanced antitumor efficacy, with increased infiltration of activated CD4+ and CD8+ T cells. Discussion In conclusion, our findings highlight the therapeutic potential of the optimized diOX40L mRNA cancer agent in cancer treatment and its potential as an innovative alternative to protein-based therapies. The study underscores the significance of mRNA-based agents in modulating the immune microenvironment and enhancing antitumor responses.
Collapse
Affiliation(s)
- Zhuoya Deng
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yuying Tian
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yongru Xu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zherui Liu
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Peking University 302 Clinical Medical School, Peking University, Beijing, People’s Republic of China
| | - Zhaohui Xiao
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhaohai Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Minggen Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Penghui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Takahashi H, Perez-Villarroel P, Falahat R, Mulé JJ. Targeting MARCO in combination with anti-CTLA-4 leads to enhanced melanoma regression and immune cell infiltration via macrophage reprogramming. J Immunother Cancer 2025; 13:e011030. [PMID: 40081947 PMCID: PMC11907082 DOI: 10.1136/jitc-2024-011030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Strategies to improve the therapeutic efficacy of cancer immunotherapy with immune checkpoint inhibitors include targeting additional immunosuppressive compartments in the tumor microenvironment (TME). Inhibitory macrophages (Mφ) can be one of the most abundant immune cells in the TME associated with poor prognosis. However, to date, selective Mφ depletion strategies as a cancer immunotherapy have not been successful in clinical trials. Macrophage Receptor with Collagenous Structure (MARCO) is one of a family of class-A scavenger receptors expressed by Mφ in the TME and is one of the most upregulated transcripts in dendritic cells (DC) following their ex vivo uptake of dead tumor cells. The clinical significance of MARCO expression in the TME is not fully understood. METHODS The therapeutic potential of targeting MARCO by an anti-murine MARCO (ED31, clone ED31) monoclonal antibody, which inhibits ligand-binding to MARCO, was explored in combination with anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA-4) or anti-programmed cell death protein-1 (anti-PD-1) in C57BL/6J mice bearing B16F10 or Pan02 tumors. The mechanism by which ED31 impacts the TME was investigated by flow cytometry in the different treatment arms. The contribution of Mφ was assessed by both in vivo depletion and in vitro functional assays. Chemokine production was measured by a bead-based multiplex assay. RESULTS ED31 enhanced antitumor efficacy of anti-CTLA-4, but not of anti-PD-1. Analysis of the TME revealed that adding ED31 to anti-CTLA-4 substantially increased immune cell infiltration, including mature conventional DC recruitment, that was due to a switch to M1-pattern chemokines by Mφ. Mφ depletion completely abrogated both the increase in immune cell infiltration and chemokine production, and abolished the antitumor efficacy of the combination therapy. CONCLUSIONS Targeting MARCO as an additional checkpoint in the TME can offer a strategy to improve the antitumor efficacy of anti-CTLA-4 through a mechanism involving Mφ reprogramming rather than their depletion.
Collapse
Affiliation(s)
| | | | - Rana Falahat
- Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - James J Mulé
- Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
9
|
Long GV, Larkin J, Schadendorf D, Grob JJ, Lao CD, Márquez-Rodas I, Wagstaff J, Lebbé C, Pigozzo J, Robert C, Ascierto PA, Atkinson V, Postow MA, Atkins MB, Sznol M, Callahan MK, Topalian SL, Sosman JA, Kotapati S, Thakkar PK, Ritchings C, Pe Benito M, Re S, Soleymani S, Hodi FS. Pooled Long-Term Outcomes With Nivolumab Plus Ipilimumab or Nivolumab Alone in Patients With Advanced Melanoma. J Clin Oncol 2025; 43:938-948. [PMID: 39504507 PMCID: PMC11895829 DOI: 10.1200/jco.24.00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Nivolumab (NIVO) + ipilimumab (IPI) combination and NIVO monotherapy have demonstrated durable clinical benefit in patients with unresectable/metastatic melanoma. This analysis describes long-term overall survival (OS) with the combination or monotherapy pooled across all major company-sponsored trials, as well as clinical factors associated with survival, in patients with immune checkpoint inhibitor (ICI) treatment-naïve unresectable/metastatic melanoma. METHODS Data were pooled from six CheckMate studies in ICI treatment-naïve patients receiving NIVO + IPI (NIVO 1 mg/kg + IPI 3 mg/kg or NIVO 3 mg/kg + IPI 1 mg/kg) or NIVO monotherapy (3 mg/kg). OS was assessed for each treatment, as well as in select subgroups. Cox proportional multivariate analysis (MVA) and classification and regression tree (CART) analyses were performed within treatment arms. RESULTS Median follow-up for OS was 45.0 months for patients treated with NIVO + IPI (n = 839) and 35.8 months for patients treated with NIVO (n = 536). OS was longer with NIVO + IPI versus NIVO monotherapy (hazard ratio, 0.78 [95% CI, 0.67 to 0.91]), with 6-year OS rates of 52% versus 41%, respectively. Consistent benefit was observed in BRAF-mutant and BRAF-wild-type patients and those with normal and elevated lactate dehydrogenase (LDH). Numerical difference in OS was also observed across PD-L1 expression levels, although more pronounced with no/low PD-L1 expression. Clinical factors associated with decreased survival in both the MVA and CART analyses were LDH > upper limit of normal with either treatment, age ≥65 years with NIVO + IPI, and the presence of liver metastases with NIVO monotherapy. CONCLUSION In this large, pooled nonrandomized retrospective analysis, we observed that NIVO + IPI provides longer OS than NIVO in patients with ICI treatment-naïve advanced melanoma and identifies clinical factors that appear to be associated with survival for each treatment, which may assist with treatment decision making.
Collapse
Affiliation(s)
- Georgina V. Long
- Melanoma Institute Australia and Royal North Shore and Mater Hospitals, The University of Sydney, Sydney, NSW, Australia
| | - James Larkin
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Dirk Schadendorf
- University Hospital, German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | | | | | | | - John Wagstaff
- Swansea University Medical School, Swansea, United Kingdom
| | - Céleste Lebbé
- Université Paris Cité, AP-HP Dermato-oncology, Cancer Institute AP-HP, Nord Paris Cité, INSERM U976, Saint Louis Hospital, Paris, France
| | | | - Caroline Robert
- Gustave Roussy, Institut National de la Santé et de la Recherche Médicale U981, Paris, France
| | - Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Victoria Atkinson
- Princess Alexandra Hospital, Woolloongabba, and Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Michael A. Postow
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | | - Mario Sznol
- Yale University School of Medicine and Yale Cancer Center, New Haven, CT
| | - Margaret K. Callahan
- Princess Alexandra Hospital, Woolloongabba, and Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Suzanne L. Topalian
- Johns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | | | | | | | | | | | - Sandra Re
- Bristol Myers Squibb, Princeton, NJ
- Current address Daiichi Sankyo, Inc, Basking Ridge, NJ
| | | | | |
Collapse
|
10
|
Bejan CA, Wang M, Venkateswaran S, Bergmann EA, Hiles L, Xu Y, Chandler GS, Brondfield S, Silverstein J, Wright F, de Dios K, Kim D, Mukherjee E, Krantz MS, Yao L, Johnson DB, Phillips EJ, Balko JM, Mohindra R, Quandt Z. irAE-GPT: Leveraging large language models to identify immune-related adverse events in electronic health records and clinical trial datasets. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.05.25323445. [PMID: 40093199 PMCID: PMC11908319 DOI: 10.1101/2025.03.05.25323445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Large language models (LLMs) have emerged as transformative technologies, revolutionizing natural language understanding and generation across various domains, including medicine. In this study, we investigated the capabilities, limitations, and generalizability of Generative Pre-trained Transformer (GPT) models in analyzing unstructured patient notes from large healthcare datasets to identify immune-related adverse events (irAEs) associated with the use of immune checkpoint inhibitor (ICI) therapy. Methods We evaluated the performance of GPT-3.5, GPT-4, and GPT-4o models on manually annotated datasets of patients receiving ICI therapy, sampled from two electronic health record (EHR) systems and seven clinical trials. A zero-shot prompt was designed to exhaustively identify irAEs at the patient level (main analysis) and the note level (secondary analysis). The LLM-based system followed a multi-label classification approach to identify any combination of irAEs associated with individual patients or clinical notes. System evaluation was conducted for each available irAE as well as for broader categories of irAEs classified at the organ level. Results Our analysis included 442 patients across three institutions. The most common irAEs manually identified in the patient datasets included pneumonitis (N=64), colitis (N=56), rash (N=32), and hepatitis (N=28). Overall, GPT models achieved high sensitivity and specificity but only moderate positive predictive values, reflecting a potential bias towards overpredicting irAE outcomes. GPT-4o achieved the highest F1 and micro-averaged F1 scores for both patient-level and note-level evaluations. Highest performance was observed in the hematological (F1 range=1.0-1.0), gastrointestinal (F1 range=0.81-0.85), and musculoskeletal and rheumatologic (F1 range=0.67-1.0) irAE categories. Error analysis uncovered substantial limitations of GPT models in handling textual causation, where adverse events should not only be accurately identified in clinical text but also causally linked to immune checkpoint inhibitors. Conclusion The GPT models demonstrated generalizable abilities in identifying irAEs across EHRs and clinical trial reports. Using GPT models to automate adverse event detection in large healthcare datasets will reduce the burden on physicians and healthcare professionals by eliminating the need for manual review. This will strengthen safety monitoring and lead to improved patient care.
Collapse
|
11
|
Giesler S, Riemer R, Lowinus T, Zeiser R. Immune-mediated colitis after immune checkpoint inhibitor therapy. Trends Mol Med 2025; 31:265-280. [PMID: 39477757 DOI: 10.1016/j.molmed.2024.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 03/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have led to improved outcome in patients with various types of cancer. Due to inhibition of physiological anti-inflammatory mechanisms, patients treated with ICIs may develop autoimmune inflammation of the colon, associated with morbidity, decreased quality of life (QoL), and mortality. In this review, we summarize clinical and pathophysiological aspects of immune-mediated colitis (ImC), highlighting novel treatment options. In the colon, ICIs trigger resident and circulating T cell activation and infiltration of myeloid cells. In addition, the gut microbiota critically contribute to intestinal immune dysregulation and loss of barrier function, thereby propagating local and systemic inflammation. Currently available therapies for ImC include corticosteroids, antitumor necrosis factor-α (TNF-α)- and anti-integrin α4β7 antibodies. Given that systemic immunosuppression might impair antitumor immune responses, novel therapeutic approaches are urgently needed.
Collapse
Affiliation(s)
- Sophie Giesler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Kshirsagar RS, Eide JG, Harris J, Abiri A, Beswick DM, Chang EH, Fung N, Hong M, Johnson BJ, Kohanski MA, Le CH, Lee JT, Nabavizadeh SA, Obermeyer IP, Pandrangi VC, Pinheiro-Neto CD, Smith TL, Snyderman CH, Suh JD, Wang EW, Wang MB, Choby G, Geltzeiler M, Lazor J, Mitchell TC, Kuan EC, Palmer JN, Adappa ND. Outcomes of Immunotherapy Treatment in Sinonasal Mucosal Melanoma. Am J Rhinol Allergy 2025; 39:102-108. [PMID: 39782303 DOI: 10.1177/19458924241308953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Sinonasal mucosal melanoma has poor survival despite multimodality treatment. While the impact of immunotherapy (IT) on metastatic cutaneous melanoma is well-defined, there are relatively little data on sinonasal mucosal melanoma. OBJECTIVE We sought to define immunotherapy outcomes in patients with sinonasal mucosal melanoma. METHODS A retrospective cohort study evaluated patients treated with IT during their overall treatment strategy for SNMM. Patient demographics, treatment, and survival outcomes were recorded. RESULTS 52 patients had IT treatment for SNMM from 2000 to 2022, with an average age of 69.1 ± 11.9 years. The most common treatment was surgery with radiation and IT (n = 26, 50%). Most regimens consisted of a combination of Nivolumab and Ipilimumab (n = 17, 32.7%) or pembrolizumab (n = 14, 26.9%). 44.2% of patients experienced reported complications. Overall survival at 1-, 2-, and 5 years was 86.9%, 74.1%, and 39.1%, respectively. CONCLUSION Approximately half of patients will have a local response following immunotherapy, but it is rare to have improvement at metastatic locations. Further research within our group will assess optimal timing and markers that are predictive of response.
