1
|
Zhou S, Hui X, Wang W, Zhao C, Jin M, Qin Y, Chen M. SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signalling pathway to facilitate viral replication. Emerg Microbes Infect 2025; 14:2447620. [PMID: 39745173 PMCID: PMC11852242 DOI: 10.1080/22221751.2024.2447620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signalling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.
Collapse
Affiliation(s)
- Shixiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weiwei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Chunbei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meilin Jin
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
de Morais Gomes V, Santos DM, Macedo-da-Silva J, Lazari LC, Machado RRG, Dos Santos AF, Araujo DB, Coutinho JVP, Arini GS, Angeli CB, de Souza EE, Marques RF, Boscardin SB, Wrenger C, Marinho CRF, Oliveira DBL, Durigon EL, Labriola L, Rosa-Fernandes L, Palmisano G. P.1 and P.2 SARS-CoV-2 Brazilian variants activate the unfolded protein response with a time and pathway specificity. J Proteomics 2025; 315:105397. [PMID: 39909104 DOI: 10.1016/j.jprot.2025.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
COVID-19 is a human respiratory syndrome caused by the infection of the SARS-CoV-2 virus that has a high rate of infection and mortality. Viruses modulate the host machinery by altering cellular mechanisms that favor their replication. One of the mechanisms that viruses exploit is the protein folding and processing of post-translational modifications that occur in the endoplasmic reticulum (ER). When ER function is impaired, there is an accumulation of misfolded proteins leading to endoplasmic reticulum stress (ER stress). To maintain homeostasis, cells trigger an adaptive signaling mechanism called the Unfolded Protein Response (UPR) which helps cells deal with stress, but under severe conditions, can activate the apoptotic cell death mechanism. This study elucidated an activation of a diversity of molecular mechanisms by Brazilian variants of SARS-CoV-2 by a time-resolved and large-scale characterization of SARS-CoV-2-infected cells proteomics and immunoblotting. Furthermore, it was shown that pharmacological UPR modulation could reduce viral release by counteracting the different viral activations of its cellular response. Analysis of human clinical specimens and disease outcomes focusing on ER stress reinforces the importance of UPR modulation as a host regulatory mechanism during viral infection and could point to novel therapeutic targets. SIGNIFICANCE: Since the emergence of SARS-CoV-2 and the consequent COVID-19 pandemic, the rapid emergence of variants of this new coronavirus has been a cause for concern since many of them have significantly higher rates of transmissibility and virulence, being called Variants of Concern (VOC). In this work, we studied the VOCs Gamma (P.1) and Zeta (P.2), also known as Brazilian variants. Constant evidence has reported that there are particularities related to each variant of SARS-CoV-2, with different rates of transmissibility, replication and modulation of host biological processes being observed, in addition to the mutations present in the variants. For this reason, this work focused on infections caused by the Brazilian variants of SARS-CoV-2 in different cell lines, in which we were able to observe that the infections caused by the variants induced endoplasmic reticulum stress in the infected cells and activated the UPR pathways, presenting specific modulations of each variant in this pathway. Furthermore, transcriptome analysis of patients revealed a correlation between ER-related genes and COVID-19 progression. Finally, we observed that the use of UPR modulators in host cells decreased viral release of all variants without affecting cell viability. The data presented in this work complement the observations of other studies that aim to understand the pathogenicity of SARS-CoV-2 VOCs and possible new therapeutic strategies, mainly targeting biological processes related to the endoplasmic reticulum.
Collapse
Affiliation(s)
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Lucas C Lazari
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | | | - Danielle Bastos Araujo
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | | | - Gabriel Santos Arini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Claudia B Angeli
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Edmarcia E de Souza
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Rodolfo F Marques
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting for Dendritic Cells, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, ICB, University of São Paulo, Brazil
| | | | - Danielle B L Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil
| | - Edison L Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, ICB, University of São Paulo, Brazil; Scientific Platform Pasteur USP, Sao Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; Laboratory of Experimental Immunoparasitology, Department of Parasitology, ICB, University of São Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
4
|
Bao H, Meng H, Gong S, Gong Y, Tu G, Du Z, Wang Y, Wu J, Ma C, Ma Q, Yao X. Design, synthesis and activity evaluation of 4-(quinoline-2-yl)aniline derivatives as SARS-CoV‑2 main protease inhibitors. Bioorg Med Chem 2025; 121:118135. [PMID: 40024142 DOI: 10.1016/j.bmc.2025.118135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Since 2020, numerous compounds have been investigated for their potential use in treating SARS-CoV-2 infections. By identifying the molecular targets during the virus replication process, rationally designed anti-SARS-CoV-2 agents are developed. Among these targets, the main protease (Mpro) is a crucial enzyme required for virus replication, and its highly conserved characteristic make it an important drug target for the development of anti-SARS-CoV-2 drugs. Herein, we utilized warhead-based design strategy to conduct the structural optimization of M-1 developed through virtual screening, leading to a series of novel Mpro inhibitors with 4-(quinolin-2-yl)aniline scaffold. Among them, M-32 exhibited good SARS-CoV-2 Mpro inhibitory activity (IC50 = 5.2 μM) with a nearly 25-fold increase. Isothermal titration calorimetry (ITC) directly proved that M-32 binds directly to SARS-CoV-2 Mpro in an entropy-driven manner. Mass spectrometry (MS) further confirmed the covalent binding ability of M-32 to Mpro. Meanwhile, M-32 effectively inhibited the replication of SARS-CoV-2 in Vero E6 cells (EC50 = 5.29 μM).
Collapse
Affiliation(s)
- Honglei Bao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shilin Gong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yaguo Gong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Gao Tu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Zhenya Du
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China; Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Yuwei Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Jianlin Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Chunhua Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
5
|
Baeza J, Bedoya M, Cruz P, Ojeda P, Adasme-Carreño F, Cerda O, González W. Main methods and tools for peptide development based on protein-protein interactions (PPIs). Biochem Biophys Res Commun 2025; 758:151623. [PMID: 40121967 DOI: 10.1016/j.bbrc.2025.151623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Protein-protein interactions (PPIs) regulate essential physiological and pathological processes. Due to their large and shallow binding surfaces, PPIs are often considered challenging drug targets for small molecules. Peptides offer a viable alternative, as they can bind these targets, acting as regulators or mimicking interaction partners. This review focuses on competitive peptides, a class of orthosteric modulators that disrupt PPI formation. We provide a concise yet comprehensive overview of recent advancements in in-silico peptide design, highlighting computational strategies that have improved the efficiency and accuracy of PPI-targeting peptides. Additionally, we examine cutting-edge experimental methods for evaluating PPI-based peptides. By exploring the interplay between computational design and experimental validation, this review presents a structured framework for developing effective peptide therapeutics targeting PPIs in various diseases.
Collapse
Affiliation(s)
- Javiera Baeza
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería. Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile.
| | - Pablo Cruz
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Chile; Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paola Ojeda
- Carrera de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, General Lagos 1163, 5090000, Valdivia, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Chile; Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Wendy González
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería. Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Chile.
| |
Collapse
|
6
|
Talukder A, Chowdhury SM. Mapping Binding Domains of Viral and Allergenic Proteins with Dual-Cleavable Cross-Linking Technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:721-731. [PMID: 40123104 DOI: 10.1021/jasms.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The dual-cleavable nature of the cross-linking technology (DUCCT) enhances the reliable identification of cross-linked peptides via mass spectrometry. The DUCCT approach uses a cross-linking agent that can be selectively cleaved by two different tandem mass spectrometry techniques: collision-induced dissociation (CID) and electron transfer dissociation (ETD). This results in distinct signatures in two independent mass spectra for the same cross-linked precursor, leading to unambiguous identification and the validation of the spectra. In this study, we expanded the application of the DUCCT cross-linker to evaluate the binding domains of a specific cat dander allergen, Fel d 1, which exists as the Fel d 1 A and B protein complex, and a viral spike protein from SARS-CoV-2, which invades host cells. To assess the cross-linked products obtained by DUCCT, we utilized a software tool called Cleave-XL, which effectively identified cross-linked sites using data from CID and ETD. Dual cleavable cross-linking studies identified cross-linked peptides in these complexes, which have been reported in bioinformatics analysis and proposed for immunotherapy using synthetic peptides. A benchmark study was also conducted using a commercial cross-linker disuccinimidyl suberate (DSS). Overall, we expect that DUCCT cross-linking technology will greatly facilitate the rapid screening of binding interfaces, thereby advancing structural biology and cell signaling investigations.
Collapse
Affiliation(s)
- Akash Talukder
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
7
|
Zulhafiz NA, Teoh TC, Chin AV, Chang SW. Drug repurposing using artificial intelligence, molecular docking, and hybrid approaches: A comprehensive review in general diseases vs Alzheimer's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108604. [PMID: 39826482 DOI: 10.1016/j.cmpb.2025.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/07/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, remains enigmatic in its origins despite the widely accepted "amyloid hypothesis," which implicates amyloid-beta peptide aggregates in its pathogenesis and progression. Despite advancements in technology and healthcare, the incidence of AD continues to rise. The traditional drug development process remains time-consuming, often taking years to bring an AD treatment to market. Drug repurposing has emerged as a promising strategy for developing cost-effective and efficient therapeutic options by identifying new uses for existing approved drugs, thus accelerating drug development. OBJECTIVES This study aimed to examine two key drug repurposing methodologies in general diseases and specifically in AD, which are artificial intelligent (AI) approach and molecular docking approach. In addition, the hybrid approach that integrates AI with molecular docking techniques will be explored too. METHODOLOGY This study systematically compiled a comprehensive collection of relevant academic articles, scientific papers, and research studies which were published up until November 2024 (as of the writing of this review paper). The final selection of papers was filtered to include studies related to Alzheimer's disease and general diseases, and then categorized into three groups: AI articles, molecular docking articles, and hybrid articles. RESULTS As a result, 331 papers were identified that employed AI for drug repurposing in general diseases, and 58 papers focused specifically in AD. For molecular docking in drug repurposing, 588 papers addressed general diseases, while 46 papers were dedicated to AD. The hybrid approach combining AI and molecular docking in drug repurposing has 52 papers for general diseases and 9 for AD. A comparative review was done across the methods, results, strengths, and limitations in those studies. Challenges of drug repurposing in AD are explored and future prospects are proposed. DISCUSSION AND CONCLUSION Drug repurposing emerges as a compelling and effective strategy within AD research. Both AI and molecular docking methods exhibit significant potential in this domain. AI algorithms yield more precise predictions, thus facilitating the exploration of new therapeutic avenues for existing drugs. Similarly, molecular docking techniques revolutionize drug-target interaction modelling, employing refined algorithms to screen extensive drug databases against specific target proteins. This review offers valuable insights for guiding the utilization of AI, molecular docking, or their hybrid in AD drug repurposing endeavors. The hope is to speed up the timeline of drug discovery which could improve the therapeutic approach to AD.
Collapse
Affiliation(s)
- Natasha Azeelen Zulhafiz
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Teow-Chong Teoh
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Institute of Ocean & Earth Sciences (IOES), Advanced Studies Complex, Universiti Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ai-Vyrn Chin
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Centre of Research in System Biology, Structural, Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
8
|
Chen Y, Klute S, Sparrer KMJ, Serra-Moreno R. RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles. mBio 2025:e0331424. [PMID: 40167317 DOI: 10.1128/mbio.03314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat due to the emergence of variants with increased transmissibility and enhanced escape from immune responses. Like other coronaviruses before, SARS-CoV-2 likely emerged after its transmission from bats. The successful propagation of SARS-CoV-2 in humans might have been facilitated by usurping evolutionarily conserved cellular factors to execute crucial steps in its life cycle, such as the generation of replication organelles-membrane structures where coronaviruses assemble their replication-transcription complex. In this study, we found that RAB5, which is highly conserved across mammals, is a critical host dependency factor for the replication of the SARS-CoV-2 genome. Our results also suggest that SARS-CoV-2 uses RAB5+ membranes to build replication organelles with the aid of COPB1, a component of the COP-I complex, and that the virus protein NSP6 participates in this process. Hence, targeting NSP6 represents a promising approach to interfere with SARS-CoV-2 RNA synthesis and halt its propagation.IMPORTANCEIn this study, we sought to identify the host dependency factors that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for the generation of replication organelles: cellular membranous structures that SARS-CoV-2 builds in order to support the replication and transcription of its genome. We uncovered that RAB5 is an important dependency factor for SARS-CoV-2 replication and the generation of replication organelles, and that the viral protein NSP6 participates in this process. Hence, NSP6 represents a promising target to halt SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Konstantin Maria Johannes Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
9
|
Makoana KM, Naidoo CM, Zubair MS, Motshudi MC, Mkolo NM. Integration of metabolomics and chemometrics with in-silico and in-vitro approaches to unravel SARS-Cov-2 inhibitors from South African plants. PLoS One 2025; 20:e0320415. [PMID: 40138368 PMCID: PMC11940557 DOI: 10.1371/journal.pone.0320415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Coronavirus disease (COVID-19) is still a severe concern, especially in Africa with suboptimal intention rates of vaccination. This flagged the requirement of plant-based remedies as an alternative treatment. In this study we integrated metabolomics and chemometrics approaches with In silico and In vitro approaches to accelerate and unravel compounds from commonly used South African plants that may inhibit SARS-CoV-2 main protease. The selected commonly used plants, Artemisia afra and Artemisia annua, were found to be non-toxic against Vero cells, as determined by the resazurin cell viability assay. Metabolites profiling revealed eighty-one compounds and the top three hit compounds, quercetin 3-O-(6"-acetyl-glucoside), 2"-O-acetylrutin, and quercetin 3-(6"-malonyl-glucoside), had binding affinities of -9.3 kcal/mol, -9.5 kcal/mol, and -9.3 kcal/mol, respectively. The 2"-O-acetyl group of the rutin moiety and quercetin moiety produces a hydrogen bond with the amide nitrogen of His41 and with the side chain carboxylate of Cys145, respectively. Molecular dynamics simulations revealed a stable binding of the docked complexes. In silico observations were validated by In vitro bioassay, which flagged the ability of these compounds to inhibit SARS-CoV-2 3CLpro. The collected analysed data of this study does not only draw special attention to the surfaced 2"-O-acetylrutin as the best suitable inhibitor of SARS-CoV-2 3CLpro, but also indirectly reveals the importance of integrating metabolomics and chemometrics approaches with In silico and In vitro approaches to accelerate and unravel compounds from South African commonly used plants.
Collapse
Affiliation(s)
- Karabo Maselepe Makoana
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | - Clarissa Marcelle Naidoo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | | | - Mmei Cheryl Motshudi
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| | - Nqobile Monate Mkolo
- Department of Biology, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, South Africa
| |
Collapse
|
10
|
Van Damme E, Abeywickrema P, Yin Y, Xie J, Jacobs S, Mann MK, Doijen J, Miller R, Piassek M, Marsili S, Subramanian M, Gottlieb L, Abdelnabi R, Van Gool M, Van den Broeck N, De Pauw I, Diels A, Vermeulen P, Temmerman K, Scobey T, Mattocks M, Schäfer A, Jochmans D, De Jonghe S, Leyssen P, Chiu W, Diosa Toro M, Zwaagstra M, Leijs AA, De Gruyter HLM, Buyck C, Van Den Heede K, Jacobs F, Van den Eynde C, Thijs L, Raeymaekers V, Miller S, Del Rosario A, Neyts J, Peeters D, Baric RS, van Kuppeveld FJM, Snijder EJ, van Hemert MJ, Monshouwer M, Sharma S, Draghia-Akli R, Koul A, Van Loock M. A small-molecule SARS-CoV-2 inhibitor targeting the membrane protein. Nature 2025:10.1038/s41586-025-08651-6. [PMID: 40140563 DOI: 10.1038/s41586-025-08651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/15/2025] [Indexed: 03/28/2025]
Abstract
The membrane (M) protein of betacoronaviruses is well conserved and has a key role in viral assembly1,2. Here we describe the identification of JNJ-9676, a small-molecule inhibitor targeting the coronavirus M protein. JNJ-9676 demonstrates in vitro nanomolar antiviral activity against SARS-CoV-2, SARS-CoV and sarbecovirus strains from bat and pangolin zoonotic origin. Using cryogenic electron microscopy (cryo-EM), we determined a binding pocket of JNJ-9676 formed by the transmembrane domains of the M protein dimer. Compound binding stabilized the M protein dimer in an altered conformational state between its long and short forms, preventing the release of infectious virus. In a pre-exposure Syrian golden hamster model, JNJ-9676 (25 mg per kg twice per day) showed excellent efficacy, illustrated by a significant reduction in viral load and infectious virus in the lung by 3.5 and 4 log10-transformed RNA copies and 50% tissue culture infective dose (TCID50) per mg lung, respectively. Histopathology scores at this dose were reduced to the baseline. In a post-exposure hamster model, JNJ-9676 was efficacious at 75 mg per kg twice per day even when added at 48 h after infection, when peak viral loads were observed. The M protein is an attractive antiviral target to block coronavirus replication, and JNJ-9676 represents an interesting chemical series towards identifying clinical candidates addressing the current and future coronavirus pandemics.
Collapse
Affiliation(s)
- Ellen Van Damme
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Pravien Abeywickrema
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | - Yanting Yin
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | - Jiexiong Xie
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Sofie Jacobs
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Mandeep Kaur Mann
- Global Public Health R&D, Janssen Research & Development, Spring House, PA, USA
| | - Jordi Doijen
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Robyn Miller
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | - Madison Piassek
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | | | - Murali Subramanian
- Translational PK/PD & Investigative Toxicology (TPPIT), Janssen Research & Development, Beerse, Belgium
- Gilead Sciences, Foster City, CA, USA
| | - Leah Gottlieb
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
- Red Nucleus, Philadelphia, PA, USA
| | - Rana Abdelnabi
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- VirusBank Platform, Leuven, Belgium
| | | | | | | | - Annick Diels
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Beerse, Belgium
| | - Peter Vermeulen
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Beerse, Belgium
| | - Koen Temmerman
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Beerse, Belgium
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Dirk Jochmans
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Pieter Leyssen
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Winston Chiu
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mayra Diosa Toro
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Eurofins BioPharma Product Testing, Leiden, The Netherlands
| | - Marleen Zwaagstra
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anouk A Leijs
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Heidi L M De Gruyter
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Christophe Buyck
- In Silico Discovery (ISD), Computer-Aided Drug Design (CADD), Janssen Pharmaceutica, Beerse, Belgium
| | - Klaas Van Den Heede
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium
- Independent Researcher, Mechelen, Belgium
| | - Frank Jacobs
- Translational PK/PD & Investigative Toxicology (TPPIT), Janssen Research & Development, Beerse, Belgium
| | | | | | | | - Seth Miller
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
- Spark Therapeutics, Philadelphia, PA, USA
| | - Amanda Del Rosario
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | - Johan Neyts
- Virology, Antiviral Drug & Vaccine Research Group, Department of Microbiology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- VirusBank Platform, Leuven, Belgium
| | - Danielle Peeters
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Beerse, Belgium
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Frank J M van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Monshouwer
- Translational PK/PD & Investigative Toxicology (TPPIT), Janssen Research & Development, Beerse, Belgium
| | - Sujata Sharma
- Discovery Technologies & Molecular Pharmacology, Janssen Research & Development, Spring House, PA, USA
| | - Ruxandra Draghia-Akli
- Global Public Health R&D, Janssen Research & Development, Spring House, PA, USA.
- Research & Development, Novavax Inc., Gaithersburg, MD, USA.
| | - Anil Koul
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium.
| | - Marnix Van Loock
- Global Public Health R&D, Janssen Pharmaceutica, Beerse, Belgium.
| |
Collapse
|
11
|
Dugied G, Laurent EM, Attia M, Gimeno JP, Bachiri K, Samavarchi-Tehrani P, Donati F, Rahou Y, Munier S, Amara F, Dos Santos M, Soler N, Volant S, Pietrosemoli N, Gingras AC, Pavlopoulos GA, van der Werf S, Falter-Braun P, Aloy P, Jacob Y, Komarova A, Sofianatos Y, Coyaud E, Demeret C. Multimodal SARS-CoV-2 interactome sketches the virus-host spatial organization. Commun Biol 2025; 8:501. [PMID: 40140549 PMCID: PMC11947133 DOI: 10.1038/s42003-025-07933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
An accurate spatial representation of protein-protein interaction networks is needed to achieve a realistic and biologically relevant representation of interactomes. Here, we leveraged the spatial information included in Proximity-Dependent Biotin Identification (BioID) interactomes of SARS-CoV-2 proteins to calculate weighted distances and model the organization of the SARS-CoV-2-human interactome in three dimensions (3D) within a cell-like volume. Cell regions with viral occupancy were highlighted, along with the coordination of viral proteins exploiting the cellular machinery. Profiling physical intra-virus and virus-host contacts enabled us to demonstrate both the accuracy and the predictive value of our 3D map for direct interactions, meaning that proteins in closer proximity tend to interact physically. Several functionally important virus-host complexes were detected, and robust structural models were obtained, opening the way to structure-directed drug discovery screens. This PPI discovery pipeline approach brings us closer to a realistic spatial representation of interactomes, which, when applied to viruses or other pathogens, can provide significant information for infection. Thus, it represents a promising tool for coping with emerging infectious diseases.