Collapse
Affiliation(s)
- Rijul S Kshirsagar
- Department of Otolaryngology-Head and Neck Surgery, Kaiser Permanente Redwood City Medical Center, Redwood City, California
| | - Jacob G Eide
- Department of Otolaryngology-Head and Neck Surgery, Henry Ford Health System, Detroit, Michigan
| | - Jacob Harris
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Arash Abiri
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, Tucson, Arizona
| | - Nicholas Fung
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michelle Hong
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California
| | - Brian J Johnson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christopher H Le
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, Tucson, Arizona
| | - Jivianne T Lee
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California
| | - Seyed A Nabavizadeh
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Isaac P Obermeyer
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, California
| | - Vivek C Pandrangi
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Timothy L Smith
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Carl H Snyderman
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeffrey D Suh
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California
| | - Eric W Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marilene B Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California
| | - Garret Choby
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Jillian Lazor
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tara C Mitchell
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Edward C Kuan
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, California
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Mehta A, Motavaf M, Nebo I, Luyten S, Osei-Opare KD, Gru AA. Advancements in Melanoma Treatment: A Review of PD-1 Inhibitors, T-VEC, mRNA Vaccines, and Tumor-Infiltrating Lymphocyte Therapy in an Evolving Landscape of Immunotherapy. J Clin Med 2025; 14:1200. [PMID: 40004731 PMCID: PMC11856346 DOI: 10.3390/jcm14041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Melanoma, an aggressive skin cancer, presents significant therapeutic challenges. Consequently, innovative treatment strategies beyond conventional chemotherapy, radiation, and surgery are actively explored. This review discusses the evolution of immunotherapy in advanced melanoma, highlighting PD-1/PD-L1 inhibitors, mRNA vaccines, Talimogene Laherparepvec (T-VEC), and tumor-infiltrating lymphocyte (TIL) therapies. PD-1/PD-L1 inhibitors such as pembrolizumab and nivolumab block immune checkpoints, promoting T-cell cytotoxic activity and improving overall survival in patients with advanced melanoma. T-VEC, a modified oncolytic herpes virus, promotes a systemic anti-tumor response while simultaneously lysing malignant cells. mRNA vaccines, such as Moderna's mRNA-4157/V940, take advantage of malignant-cell-specific neoantigens to amplify the adaptive immune response while protecting healthy tissue. TIL therapy is a form of therapy involving ex vivo expansion and reinfusion of the patient's tumor-specific lymphocytes and has been shown to provide durable tumor control. While these therapies have demonstrated promising clinical outcomes, challenges such as tumor resistance, high financial burden, and limited accessibility pose challenges to their widespread use. This review explores combination therapies such as PD-L1 inhibitors with mRNA vaccines, or TIL therapy, which aim to enhance treatment through synergistic approaches. Further research is required to optimize these combinations, address barriers preventing their use, and control adverse events.
Collapse
Affiliation(s)
- Apoorva Mehta
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Mateen Motavaf
- Duke University School of Medicine, Durham, NC 27710, USA;
| | - Ikenna Nebo
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Sophia Luyten
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Kofi D. Osei-Opare
- Columbia University Vagelos College of Physicians and Surgeons, 630 W 168th St, New York, NY 10032, USA; (I.N.); (S.L.); (K.D.O.-O.)
| | - Alejandro A. Gru
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| |
Collapse
|
14
|
Yang L, Feng Y, Liu X, Zhang Q, Liu Y, Zhang X, Li P, Chen D. DYNC2H1 mutation as a potential predictive biomarker for immune checkpoint inhibitor efficacy in NSCLC and melanoma. Invest New Drugs 2025:10.1007/s10637-024-01495-3. [PMID: 39934438 DOI: 10.1007/s10637-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
Dynein cytoplasmic 2 heavy chain 1 (DYNC2H1) is reported to play a potential role in cancer immunotherapy. However, the association between DYNC2H1 mutation and the clinical benefit of immunotherapy in non-small cell lung cancer (NSCLC) and melanoma remains to be elucidated. We collected data from three public immune checkpoint inhibitor (ICI)-treated NSCLC cohorts (n = 137 in total) and seven ICI-treated melanoma cohorts (n = 418 in total) to explore the potential of DYNC2H1 mutation as a predictive biomarker. The clinical outcomes, including the objective response rate (ORR) and progression-free survival (PFS), of patients with DYNC2H1 mutations are significantly better than those of patients with wild-type DYNC2H1. Multivariate Cox regression analysis confirmed that DYNC2H1 mutation was an independent predictive factor for ICI efficacy in NSCLC and melanoma. In addition, DYNC2H1 mutation exhibited no prognostic value for NSCLC or melanoma. Tumour mutational burden (TMB) and tumour neoantigen burden (TNB) were significantly higher in patients with DYNC2H1 mutation than in those with wild-type DYNC2H1 in both NSCLC and melanoma cohort. The analysis of immune-related genes and immune cell enrichment revealed an association between DYNC2H1 mutation and increased immune infiltration, revealing a potential mechanism underlying the predictive role of DYNC2H1 mutation in immunotherapy efficacy. In conclusion, DYNC2H1 mutation serves as a predictive biomarker of ICI efficacy in NSCLC and melanoma.
Collapse
Affiliation(s)
- Lu Yang
- Department of Science and Technology, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanlong Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuewen Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Qin Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Yaqin Liu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Xing Zhang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Ping Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
15
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
16
|
Tran S, Forrest N, Guggilla V, Perottino G, Johnson J, Sosman J, Roy I, Walunas T. Weight and Blood-Based Markers of Cachexia Predict Disability, Hospitalization and Worse Survival in Cancer Immunotherapy Patients. J Cachexia Sarcopenia Muscle 2025; 16:e13685. [PMID: 39817619 PMCID: PMC11736629 DOI: 10.1002/jcsm.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Cancer-associated cachexia can inhibit immune checkpoint inhibitor (ICI) therapy efficacy. Cachexia's effect on ICI therapy has not been studied in large cohorts of cancer patients aside from lung cancer. We studied associations between real-world routinely collected clinical cachexia markers and disability-free, hospitalization-free and overall survival of cancer patients. METHODS A retrospective study was conducted of electronic health records (EHR) of patients with lung, renal cell, melanoma and other cancers treated with ICI therapy at Northwestern Medicine of Chicago, IL, United States, between March 2011 and January 2022. Weight, body mass index, absolute neutrophil and lymphocyte counts, albumin and C-reactive protein (CRP) measures were analysed to calculate the Fearon consensus criteria for cachexia, weight loss grading system (WLGS) score, neutrophil-lymphocyte ratio (NLR), Prognostic Nutritional Index (PNI) and modified Glasgow Prognostic Score (mGPS) at ICI therapy initiation. Kaplan-Meier and Cox proportional hazards analyses were used to determine associations between these metrics and disability-free, hospitalization-free and overall survival. RESULTS EHR analysis uncovered 3285 cancer patients on ICI therapy (54% > 65 years of age, 50.7% male, 77.7% White). At ICI therapy initiation, 1282 (39.0%) patients had cachexia (consensus criteria), 1641 (50.0%) had a WLGS score ≥ 2, 1806 (55.0%) had an NLR > 3, 1087 (33.1%) had albumin < 3.5 g/dL and 1318 (40.1%) had a PNI < 44. Missing measurements included CRP missing for 98.2% and mGPS missing for 98.6% of patients. Disability-free (n = 1373), hospitalization-free (n = 2374) and overall survival (n = 1599) events were analysed with 1-year rates of 65% (64%-67%), 35% (34%-37%) and 65% (63%-66%), respectively. Multivariate Cox model analyses showed hazard ratios (HR) for cachexia at 1.58 (95% CI 1.38-1.80), 1.47 (95% CI 1.33-1.63) and 1.97 (95% CI 1.75-2.23) for disability, hospitalization and death, respectively. HRs for WLGS ≥ 2 were 1.45 (95% CI 1.28-1.66), 1.37 (95% CI 1.24-1.51) and 1.91 (95% CI 1.69-2.17). HRs for NLR > 3 were 1.57 (95% CI 1.35-1.83), 1.40 (95% CI 1.25-1.58) and 1.95 (95% CI 1.67-2.27). HRs for albumin < 3.5 g/dL were 1.33 (95% CI 1.15-1.54), 1.67 (95% CI 1.50-1.86) and 2.09 (95% CI 1.84-2.36). HRs for PNI < 44 were 1.60 (95% CI 1.39-1.84), 1.46 (95% CI 1.31-1.63) and 2.07 (95% CI 1.80-2.37). CONCLUSIONS Fearon consensus criteria, WLGS, NLR, albumin and PNI were routinely collected at ICI initiation in regular clinical practice and predictive of worse disability-free, hospitalization-free and overall survival in cancer patients receiving ICI therapy. These routine clinical measures may aid prognostication and decision-making in cancer patients with cachexia.
Collapse
Affiliation(s)
- Steven D. Tran
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Noah J. Forrest
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Vijeeth Guggilla
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | | | - Jodi L. Johnson
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Departments of Pathology, Dermatology and Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jeffrey Sosman
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Department of Medicine, Division of OncologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ishan Roy
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Shirley Ryan AbilityLabChicagoIllinoisUSA
- Department of Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Theresa L. Walunas
- Center for Health Information PartnershipsNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Robert H Lurie Comprehensive Cancer Center of Northwestern UniversityChicagoIllinoisUSA
- Department of Medicine, Division of General Internal MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
17
|
Li S, Tajiri K, Yuan Z, Murakata Y, Song Z, Mizuno S, Xu D, Murakoshi N. 4E-BP3 deficiency impairs dendritic cell activation and CD4 + T cell differentiation and attenuates α-myosin-specific T cell-mediated myocarditis in mice. Basic Res Cardiol 2025; 120:225-240. [PMID: 39516410 DOI: 10.1007/s00395-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Immune checkpoint inhibitor (ICI)-associated myocarditis is a rare but potentially fatal immune-related adverse event. Previously, we reported a case of ICI-associated myocarditis with elevated autoantibodies to 4E-binding protein 3 (4E-BP3). Recent studies have suggested that 4E-BP3 may play an important role in tumor development. However, its role in cardiac diseases including myocarditis is unknown. We investigated the role of 4E-BP3 in an autoimmune myocarditis mouse model. Myocarditis was induced in wild-type and 4E-BP3 knockout mice by immunization with murine α-myosin peptide. 4E-BP3 gene expression was upregulated in the heart of myocarditis mouse. We found that genetic deletion of 4E-BP3 attenuated myocardial inflammation, reduced fibrosis area, and improved cardiac function in myocarditis mice. Studies in bone marrow-chimeric mice demonstrated that immune cell-derived 4E-BP3 plays a pivotal role in the pathogenesis of myocarditis. Immune cell transfer experiments revealed that 4E-BP3 deficiency in dendritic cells and CD4+ T cells decreased disease severity in recipient mice. Furthermore, dendritic cells that were deficient in 4E-BP3 exhibited a diminished capacity to produce IL-6 and IL-1β. Naive CD4+ T cells lacking 4E-BP3 had a reduced ability to differentiate into T-helper (Th)1 and Th17 cells. These findings suggest that 4E-BP3 in dendritic cells and CD4+ T cells may be critically involved in the pathogenesis of α-myosin-specific T cell-mediated myocarditis. Thus, 4E-BP3 could be a possible therapeutic target for myocarditis.
Collapse
Affiliation(s)
- Siqi Li
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.
- Department of Cardiology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan.
| | - Zixun Yuan
- Stanley and Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yoshiko Murakata
- Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Zonghu Song
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Life Science Innovation Program (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2025; 120:153-169. [PMID: 39225869 PMCID: PMC11790807 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
19
|
Wiegmann JP, Fröhlich T, Möhn N, Duzzi L, Narten E, Aurich J, Thomas J, Grote‐Levi L, Mahjoub S, Berliner D, Wirth T, Golpon H, Bollmann B, Von Wasilewski I, Gutzmer R, Heidel FH, Skripuletz T, Beutel G, Ivanyi P. Characterization of Hospital Admissions During Immune Checkpoint Inhibitor Therapy: Insights From the ICOG Study. Cancer Med 2025; 14:e70582. [PMID: 39865401 PMCID: PMC11761430 DOI: 10.1002/cam4.70582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) have improved the therapeutic arsenal in outpatient oncology care; however, data on necessity of hospitalizations associated with immune-related adverse events (irAEs) are scarce. Here, we characterized hospitalizations of patients undergoing ICI, from the prospective cohort study of the immune cooperative oncology group (ICOG) Hannover. METHODS Between 12/2019 and 06/2022, 237 patients were included. Clinical data and characteristics of ICI were collected during a 6-month observation period after the initiation of therapy. Descriptive statistics and Kaplan-Meier statistics were administered. RESULTS During the observation period, 30/237 patients were hospitalized (HA(+)). Most common underlying tumor entities were malignant melanoma (59.5%), renal cell carcinoma (13.1%), and nonsmall-cell lung carcinoma (12.7%). HA(+) patients exhibited an increased rate of pulmonary and cerebral metastases. We observed a significantly higher hospitalization rate during dual ICI with Nivolumab and Ipilimumab (p = 0.001). The predominant irAEs for hospitalization were colitis (26.7%), followed by hypophysitis (13.3%), leading to a median hospitalization of 7 (1-34) days. Interdisciplinary consultations were frequent, especially to gastroenterology (46.7%) and neurology (26.7%). Although a trend toward a prolonged overall survival in the HA(+) subgroup was identified, no statistically significant differences were found. DISCUSSION The hospitalization rate of 12.6% is comparable to rates reported in previous studies. There was a disproportionate admission of patients with immune-related colitis and hypophysitis compared to the prevalence described under ICI. We observed a high need for interdisciplinary consultations in line with the heterogeneity of immune-mediated side effects. Compared to non-hospitalized patients, there was no survival disadvantage in the HA(+) cohort. CONCLUSION With a relatively low hospitalization rate, short length of stay, and good clinical outcome, our data support the outpatient nature of ICI. The findings underscore the importance of interdisciplinary collaboration and vigilant monitoring of irAEs to ensure timely recognition and management.
Collapse
Affiliation(s)
- Jonas Paul Wiegmann
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
| | - Tabea Fröhlich
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
| | - Nora Möhn
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Laura Duzzi
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Emily Narten
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Johanna Aurich
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Janin Thomas
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Lea Grote‐Levi
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Susann Mahjoub
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Dominik Berliner
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Thomas Wirth
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of Gastroenterology, Hepatology, Infectious Disease and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Heiko Golpon
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of Respiratory Medicine and Infectious DiseaseHannover Medical SchoolHannoverGermany
| | - Benjamin‐Alexander Bollmann
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of Respiratory Medicine and Infectious DiseaseHannover Medical SchoolHannoverGermany
| | - Imke Von Wasilewski
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of Dermatology, Allergology and VenerologyHannover Medical SchoolHannoverGermany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical CentreMindenGermany
| | - Florian H. Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
| | - Thomas Skripuletz
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
- ICOG‐CCCH (Immune Cooperative Oncology Group, Comprehensive Cancer Center Hannover)HannoverGermany
- Interdisziplinäre Arbeitsgruppe Nierenzellkarzinom IAG‐NDeutsche KrebsgesellschaftBerlinGermany
| | | |
Collapse
|
20
|
Badani A, Ozair A, Khasraw M, Woodworth GF, Tiwari P, Ahluwalia MS, Mansouri A. Immune checkpoint inhibitors for glioblastoma: emerging science, clinical advances, and future directions. J Neurooncol 2025; 171:531-547. [PMID: 39570554 DOI: 10.1007/s11060-024-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM), the most common and aggressive primary central nervous system (CNS) tumor in adults, continues to have a dismal prognosis. Across hundreds of clinical trials, few novel approaches have translated to clinical practice while survival has improved by only a few months over the past three decades. Randomized controlled trials of immune checkpoint inhibitors (ICIs), which have seen impressive success for advanced or metastatic extracranial solid tumors, have so far failed to demonstrate a clinical benefit for patients with GBM. This has been secondary to GBM heterogeneity, the unique immunosuppressive CNS microenvironment, immune-evasive strategies by cancer cells, and the rapid evolution of tumor on therapy. This review aims to summarize findings from major clinical trials of ICIs for GBM, review historic failures, and describe currently promising avenues of investigation. We explore the biological mechanisms driving ICI responses, focusing on the role of the tumor microenvironment, immune evasion, and molecular biomarkers. Beyond conventional monotherapy approaches targeting PD-1, PD-L1, CTLA-4, we describe emerging approaches for GBM, such as dual-agent ICIs, and combination of ICIs with oncolytic virotherapy, antigenic peptide vaccines, chimeric antigenic receptor (CAR) T-cell therapy, along with nanoparticle-based delivery systems to enhance ICI efficacy. We highlight potential strategies for improving patient selection and treatment personalization, along with real-time, longitudinal monitoring of therapeutic responses through advanced imaging and liquid biopsy techniques. Integrated radiomics, tissue, and plasma-based analyses, may potentially uncover immunotherapeutic response signatures, enabling early, adaptive therapeutic adjustments. By specifically targeting current therapeutic challenges, outcomes for GBM patients may potentially be improved.
Collapse
Affiliation(s)
- Aarav Badani
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neuroscience, University of California, Berkeley, CA, USA
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mustafa Khasraw
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumor Center, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland - Medicine Institute for Neuroscience Discovery (UM-MIND), Baltimore, MD, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Affairs (VA) Healthcare, Madison, WI, USA
| | - Manmeet S Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
21
|
Salimi Asl A, Davari M, Ghorbani A, Seddighi N, Arabi K, Saburi E. Neoadjuvant immunotherapy and oncolytic virotherapy in HPV positive and HPV negative skin cancer: A comprehensive review. Int Immunopharmacol 2025; 146:113790. [PMID: 39673996 DOI: 10.1016/j.intimp.2024.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Skin cancer is the most common new cancer among Caucasians. This cancer has different types, of which non-melanoma skin cancer is the most common type. Various factors affect this disease, one of which is viral infections, including HPV. This virus plays an important role in skin cancer, especially cSCCs. There are various options for the treatment of skin cancer, and today special attention has been paid to treatments based on therapeutic goals, immunotherapy and combination therapy. In this study, we have investigated treatments based on immunotherapy and virotherapy and the effect of HPV virus on the effectiveness of these treatments in skin cancer. Treatments based on virotherapy are performed for a long time in combination with other common treatments such as radiotherapy and chemotherapy in order to have a greater effect and lower its side effects, which include: shortness of breath, tachycardia, lowering blood pressure in the patient. Also, the most important axis of immunotherapy is to focus on PD1-PDL1, despite abundant evidence on the importance of immunotherapy, many studies investigate the use of immunotherapy inhibitors in the adjuvant and neoadjuvant setting in various cancers. Also, previous findings show conflicting evidence of the effect of HPV status on the response to immunotherapy.
Collapse
Affiliation(s)
- Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohsen Davari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atousa Ghorbani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Narjes Seddighi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Di Stasi V, La Sala D, Cozzi R, Scavuzzo F, De Geronimo V, Poggi M, Vitale M, Tortora A. Immunotherapy-Related Hypophysitis: A Narrative Review. Cancers (Basel) 2025; 17:436. [PMID: 39941803 PMCID: PMC11815778 DOI: 10.3390/cancers17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized oncology, providing a groundbreaking therapeutic option for patients with various advanced-stage cancers. While these treatments can significantly extend survival, they also carry a substantial risk of immune-related adverse events, among which hypophysitis is particularly detrimental to endocrine function. This narrative review synthesizes current knowledge on the pathogenesis, clinical features, diagnosis, and management of ICI-induced hypophysitis (IH) based on an in-depth analysis of the recent literature and clinical trials. The diagnosis of IH presents unique challenges due to its overlap with systemic symptoms commonly associated with the underlying malignancy. These symptoms can include asthenia, anorexia, headache, vomiting, weight loss, hypotension, dizziness, decreased libido, and visual disturbances. Diagnostic evaluation typically combines clinical assessment, hormonal profiling, and findings from magnetic resonance imaging (MRI). Effective management of IH requires a personalized, multidisciplinary approach, focusing on hormone replacement therapy and vigilant monitoring. Long-term care depends on the severity of hypophysitis, and the specific hormonal axes involved. This review aims to enhance awareness of the critical aspects of recognizing and managing IH, underscoring the importance of early diagnosis and timely intervention to reduce its long-term effects on patient quality of life.
Collapse
Affiliation(s)
- Vincenza Di Stasi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroentherology IRCCS Saverio De Bellis, 70013 Castellana Grotte, Italy;
| | - Domenico La Sala
- UOSD Malattie Endocrine Nutrizione e Ricambio, AORN, San Giuseppe Moscati, 83100 Avellino, Italy
| | - Renato Cozzi
- Endocrine Unit Grande Ospedale Metropolitano, Niguarda, 20162 Milano, Italy;
| | | | | | - Maurizio Poggi
- UOC Medicina Specialistica Endocrino-Metabolica, AOU Sant’Andrea, 00189 Roma, Italy;
| | - Mario Vitale
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università di Salerno, 84081 Baronissi, Italy;
| | - Anna Tortora
- UOC Clinica Endocrinologica e Diabetologica, AOU San Giovanni di Dio e Ruggi d’Aragona, 84131 Salerno, Italy
| |
Collapse
|
23
|
Santos Freitas JDA, da Silva Neto MM, Freitas de Lima CK, Amaral Boa Sorte NC, Bendicho MT, de Freitas Santos Júnior A. Safety profiles in the use of immune checkpoint inhibitors by patients with cancer and pre-existing autoimmune diseases. Med Clin (Barc) 2025; 164:53-60. [PMID: 39414554 DOI: 10.1016/j.medcli.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION The treatment of cancer when associated with autoimmune diseases (AID) has been the subject of immunotherapy investigation, especially with the use of immune checkpoint inhibitors (ICI). Clinical studies have restricted the evaluation of its use in special populations such as patients with AID, leaving a gap regarding the safety of using immunotherapy. OBJECTIVE Discuss the safety of using ICI in patients with cancer and AID, in specialized oncology units, in the cities of Bahia, Brazil. METHODS Retrospective and quantitative cross-sectional study on immune-related adverse events (IRAE) to the use of ICI in patients with cancer and AID. RESULTS Patients (39 with cancer, and 14 with AID and cancer) were studied. Men (between 30 and 95 years old), melanoma and lung cancer and Hashimoto's thyroiditis were predominance. Pembrolizumab and Nivolumab (anti-PDL-1) were drugs most used. In general, patients using anti-PDL-1 with AID had IRAE with greater frequency and severity: Grade 1 (57%) and 3/4 grades (43%) reactions. The gastrointestinal system presented a greater IRAE in both groups, however in patients with AID more severe reactions were found (0% versus 60%). Patients with cancer and AID had higher rates of IRAE compared to patients without AID, respectively, of discontinuation (50% versus 18%) and interruption (85% versus 20%) of treatment. CONCLUSION IRAE increased in patients using ICI with cancer and AID. This suggests that the presence of IAD, in cancer patients, can increase the severity of IRAE. Therefore, the adoption of more appropriate therapeutic strategies is essential for better therapeutic results.
Collapse
Affiliation(s)
| | | | - Cleverton Kleiton Freitas de Lima
- Pharmaceutical Biotechnology Department, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
24
|
van Ravensteijn SG, Amir AL, Tauriello DVF, van Herpen CML, Boers-Sonderen MJ, Wesseling YJW, van Brussel AGC, Keizer DM, Verheul HMW, Bol KF. Exploring the relation between TGF-β pathway activity and response to checkpoint inhibition in patients with metastatic melanoma. Clin Exp Immunol 2025; 219:uxae108. [PMID: 39668127 PMCID: PMC11773812 DOI: 10.1093/cei/uxae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) is highly effective for the treatment of melanoma, but intrinsic resistance is present in a subgroup of patients. TGF-β pathway activity may play a role in this resistance by preventing T-cells from entering the tumor microenvironment, causing immune escape. We investigated the association of TGF-β signal transduction pathway activity with resistance to ICI treatment in advanced melanoma. Furthermore, other pathway activities were analyzed to better understand their potential role in ICI resistance. METHOD The activity of 8 signaling pathways (TGF-β, Hedgehog, MAPK, AR, NOTCH, PI3K, JAK/STAT1-2, and NFkB) was analyzed from tumor tissue from patients with advanced melanoma. Pathway activity scores (PAS) were explored for associations with survival and response to ICI in 34 patients (19 non-responders and 15 responders). A second, independent method to investigate the predictive value of TGF-β pathway activation was conducted by determining levels of phosphorylated SMAD2. RESULTS The mean TGF-β PAS of responders vs non-responders was 53.9 vs 56.8 (P = 0.265). No significant relation with progression-free survival was detected for TGF-β activity (P = 0.078). No association between pSMAD2 staining and treatment response or survival was identified. In contrast, Hedgehog scores of responders versus non-responders were 35.7 vs 41.6 (P = 0.038). High Hedgehog PAS was the sole significant predictor of resistance to ICI (OR 0.88, P = 0.033) and worse progression-free survival (HR 1-1.1, P = 0.012). CONCLUSION TGF-β pathway activation showed no significant relation with treatment response to ICI or survival in patients with advanced melanoma. Hedgehog PAS was identified as a possible biomarker associated with both treatment response and survival.