Collapse
Affiliation(s)
- Guillaume Dugied
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Estelle Mn Laurent
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Mikaël Attia
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Jean-Pascal Gimeno
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Kamel Bachiri
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | | | - Flora Donati
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Yannis Rahou
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Sandie Munier
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Faustine Amara
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Mélanie Dos Santos
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Nicolas Soler
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10 -12, 08020, Barcelona, Spain
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, F-75015, Paris, France
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, National Reference Center for respiratory viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich-Neuherberg, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Munich, Germany
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10 -12, 08020, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançat (ICREA), Pg. Lluís Companys, 23, 08010, Barcelona, Spain
| | - Yves Jacob
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Anastassia Komarova
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France
| | - Yorgos Sofianatos
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 34 Fleming Street, 16672, Vari, Greece.
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
| | - Caroline Demeret
- Institut Pasteur, Université Paris Cité, UMR 3569, Centre National de la Recherche Scientifique, Molecular Genetics of RNA Viruses, 28 rue du Docteur Roux, F-75015, Paris, France.
- Institut Pasteur, Université Paris Cité, Interactomics, RNA and Immunity, 28 rue du Docteur Roux, F-75015, Paris, France.
| |
Collapse
|
12
|
Owolabi IJ, Karim SU, Khanal S, Valdivia S, Frenzel C, Bai F, Flynt AS. Processing of genomic RNAs by Dicer in bat cells limits SARS-CoV-2 replication. Virol J 2025; 22:86. [PMID: 40133950 PMCID: PMC11934715 DOI: 10.1186/s12985-025-02693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Bats are reservoirs for numerous viruses that cause serious diseases in other animals and humans. Several mechanisms are proposed to contribute to the tolerance of bats to these pathogens. This study investigates the response of bat cells to double-stranded RNA generated by SARS-CoV-2 replication. Here, we found the involvement of Dicer in the processing of viral genomic RNAs during SARS-CoV-2 infection. Examining RNA sequencing of infected cells, small-interfering RNA (siRNA)-like fragments were found derived from viral RNAs. Depletion of Dicer showed a reduction in these RNAs and an increase in viral loads suggesting unlike other mammals, bats may use Dicer to limit viral replication. This prompted the exploration of key dsRNA sensors in bat cells. Our analysis showed significant upregulation of OAS1 and MX1 in response to dsRNA, while PKR levels remained low, suggesting alternative dsRNA-response mechanisms are present that eschew the common PKR-based system. These results further show how bats employ distinct strategies for antiviral defense that may contribute to tolerating viral infections. They suggest the involvement of Dicer in antiviral mechanisms in bats, a function not observed in other mammals. This highlights a mechanism for bat originating viruses to evolve features that in other animals could cause extreme antiviral responses such as is seen with SARS-CoV-2.
Collapse
Affiliation(s)
- Iyanuoluwani J Owolabi
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shazeed-Ul Karim
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sweta Khanal
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergio Valdivia
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Christopher Frenzel
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Alex S Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
13
|
Wang C, Cheng Z, Miao J, Xue X, Dong Y, Zhao L, Guo H, Wang J, Wang Z, Lu S, Fang G, Peng Y, Zhai Y, Zhang Z, Gao D, Wang Z, Wang P, Zhang L, Dunmall LSC, Wang J, Tang W, Li X, Ding Z, Zhao X, Li L, Lemoine NR, Wang Z, Tonge D, Tan W, Dong J, Wang Y. Genomic-transcriptomic analysis identifies the Syrian hamster as a superior animal model for human diseases. BMC Genomics 2025; 26:286. [PMID: 40122829 PMCID: PMC11931762 DOI: 10.1186/s12864-025-11393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The Syrian hamster (Mesocricetus auratus) has shown promise as a human diseases model, recapitulating features of different human diseases including COVID-19. However, the landscape of its genome and transcriptome has not been systematically dissected, restricting its potential applications. RESULTS Here we provide a complete analysis of the genome and transcriptome of the Syrian hamster and found that its lineage diverged from that of the Chinese hamster (Cricetulus griseus) around 29.4 million years ago. 21,387 protein-coding genes were identified, with 90.03% of the 2.56G base pair sequence being anchored to 22 chromosomes. Further comparison of the transcriptomes from 15 tissues of the Syrian hamster revealed that the Syrian hamster shares a pattern of alternative splicing modes more similar to humans, compared to rats and mice. An integrated genomic-transcriptomic analysis revealed that the Syrian hamster also has genetic and biological advantages as a superior animal model for cardiovascular diseases. Strikingly, several genes involved in SARS-COV-2 infection, including ACE2, present a higher homology with humans compared to other rodents and show the same function as their human counterparts. CONCLUSION The detailed molecular characterisation of the Syrian hamster in the present study opens a wealth of fundamental resources from this small rodent for future research into human disease pathology and treatment.
Collapse
Affiliation(s)
- Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450000, People's Republic of China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter Pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yunshu Dong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Li Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Haoran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianyao Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangming Fang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Peng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yafei Zhai
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wenxue Tang
- Centre for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaowei Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongren Ding
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyan Zhao
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ling Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Daniel Tonge
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Department of of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Citu C, Chang L, Manuel AM, Enduru N, Zhao Z. Identification and catalog of viral transcriptional regulators in human diseases. iScience 2025; 28:112081. [PMID: 40124487 PMCID: PMC11928865 DOI: 10.1016/j.isci.2025.112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Viral genomes encode viral transcriptional regulators (vTRs) that manipulate host gene expression to facilitate replication and evade immune detection. Nevertheless, their role in non-cancerous diseases remains largely underexplored. Here, we unveiled 268 new candidate vTRs from 14 of the 20 viral families we investigated. We mapped vTRs' genome-wide binding profiles and identified their potential human targets, which were enriched in immune-mediated pathways, neurodegenerative disorders, and cancers. Through vTR DNA-binding preference analysis, 283 virus-specific and human-like motifs were identified. Prioritized Epstein-Barr virus (EBV) vTR target genes were associated with multiple sclerosis (MS), rheumatoid arthritis, and systemic lupus erythematosus. The partitioned heritability study among 19 diseases indicated significant enrichment of these diseases in EBV vTR-binding sites, implicating EBV vTRs' roles in immune-mediated disorders. Finally, drug repurposing analysis pinpointed candidate drugs for MS, asthma, and Alzheimer disease. This study enhances our understanding of vTRs in diverse human diseases and identifies potential therapeutic targets for future investigation.
Collapse
Affiliation(s)
- Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Le Chang
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Astrid M. Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
15
|
Garcia Lopez V, Plate L. Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic. Viruses 2025; 17:447. [PMID: 40143373 PMCID: PMC11946765 DOI: 10.3390/v17030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification-mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution.
Collapse
Affiliation(s)
- Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
| | - Lars Plate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA;
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Dey L, Chakraborty S. Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions. Gene 2025; 942:149228. [PMID: 39828063 DOI: 10.1016/j.gene.2025.149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive database of all the PPIs between the Ebola virus and human proteins (EbolaInt). Our work focuses on the finding of some new protein-protein interactions between humans and the Ebola virus using some state- of-the-arts machine learning techniques. However, it is basically a two-class problem with a positive interacting dataset and a negative non-interacting dataset. These datasets contain various sequence-based human protein features such as structure of amino acid and conjoint triad and domain-related features. In this research, we have briefly discussed and used some well-known supervised learning approaches to predict PPIs between human proteins and Ebola virus proteins, including K-nearest neighbours (KNN), random forest (RF), support vector machine (SVM), and deep feed-forward multi-layer perceptron (DMLP) etc. We have validated our prediction results using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Our goal with this prediction is to compare all other models' accuracy, precision, recall, and f1-score for predicting these PPIs. In the result section, DMLP is giving the highest accuracy along with the prediction of 2655 potential human target proteins.
Collapse
Affiliation(s)
- Lopamudra Dey
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden; Department of Computer Science & Engineering, Meghnad Saha Institute of Technology, Kolkata, India
| | - Sanjay Chakraborty
- Department of Computer and Information Science (IDA), REAL, AIICS, Linköping University, Sweden; Department of Computer Science & Engineering, Techno International New Town, Kolkata, India.
| |
Collapse
|
17
|
Su WC, Xia Y. Virus targeting as a dominant driver of interfacial evolution in the structurally resolved human-virus protein-protein interaction network. Cell Syst 2025; 16:101202. [PMID: 40023148 DOI: 10.1016/j.cels.2025.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Regions on a host protein that interact with virus proteins (exogenous interfaces) frequently overlap with those that interact with other host proteins (endogenous interfaces), resulting in competition between hosts and viruses for these shared interfaces (mimic-targeted interfaces). Yet, the evolutionary consequences of this competitive relationship on the host are not well understood. Here, we integrate experimentally determined structures and homology-based templates of protein complexes with protein-protein interaction networks to construct a high-resolution human-virus structural interaction network. We perform site-specific evolutionary rate analyses on this structural interaction network and find that exogenous-specific interfaces evolve faster than endogenous-specific interfaces. Mimic-targeted interfaces evolve as fast as exogenous-specific interfaces, despite being targeted by both human and virus proteins. Our findings suggest that virus targeting plays a dominant role in host interfacial evolution within the context of domain-domain interactions and that mimic-targeted interfaces on human proteins are the key battleground for a mammalian-specific host-virus evolutionary arms race.