Collapse
Affiliation(s)
| | - Avital L Amir
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daniele V F Tauriello
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | - Henk M W Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Kalijn F Bol
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Gao J, Gu D, Yang K, Zhang J, Lin Q, Yuan W, Zhu X, Dixit D, Gimple RC, You H, Zhang Q, Shi Z, Fan X, Wu Q, Lu C, Cheng Z, Li D, Zhao L, Xue B, Zhu Z, Zhu Z, Yang H, Zhao N, Gao W, Lu Y, Shao J, Cheng C, Hao D, Yang S, Chen Y, Wang X, Kang C, Ji J, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Li Y, Zhang N, Rich JN, You Y, Wang X. Infiltrating plasma cells maintain glioblastoma stem cells through IgG-Tumor binding. Cancer Cell 2025; 43:122-143.e8. [PMID: 39753140 DOI: 10.1016/j.ccell.2024.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Glioblastoma is a highly aggressive primary brain tumor with glioblastoma stem cells (GSCs) enforcing the intra-tumoral hierarchy. Plasma cells (PCs) are critical effectors of the B-lineage immune system, but their roles in glioblastoma remain largely unexplored. Here, we leverage single-cell RNA and B cell receptor sequencing of tumor-infiltrating B-lineage cells and reveal that PCs are aberrantly enriched in the glioblastoma-infiltrating B-lineage population, experience low level of somatic hypermutation, and are associated with poor prognosis. PCs secrete immunoglobulin G (IgG), which stimulates GSC proliferation via the IgG-FcγRIIA-AKT-mTOR axis. Disruption of IgG-FcγRIIA paracrine communication inhibits GSC proliferation and self-renewal. Glioblastoma-infiltrating PCs are recruited to GSC niches via CCL2-CCR2 chemokine program. GSCs further derive pro-proliferative signals from broadly utilized monoclonal antibody-based immune checkpoint inhibitors via FcγRIIA signaling. Our data generate an atlas of B-lineage cells in glioblastoma with a framework for combinatorial targeting of both tumor cell-intrinsic and microenvironmental dependencies.
Collapse
Affiliation(s)
- Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiankun Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Yuan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224005, China
| | - Xu Zhu
- National Resource Center for Mutant Mice and MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China
| | - Deobrat Dixit
- Department of Neurology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Ryan C Gimple
- Department of Medicine, Washington University School of Medicine, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Hao You
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiulian Wu
- Department of Neurology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhangchun Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linjie Zhao
- Department of Neurology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bin Xue
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhu Zhu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Fudan University, Shanghai 200032, China
| | - Ningwei Zhao
- China Exposomics Institute, 781 Cai Lun Road, Shanghai 200120, China
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yingmei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junfei Shao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dapeng Hao
- Department of Pathology, NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
| | - Shuo Yang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yun Chen
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoming Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical analysis, Beijing 100850, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Stephen C Mack
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Michael D Taylor
- Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77004, USA
| | - Yan Li
- National Resource Center for Mutant Mice and MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210061, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China.
| | - Jeremy N Rich
- Department of Neurology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, China; Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
26
|
Zhang Y, Li Y, Zhang Z, Zheng X, Peng H, Tian Z, Sun R, Sun H. CD49a Targeting Enhances NK Cell Function and Antitumor Immunity. Cancer Immunol Res 2025; 13:139-151. [PMID: 39570767 DOI: 10.1158/2326-6066.cir-24-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Approximately 70% of patients receiving immune checkpoint blockade therapies develop treatment resistance. Thus, there is a need for the identification of additional immunotherapeutic targets. CD49a is a membrane protein expressed on NK cells and T cells. In this study, we found that CD49a was highly expressed on the surface of tumor-infiltrating NK cells in various mouse tumor models and that CD49a+ tumor-infiltrating NK cells were more exhausted than CD49a- tumor-infiltrating NK cells. Furthermore, CD49a or NK-specific CD49a deficiency slowed tumor growth and prolonged survival in several mouse tumor models, primarily through the essential role played by NK cells in antitumor activities. Blockade of CD49a using an mAb suppressed tumor development in mice, and combination treatment with anti-PD-L1 further enhanced antitumor efficacy. Our research reveals CD49a on NK cells as an immunotherapeutic target and highlights the potential clinical applications of CD49a-targeted therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yangyang Li
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Zhengfeng Zhang
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Xiaodong Zheng
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Hui Peng
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhigang Tian
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Sun
- Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, School of Basic Medical Sciences, The Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China
| | - Haoyu Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
de Melo SM, Elias Nunes da Silva ME, Torloni MR, Riera R, De Cicco K, Latorraca CO, Pinto ACPN. Anti-PD-1 and anti-PD-L1 antibodies for glioma. Cochrane Database Syst Rev 2025; 1:CD012532. [PMID: 39777725 PMCID: PMC11707826 DOI: 10.1002/14651858.cd012532.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and aggressive adult glioma (16-month median survival). Its immunosuppressive microenvironment limits the efficacy of immune checkpoint inhibitors (ICIs). OBJECTIVES To assess the effects of the ICIs antibodies anti-programmed cell death 1 (anti-PD-1) and anti-programmed cell death ligand 1 (anti-PD-L1) in treating adults with diffuse glioma. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, and clinical trials registers on 8 March 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating adults with diffuse glioma treated with anti-PD-1/PD-L1 compared to placebo or other therapies used alone or with other ICIs. Primary outcomes were overall survival (OS), progression-free survival (PFS), and serious adverse events (SAE). Secondary outcomes were overall response rate (ORR), quality of life (QoL), and less serious AEs. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methods. MAIN RESULTS We included seven RCTs evaluating anti-PD-1 treatment in recurrent (N = 4) and newly diagnosed (N = 3) grade 4 glioma participants. The analysis encompassed 1953 participants; sample sizes ranged from 35 to 716. Meta-analyses were not possible due to heterogeneity and the small number of studies. Most trials had high risk of bias. Nivolumab versus bevacizumab in people with recurrent GBM (1 trial, 369 participants) Nivolumab probably does not increase OS (hazard ratio (HR) 1.04, 95% confidence interval (CI) 0.83 to 1.30; 1.3% more, 95% CI 6.30 fewer to 7.80 more; 369 participants; moderate-certainty evidence) or PFS (HR 1.97, 95% CI 1.57 to 2.48; 16.40% more, 95% CI 12.40 more to 19.00 more; 369 participants; moderate-certainty evidence). The evidence for SAE is very uncertain (risk ratio (RR) 1.20, 95% CI 0.74 to 1.92; 347 participants). Nivolumab probably does not increase ORR (RR 0.34, 95% CI 0.18 to 0.63; 309 participants; moderate-certainty evidence), but may not increase less serious AEs (RR 1.03, 95% CI 0.96 to 1.10; 347 participants; low-certainty evidence). Nivolumab plus bevacizumab 10 mg/kg versus nivolumab plus bevacizumab 3 mg/kg in people with recurrent GBM (1 trial, 90 participants) Nivolumab plus bevacizumab 10 mg/kg may not increase OS (HR 1.39, 95% CI 0.86 to 2.25; 9.90% more, 95% CI 5.20 fewer to 18.80 more; 90 participants; low-certainty evidence). The evidence for PFS (HR 1.23, 95% CI 0.78 to 1.93; 5.80% more, 95% CI 8.20 fewer to 14.20 more; 90 participants) and SAE (RR 1.19, 95% CI 0.79 to 1.79; 90 participants) is very uncertain. Nivolumab may not increase less serious AEs (RR 1.02, 95% CI 0.96 to 1.09; low-certainty evidence; 90 participants). Pembrolizumab plus bevacizumab versus pembrolizumab in people with recurrent GBM (1 trial, 80 participants) The evidence for OS (HR 1.03, 95% CI 0.65 to 1.63; 0.30% more, 95% CI 7.60 fewer to 2.90 more; 80 participants), PFS (HR 0.97, 95% CI 0.61 to 1.54: 0.40% fewer, 95% CI 9.20 fewer to 2.80 more; 80 participants), SAE (RR 1.32, 95% CI 0.75 to 2.42; 80 participants), and ORR (RR 12.76, 95% CI 0.77 to 210.27; 80 participants) is very uncertain. Pembrolizumab plus bevacizumab may not increase less serious AEs (RR 1.04, 95% CI 0.96 to 1.13; 80 participants; low-certainty evidence). Neoadjuvant (before surgical resection) and adjuvant (after surgical resection) pembrolizumab versus adjuvant-only pembrolizumab in people with recurrent GBM (1 trial, 35 participants) The evidence for OS (HR 0.39, 95% CI 0.17 to 0.92; 25.20% fewer, 95% CI 37.10 fewer to 2.10 fewer; 35 participants), PFS (HR 0.43, 95% CI 0.20 to 0.91; 30.10% fewer, 95% CI 52.20 fewer to 3.60 fewer; 35 participants), and SAE (RR 1.00, 95% CI 0.31 to 3.28; 32 participants) is very uncertain. Nivolumab plus radiotherapy versus temozolomide plus radiotherapy in people with newly diagnosed unmethylated GBM (1 trial, 560 participants) Nivolumab plus radiotherapy probably does not increase OS (HR 1.31, 95% CI 1.09 to 1.58 months; 8.30% more, 95% CI 2.80 more to 12.90 more; 560 participants) and PFS (HR 1.38, 95% CI 1.15 to 1.65 months; 7.50% more, 95% CI 3.60 more to 10.30 more; 560 participants; moderate-certainty evidence). The evidence for SAE is very uncertain (RR 0.87, 95% CI 0.65 to 1.18; 553 participants). It may not increase ORR (RR 1.08, 95% CI 0.43 to 2.69; 560 participants; low-certainty evidence) and probably does not increase less serious AEs (RR 1.00, 95% CI 0.96 to 1.04; 560 participants; moderate-certainty evidence). The evidence for time to deterioration of QoL is very uncertain (HR 0.76, 95% CI 0.59 to 0.99; 560 participants). Nivolumab plus temozolomide plus radiotherapy versus placebo plus temozolomide plus radiotherapy in people with newly diagnosed methylated GBM (1 trial, 716 participants) Nivolumab plus temozolomide plus radiotherapy probably does not increase OS (HR 1.10, 95% CI 0.92 to 1.32; 3.50 more, 95% CI 3.80 fewer to 9.60 more; 716 participants) and PFS (HR 1.10, 95% CI 0.92 to 1.32; 3.00 more, 95% CI 3.50 fewer to 7.90 more; 716 participants), and probably increases SAE (RR 2.91, 95% CI 2.05 to 4.12; 709 participants; moderate-certainty evidence). It does not increase less serious AEs (RR 1.02, 95% CI 1.00 to 1.04; 709 participants; high-certainty evidence). Adjuvant nivolumab plus temozolomide versus temozolomide in older people with GBM (1 trial, 103 participants) Nivolumab plus temozolomide probably does not increase OS (HR 0.85, 95% CI 0.54 to 1.33; 3.10 fewer, 95% CI 15.80 fewer to 3.60 more; 103 participants; moderate-certainty evidence) and PFS (HR 0.77, 95% CI 0.49 to 1.19; 5.40 fewer, 95% CI 19.10 fewer to 2.40 more; 103 participants; moderate-certainty evidence). The evidence for SAE is very uncertain (RR 1.58, 95% CI 0.88 to 2.81; 103 participants). The evidence for QoL is very uncertain (results only reported graphically; 103 participants). AUTHORS' CONCLUSIONS In recurrent GBM, nivolumab alone probably has no benefit. Anti-PD1 plus bevacizumab may also be ineffective based on low- to very low-certainty evidence. Neoadjuvant plus adjuvant pembrolizumab may improve OS and PFS, but this was based on only one small trial and very low-certainty evidence. In newly diagnosed GBM, nivolumab plus radiotherapy in unmethylated and plus radiotherapy plus temozolomide in methylated GBM probably has no benefit. In older participants, adjuvant nivolumab probably offers no benefit.
Collapse
Affiliation(s)
- Suely M de Melo
- Departamento de Neurocirurgia, Escola Paulista de Medicina (EPM), Universidade Federal de Sao Paulo (UNIFESP), São Paulo, Brazil
- Neuro Oncologia, Hospital do Coração de São Paulo, São Paulo, Brazil
- Saúde Baseada em Evidências, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Rachel Riera
- Núcleo de Ensino e Pesquisa em Saúde Baseada em Evidências e Avaliação Tecnológica em Saúde (NEP-Sbeats) , Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Afilliate Rio de Janeiro, Petrópolis, Brazil
- Center of Health Technology Assessment, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Ana Carolina Pereira Nunes Pinto
- Saúde Baseada em Evidências, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Cochrane Brazil, São Paulo, Brazil
- Iberoamerican Cochrane Centre - Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, Brazil
| |
Collapse
|
28
|
Wolchok JD, Chiarion-Sileni V, Rutkowski P, Cowey CL, Schadendorf D, Wagstaff J, Queirolo P, Dummer R, Butler MO, Hill AG, Postow MA, Gaudy-Marqueste C, Medina T, Lao CD, Walker J, Márquez-Rodas I, Haanen JBAG, Guidoboni M, Maio M, Schöffski P, Carlino MS, Sandhu S, Lebbé C, Ascierto PA, Long GV, Ritchings C, Nassar A, Askelson M, Benito MP, Wang W, Hodi FS, Larkin J. Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med 2025; 392:11-22. [PMID: 39282897 DOI: 10.1056/nejmoa2407417] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Previous results from this trial showed longer overall survival after treatment with nivolumab plus ipilimumab or with nivolumab monotherapy than with ipilimumab monotherapy in patients with advanced melanoma. Given that patients with advanced melanoma are living longer than 7.5 years, longer-term data were needed to address new clinically relevant questions. METHODS We randomly assigned patients with previously untreated advanced melanoma, in a 1:1:1 ratio, to one of the following regimens: nivolumab (1 mg per kilogram of body weight) plus ipilimumab (3 mg per kilogram) every 3 weeks for four doses, followed by nivolumab (3 mg per kilogram) every 2 weeks; nivolumab (3 mg per kilogram) every 2 weeks plus placebo; or ipilimumab (3 mg per kilogram) every 3 weeks for four doses plus placebo. Treatment was continued until the occurrence of disease progression, unacceptable toxic effects, or withdrawal of consent. Randomization was stratified according to BRAF mutation status, metastasis stage, and programmed death ligand 1 expression. Here, we report the final, 10-year results of this trial, including results for overall survival and melanoma-specific survival, as well as durability of response. RESULTS With a minimum follow-up of 10 years, median overall survival was 71.9 months with nivolumab plus ipilimumab, 36.9 months with nivolumab, and 19.9 months with ipilimumab. The hazard ratio for death was 0.53 (95% confidence interval [CI], 0.44 to 0.65) for nivolumab plus ipilimumab as compared with ipilimumab and was 0.63 (95% CI, 0.52 to 0.76) for nivolumab as compared with ipilimumab. Median melanoma-specific survival was more than 120 months with nivolumab plus ipilimumab (not reached, with 37% of the patients alive at the end of the trial), 49.4 months with nivolumab, and 21.9 months with ipilimumab. Among patients who had been alive and progression-free at 3 years, 10-year melanoma-specific survival was 96% with nivolumab plus ipilimumab, 97% with nivolumab, and 88% with ipilimumab. CONCLUSIONS The final trial results showed a continued, ongoing survival benefit with nivolumab plus ipilimumab and with nivolumab monotherapy, as compared with ipilimumab monotherapy, in patients with advanced melanoma. (Funded by Bristol Myers Squibb and others; CheckMate 067 ClinicalTrials.gov number, NCT01844505.).
Collapse
Affiliation(s)
- Jedd D Wolchok
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Vanna Chiarion-Sileni
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Piotr Rutkowski
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - C Lance Cowey
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Dirk Schadendorf
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - John Wagstaff
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Paola Queirolo
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Reinhard Dummer
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Marcus O Butler
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Andrew G Hill
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Michael A Postow
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Caroline Gaudy-Marqueste
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Theresa Medina
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Christopher D Lao
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - John Walker
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Iván Márquez-Rodas
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - John B A G Haanen
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Massimo Guidoboni
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Michele Maio
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Patrick Schöffski
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Matteo S Carlino
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Shahneen Sandhu
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Céleste Lebbé
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Paolo A Ascierto
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Georgina V Long
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Corey Ritchings
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Ayman Nassar
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Margarita Askelson
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Melanie Pe Benito
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - Wenjia Wang
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - F Stephen Hodi
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| | - James Larkin
- From the Sandra and Edward Meyer Cancer Center (J.D.W.) and the Department of Medicine (J.D.W., M.A.P.), Weill Cornell Medicine, and Memorial Sloan Kettering Cancer Center (M.A.P.) - both in New York; Istituto Oncologico Veneto, IRCCS, Padua (V.C.-S.), European Institute of Oncology, IRCCS, Milan (P.Q.), Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, IRCCS, Meldola (M.G.), University of Siena and the Center for Immuno-Oncology, University Hospital of Siena, Siena (M.M.), and Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples (P.A.A.) - all in Italy; Maria Sklodowska-Curie National Institute of Oncology, Warsaw, Poland (P.R.); Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas (C.L.C.); University Hospital Essen, the German Cancer Consortium, the National Center for Tumor Diseases-West, the Research Alliance Ruhr, Research Center One Health, and University Duisburg-Essen - all in Essen, Germany (D.S.); the College of Medicine, Swansea University, Swansea (J.W.), Bristol Myers Squibb, Uxbridge (A.N.), and the Royal Marsden Hospital, London (J.L.) - all in the United Kingdom; the Department of Dermatology, University of Zurich, Zurich, Switzerland (R.D.); University Health Network Princess Margaret Cancer Centre, Toronto (M.O.B.), and Cross Cancer Institute, University of Alberta, Edmonton (J.W.) - both in Canada; Tasman Oncology Research, Southport, QLD (A.G.H.), Westmead Hospital, Westmead, NSW (M.S.C.), Blacktown Hospital, Blacktown, NSW (M.S.C.), the Melanoma Institute Australia, University of Sydney (M.S.C., G.V.L.), Royal North Shore Hospital (G.V.L.), and Mater Hospital (G.V.L.), Sydney, and Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC (S.S.) - all in Australia; Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Marseille (C.G.-M.), and Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP) Dermato-oncology, Clinical Investigation Center, the Cancer Institute, AP-HP Nord Paris Cité, INSERM Unité 976, and St. Louis Hospital, Paris (C.L.) - all in France; the University of Colorado Cancer Center, Aurora (T.M.); Rogel Cancer Center, University of Michigan, Ann Arbor (C.D.L.); Hospital General Universitario Gregorio Marañon, Madrid (I.M-R.); the Netherlands Cancer Institute, Amsterdam (J.B.A.G.H.); University Hospital Leuven and Leuven Cancer Institute, KU Leuven, Leuven, Belgium (P.S.); Bristol Myers Squibb, Princeton, NJ (C.R., M.A., M.P.B., W.W.); and Dana-Farber Cancer Institute, Boston (F.S.H.)
| |
Collapse
|
29
|
Garg S, Rai G, Singh S, Gauba P, Ali J, Dang S. An insight into the role of innate immune cells in breast tumor microenvironment. Breast Cancer 2025; 32:79-100. [PMID: 39460874 DOI: 10.1007/s12282-024-01645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The immune background of breast cancer is highly heterogeneous and the immune system of the human body plays a dual role by both promoting and suppressing its progression. Innate immune cells are the first line of defense in the immune system and impart protection by identifying and interacting with foreign pathogens and cancer cells. Different innate immune cells like natural killer cells, macrophages, dendritic cells, and myeloid suppressor cells take part in hosting the cancer cells. Autophagy is another key component inside the tumor microenvironment and is linked to the disintegration and recycling of cellular components. Within the tumor microenvironment autophagy is involved with Pattern Recognition Receptors and inflammation. Various clinical studies have shown prominent results where innate immune cells and autophagy in combination are used for pathogen as well as cancer cell clearance. However, it is necessary to comprehend the complex tumor microenvironment so that different therapeutic approaches can be developed to enhance the suppressive actions of the cells toward breast cancer cells. In this review article, the complex interaction between immune cells and breast cancer cells and their role in developing effective immunotherapies to improve patient outcomes are discussed in detail.
Collapse
Affiliation(s)
- Sandini Garg
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Sakshi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
30
|
Adam K, Butler SC, Workman CJ, Vignali DAA. Advances in LAG3 cancer immunotherapeutics. Trends Cancer 2025; 11:37-48. [PMID: 39603977 DOI: 10.1016/j.trecan.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (TEX) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
32
|
Sahebjam S, Raval RR, Forsyth PA, Enderling H, Tran ND, Arrington JA, Macaulay R, Perlow HK, Palmer JD, Ghose J, Rajappa P, Giglio P, Li Z, Etame AB, Mokhtari S, Cruz-Chamorro RJ, Bhandari M, Thapa R, Robinson TJ, Chen DT, Yu HHM. Phase 1 trial of hypofractionated stereotactic re-irradiation in combination with nivolumab, ipilimumab, and bevacizumab for recurrent high-grade gliomas. Neurooncol Adv 2025; 7:vdaf033. [PMID: 40134851 PMCID: PMC11934552 DOI: 10.1093/noajnl/vdaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Background Our previous clinical investigation suggested that hypofractionated stereotactic re-irradiation (HFSRT) and PD-1 blockade may act synergistically to enhance the immune response against glioma. This subsequent trial investigated the dual blockade of CTLA4 and PD-1 in combination with HFSRT and bevacizumab. Methods This phase I study enrolled eligible patients with bevacizumab-naïve recurrent glioblastoma or anaplastic astrocytoma. Participants received nivolumab, ipilimumab, and bevacizumab concurrently with HFSRT (3000 cGy in 5 fractions). Subsequently, nivolumab, ipilimumab, and bevacizumab were administered for a total of 4 cycles followed by nivolumab and bevacizumab until progression. The primary end point of this study was the safety and tolerability of HFSRT in combination with nivolumab, ipilimumab, and bevacizumab in patients with recurrent HGGs. Secondary end points included 6-month survival and 9-month survival. Results Twenty-six patients were treated. Treatment-related adverse events (TRAEs) of grade 3 or 4 were observed in 12 (48%) evaluable patients with no unexpected TRAEs. Six months and 9 months survival were 92% (95% CI, 82-100%) and 75% (95% CI, 60-95%), respectively. The median progression-free survival and overall survival were 7.1 months (95% CI, 5.2-12.2) and 15.6 months (95% CI, 11.3-27.0), respectively. Conclusions The combination of HFSRT with ipilimumab, nivolumab, and bevacizumab is safe. Our results underscore the potential synergies between stereotactic re-irradiation and checkpoint immunotherapy in patients with recurrent high-grade gliomas.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Johns Hopkins University School of Medicine, The Sidney Kimmel Cancer Center, Sibley Memorial Hospital, Washington, DC, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Raju R Raval
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Peter A Forsyth
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Heiko Enderling
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nam D Tran
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John A Arrington
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Robert Macaulay
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Haley K Perlow
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Jayeeta Ghose
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Pierre Giglio
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, Columbus, Ohio, USA
- The Ohio State University Wexner Medical Center, James Cancer Hospital, Columbus, OH, USA
| | - Arnold B Etame
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sepideh Mokhtari
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - Menal Bhandari
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ram Thapa
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Timothy J Robinson
- Yale School of Medicine, Smilow Cancer Center, New Haven, Connecticut, USA
| | - Dung-Tsa Chen
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | |
Collapse
|
33
|
Robert C, Long GV, Larkin J, Wolchok JD, Hassel JC, Schadendorf D, Hodi FS, Lebbé C, Grob JJ, Hyngstrom JR, Wagstaff J, Chesney J, Butler MO, Bechter O, Márquez-Rodas I, Pavlick AC, Durani P, Pe Benito M, Wang P, Postow MA, Ascierto PA. Long-term outcomes among patients who respond within the first year to nivolumab plus ipilimumab or nivolumab monotherapy: A pooled analysis in 935 patients. Eur J Cancer 2025; 214:115119. [PMID: 39612757 DOI: 10.1016/j.ejca.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE To investigate the predictive value of RECIST response within 3, 6, or 12 months on long-term survival, and explore differences between nivolumab+ipilimumab and nivolumab monotherapy, we analyzed pooled 5-year data of 935 responder and non-responder patients at various time points after treatment initiation in CheckMate 069, 066, and 067 studies. PATIENTS AND METHODS Treatment-naive advanced melanoma patients received nivolumab+ipilimumab or nivolumab monotherapy. To decrease immortal time bias, 3-, 6-, or 12-month overall survival (OS) and progression-free survival (PFS) landmark analyses were performed. Association between characteristics and response was evaluated by univariate and multivariate analyses. RESULTS Response rates at any time were 58 % (239/409) for nivolumab+ipilimumab and 44 % (230/526) for nivolumab monotherapy. In 12-month landmark analyses, 5-year OS rates for responders versus non-responders were 82 % versus 40 % with nivolumab+ipilimumab (HR=0.23 [95 % CI, 0.15-0.35]) and 76 % versus 32 % with nivolumab monotherapy (HR=0.22 [95 % CI, 0.16-0.31]). PFS rates were 83 % versus 32 % and 69 % versus 46 %, respectively. Similar strong associations between response at 3 and 6 months and 5-year OS and PFS were also observed with more than 70 % of the responses observed in the first 3 months. Response rates correlated with baseline LDH and PD-L1 status by multivariate analysis but the association between response and long-term survival was maintained in landmark analyses even among patients with high LDH and low PD-L1 expression. CONCLUSION Clinical response evaluated in the first months of therapy is a strong predictor of long-term survival, even in patients with poor prognostic biomarkers.