Collapse
Affiliation(s)
- Wan-Chun Su
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Yu Xia
- Graduate Program in Quantitative Life Sciences, McGill University, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|
18
|
Dhaka P, Mahto JK, Singh A, Kumar P, Tomar S. Structural insights into the RNA binding inhibitors of the C-terminal domain of the SARS-CoV-2 nucleocapsid. J Struct Biol 2025; 217:108197. [PMID: 40113149 DOI: 10.1016/j.jsb.2025.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is an essential structural element of the virion, playing a crucial role in enclosing the viral genome into a ribonucleoprotein (RNP) assembly, as well as viral replication and transmission. The C-terminal domain of the N-protein (N-CTD) is essential for encapsidation, contributing to the stabilization of the RNP complex. In a previous study, three inhibitors (ceftriaxone, cefuroxime, and ampicillin) were screened for their potential to disrupt the RNA packaging process by targeting the N-protein. However, the binding efficacy, mechanism of RNA binding inhibition, and molecular insights of binding with N-CTD remain unclear. In this study, we evaluated the binding efficacy of these inhibitors using isothermal titration calorimetry (ITC), revealing the affinity of ceftriaxone (18 ± 1.3 μM), cefuroxime (55 ± 4.2 μM), and ampicillin (28 ± 1.2 μM) with the N-CTD. Further inhibition assay and fluorescence polarisation assay demonstrated RNA binding inhibition, with IC50 ranging from ∼ 12 to 18 μM and KD values between 24 μM to 32 μM for the inhibitors, respectively. Additionally, we also determined the inhibitor-bound complex crystal structures of N-CTD-Ceftriaxone (2.0 Å) and N-CTD-Ampicillin (2.2 Å), along with the structure of apo N-CTD (1.4 Å). These crystal structures revealed previously unobserved interaction sites involving residues K261, K266, R293, Q294, and W301 at the oligomerization interface and the predicted RNA-binding region of N-CTD. These findings provide valuable molecular insights into the inhibition of N-CTD, highlighting its potential as an underexplored but promising target for the development of novel antiviral agents against coronaviruses.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
19
|
Lan HC, Hou BY, Chang ST, Kuo CY, Wang WC, Yao YL, Wu HY, Lai CC, Yang WM. Distinct Roles of SARS-CoV-2 N Protein and NFP in Host Cell Response Modulation. J Mol Biol 2025; 437:169094. [PMID: 40107650 DOI: 10.1016/j.jmb.2025.169094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is crucial for viral replication and modulation of host cell responses. Here, we identify and characterize a novel N-fusion protein, designated NFP. NFP is derived from an alternative open reading frame spanning the N gene and the non-structural protein 1 (NSP1) sequence. While NFP shares some functional domains with the canonical N protein, it exhibits distinct structural features and protein interactions. NFP retains the ability to dimerize and bind RNA but lacks the formation of biomolecular condensates associated with N. Notably, NFP can dominantly interfere with N's condensate formation capacity when co-expressed. Functionally, NFP partially suppresses stress granule (SG) formation through a G3BP1-independent mechanism but gains the ability to interact with G3BP1 in the presence of N, potentially through N-NFP heterodimer formation. Post-translational modifications, particularly ubiquitination of specific lysine residues (K374 in N and K502 in NFP), differentially regulate the subcellular localization, SG inhibition, and cell cycle regulation activities of N and NFP. Our findings establish NFP as a distinct viral effector protein that modulates host cellular environments through both conserved and unique mechanisms compared to the canonical N protein, providing insights into SARS-CoV-2 pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Hsin-Chi Lan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Bo-Yi Hou
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Ting Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Li Yao
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wen-Ming Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
20
|
Singh M, Shanmukha S, Eldesouki RE, Harraz MM. FDA-approved drug repurposing screen identifies inhibitors of SARS-CoV-2 pseudovirus entry. Front Pharmacol 2025; 16:1537912. [PMID: 40166473 PMCID: PMC11955658 DOI: 10.3389/fphar.2025.1537912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Background and purpose The coronavirus disease 2019 (COVID-19) pandemic has devastated global health and the economy, underscoring the urgent need for extensive research into the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry and the development of effective therapeutic interventions. Experimental approach We established a cell line expressing human angiotensin-converting enzyme 2 (ACE2). We used it as a model of pseudotyped viral entry using murine leukemia virus (MLV) expressing SARS-CoV-2 spike (S) protein on its surface and firefly luciferase as a reporter. We screened an U.S. Food and Drug Administration (FDA)-approved compound library for inhibiting ACE2-dependent SARS-CoV-2 pseudotyped viral entry and identified several drug-repurposing candidates. Key results We identified 18 drugs and drug candidates, including 14 previously reported inhibitors of viral entry and four novel candidates. Pyridoxal 5'-phosphate, Dovitinib, Adefovir dipivoxil, and Biapenem potently inhibit ACE2-dependent viral entry with inhibitory concentration 50% (IC50) values of 57nM, 74 nM, 130 nM, and 183 nM, respectively. Conclusion and implications We identified four novel FDA-approved candidate drugs for anti-SARS-CoV-2 combination therapy. Our findings contribute to the growing body of evidence supporting drug repurposing as a viable strategy for rapidly developing COVID-19 treatments.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shruthi Shanmukha
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raghda E. Eldesouki
- Genetics Unit, Histology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Choopanian P, Andressoo JO, Mirzaie M. A fast approach for structural and evolutionary analysis based on energetic profile protein comparison. Nat Commun 2025; 16:2231. [PMID: 40044697 PMCID: PMC11882786 DOI: 10.1038/s41467-025-57374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
In structural bioinformatics, the efficiency of predicting protein similarity, function, and evolutionary relationships is crucial. Our approach proposed herein leverages protein energy profiles derived from a knowledge-based potential, deviating from traditional methods relying on structural alignment or atomic distances. This method assigns unique energy profiles to individual proteins, facilitating rapid comparative analysis for both structural similarities and evolutionary relationships across various hierarchical levels. Our study demonstrates that energy profiles contain substantial information about protein structure at class, fold, superfamily, and family levels. Notably, these profiles accurately distinguish proteins across species, illustrated by the classification of coronavirus spike glycoproteins and bacteriocin proteins. Introducing a separation measure based on energy profile similarity, our method shows significant correlation with a network-based approach, emphasizing the potential of energy profiles as efficient predictors for drug combinations with faster computational requirements. Our key insight is that the sequence-based energy profile strongly correlates with structure-derived energy, enabling rapid and efficient protein comparisons based solely on sequences.
Collapse
Affiliation(s)
- Peyman Choopanian
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Mehdi Mirzaie
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Hernandez G, Osinski A, Majumdar A, Eitson JL, Antczak M, Pawłowski K, Niederstrasser H, Servage KA, Posner B, Schoggins JW, Ready JM, Tagliabracci VS. Covalent inhibition of the SARS-CoV-2 NiRAN domain via an active-site cysteine. J Biol Chem 2025:108378. [PMID: 40049411 DOI: 10.1016/j.jbc.2025.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/12/2025] Open
Abstract
The kinase-like NiRAN domain of nsp12 in SARS-CoV-2 catalyzes the formation of the 5' RNA cap structure. This activity is required for viral replication, offering a new target for the development of antivirals. Here, we develop a high-throughput assay to screen for small molecule inhibitors targeting the SARS-CoV-2 NiRAN domain. We identified NCI-2, a compound with a reactive chloromethyl group that covalently binds to an active site cysteine (Cys53) in the NiRAN domain, inhibiting its activity. NCI-2 can enter cells, bind to, and inactivate ectopically expressed nsp12. A cryo-EM reconstruction of the SARS-CoV-2 replication-transcription complex (RTC) bound to NCI-2 offers a detailed structural blueprint for rational drug design. Although NCI-2 showed limited potency against SARS-CoV-2 replication in cells, our work lays the groundwork for developing more potent and selective inhibitors targeting the NiRAN domain. This approach presents a promising therapeutic strategy for effectively combating COVID-19 and potentially mitigating future coronavirus outbreaks.
Collapse
Affiliation(s)
- Genaro Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Monika Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
23
|
Sawalha K, Gautam N, Sivakumar K, Paydak H, Mehta JL. Metformin: Its salutary effects beyond diabetes mellitus. J Investig Med 2025:10815589251327511. [PMID: 40033492 DOI: 10.1177/10815589251327511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metformin, an oral hypoglycemic agent, is commonly used in patients with type II diabetes mellitus. Studies have shown its use is associated with a reduction in major cardiovascular events (MACE) in patients with type 2 diabetes such as hospitalization for acute myocardial infarction, stroke, transient ischemic attack, or cardiovascular death. There is also a suggestion that metformin may have effects beyond those relating to lowering of blood sugar. The goal of this review is to assess the effects of metformin in coronary artery disease (CAD), but more importantly, its effects on disease states other than CAD.
Collapse
Affiliation(s)
- Khalid Sawalha
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nitesh Gautam
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kalaivani Sivakumar
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hakan Paydak
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jawaher L Mehta
- Division of Cardiovascular Disease, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
24
|
Serrano LR, Pelin A, Arrey TN, Damoc NE, Richards AL, Zhou Y, Lancaster NM, Peters-Clarke TM, Pashkova A, Jang GM, Eckhardt M, Quarmby ST, Zeller M, Hermanson D, Stewart H, Hock C, Makarov A, Zabrouskov V, Krogan NJ, Coon JJ, Swaney DL. Affinity Purification Mass Spectrometry on the Orbitrap-Astral Mass Spectrometer Enables High-Throughput Protein-Protein Interaction Mapping. J Proteome Res 2025. [PMID: 40025722 DOI: 10.1021/acs.jproteome.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Classical proteomics experiments offer high-throughput protein quantification but lack direct evidence of the spatial organization of the proteome, including protein-protein interaction (PPIs) networks. While affinity purification mass spectrometry (AP-MS) is the method of choice for generating these networks, technological impediments have stymied the throughput of AP-MS sample collection and therefore constrained the rate and scale of experiments that can be performed. Here, we build on advances in mass spectrometry hardware that have rendered high-flow liquid chromatography separations a viable solution for faster throughput quantitative proteomics. We describe our methodology using the Orbitrap-Astral mass spectrometer with 7 min, high-flow separations to analyze 216 AP-MS samples in ∼29 h. We show that the ion-focusing advancements, rapid mass analysis, and sensitive ion detection facilitate narrow-bin data-independent acquisition on a chromatographically practical timescale. Further, we highlight several aspects of state-of-the-art confidence-scoring software that warrant reinvestigation given the analytical characteristics of the Orbitrap-Astral mass spectrometer through comparisons with an enrichment-based thresholding technique. With our data, we generated an interaction map between 998 human proteins and 59 viral proteins. These results hold promise in expediting the throughput of AP-MS experiments, enabling more high-powered PPI studies.