Collapse
Affiliation(s)
- C Robert
- Gustave Roussy and Paris-Saclay University, Villejuif-Paris Sud, France.
| | - G V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - J Larkin
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - J D Wolchok
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - J C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - D Schadendorf
- University Hospital Essen, West German Cancer Center and German Cancer Consortium, Partner Site Essen, Essen, Germany & National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - F S Hodi
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - C Lebbé
- Université Paris Cité, AP-HP Dermatolo-oncology, Cancer Institute APHP.nord Paris-cité, INSERM U976, Saint-Louis Hospital, Paris, France
| | - J-J Grob
- Aix-Marseille University, APHM Timone, Marseille, France
| | | | - J Wagstaff
- Singleton Hospital, South West Wales Cancer Institute & Swansea University College of Medicine, Swansea, United Kingdom
| | - J Chesney
- University of Louisville, Louisville, KY, USA
| | - M O Butler
- Princess Margaret Cancer Centre, Department of Medical Oncology, Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - O Bechter
- Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | | | - A C Pavlick
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - P Durani
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | - P Wang
- Bristol Myers Squibb, Princeton, NJ, USA
| | - M A Postow
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - P A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| |
Collapse
|
34
|
Weiss ME, Perzia BM, Sinard JH, Tran TT, Maeng MM. Primary Treatment of Eyelid Conjunctival Melanoma with Immunotherapy: A Case Report. Ophthalmic Plast Reconstr Surg 2025; 41:e12-e15. [PMID: 39240220 DOI: 10.1097/iop.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Conjunctival melanoma is a rare, life- and sight-threatening ocular malignancy sharing molecular features with cutaneous and mucosal melanoma. Despite current clinical approaches, high recurrence rates and frequent metastases pose significant challenges in management. Immune checkpoint inhibitors such as ipilimumab and nivolumab have revolutionized cutaneous melanoma treatment, but their efficacy in conjunctival melanoma remains largely unexplored. Herein, the authors present the case of metastatic palpebral conjunctival melanoma in a 59-year-old male successfully treated with a first-line combination of ipilimumab and nivolumab without adjuvant therapies or local surgeries. Local disease resolution was achieved after only 7 months of treatment, and the immune checkpoint inhibitor regimen was well-tolerated with limited systemic adverse effects and no ocular side effects.
Collapse
Affiliation(s)
- Madison E Weiss
- School of Medicine, New York Medical College, Valhalla, New York, U.S.A
| | - Brittany M Perzia
- Department of Ophthalmology and Visual Science, Yale School of Medicine
| | - John H Sinard
- Department of Ophthalmology and Visual Science, Yale School of Medicine
- Department of Pathology, Yale School of Medicine
- Smilow Cancer Hospital, Yale New Haven Health
| | - Thuy T Tran
- Smilow Cancer Hospital, Yale New Haven Health
- Department of Internal Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, U.S.A
| | - Michelle M Maeng
- Department of Ophthalmology and Visual Science, Yale School of Medicine
- Smilow Cancer Hospital, Yale New Haven Health
| |
Collapse
|
35
|
Gomez Pons A, Lukens FJ, Osagiede O. Small-Bowel Metastatic Melanoma From Primary Mucosal Melanoma of the Anus: A Comprehensive Case Report. ACG Case Rep J 2025; 12:e01577. [PMID: 39734392 PMCID: PMC11671065 DOI: 10.14309/crj.0000000000001577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Anorectal mucosal melanoma (ARMM) is exceptionally rare, highly malignant, and characterized by a poor prognosis. We present the case of a 76-year-old woman with ARMM and recurrent gastrointestinal (GI) bleeding/anemia caused by small-bowel metastases, which was successfully managed with laparoscopic resection. ARMM is an aggressive type of cancer that has the potential to metastasize to the GI tract approximately 4.5 years after the primary diagnosis. Intussusception and GI bleed are potential complications. Small-bowel metastatic melanoma typically goes undiagnosed until autopsy and requires a multidisciplinary approach. Key treatment options include surgery and immunotherapy to improve patient outcomes.
Collapse
Affiliation(s)
- Andrea Gomez Pons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL
| | - Frank J. Lukens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL
| | - Osayande Osagiede
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
36
|
Benson P, Abdel-Rahman O. Exploring the role of immunotherapy in the management of follicular cell-derived thyroid cancer. Immunotherapy 2025; 17:47-55. [PMID: 39895320 PMCID: PMC11834419 DOI: 10.1080/1750743x.2025.2455922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Anaplastic and poorly differentiated thyroid carcinomas are the two most aggressive forms of thyroid cancers and carry significant morbidity and mortality despite multimodal therapeutic approaches. Anaplastic thyroid carcinoma (ATC) and, to a lesser degree, poorly differentiated thyroid carcinoma (PDTC) have a high tumor mutation burden, and immunologically hot tumor microenvironment when compared to well-differentiated thyroid carcinomas. As such, immunotherapy, and in particular immune checkpoint inhibitors, have been hypothesized to be effective against these cancers. This review aims to explore the biological rationale for immunotherapy in dedifferentiated thyroid carcinomas and to summarize the current evidence underlying this treatment modality.
Collapse
Affiliation(s)
- Paige Benson
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Midik MM, Gunenc D, Acar PF, Karaca BS. Prognostic Value of Blood-Based Inflammatory Markers in Cancer Patients Receiving Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 17:37. [PMID: 39796668 PMCID: PMC11719015 DOI: 10.3390/cancers17010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Although immune checkpoint inhibitors (ICIs) have significantly improved cancer treatment, a substantial proportion of patients do not benefit from these therapies, revealing the crucial need to identify reliable biomarkers. Inflammatory markers, such as the neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), pan-immune inflammation value (PIV), systemic inflammation response index (SIRI), lactate dehydrogenase (LDH), and C-reactive protein (CRP), may provide insights into treatment outcomes. Objectives: This study aimed to evaluate the prognostic value of multiple inflammatory markers in patients with cancer receiving ICI-based therapies. Methods: A retrospective analysis was performed on 226 patients treated with ICI-based therapies at a single center between 2012 and 2023. The inflammatory markers NLR, PIV, SII, SIRI, LDH, CRP, and albumin were assessed. Cut-off values were determined using maximally selected rank statistics, and overall survival (OS) and progression-free survival (PFS) were evaluated using the Kaplan-Meier method and Cox regression analysis. Results: High NLR, PIV, SII, SIRI, LDH, and CRP, as well as low albumin levels, were associated with worse OS and PFS (p < 0.001). In the multivariate analysis, high CRP, LDH, NLR, PIV, and SII independently predicted worse OS. Conclusions: Our findings confirm the prognostic utility of several inflammatory biomarkers in patients with cancer receiving ICIs, highlighting their potential for treatment stratification. Further studies are necessary to standardize cut-off values and validate these findings across broader, more diverse populations.
Collapse
Affiliation(s)
| | | | | | - Burcak Saziye Karaca
- Division of Medical Oncology, Department of Internal Medicine, Medical Faculty, Ege University, 35100 Izmir, Turkey; (M.M.M.); (D.G.); (P.F.A.)
| |
Collapse
|
38
|
Altan M, Li R, Li Z, Chen R, Sheshadri A, Tran HT, Little L, Baguley J, Sinson J, Vokes N, Gandhi S, Antonoff MB, Swisher SG, Lizee G, Reuben A, Heymach JV, Zhang J. High peripheral T cell diversity is associated with lower risk of toxicity and superior response to dual immune checkpoint inhibitor therapy in patients with metastatic NSCLC. J Immunother Cancer 2024; 12:e008950. [PMID: 39721752 PMCID: PMC11683914 DOI: 10.1136/jitc-2024-008950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Despite significant successes, immune checkpoint blockade fails to achieve clinical responses in a significant proportion of patients, predictive markers for responses are imperfect and immune-related adverse events (irAEs) are unpredictable. We used T-cell receptor (TCR) sequencing to systematically analyze prospectively collected patient blood samples from a randomized clinical trial of dual immune checkpoint inhibitor therapy to evaluate changes in the T-cell repertoire and their association with response and irAEs. METHODS Patients with immunotherapy-naïve metastatic non-small cell lung cancer (NSCLC) were treated with ipilimumab and nivolumab according to trial protocol (LONESTAR, NCT03391869). Blood samples were systematically obtained at baseline (n=107), after 12 weeks of ipilimumab and nivolumab (n=91), and at the time of grade ≥2 irAEs (n=77). For analysis of T-cell repertoire, we performed immunoSEQ to assess the complementary determining region 3β region of the TCR involved in antigen binding. RESULTS A total of 250 samples from 119 patients were analyzed. Patients who had a response to therapy exhibited greater T-cell diversity at baseline. Interestingly, patients with irAEs demonstrated lower T-cell richness at the time of toxicity compared with those without irAEs. CONCLUSION Our study highlights the potential impact of peripheral blood T-cell repertoire on clinical response and toxicities from the combination of ipilimumab and nivolumab in patients with metastatic NSCLC. These findings suggest that analysis of peripheral blood T-cell repertoire may help to guide patient selection for treatment with ipilimumab and nivolumab. TRIAL REGISTRATION NUMBER NCT03391869.
Collapse
Affiliation(s)
- Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruoxing Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Runzhe Chen
- School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ajay Sheshadri
- Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua Baguley
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jefferson Sinson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Saumil Gandhi
- Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardivascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardivascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Greg Lizee
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Ikeda T, Nihei S, Saito K, Asaka J, Kudo K. Clinical characteristics of patients requiring emergency hospitalization due to immune-related adverse events: a retrospective study. J Pharm Health Care Sci 2024; 10:78. [PMID: 39696701 DOI: 10.1186/s40780-024-00400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, offering hope for various malignancies by enhancing the immune response against tumors. However, ICIs are associated with unique immune-related adverse events (irAEs), which differ significantly from conventional chemotherapy-induced toxicities. These irAEs, which affect more than 70% of patients and often escalate to severe grades, present substantial clinical management challenges and frequently necessitate emergency hospitalization. Therefore, this study aimed to investigate the clinical characteristics of patients requiring emergency hospitalization due to irAEs during ICI therapy to enhance understanding and improve management strategies. METHODS This retrospective study evaluated patients who received ICIs at Iwate Medical University Hospital between August 1, 2016, and December 31, 2022, and required emergency hospitalization due to irAEs. Clinical data were extracted from the medical records, including patient demographics, presenting complaints, time from ICI initiation to hospitalization, irAE diagnoses, and treatment outcomes. The Spearman rank correlation coefficient was used to analyze the associations between the chief complaints and irAE diagnoses. RESULTS Of 1009 ICI-treated patients, 96 required emergency hospitalization for irAEs. The cohort's mean age was 73 years, with 75.0% of patients being male. Among patients who required emergency hospitalization, a high proportion were undergoing treatment for lung cancer (41.7%). The median hospitalization duration was 87 days. The chief complaints included dyspnea (34.4%) and fatigue (34.4%), with gastrointestinal and respiratory disorders being the most frequent irAEs (35.4%). Significant correlations were observed between dyspnea and respiratory diseases (Rs = 0.66), skin diseases and disorders (Rs = 0.81), pain and musculoskeletal disorders (Rs = 0.59), and diarrhea and gastrointestinal disorders (Rs = 0.49). Corticosteroids were administered to 64.6% of the patients. Despite emergency interventions, 8.3% of patients succumbed to irAEs, while 33.3% resumed ICI therapy after hospitalization. CONCLUSIONS Emergency hospitalization due to irAEs is a considerable concern in ICI therapy, occurring in 9.5% of treated patients. The high incidence of severe irAEs within the first 3 months of treatment underscores the need for early and vigilant monitoring. This study highlights the importance of recognizing and promptly managing irAEs to improve patient outcomes. Future strategies should focus on developing comprehensive management frameworks and enhancing patient and caregiver education to recognize symptoms that warrant immediate medical attention.
Collapse
Affiliation(s)
- Tatsuki Ikeda
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan.
| | - Satoru Nihei
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
- Department of Clinical Pharmaceutics and Pharmacy Practice, School of Pharmacy, Iwate Medical University, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
| | - Kazuki Saito
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
| | - Junichi Asaka
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
- Department of Clinical Pharmaceutics and Pharmacy Practice, School of Pharmacy, Iwate Medical University, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
| | - Kenzo Kudo
- Department of Pharmacy, Iwate Medical University Hospital, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
- Department of Clinical Pharmaceutics and Pharmacy Practice, School of Pharmacy, Iwate Medical University, 2-1-1 Idaidouri, Yahaba-Cho, Iwate, 028-3609, Japan
| |
Collapse
|
40
|
Maldonado-García JL, Fragozo A, Pavón L. Cytokine release syndrome induced by anti-programmed death-1 treatment in a psoriasis patient: A dark side of immune checkpoint inhibitors. World J Clin Cases 2024; 12:6782-6790. [PMID: 39687650 PMCID: PMC11525914 DOI: 10.12998/wjcc.v12.i35.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
In recent years, cancer immunotherapy has introduced novel treatments, such as monoclonal antibodies, which have facilitated targeted therapies against tumor cells. Programmed death-1 (PD-1) is an immune checkpoint expressed in T cells that regulates the immune system's activity to prevent over-activation and tissue damage caused by inflammation. However, PD-1 is also expressed in tumor cells and functions as an immune evasion mechanism, making it a therapeutic target to enhance the immune response and eliminate tumor cells. Consequently, immune checkpoint inhibitors (ICIs) have emerged as an option for certain tumor types. Nevertheless, blocking immune checkpoints can lead to immune-related adverse events (irAEs), such as psoriasis and cytokine release syndrome (CRS), as exemplified in the clinical case presented by Zhou et al involving a patient with advanced gastric cancer who received sintilimab, a monoclonal antibody targeting PD-1. Subsequently, the patient experienced exacerbation of psoriasis and CRS. The objective of this editorial article is to elucidate potential immunologic mechanisms that may contribute to the development of CRS and psoriasis in patients receiving ICIs. It is crucial to acknowledge that while ICIs offer superior safety and efficacy compared to conventional therapies, they can also manifest irAEs affecting the skin, gastrointestinal tract, or respiratory system. In severe cases, these irAEs can lead to life-threatening complications such as circulatory shock or multiorgan failure. Consequently, it is recommended that patients receiving ICIs undergo regular monitoring to identify and manage these adverse events effectively.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City 1134, Ciudad de México, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 11340, Mexico
| |
Collapse
|
41
|
Cuenot L, Valnet-Rabier MB, Bendjama A, Aubin F, Fischer S, Viot J, Nerich V. [Serious adverse effects with immunotherapies for the treatment of melanoma, non-small cell lung cancer, and renal cell carcinoma: Real-world evidence study]. Bull Cancer 2024; 111:1111-1121. [PMID: 39389873 DOI: 10.1016/j.bulcan.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a key component of standard anticancer systemic therapy. While their immune-related adverse effects (irAEs) have been widely described, there are few data on grade≥3 irAEs. The primary aim of our descriptive study was to evaluate their incidence and characteristics. METHODS An observational, retrospective, monocentric study was conducted. It included patients with locally advanced or metastatic melanoma, non-small cell lung cancer or renal cell carcinoma who initiated ICI therapy between 2016-2021 and experienced at least one grade≥3 irAEs coded according to the MedDRA® system. RESULTS All cancer types and ICIs combined, the incidence of grade≥3 irAEs was estimated at 11.7% [9.6-13.9]. These were mainly hepatobiliary (22%), gastrointestinal (17%), musculoskeletal (16%) and respiratory (16%) disorders. They occurred on average 6.2±6.2 months after the start of treatment, resulting in hospitalization or prolonged hospitalization in over 40 and 20% of cases, respectively. Resolution without sequelae was observed in 56% of cases, but four patients died. DISCUSSION This real-world study investigated three cancers and several ICIs, unlike previously published studies that focused on a single cancer and/or one ICI. It provides a better understanding of grade≥3 irAEs, most of which are reversible, which an aim to optimize patient care.
Collapse
Affiliation(s)
- Léa Cuenot
- Pôle pharmacie, CHU de Besançon, 25030 Besançon, France
| | | | | | - François Aubin
- Service de dermatologie, Inserm, EFS-BFC, UMR 1098, CHU de Besançon, université de Franche-Comté, 25030 Besançon, France
| | - Sarah Fischer
- Pôle pharmacie, CHU de Besançon, 25030 Besançon, France
| | - Julien Viot
- Service de pneumologie, Inserm, EFS-BFC, UMR 1098, CHU de Besançon, université de Franche-Comté, 25030 Besançon, France
| | - Virginie Nerich
- Pôle pharmacie, Inserm, EFS-BFC, UMR 1098, CHU de Besançon, université de Franche-Comté, 25030 Besançon, France.
| |
Collapse
|
42
|
Li L, Ding X, Zhang X, Kong S, Chen M. Clinical Significance of Thyroid Autoantibodies in Differential Diagnosis and Predicting the Course of Programmed Cell Death Protein-1 Inhibitor-Induced Thyroid Dysfunction. Endocr Pract 2024; 30:1166-1170. [PMID: 39216687 DOI: 10.1016/j.eprac.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Thyroid immune-related thyrotoxicosis is one of the most common adverse effects in patients treated with programmed cell death protein-1 (PD-1) inhibitors. We investigated the significance of levels of serum anti-thyroglobulin antibodies (TgAbs), anti-thyroid peroxidase antibodies (TPOAbs), and thyroid-stimulating hormone receptor antibodies (TRAbs) in the identification of anti-PD-1-induced thyroid thyrotoxicosis. METHODS We divided 161 patients with thyroid dysfunction who received PD-1 inhibitors at our hospital between January 2022 and June 2024 into 3 groups: primary hypothyroidism group, primary hyperthyroidism group, and destructive thyroiditis group. The characteristics of the 3 groups were determined, and the positivity rates of serum TgAbs, TPOAbs, and TRAbs were assessed. An additional 42 patients diagnosed with Hashimoto's thyroiditis were selected as the control group for PD-1 inhibition-induced destructive thyroiditis. Age, sex, and time of transition from thyrotoxicosis to hypothyroidism in the 2 groups were compared. RESULTS In the primary hypothyroidism group, only 1 case was TPOAbs-positive (1/1%). In the destructive thyroiditis group, the positivity rate for TPOAbs or TgAbs was 92.9%, and TPOAbs and TgAbs were negative in the primary hyperthyroidism group. TRAbs were undetectable in all 3 groups. There were statistically significant differences in age, sex, and time from thyrotoxicosis to hypothyroidism in the PD-1 induced destructive thyroiditis and Hashimoto's thyroiditis groups. CONCLUSIONS In patients with thyrotoxicosis caused by PD-1 inhibitors, serum TgAb, and TPOAb levels can be used to distinguish between primary hyperthyroidism and destructive thyroiditis. This study provides insights into novel treatment targets and effective management strategies for PD-1-induced thyrotoxicosis.
Collapse
Affiliation(s)
- Li Li
- Department of Clinical Laboratory, Taixing City People's Hospital, Taixing, China
| | - Xiaoxia Ding
- Department of Clinical Laboratory, Taixing City People's Hospital, Taixing, China
| | - Xihui Zhang
- Department of Clinical Laboratory, Taixing City People's Hospital, Taixing, China
| | - Shuangming Kong
- Anaesthesiology Department, Taixing City People's Hospital, Taixing, China.
| | - Ming Chen
- Department of Clinical Laboratory, Taixing City People's Hospital, Taixing, China.
| |
Collapse
|
43
|
Lengyel AS, Meznerics FA, Galajda NÁ, Gede N, Kói T, Mohammed AA, Péter PN, Lakatos AI, Krebs M, Csupor D, Bánvölgyi A, Hegyi P, Holló P, Kemény LV. Safety and Efficacy Analysis of Targeted and Immune Combination Therapy in Advanced Melanoma-A Systematic Review and Network Meta-Analysis. Int J Mol Sci 2024; 25:12821. [PMID: 39684531 DOI: 10.3390/ijms252312821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The combinations of BRAF inhibitor-based targeted therapies with immune checkpoint inhibitors currently represent less common therapeutic approaches in advanced melanoma. The aim of this study was to assess the safety and efficacy of currently available melanoma treatments by conducting a systematic review and network meta-analysis. Four databases were systematically searched for randomized clinical studies that included patients with advanced/metastatic melanoma receiving chemotherapy, immune checkpoint inhibitors, BRAF/MEK inhibitor therapy, or combinations thereof. The primary endpoints were treatment-related adverse events (TRAE), serious adverse events (SAE) of grade ≥ 3 adverse events, therapy discontinuation, progression-free survival (PFS), as well as objective response rate (ORR) and complete response rate (CRR). A total of 63 articles were eligible for our systematic review; 59 of them were included in the statistical analysis. A separate subgroup analysis was conducted to evaluate the efficacy outcomes, specifically in BRAF-positive patients. Triple combination therapy or triple therapy (inhibiting BRAF, MEK and PD1/PDL1 axis) showed significantly longer progression-free survival compared to BRAF + MEK combination therapies (HR = 0.76; 95% CI 0.64-0.9), but similar objective and complete response rates in BRAF-mutated melanoma. This safety analysis suggests that triple therapy is not inferior to combined immune checkpoint inhibitors (ICI) and BRAF/MEK therapies in terms of serious adverse events and therapy discontinuation rates. However, monotherapies and BRAF/MEK combinations showed notable advantage over triple therapy in terms of treatment-related adverse events. Combination strategies including BRAF/MEK-targeted therapies with ICI therapies are effective first-line options for advanced, BRAF-mutant melanoma; however, they are associated with more frequent side effects. Therefore, future RCTs are required to evaluate and identify high-risk subpopulations where triple therapy therapies should be considered.
Collapse
Affiliation(s)
- Anna Sára Lengyel
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Ágnes Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Gede
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Alzahra Ahmed Mohammed
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
| | - Petra Nikolett Péter
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Alexandra It Lakatos
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Máté Krebs
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
| | - Dezső Csupor
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, 6725 Szeged, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7623 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Lajos V Kemény
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1094 Budapest, Hungary
- Department of Physiology, Semmelweis University, Tűzoltó Str. 37-47, 1094 Budapest, Hungary
- MTA-SE Lendület "Momentum" Dermatooncology Research Group, 1094 Budapest, Hungary
| |
Collapse
|
44
|
Qu J, Wang Y, Xiong C, Wang M, He X, Jia W, Li CY, Zhang T, Wang Z, Li W, Kuang BY, Shi P. In vivo gene editing of T-cells in lymph nodes for enhanced cancer immunotherapy. Nat Commun 2024; 15:10218. [PMID: 39587061 PMCID: PMC11589603 DOI: 10.1038/s41467-024-54292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy, while promising for cancer treatment, faces challenges like unexpected side effects and limited objective responses. Here, we develop an in vivo gene-editing strategy for improving ICB cancer therapy in a lastingly effective manner. The approach uses a conductive hydrogel-based electroporation system to enable nucleofection of programmed cell death protein 1 (PD1) targeted CRISPR-Cas9 DNAs into T-cells directly within the lymph nodes, and subsequently produces PD1-deficient T-cells to combat tumor growth, metastasis and recurrence in different melanoma models in mice. Following in vivo gene editing, animals show enhanced cellular and humoral immune responses along with multi-fold increases of effector T-cells infiltration to the solid tumors, preventing tumor recurrence and prolonging their survival. These findings provide a proof-of-concept for direct in vivo T-cell engineering via localized gene-editing for enhanced cancer immunotherapy, and also unlock the possibilities of using this method to treat more complex human diseases.