Collapse
Affiliation(s)
- Lia R Serrano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Adrian Pelin
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | | | | | - Alicia L Richards
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Yuan Zhou
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Noah M Lancaster
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Anna Pashkova
- Thermo Fisher Scientific GmbH, Bremen 28199, Germany
| | - Gwendolyn M Jang
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Manon Eckhardt
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Scott T Quarmby
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
| | - Martin Zeller
- Thermo Fisher Scientific GmbH, Bremen 28199, Germany
| | - Daniel Hermanson
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | | | | | | | - Vlad Zabrouskov
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, California 94158, United States
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
25
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2025; 45:431-442. [PMID: 39177056 PMCID: PMC11572096 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
26
|
Ying H, Wu X, Jia X, Yang Q, Liu H, Zhao H, Chen Z, Xu M, Wang T, Li M, Zhao Z, Zheng R, Wang S, Lin H, Xu Y, Lu J, Wang W, Ning G, Zheng J, Bi Y. Single-cell transcriptome-wide Mendelian randomization and colocalization reveals immune-mediated regulatory mechanisms and drug targets for COVID-19. EBioMedicine 2025; 113:105596. [PMID: 39933264 PMCID: PMC11867302 DOI: 10.1016/j.ebiom.2025.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND COVID-19 continues to show long-term impacts on our health. Limited effective immune-mediated antiviral drugs have been launched. METHODS We conducted a Mendelian randomization (MR) and colocalization analysis using 26,597 single-cell expression quantitative trait loci (sc-eQTL) to proxy effects of expressions of 16,597 genes in 14 peripheral blood immune cells and tested them against four COVID-19 outcomes from COVID-19 Genetic Housing Initiative GWAS meta-analysis Round 7. We also carried out additional validations including colocalization, linkage disequilibrium check and host-pathogen interactome predictions. We integrated MR findings with clinical trial evidence from several drug gene related databases to identify drugs with repurposing potential. Finally, we developed a tier system and identified immune-cell-based prioritized drug targets for COVID-19. FINDINGS We identified 132 putative causal genes in 14 immune cells (343 MR associations) for COVID-19, with 58 genes that were not reported previously. 145 (73%) gene-COVID-19 pairs showed effects on COVID-19 in only one immune cell type, which implied widespread immune-cell specific effects. For pathway analyses, we found the putative causal genes were enriched in natural killer (NK) recruiting cells but de-enriched in NK cells. Using a deep learning model, we found 107 (81%) of the putative causal genes (41 novel genes) were predicted to interact with SARS-COV-2 proteins. Integrating the above evidence with drug trial information, we developed a tier system and prioritized 37 drug targets for COVID-19. INTERPRETATION Our study showcased the central role of immune-mediated regulatory mechanisms for COVID-19 and prioritized drug targets that might inform interventions for viral infectious diseases. FUNDING This work was supported by grants from the National Key Research and Development Program of China (2022YFC2505203).
Collapse
Affiliation(s)
- Hui Ying
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiling Zhao
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Zhihe Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai Digital Medicine Innovation Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Algaissi A, Taha MME, Alamer E, Kameli N, Alhazmi A, Khamjan N, Abdelwahab SI. Trends and gaps in hydroxychloroquine and COVID-19 research (2020-2023): Performance and conceptual mapping. J Infect Public Health 2025; 18:102623. [PMID: 39813964 DOI: 10.1016/j.jiph.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Hydroxychloroquine and Chloroquine (CQ) and Hydroxychloroquine (HCQ) are antimalarial drugs with well-known anti-inflammatory and antiviral effects used to treat various diseases, with few side effects. After COVID-19 emergence, numerous researches from around the world have examined the potential of using CQ or HCQ as potential treatment of COVID-19. However, conflicting outcomes have been found in COVID-19 clinical trials after treatment with CQ or HCQ. This study aims to evaluate research on CQ and HCQ for COVID-19 treatment and prophylaxis control using bibliometric methods. METHODS We analyzed bibliometric data on HCQ and COVID-19 (HCQ-C19) quantitatively and semantically (2020-2023) using the Scopus database VOSviewer, Bibliometrix, and MS Excel. RESULTS Analyses of 7471 original and conference articles revealed that the total number of publications has continually increased. The country producing the most articles in this field was the United States, followed by Italy, India, and Spain. The top-productive authors on HCQ-C19 are Mussini, C., and Raoult, D. (Italy) with 23 and 21 articles, respectively. The top-impactful organization is IHU Méditerranée Infection, France. A Bibliometrix's network analysis based on the co-occurrence of keywords revealed the following themes HCQ-C19, including "clinical research/practice," "COVID-19," "thrombosis," "HCQ," "epidemiology," and "infectious disease." CONCLUSION In conclusion, the analysis reveals a growing interest in HCQ-C19 research. Prominent contributions come from the United States, Italy, India, and Spain. Key themes include clinical research/practice, COVID-19, thrombosis, HCQ, epidemiology, and infectious disease. Future recommendations include conducting well-designed clinical trials and fostering collaborative interdisciplinary efforts.
Collapse
Affiliation(s)
- Abdullah Algaissi
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Edrous Alamer
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nader Kameli
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdulaziz Alhazmi
- Emerging and Epidemic Infectious Diseases Research Unit, Health Research Center, Jazan University, Jazan 45142, Saudi Arabia; Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan, 45142, Saudi Arabia
| | - Nizar Khamjan
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
28
|
Wang Y, Zheng X, Yang Y, Zhao X, Li M, Huang J, Zhang Q, Qin X, Yu Y, Pan Q, Cao Z. Effect of the CSFV NS5A protein on key proteins in the MAPK and PI3K-mTOR signaling pathways in porcine macrophages. Front Microbiol 2025; 16:1559840. [PMID: 40078537 PMCID: PMC11897277 DOI: 10.3389/fmicb.2025.1559840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease caused by classical swine fever virus (CSFV). NS5A, a non-structural protein of CSFV, plays an important role in regulating viral replication and protein translation. The purpose of this study was to investigate the effects of the CSFV NS5A protein on key proteins in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) pathways in porcine macrophages. In this study, an NS5A lentivirus was constructed, and 3D4/21 cells were infected. The cells infected for 48 h were collected for proteomic analysis to screen the differential proteins in the two signaling pathways in the NS5A/control group, and the expression levels of key proteins were verified by Western blotting (Wb). CSFV NS5A lentivirus was successfully constructed and used to infect porcine macrophages, and 23 upregulated proteins and 16 downregulated proteins were found in the MAPK signaling pathway, whereas 5 upregulated and 15 downregulated proteins were found in the PI3K-mTOR signaling pathway. The results revealed that with increasing infection time, the expression of IKBKG, AKT1, CDC37, MAP3K2, and PKN2 decreased, whereas the expression of MAP3K7 and KRAS2 increased. The 3D4/21 cells infected with NS5A lentivirus and classical swine fever virus were inoculated, and the differential protein expression was verified via Wb. With increasing time, the protein expression levels of IKBKG and KRAS2 increased, whereas the protein expression levels of MAP3K7, MAP3K2, AKT1, CDC37, and PKN2 decreased. This study provides data for revealing the mechanism by which CSFV evades host antiviral immune clearance and has important scientific significance and potential application value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qing Pan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
29
|
Gunawardene CD, Wong LYR. Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. J Virol 2025; 99:e0135324. [PMID: 39760492 PMCID: PMC11852921 DOI: 10.1128/jvi.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection. Previous studies have shown that the I proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus suppress type I interferon production by distinct mechanisms. In this review, we summarize the current knowledge on the I proteins of betacoronaviruses from different subgenera, with emphasis on its function and role in pathogenesis.
Collapse
Affiliation(s)
- Chaminda D. Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lok-Yin Roy Wong
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
30
|
Brun J, Arman BY, Hill ML, Kiappes JL, Alonzi DS, Makower LL, Witt KD, Gileadi C, Rangel V, Dwek RA, von Delft A, Zitzmann N. Assessment of repurposed compounds against coronaviruses highlights the antiviral broad-spectrum activity of host-targeting iminosugars and confirms the activity of potent directly acting antivirals. Antiviral Res 2025:106123. [PMID: 39999917 DOI: 10.1016/j.antiviral.2025.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
The COVID-19 pandemic highlights the need for novel antiviral drug discovery approaches that could dramatically shorten timelines from compound discovery to clinical development. At the beginning of the pandemic, repurposing approaches were at the forefront of early research efforts to screen for antiviral activity against SARS-CoV-2 in over 2,500 compounds. Here, we report cellular screening results of 100 FDA-approved and experimental compounds against SARS-CoV-2 in the human Calu-3 cell line. We observed 13 compounds showing antiviral activity against SARS-CoV-2, including seven FDA-approved compounds (remdesivir, boceprevir, amiloride, nafamostat, cisplatin, silmitasertib, and miglustat), and six compounds in pre-clinical and clinical development (tarloxotinib, lucerastat (NB-DGJ), MON-DNJ, NAP-DNJ, NN-DGJ and NN-DNJ). Further, we observed that our screening hits include several host-targeting antivirals, namely iminosugars, that are largely non-toxic and offer a large therapeutic window. The most-developed iminosugar MON-DNJ (UV-4B), which has been evaluated in a Phase 1 clinical trial, showed antiviral activity against SARS-CoV-2 wild type as well as alpha, beta, gamma, delta, and omicron variants. Its activity also extended to another betacoronavirus HCoV OC43, but not alphacoronavirus HCoV 229E. Our cellular screening results add to the body of knowledge on antivirals against coronaviruses and confirm the antiviral efficacy of iminosugars in cellular assays using the human lung-cell line Calu-3.
Collapse
Affiliation(s)
- Juliane Brun
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Benediktus Yohan Arman
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Michelle L Hill
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - J L Kiappes
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dominic S Alonzi
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Laetitia L Makower
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Karolina D Witt
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Carina Gileadi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom
| | - Victor Rangel
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom; School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Raymond A Dwek
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom.
| | - Nicole Zitzmann
- Antiviral Drug Discovery Unit, Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
31
|
Hein MY, Peng D, Todorova V, McCarthy F, Kim K, Liu C, Savy L, Januel C, Baltazar-Nunez R, Sekhar M, Vaid S, Bax S, Vangipuram M, Burgess J, Njoya L, Wang E, Ivanov IE, Byrum JR, Pradeep S, Gonzalez CG, Aniseia Y, Creery JS, McMorrow AH, Sunshine S, Yeung-Levy S, DeFelice BC, Mehta SB, Itzhak DN, Elias JE, Leonetti MD. Global organelle profiling reveals subcellular localization and remodeling at proteome scale. Cell 2025; 188:1137-1155.e20. [PMID: 39742809 DOI: 10.1016/j.cell.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/05/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
Defining the subcellular distribution of all human proteins and their remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immunocapture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membraneless compartments. A graph-based analysis assigns the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following HCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides key insights for elucidating cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Collapse
Affiliation(s)
| | - Duo Peng
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Kibeom Kim
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Chad Liu
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | - Sophie Bax
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - James Burgess
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Leila Njoya
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Serena Yeung-Levy
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lomuscio MC, Corriero N, Nanna V, Piccinno A, Saviano M, Lanzilotti R, Abate C, Alberga D, Mangiatordi GF. SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction. RSC Med Chem 2025; 16:835-848. [PMID: 39618965 PMCID: PMC11605305 DOI: 10.1039/d4md00722k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/03/2024] [Indexed: 02/21/2025] Open
Abstract
Developing sigma-1 receptor (S1R) modulators is considered a valuable therapeutic strategy to counteract neurodegeneration, cancer progression, and viral infections, including COVID-19. In this context, in silico tools capable of accurately predicting S1R affinity are highly desirable. Herein, we present a panel of 25 classifiers trained on a curated dataset of high-quality bioactivity data of small molecules, experimentally tested as potential S1R modulators. All data were extracted from ChEMBL v33, and the models were built using five different fingerprints and machine-learning algorithms. Remarkably, most of the developed classifiers demonstrated good predictive performance. The best-performing model, which achieved an AUC of 0.90, was developed using the support vector machine algorithm with Morgan fingerprints. To provide additional, user-friendly information for medicinal chemists in the rational design of S1R modulators, two independent explainable artificial intelligence (XAI) approaches were employed, namely Shapley Additive exPlanations (SHAP) and Contrastive Explanation. The top-performing model is accessible through a user-friendly web platform, SIGMAP (https://www.ba.ic.cnr.it/softwareic/sigmap/), specifically developed for this purpose. With its intuitive interface, robust predictive power, and implemented XAI approaches, SIGMAP serves as a valuable tool for the rational design of new and more effective S1R modulators.