Collapse
Affiliation(s)
- Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mingxue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xingdao He
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Weibin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Tianlong Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zixun Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wei Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Becki Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Nanshan, Shenzhen, China.
| |
Collapse
|
45
|
Tundo S, Trefny M, Rodić A, Grueninger O, Brodmann N, Börsch A, Serger C, Fürst J, Buchi M, Buczak K, Müller AT, Sach-Peltason L, Don L, Herzig P, Lardinois D, Heinzelmann-Schwarz V, Mertz KD, Hojski A, Schaeuble K, Laubli H, Natoli M, Toso A, Luu TT, Zippelius A, Romagnani A. Inhibition of Cbl-b restores effector functions of human intratumoral NK cells. J Immunother Cancer 2024; 12:e009860. [PMID: 39551607 PMCID: PMC11574514 DOI: 10.1136/jitc-2024-009860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND T cell-based immunotherapies including immune checkpoint blockade and chimeric antigen receptor T cells can induce durable responses in patients with cancer. However, clinical efficacy is limited due to the ability of cancer cells to evade immune surveillance. While T cells have been the primary focus of immunotherapy, recent research has highlighted the importance of natural killer (NK) cells in directly recognizing and eliminating tumor cells and playing a key role in the set-up of an effective adaptive immune response. The remarkable potential of NK cells for cancer immunotherapy is demonstrated by their ability to broadly identify stressed cells, irrespective of the presence of neoantigens, and their ability to fight tumors that have lost their major histocompatibility complex class I (MHC I) expression due to acquired resistance mechanisms.However, like T cells, NK cells can become dysfunctional within the tumor microenvironment. Strategies to enhance and reinvigorate NK cell activity hold potential for bolstering cancer immunotherapy. METHODS In this study, we conducted a high-throughput screen to identify molecules that could enhance primary human NK cell function. After compound validation, we investigated the effect of the top performing compounds on dysfunctional NK cells that were generated by a newly developed in vitro platform. Functional activity of NK cells was investigated using compounds alone and in combination with checkpoint inhibitor blockade. The findings were validated on patient-derived intratumoral dysfunctional NK cells from different cancer types. RESULTS The screening approach led to the identification of a Casitas B-lineage lymphoma (Cbl-b) inhibitor enhancing the activity of primary human NK cells. Furthermore, the Cbl-b inhibitor was able to reinvigorate the activity of in vitro generated and patient-derived dysfunctional NK cells. Finally, Cbl-b inhibition combined with T-cell immunoreceptor with Ig and ITIM domains (TIGIT) blockade further increased the cytotoxic potential and reinvigoration of both in vitro generated and patient-derived intratumoral dysfunctional NK cells. CONCLUSIONS These findings underscore the relevance of Cbl-b inhibition in overcoming NK cell dysfunctionality with the potential to complement existing immunotherapies and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Sofia Tundo
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Marcel Trefny
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Andrijana Rodić
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Olivia Grueninger
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Nicole Brodmann
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, Bioinformatics Core Facility, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Clara Serger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jonas Fürst
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Melanie Buchi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katarzyna Buczak
- Biozentrum, Proteomics Core Facility, University of Basel, Basel, Switzerland
| | - Alex T Müller
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Lisa Sach-Peltason
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Leyla Don
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Petra Herzig
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Didier Lardinois
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Basel-Landschaft, Liestal, Switzerland
| | - Aljaž Hojski
- Department of Thoracic Surgery, University Hospital Basel, Basel, Switzerland
| | - Karin Schaeuble
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Heinz Laubli
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Marina Natoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Alberto Toso
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Thuy T Luu
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Andrea Romagnani
- Roche Innovation Center, F. Hoffmann-La Roche AG, Roche Pharma Research and Early Development, Basel, Switzerland
| |
Collapse
|
46
|
Yang C, Li S, Chen D, Liu D, Yang Y, Guo H, Sun N, Bai X, Li G, Zhang R, Wang T, Zhang L, Peng L, Liu S, Zhang W, Zhao G, Tu X, Tian W. IMM2520, a novel anti-CD47/PD-L1 bispecific antibody for cancer immune therapy. Heliyon 2024; 10:e39858. [PMID: 39553551 PMCID: PMC11564011 DOI: 10.1016/j.heliyon.2024.e39858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
PD-1/PD-L1 is an important signaling pathway in the adaptive immune system. The CD47/SIRPα signaling pathway is a crucial "do not eat me" signal for innate immunity. This study evaluated the anti-tumor mechanism of IMM2520 in vitro and in vivo. IMM2520 was generated using the "mab-trap" platform. IMM2520 showed high affinity to PD-L1 and relatively lower affinity to CD47, displaying preferential binding to PD-L1 on tumor cells. IMM2520 had the potent ability to inhibit the PD-1/PD-L1 and CD47/SIRPα signaling pathways and killed tumor cells through ADCC and ADCP. Importantly, IMM2520 did not bind to human red blood cells or induce erythrocyte agglutination. IMM2520 demonstrated a tendency to bind to CD47+/PD-L1+ tumor cells, reducing its binding to CD47 single-positive cells. In mouse transplantation models, compared with the first-generation CD47/PD-L1 BsAb (IMM2505), IMM2520 exhibited stronger and dose-dependent antitumor activity. These findings imply that IMM2520 may offer a novel therapeutic alternative for cancer patients.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Song Li
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Dianze Chen
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Dandan Liu
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Yanan Yang
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Huiqin Guo
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Nana Sun
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Xing Bai
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Guanghui Li
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Ruliang Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Tianxiang Wang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Li Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Liang Peng
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Sijin Liu
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Wei Zhang
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Gui Zhao
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Xiaoping Tu
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| | - Wenzhi Tian
- Department of R&D, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
- Department of CMC, ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, 201203, China
| |
Collapse
|
47
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
48
|
Shatila M, Zhang HC, Shirwaikar Thomas A, Machado AP, Naz S, Mittal N, Catinis C, Varatharajalu K, Colli Cruz C, Lu E, Wu D, Brahmer JR, Carbonnel F, Hanauer SB, Lashner B, Schneider B, Thompson JA, Obeid M, Farris DP, Wang Y. Systematic review of immune checkpoint inhibitor-related gastrointestinal, hepatobiliary, and pancreatic adverse events. J Immunother Cancer 2024; 12:e009742. [PMID: 39542654 PMCID: PMC11575294 DOI: 10.1136/jitc-2024-009742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Gastrointestinal immune-related adverse events (GI irAEs) are common manifestations of immune checkpoint inhibitor (ICI) toxicity. We present a comprehensive systematic review of the incidence, management, and clinical course of irAEs across the entire GI system, including the luminal GI tract, liver, and pancreas. MEDLINE, Embase, Web of Science Core Collection, and Cochrane Library were used to conduct this review. All studies pertaining to GI irAEs were included. Both abstracts and full manuscripts were eligible if they included human subjects and were written in the English language. Articles not available in English, animal studies, or research not specific to GI toxicity of immunotherapy were excluded. We excluded certain article types depending on whether stronger evidence was available in the literature for a specific toxicity, for example, if prospective studies were available on a topic, retrospective studies and case reports were excluded. We extracted a final 166 articles for our review and followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for data reporting. Risk of bias tools were not used to evaluate the extracted studies given the narrative nature of this manuscript, but each study was critically appraised by the manuscript writer. We detail the incidence, presentation, evaluation, management, and outcomes of the various GI toxicities that may arise with ICI therapy. Specifically, we discuss the characteristics of upper GI toxicity (esophagitis and gastroenteritis), lower GI toxicity (colitis), hepatobiliary inflammation, pancreatitis, and rarer forms of GI toxicity. We hope this review serves as a useful and accessible clinical tool that helps physicians familiarize themselves with the nuances of gastrointestinal/hepatic/pancreatic ICI toxicity diagnosis and management.
Collapse
Affiliation(s)
- Malek Shatila
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Chi Zhang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Antonio Pizuorno Machado
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sidra Naz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nitish Mittal
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christine Catinis
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Krishnavathana Varatharajalu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Colli Cruz
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Lu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Deanna Wu
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julie R Brahmer
- Department of Thoracic Medical Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Franck Carbonnel
- Department of Gastroenterology, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stephen B Hanauer
- Department of Gastroenterology, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Bret Lashner
- Center for Inflammatory Bowel Disease, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bryan Schneider
- Department of Thoracic Medical Oncology, University of Michigan, Ann Arbor, Michigan, UK
| | - John A Thompson
- Department of Medicine, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - Michel Obeid
- Department of Medicine, Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David P Farris
- Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
49
|
Li Q, Dong Y, Ma Y, Mo Y, Yuan J, Liu X. Sex-specific difference for melanoma from immunotherapy advancement. Front Oncol 2024; 14:1484716. [PMID: 39610923 PMCID: PMC11602454 DOI: 10.3389/fonc.2024.1484716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Background The evaluation of melanoma incidence and mortality trends based on population characteristics, with a particular focus on sex differences, is of utmost importance. Methods The gender-stratified analysis of melanoma mortality across various calendar years was conducted. Utilizing the Joinpoint software, we detected alterations in the incidence rates and delineated the mortality trends. Results Melanoma's incidence-based mortality exhibited a rising trajectory between 2005 and 2010, characterized by an annual percent change (APC) of 2.95%. However, there was a significant decrease in mortality from 2015 to 2019, with an APC of -4.39%. Notably, the mortality among men decreased by about 5.84% between 2015 and 2019, while there was no significant downward trend in the mortality rate among women. Subsequent analysis revealed no statistically significant variation in the 2-year survival rate of female patients aged 45-54 years among different age groups (Z=-0.775, p >0.1). Conclusions Between 2015 and 2019, against the backdrop of stable melanoma incidence rates in the United States, there was a significant decline in mortality. Our analysis suggests that the utilization of immunotherapy may account for the observed reduction in mortality, with particularly notable benefits for male patients. However, female patients, especially younger women, did not derive significant advantages.
Collapse
Affiliation(s)
- Qianqian Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Dong
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Yujiao Ma
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - You Mo
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xu Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
50
|
Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Ohama H, Toyoda H, Ogawa C, Nishimura T, Hatanaka T, Kakizaki S, Kawata K, Naganuma A, Kosaka H, Matono T, Kuroda H, Yata Y, Nishikawa H, Imai M, Aoki T, Ochi H, Tada F, Nakamura S, Nakamura Y, Nouso K, Morishita A, Itokawa N, Okubo T, Arai T, Tsutsui A, Nagano T, Tanaka K, Tanaka H, Koshiyama Y, Kanayama Y, Noritake H, Enomoto H, Kaibori M, Hiasa Y, Kudo M, Kumada T. Efficacy of durvalumab plus tremelimumab treatment for unresectable hepatocellular carcinoma in immunotherapy era clinical practice. Hepatol Res 2024. [PMID: 39526824 DOI: 10.1111/hepr.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
AIM Since the development of tremelimumab plus durvalumab (Dur/Tre) for unresectable hepatocellular carcinoma (uHCC), it has been used as not only an initial but also later line treatment in clinical practice. This study aimed to elucidate clinical prognostic factors for progression-free survival (PFS) in Dur/Tre treatment cases. METHODS Enrolled were 183 uHCC patients treated with Dur/Tre from 2023 to May 2024 (median age, 74 years; male patients, 152; Child-Pugh class A:B, 150:33; Barcelona Clinic Liver Cancer stage B:C, 59:124; initial line use, 64). Clinical factors with prognostic influence on PFS in these patients were retrospectively evaluated. RESULTS The median observation period was 7.2 months (interquartile range, 3.2-10.4). History of atezolizumab plus bevacizumab (Atz/Bev) treatment was the only significant prognostic factor for PFS at introduction of Dur/Tre in multivariate analysis (hazard ratio 2.040, p = 0.028) (median PFS: without vs. with = 5.6 vs. 2.7 months, p < 0.001). Although immune-mediated adverse events (imAE) occurrence was only significant in univariate analysis, when objective response and disease control rates were examined according to imAE positivity (any grade) at the time of analysis, those were noted in 14.4% and 39.2%, respectively, of patients without imAE, while in patients with imAE (any grade), they were noted in 18.2% and 56.1%, respectively (p = 0.523 and p = 0.038, respectively). CONCLUSION History of Atz/Bev treatment may be an independent clinical factor for poor PFS at Dur/Tre introduction.
Collapse
Affiliation(s)
- Atsushi Hiraoka
- Department of Gastroenterology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology and Liver Disease Center, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hideko Ohama
- Department of Gastroenterology, Takarazuka City Hospital, Takarazuka, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Takashi Nishimura
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Hisashi Kosaka
- Department of Hepatobiliary Surgery, Kansai Medical University, Hirakata, Japan
| | - Tomomitsu Matono
- Department of Hepatology, Harima Himeji General Medical Center, Himeji, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yutaka Yata
- Department of Gastroenterology, Hanwa Memorial Hospital, Osaka, Japan
| | - Hiroki Nishikawa
- Department of Gastroenterology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
- Department of Gastroenterology, Niigata Prefectural Cancer Center, Niigata, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hironori Ochi
- Hepato-Biliary Center, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Fujimasa Tada
- Department of Gastroenterology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology and Liver Disease Center, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Kazunari Tanaka
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hironori Tanaka
- Department of Gastroenterology, Takarazuka City Hospital, Takarazuka, Japan
| | - Yuichi Koshiyama
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuki Kanayama
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirayuki Enomoto
- Department of Gastroenterology, Hyogo Medical University, Nishinomiya, Japan
| | - Masaki Kaibori
- Department of Hepatobiliary Surgery, Kansai Medical University, Hirakata, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| |
Collapse
|