Collapse
Affiliation(s)
- Maria Cristina Lomuscio
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J), Università degli Studi di Bari Aldo Moro Piazza Giulio Cesare, 11, Policlinico 70124 Bari Italy
| | - Nicola Corriero
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | - Vittoria Nanna
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | - Antonio Piccinno
- Department of Computer Science, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Michele Saviano
- CNR - Institute of Crystallography Via Vivaldi 43 81100 Caserta Italy
| | - Rosa Lanzilotti
- Department of Computer Science, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Carmen Abate
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro" Via E. Orabona, 4 I-70125 Bari Italy
| | - Domenico Alberga
- CNR - Institute of Crystallography Via Amendola 122/o 70126 Bari Italy
| | | |
Collapse
|
33
|
Wang X, Chen L, Chang X, Yi X, Yu W, Wang R. Investigating the inhibition of benzimidazole derivatives on SARS-CoV-2 M pro by enzyme activity inhibition, spectroscopy, and molecular docking. J Biomol Struct Dyn 2025:1-16. [PMID: 39967567 DOI: 10.1080/07391102.2025.2466697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 02/20/2025]
Abstract
The inhibition of twenty-five 1,2-fused/disubstituted benzimidazoles on the SARS-CoV-2 Mpro were investigated in this work. It was found that four compounds (1i, 1k, 1l, and 1m) showed obvious inhibitory effect on Mpro. The inhibitory effect of 1k (IC50 46.86 μM) was the best. UV-vis, fluorescence, CD and molecular docking methods were used to reveal the mechanisms of interaction between these compounds and Mpro. Results indicated that static quenching was the main type of quenching. 1i, 1k, 1l, and 1m may alter the conformation and microenvironment of Mpro. The dominant forces between 1i (or 1l) and Mpro were hydrogen bonds or van der Waals forces. The dominant forces between 1k (or 1m) and Mpro were electrostatic or hydrophobic forces, which was consistent with the results of molecular docking. The influence of molecular structure on the binding was investigated. Chlorine atom groups were favorable for the 1,2-fused/disubstituted benzimidazoles derivative inhibitors of Mpro. This work confirmed the changes in the micro-environment of Mpro by 1k, and provided clues for the design of potential Mpro inhibitors.
Collapse
Affiliation(s)
- Xueyuan Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Leyao Chen
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofei Yi
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Dhaka P, Singh A, Nehul S, Choudhary S, Panda PK, Sharma GK, Kumar P, Tomar S. Disruption of Molecular Interactions between the G3BP1 Stress Granule Host Protein and the Nucleocapsid (NTD-N) Protein Impedes SARS-CoV-2 Virus Replication. Biochemistry 2025; 64:823-840. [PMID: 39708056 DOI: 10.1021/acs.biochem.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The Ras GTPase-activating protein SH3-domain-binding protein 1 (G3BP1) serves as a formidable barrier to viral replication by generating stress granules (SGs) in response to viral infections. Interestingly, viruses, including SARS-CoV-2, have evolved defensive mechanisms to hijack SG proteins like G3BP1 for the dissipation of SGs that lead to the evasion of the host's immune responses. Previous research has demonstrated that the interaction between the NTF2-like domain of G3BP1 (G3BP1NTF-2) and the intrinsically disordered N-terminal domain (NTD-N1-25) of the N-protein plays a crucial role in regulating viral replication and pathogenicity. Interestingly, the current study identified an additional upstream stretch of residues (128KDGIIWVATEG138) (N128-138) within the N-terminal domain of the N-protein (NTD-N41-174) that also forms molecular contacts with the G3BP1 protein, as revealed through in silico analysis, site-directed mutagenesis, and biochemical analysis. Remarkably, WIN-62577, and fluspirilene, the small molecules targeting the conserved peptide-binding pocket in G3BP1NTF-2, not only disrupted the protein-protein interactions (PPIs) between NTD-N41-174 and G3BP1NTF-2 but also exhibited significant antiviral efficacy against SARS-CoV-2 replication with EC50 values of ∼1.8 and ∼1.3 μM, respectively. The findings of this study, validated by biophysical thermodynamics and biochemical investigations, advance the potential of developing therapeutics targeting the SG host protein against SARS-CoV-2, which may also serve as a broad-spectrum antiviral target.
Collapse
Affiliation(s)
- Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prasan Kumar Panda
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh 249203, India
| | - Gaurav Kumar Sharma
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
35
|
Yang Q, Guo H, Li H, Li Z, Ni F, Wen Z, Liu K, Kong H, Wei W. The CXCL8/MAPK/hnRNP-K axis enables susceptibility to infection by EV-D68, rhinovirus, and influenza virus in vitro. Nat Commun 2025; 16:1715. [PMID: 39962077 PMCID: PMC11832783 DOI: 10.1038/s41467-025-57094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Respiratory viruses pose an ongoing threat to human health with excessive cytokine secretion contributing to severe illness and mortality. However, the relationship between cytokine secretion and viral infection remains poorly understood. Here we elucidate the role of CXCL8 as an early response gene to EV-D68 infection. Silencing CXCL8 or its receptors, CXCR1/2, impedes EV-D68 replication in vitro. Upon recognition of CXCL8 by CXCR1/2, the MAPK pathway is activated, facilitating the translocation of nuclear hnRNP-K to the cytoplasm. This translocation increases the recognition of viral RNA by hnRNP-K in the cytoplasm, promoting the function of the 5' untranslated region in the viral genome. Moreover, our investigations also reveal the importance of the CXCL8 signaling pathway in the replication of both influenza virus and rhinovirus. In summary, our findings hint that these viruses exploit the CXCL8/MAPK/hnRNP-K axis to enhance viral replication in respiratory cells in vitro.
Collapse
Affiliation(s)
- Qingran Yang
- Department of Respiration, Children's Medical Center, First Hospital, Jilin University, Changchun, Jilin, China
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhaoxue Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Fushun Ni
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhongmei Wen
- Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, Jilin, China.
- Cancer Center, Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
36
|
Abueldahab L, Suwanmanee Y, Muriungi N, Ohsakai E, Wada M, Kimura-Ohba S, Ueda K. Analysis of the Functional Role of TIMM29 in the Hepatitis B Virus Life Cycle. Microbiol Immunol 2025. [PMID: 39956808 DOI: 10.1111/1348-0421.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis B, which can progress to liver cirrhosis and hepatocellular carcinoma. HBV has complex interactions with various cell organelles and proteins that ensure effective progeny virus production. We previously reported that a mitochondrial protein, TIMM29, should regulate the HBV life cycle through interactions with the HBV preS1 protein. Here, we established Halo-TIMM29wt-, Halo-TIMM29:∆99-192-, and Halo-TIMM29:92-194-expressing cells using TIMM29-knockout HB611 (TIMM29KO/HB611) cells, a stably HBV-producing cell line based on Huh6 cells. We found that HBV antigen expression and replication were downregulated in cells stably expressing full-length TIMM29, but not in those expressing TIMM29 deletion mutants. On the other hand, in the case of TIMM29-knockout C4 (TIMM29KO/C4), which is a human NTCP-expressing HepG2 cell line that is competent for HBV infection and amplification, these phenomena were not reproduced, except in full-length TIMM29 (Halo-TIMM29wt)-expressing cells. Using gene expression microarrays, we identified downregulation of ARRDC3 and BASP1 in TIMM29KO/HB611 and TIMM29KO/C4. It was suggested that TIMM29 localized at the mitochondrial inner membrane served as a signaling hub, orchestrating the activation of ARRDC3 and BASP1 expression to restrict HBV transcription. The expression of TIMM29 mutants in TIMM29KO/HB611 and TIMM29KO/C4 cells suggested that ARRDC3 was dependent on the HBV preS1-binding region of TIMM29 (amino acids 99-189). In contrast, BASP1 expression varied according to cell type, indicating additional regulatory mechanisms. Thus, this study should significantly advance our understanding of TIMM29-mediated inhibition of HBV amplification and lead to improvements in antiviral strategies and therapeutic interventions against HBV.
Collapse
Affiliation(s)
- Limia Abueldahab
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yadarat Suwanmanee
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nelly Muriungi
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eriko Ohsakai
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masami Wada
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shihoko Kimura-Ohba
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
37
|
Burkova EE, Bakhno IA. Sequences in the Cytoplasmic Tail Contribute to the Intracellular Trafficking and the Cell Surface Localization of SARS-CoV-2 Spike Protein. Biomolecules 2025; 15:280. [PMID: 40001583 PMCID: PMC11853650 DOI: 10.3390/biom15020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Spike protein is a surface glycoprotein of the SARS-CoV-2 coronavirus, providing interaction of the coronavirus with angiotensin-converting enzyme 2 (ACE2) on the host cell. The cytoplasmic tail of the S protein plays an important role in an intracellular transport and translocation of the glycoprotein to the plasma membrane. The cytoplasmic domain of the S protein contains binding sites for COPI, COPII, and SNX27, which are required for the intracellular trafficking of this glycoprotein. In addition, the cytoplasmic domain of the S protein contains S-palmitoylation sites. S-palmitoylation increases the hydrophobicity of the S protein by regulating its transport to the plasma membrane. The cytoplasmic tail of the S protein has a signaling sequence that provides interaction with the ERM family proteins, which may mediate communication between the cell membrane and the actin cytoskeleton. This review examines the role of the cytoplasmic tail of the SARS-CoV-2 S protein in its intracellular transport and translocation to the plasma membrane. Understanding these processes is necessary not only for the development of vaccines based on mRNA or adenovirus vectors encoding the full-length spike (S) protein, but also for the therapy of the new coronavirus infection (COVID-19).
Collapse
Affiliation(s)
- Evgeniya E. Burkova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
38
|
Qudus MS, Afaq U, Liu S, Wu K, Yu C, Tian M, Wu J. SARS-CoV-2-ORF-3a Mediates Apoptosis Through Mitochondrial Dysfunction Modulated by the K + Ion Channel. Int J Mol Sci 2025; 26:1575. [PMID: 40004042 PMCID: PMC11855091 DOI: 10.3390/ijms26041575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes pulmonary edema, which disrupts the lung alveoli-capillary barrier and leads to pulmonary cell apoptosis, the main cause of death. However, the molecular mechanism behind SARS-CoV-2's apoptotic activity remains unknown. Here, we revealed that SARS-CoV-2-ORF-3a mediates the pulmonary pathology associated with SARS-CoV-2, which is demonstrated by the fact that it causes lung tissue damage. The in vitro results showed that SARS-CoV-2-ORF-3a triggers cell death via the disruption of mitochondrial homeostasis, which is modulated through the regulation of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP). The addition of exogenous Potassium (K+) in the form of potassium chloride (KCl) attenuated mitochondrial apoptosis along with the inflammatory interferon response (IFN-β) triggered by SARS-ORF-3a. The addition of exogenous K+ strongly suggests that dysregulation of K+ ion channel function is the central mechanism underlying the mitochondrial dysfunction and stress response induced by SARS-CoV-2-ORF-3a. Our results designate that targeting the potassium channel or its interactions with ORF-3a may represent a promising therapeutic strategy to mitigate the damaging effects of infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Chen Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China or (M.S.Q.); (U.A.); (S.L.); (K.W.); (J.W.)
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
39
|
Molina Molina E, Bech-Serra JJ, Franco-Trepat E, Jarne I, Perez-Zsolt D, Badia R, Riveira-Muñoz E, Garcia-Vidal E, Revilla L, Franco S, Tarrés-Freixas F, Roca N, Ceada G, Kochanowski K, Raïch-Regué D, Erkizia I, Boreika R, Bordoy AE, Soler L, Guil S, Carrillo J, Blanco J, Martínez MÁ, Paredes R, Losada A, Aviles P, Cuevas C, Vergara-Alert J, Segalés J, Clotet B, Ballana E, de la Torre C, Izquierdo-Useros N. Targeting eEF1A reprograms translation and uncovers broad-spectrum antivirals against cap or m 6A protein synthesis routes. Nat Commun 2025; 16:1087. [PMID: 39920115 PMCID: PMC11805953 DOI: 10.1038/s41467-025-56151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Plitidepsin is an antitumoral compound safe for treating COVID-19 that targets the translation elongation factor eEF1A. Here we detect that plitidepsin decreases de novo cap-dependent translation of SARS-CoV-2 and non-viral RNAs but affects less than 13% of the host proteome, thus preserving cellular viability. In response to plitidepsin, cells upregulate EIF2AK3 and proteins that reduce translation, but also proteins that support proteostasis via ribosome synthesis and cap-independent translation by eIF4G2 and IGF2BP2. While plitidepsin inhibits cap- or internal ribosome entry sites (IRES)-mediated translation, its impact on N6-methyladenosine (m6A) translation is limited. In agreement, plitidepsin blocks members of Coronaviridae, Flaviviridae, Pneumoviridae and Herpesviridae families. Yet, it fails to inhibit retroviruses that exploit m6A synthesis routes and are blocked by drugs targeting IGF2BP2 m6A reader. By deciphering the molecular fingerprint of cells treated with therapies targeting translation we identify a rational approach to select broad-spectrum antivirals with potential to counteract future pandemic viruses.
Collapse
Affiliation(s)
- Elisa Molina Molina
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Joan Josep Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eloi Franco-Trepat
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ignasi Jarne
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Daniel Perez-Zsolt
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Roger Badia
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Edurne Garcia-Vidal
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Lluís Revilla
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ferran Tarrés-Freixas
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Núria Roca
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Gerardo Ceada
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Karl Kochanowski
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Itziar Erkizia
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Rytis Boreika
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Antoni E Bordoy
- Microbiology Department, Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Laia Soler
- Microbiology Department, Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Martínez
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Roger Paredes
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Ballana
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina de la Torre
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Fontana A, Tafuri F, Abraham A, Bianco S, Esposito A, Conte M, Vercellone F, Pierno FD, Guha S, Carluccio CD, Chiariello AM. Polymer models of chromatin organization in virally infected cells. Biochem Soc Trans 2025; 53:BST20240598. [PMID: 39927819 DOI: 10.1042/bst20240598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
Genome architecture is closely tied to essential biological functions, yet a complete understanding of the mechanisms governing DNA folding remains a significant challenge. Theoretical models based on polymer physics have been applied to decipher the complexity of chromatin architecture and uncover the physical processes shaping its structure. Importantly, recent findings suggest that certain viruses can alter the 3D organization of the host genome. In this review, we highlight recent advances in the development of polymer models used to study how chromatin 3D structure within a cell re-organizes following viral infection, with a particular emphasis on the SARS-CoV-2 virus, capable of altering genome organization of the host cell at different scales, including A/B compartments, TADs and gene-enhancer regulatory contacts.
Collapse
Affiliation(s)
- Andrea Fontana
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabrizio Tafuri
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Francesca Vercellone
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Florinda Di Pierno
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Sougata Guha
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Ciro Di Carluccio
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale - DICMaPI, Università degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| |
Collapse
|
41
|
Hoffmann PC, Kim H, Obarska-Kosinska A, Kreysing JP, Andino-Frydman E, Cruz-León S, Margiotta E, Cernikova L, Kosinski J, Turoňová B, Hummer G, Beck M. Nuclear pore permeability and fluid flow are modulated by its dilation state. Mol Cell 2025; 85:537-554.e11. [PMID: 39729993 DOI: 10.1016/j.molcel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D. discoideum to quantify fluid flow across NPCs. D. discoideum has an elaborate NPC structure in situ. Its dilation state affects NPC permeability for nucleocytosolic flow. Based on mathematical concepts adapted from hydrodynamics, we conceptualize this phenomenon as porous flow across NPCs, which is distinct from canonically characterized modes of nucleocytoplasmic transport because of its dependence on pressure. Viral NPC blockage decreased nucleocytosolic flow. Our results may be relevant for any biological conditions that entail rapid nuclear size adaptation, including metastasizing cancer cells, migrating cells, or differentiating tissues.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Hyuntae Kim
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Agnieszka Obarska-Kosinska
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Eli Andino-Frydman
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Erica Margiotta
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Lenka Cernikova
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory Hamburg, 22607 Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Tian L, Wan E, Celine Chui SL, Li S, Chan E, Luo H, Wong ICK, Zhang Q. Deciphering the molecular mechanism of post-acute sequelae of COVID-19 through comorbidity network analysis. CHAOS (WOODBURY, N.Y.) 2025; 35:021102. [PMID: 39977305 DOI: 10.1063/5.0250923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 02/22/2025]
Abstract
The post-acute sequelae of COVID-19 (PASC) poses a significant health challenge in the post-pandemic world. However, the underlying biological mechanisms of PASC remain intricate and elusive. Network-based methods can leverage electronic health record data and biological knowledge to investigate the impact of COVID-19 on PASC and uncover the underlying biological mechanisms. This study analyzed territory-wide longitudinal electronic health records (from January 1, 2020 to August 31, 2022) of 50 296 COVID-19 patients and a healthy non-exposed group of 100 592 individuals to determine the impact of COVID-19 on disease progression, provide molecular insights, and identify associated biomarkers. We constructed a comorbidity network and performed disease-protein mapping and protein-protein interaction network analysis to reveal the impact of COVID-19 on disease trajectories. Results showed disparities in prevalent disease comorbidity patterns, with certain patterns exhibiting a more pronounced influence by COVID-19. Overlapping proteins elucidate the biological mechanisms of COVID-19's impact on each comorbidity pattern, and essential proteins can be identified based on their weights. Our findings can help clarify the biological mechanisms of COVID-19, discover intervention methods, and decode the molecular basis of comorbidity associations, while also yielding potential biomarkers and corresponding treatments for specific disease progression patterns.
Collapse
Affiliation(s)
- Lue Tian
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Eric Wan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| | - Sze Ling Celine Chui
- Laboratory of Data Discovery for Health, Hong Kong, China
- School of Nursing, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shirely Li
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Chan
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| | - Hao Luo
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
- School of Public Health Sciences, The University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Ian C K Wong
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
- School of Pharmacy, Aston University, Birmingham B4 7ET, United Kingdom
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong, China
| |
Collapse
|
43
|
Ashique S, Mishra N, Garg A, Garg S, Farid A, Rai S, Gupta G, Dua K, Paudel KR, Taghizadeh-Hesary F. A Critical Review on the Long-Term COVID-19 Impacts on Patients With Diabetes. Am J Med 2025; 138:308-329. [PMID: 38485111 DOI: 10.1016/j.amjmed.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The world is currently grappling with the potentially life-threatening coronavirus disease 2019 (COVID-19), marking it as the most severe health crisis in the modern era. COVID-19 has led to a pandemic, with the World Health Organization (WHO) predicting that individuals with diabetes are at a higher risk of contracting the virus compared to the general population. This review aims to provide a practical summary of the long-term impacts of COVID-19 on patients with diabetes. Specifically, it focuses on the effects of SARS-CoV-2 on different types of diabetic patients, the associated mortality rate, the underlying mechanisms, related complications, and the role of vitamin D and zinc in therapeutic and preventive approaches. METHODS Relevant literature was identified through searches on PubMed, Web of Science, and Science Direct in English, up to April 2023. RESULTS COVID-19 can lead to distressing symptoms and pose a significant challenge for individuals living with diabetes. Older individuals and those with pre-existing conditions such as diabetes, coronary illness, and asthma are more susceptible to COVID-19 infection. Managing COVID-19 in individuals with diabetes presents challenges, as it not only complicates the fight against the infection but also potentially prolongs the recovery time. Moreover, the virus may thrive in individuals with high blood glucose levels. Various therapeutic approaches, including antidiabetic drugs, are available to help prevent COVID-19 in diabetic patients. CONCLUSIONS Diabetes increases the morbidity and mortality risk for patients with COVID-19. Efforts are globally underway to explore therapeutic interventions aimed at reducing the impact of diabetes on COVID-19.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh, India
| | - Ashish Garg
- Drug Delivery and Nanotechnology Laboratories, Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Kukrikheda, Barela, Jabalpur, Madhya Pradesh, India
| | - Sweta Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Shweta Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Gyan Vihar Marg, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Sanei ZS, Shahrahmani F, Khaleghi Manesh B, Hamidi-Alamdari D, Mehrad-Majd H, Mavaji Darban B, Mirdoosti SM, Seddigh-Shamsi M. Methylene blue for COVID-19 ARDS: insights from a randomized Clinical Trial. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1915-1924. [PMID: 39207597 DOI: 10.1007/s00210-024-03371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Around the world, the COVID-19 pandemic has presented many difficulties, and acute respiratory distress syndrome (ARDS) has become a major worry. The antiviral and anti-inflammatory characteristics of methylene blue (MB) have garnered interest for potential medicinal applications. The object of the current study is to assess the effect of orally administered MB on the treatment of ARDS associated with COVID-19. METHOD A randomized clinical study was carried out on 122 hospitalized patients who had ARDS related to COVID-19. Patients who met the eligibility requirements were randomized at random to either the control group (CG) (n = 60) or the intervention group (IG) (n = 62). Standard treatments were administered to both groups, with the addition of oral MB to the IG. Clinical outcomes, including SpO2 levels, CRP levels were assessed on the third and fifth days. Additionally, at the time of discharge, patients' assessments were made in terms of APACHE II scores, SOFA scores, LDH and CRP levels, SpO2, and respiratory rate in comparison to the day prior to the intervention. Patients were followed for mortality outcomes at one month and three months after the intervention. RESULTS Significant changes were observed in SpO2 levels over time (P < 0.001) and between groups (P = 0.022), with higher levels in the MB-treated group. The interaction between time and group (P = 0.019) indicated a stronger increase in SpO2 in the IG, with the IG's SpO2 level increasing by 6.42%. Furthermore, CRP levels showed significant changes over time (P < 0.001), but not between groups (P = 0.092). However, the interaction between group and CRP change over time (P = 0.019) suggested a distinct pattern of CRP decrease in the IG. Significant improvement in RR, SpO2, CRP, and APACHE II score were found according to discharge results. However, in terms of SpO2 and the APACHE II score, this improvement was noteworthy for IG. The length of hospitalization and mortality rates at one- and three-month follow-ups did not differ significantly. CONCLUSION Oral administration of MB demonstrated positive effects on improving SpO2 levels and reducing inflammatory markers in COVID-19-related ARDS patients. Despite no significant impact on survival rates or hospitalization length, the study supports the potential efficacy of MB as an alternative treatment for COVID-19 ARDS. TRIAL REGISTRATION This study was registered with the Iranian Registry of Clinical Trials ( http://www.irct.ir ) under the registration code IRCT20200409047007N2 on 11/29/2021.
Collapse
Affiliation(s)
- Zahra Sadat Sanei
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Shahrahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behrooz Khaleghi Manesh
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hassan Mehrad-Majd
- Clinical Research Development Unit, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Mavaji Darban
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohsen Seddigh-Shamsi
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
46
|
Yang L, Zeng XT, Luo RH, Tang Y, Ren SX, Long XY, Fu XH, Zhang WJ, Ren HY, Zheng YT, Cheng W. CRTC3 restricts SARS-CoV-2 replication and is antagonized by CREB. Virol Sin 2025; 40:92-108. [PMID: 39736320 DOI: 10.1016/j.virs.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Virus-encoding RNA-dependent RNA polymerase (RdRp) is essential for genome replication and gene transcription of human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3 (CRTC3), a member of the CRTC family that regulates cyclic AMP response element-binding protein (CREB)-mediated transcriptional activation. Currently, the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood. Herein, we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication, therefore reducing the production of progeny viruses. The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity. Furthermore, we expanded the suppressive effects of two other CRTC family members (CRTC1 and CRTC2) on the RdRp activities of lethal HCoVs, including SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), along with the CREB antagonization. Overall, our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB, which not only provides new insights into the replication regulation of HCoVs, but also offers important information for the development of anti-HCoV interventions.
Collapse
Affiliation(s)
- Li Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao-Tao Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Research and Innovation Center, Pengzhou People's Hospital, Pengzhou 610000, China
| | - Rong-Hua Luo
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Tang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Si-Xue Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin-Yan Long
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Hui Fu
- Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832003, China
| | - Hai-Yan Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
47
|
Shen X, Zhang H, Zhang P, Zhao X, Liu C, Ju J, Liu A, Wang S. Decoding SARS-CoV-2 Inhibition: Insights From Molecular Dynamics Simulation of Condensed Amino Thiourea Scaffold Small Molecules. J Cell Biochem 2025; 126:e70005. [PMID: 39987526 DOI: 10.1002/jcb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) plays a crucial role in viral replication. In this study, the binding modes and inhibitory mechanisms of eight condensed amino thiourea scaffold inhibitors of Mpro in proteins were investigated using a combination of molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. The results indicated that the para-hydroxyl group on the benzene ring at the head of the inhibitor has a decisive influence on the initial docking pose and binding free energy strength of the inhibitor. Additionally, the position and length of the hydrophobic side chain on the tail six-membered ring significantly impacted the final binding pose of the inhibitor. The presence of a long hydrophobic side chain in the ortho position of this ring, through its interaction with the P4 hydrophobic pocket, led to an opposite binding mode in the protein compared with when it was present with or without the para-side chain. Different lengths of para-substituted side chains affected the positioning of the inhibitors in the enzyme. These different binding modes led to variations in the binding free energy between the inhibitor and the protein, which in turn gave rise to differences in inhibitory capability.
Collapse
Affiliation(s)
- Xiaoli Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Hao Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Pengyin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xuerui Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Chang Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jianan Ju
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Aijun Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Song Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
48
|
Zodda E, Pons M, DeMoya-Valenzuela N, Calvo-González C, Benítez-Rodríguez C, López-Ayllón BD, Hibot A, Zuin A, Crosas B, Cascante M, Montoya M, Pujol MD, Rubio-Martínez J, Thomson TM. Induction of the Inflammasome by the SARS-CoV-2 Accessory Protein ORF9b, Abrogated by Small-Molecule ORF9b Homodimerization Inhibitors. J Med Virol 2025; 97:e70145. [PMID: 39902616 DOI: 10.1002/jmv.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 02/05/2025]
Abstract
Viral accessory proteins play critical roles in viral escape from host innate immune responses and in viral inflammatory pathogenesis. Here we show that the SARS-CoV-2 accessory protein, ORF9b, but not other SARS-CoV-2 accessory proteins (ORF3a, ORF3b, ORF6, ORF7, ORF8, ORF9c, and ORF10), strongly activates inflammasome-dependent caspase-1 in A549 lung carcinoma cells and THP-1 monocyte-macrophage cells. Exposure to lipopolysaccharide (LPS) and ATP additively enhanced the activation of caspase-1 by ORF9b, suggesting that ORF9b and LPS follow parallel pathways in the activation of the inflammasome and caspase-1. Following rational in silico approaches, we have designed small molecules capable of inhibiting the homodimerization of ORF9b, which experimentally inhibited ORF9b-ORF9b homotypic interactions, caused mitochondrial eviction of ORF9b, inhibited ORF9b-induced activation of caspase-1 in A549 and THP-1 cells, cytokine release in THP-1 cells, and restored type I interferon (IFN-I) signaling suppressed by ORF9b in both cell models. These small molecules are first-in-class compounds targeting a viral accessory protein critical for viral-induced exacerbated inflammation and escape from innate immune responses, with the potential of mitigating the severe immunopathogenic damage induced by highly pathogenic coronaviruses and restoring antiviral innate immune responses curtailed by viral infection.
Collapse
Grants
- This work was funded by the Spanish National Research Council (CSIC, project numbers CSIC-COV19-006, CSIC-COV-19-201, CSIC-COV-19-117, SGL2103019, SGL2103015, 202020E079 and 202320E187 and LINCGLOBAL INCGL20009), the Catalan Agency for Management of University and Research Grants (AGAUR, 2020PANDE00048, 2021SGR1490, 2021SGR00350), the Spanish Ministry of Science (PID2021-123399OB-I00), the CSIC's Global Health Platform (PTI Salud Global), The Networked Center for Biomedical Research in Liver and Digestive Diseases (CIBER-EHD), the Spanish Structures and Excellence María de Maeztu program (CEX2021-001202-M), the European Commission-Next Generation EU (Regulation EU 2020/2094), and INDICASAT-AIP.
Collapse
Affiliation(s)
- Erika Zodda
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Mònica Pons
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Natàlia DeMoya-Valenzuela
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Cristina Calvo-González
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Cristina Benítez-Rodríguez
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Blanca D López-Ayllón
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Achraf Hibot
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Alice Zuin
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Bernat Crosas
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - María Montoya
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - María D Pujol
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Timothy M Thomson
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
- High-Altitude Research Institute (IIA), Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| |
Collapse
|
49
|
Van Loy B, Pujol E, Kamata K, Lee XY, Bakirtzoglou N, Van Berwaer R, Vandeput J, Mestdagh C, Persoons L, De Wijngaert B, Goovaerts Q, Noppen S, Jacquemyn M, Ahmadzadeh K, Bernaerts E, Martín-López J, Escriche C, Vanmechelen B, Krasniqi B, Singh AK, Daelemans D, Maes P, Matthys P, Dehaen W, Rozenski J, Das K, Voet A, Vázquez S, Naesens L, Stevaert A. A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses. PLoS Pathog 2025; 21:e1012571. [PMID: 39932973 PMCID: PMC11856660 DOI: 10.1371/journal.ppat.1012571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.
Collapse
Affiliation(s)
- Benjamin Van Loy
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Kenichi Kamata
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Nikolai Bakirtzoglou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Ria Van Berwaer
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Julie Vandeput
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Cato Mestdagh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Quinten Goovaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Eline Bernaerts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Juan Martín-López
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Celia Escriche
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Besir Krasniqi
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Abhimanyu K. Singh
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jef Rozenski
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Monaghan RM. The fundamental role of mitochondria-endoplasmic reticulum contacts in ageing and declining healthspan. Open Biol 2025; 15:240287. [PMID: 39933574 DOI: 10.1098/rsob.240287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
This open question research article highlights mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), which have emerged as crucial cellular structures that challenge our traditional understanding of organelle function. This review highlights the critical importance of MAMs as a frontier in cell biology with far-reaching implications for health, disease and ageing. MAMs serve as dynamic communication hubs between the ER and mitochondria, orchestrating essential processes such as calcium signalling, lipid metabolism and cellular stress responses. Recent research has implicated MAM dysfunction in a wide array of conditions, including neurodegenerative diseases, metabolic disorders, cardiovascular diseases and cancer. The significant lack of biological knowledge behind MAM function emphasizes the need to study these enigmatic subcellular sites in greater detail. Key open questions include the mechanisms controlling MAM formation and disassembly, the full complement of MAM-associated proteins and how MAMs contribute to cellular decision-making and ageing processes. Advancing our understanding of MAMs through interdisciplinary approaches and cutting-edge technologies promises to reveal new insights into fundamental cellular signalling pathways and potentially lead to innovative therapeutic strategies for a range of diseases. As such, MAM research represents a critical open question in biology with the potential to transform our understanding of cellular life and human health.
Collapse
Affiliation(s)
- Richard M Monaghan
- British Heart Foundation Centre of Research Excellence Manchester, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, The AV Hill Building, Manchester M13 9PT, UK
| |
Collapse
|