1
|
Sanchez-Garcia MA, Lara-Ureña N, March-Diaz R, Ortega-de San Luis C, Quiñones-Cañete S, Mora-Romero B, Barba-Reyes JM, Cabello-Rivera D, Romero-Molina C, Heras-Garvin A, Navarro V, Lopez-Barneo J, Vizuete M, Vitorica J, Muñoz-Cabello AM, Muñoz-Manchado AB, Cokman ME, Rosales-Nieves AE, Pascual A. Inactivation of the PHD3-FOXO3 axis blunts the type I interferon response in microglia and ameliorates Alzheimer's disease progression. SCIENCE ADVANCES 2025; 11:eadu2244. [PMID: 40435260 PMCID: PMC12118632 DOI: 10.1126/sciadv.adu2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025]
Abstract
Microglia respond to Alzheimer's disease (AD) with varied transcriptional responses. We show that oligomeric Aß (oAß) induces the expression of Hif1a and Egln3 in microglia in vitro, together with the transcription of the type I interferon signature (IFNS) genes in a PHD3-dependent manner. We identify FOXO3 as a repressor of IFNS, whose abundance decreases upon PHD3 induction in response to oAß. In vivo, loss of PHD3 correlates with abrogation of the IFNS and activation of the disease-associated microglia signature, an increase in microglia proximity to Aß plaques and phagocytosis of both Aß and small plaques. PHD3 deficiency mitigated the Aß plaque-associated neuropathology and rescued behavioral deficits of an AD mouse model. Last, we demonstrate that microglial PHD3 overexpression in the absence of Aß pathology is sufficient to induce the IFNS and behavioral alterations. Together, our data strongly indicate that the inactivation of the PHD3-FOXO3 axis controls the microglial IFNS in a cell autonomous manner, improving AD outcome.
Collapse
Affiliation(s)
- Manuel A. Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Silvia Quiñones-Cañete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Bella Mora-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Juan M. Barba-Reyes
- Departamento de Neurociencias. Unidad de Biología Celular. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). Universidad de Cádiz, Cadiz, Spain
| | - Daniel Cabello-Rivera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio Heras-Garvin
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Victoria Navarro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Ana B. Muñoz-Manchado
- Departamento de Neurociencias. Unidad de Biología Celular. Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). Universidad de Cádiz, Cadiz, Spain
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
- Ciber of Mental Health (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Matthew E. Cokman
- Hypoxia Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Alicia E. Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
2
|
Liu X, Baxley S, Hebron M, Turner RS, Moussa C. Resveratrol Attenuates CSF Markers of Neurodegeneration and Neuroinflammation in Individuals with Alzheimer's Disease. Int J Mol Sci 2025; 26:5044. [PMID: 40507855 PMCID: PMC12155158 DOI: 10.3390/ijms26115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by amyloid-beta (Aβ) accumulation and neuroinflammation. A previous multicenter, phase 2, double-blind, placebo-controlled trial randomized 179 participants into placebo or resveratrol over 52 weeks. Sub-analysis of CSF biomarkers of neuronal damage, inflammation, and microglial activity was performed in a subset of patients treated with a placebo (n = 21) versus resveratrol (n = 30). Markers of neuronal damage, including neuron-specific enolase and hyperphosphorylated neurofilaments, were reduced. Microglial activation was measured via a triggering receptor expressed on myeloid cells (TREM)-2 at baseline and after resveratrol treatment. Resveratrol significantly reduced CSF TREM2 levels and decreased inflammation and tissue damage, including matrix metalloprotease (MMP)-9. Cathepsin D, a lysosomal marker of autophagy, was reduced in the resveratrol group compared with placebo, while angiogenin, a marker of vascular angiogenesis, was increased. These data suggest that resveratrol may exert anti-inflammatory and neuroprotective effects in AD by reducing CSF TREM2 and other markers of neuronal damage. Further research is needed to assess the significance of these biomarker changes on clinical outcomes in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; (X.L.); (S.B.); (M.H.)
| | - Sean Baxley
- Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; (X.L.); (S.B.); (M.H.)
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline Hebron
- Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; (X.L.); (S.B.); (M.H.)
| | - Raymond Scott Turner
- Memory Disorders Program, Department of Neurology, Georgetown University, Washington, DC 20057, USA;
| | - Charbel Moussa
- Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC 20057, USA; (X.L.); (S.B.); (M.H.)
| |
Collapse
|
3
|
Zhu B, Feng J, Liang X, Fu Z, Liao M, Deng T, Wang K, Xie J, Chi J, Yang L, Gao Y, Nie K, Wang L, Zhang P, Zhang Y. TREM2 deficiency exacerbates cognitive impairment by aggravating α-Synuclein-induced lysosomal dysfunction in Parkinson's disease. Cell Death Discov 2025; 11:243. [PMID: 40393958 DOI: 10.1038/s41420-025-02538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/27/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025] Open
Abstract
Cognitive impairment in Parkinson's disease (PD) is a widespread and rapidly progressive feature that impacts prognosis. Although TREM2 has been implicated in neuroprotection across various neurodegenerative diseases, its specific role in PD remains to be clarified. In this study, we first detected the hippocampus of human PD specimens and of the mutant A53T α-Synuclein transgenic mice (A53T mice), and found a significant increase in the number of TREM2+ microglia. To evaluate the effects of TREM2 deficiency, TREM2-deficient A53T mice (TREM2-/-/A53T mice) were generated. In these mice, exacerbated cognitive impairment, neurodegeneration, disruption of synaptic plasticity, and accumulation of pathological α-Synuclein (α-Syn) in the hippocampus were observed, without any detected motor dysfunction. Despite increased infiltration of activated microglia surrounding α-Syn aggregates, lysosomal dysfunction in microglia was aggravated in the TREM2-/-/A53T mice. In addition, transcriptional analyses and in vitro experiments further found that TREM2 knockdown inhibited the nuclear distribution of TFEB via the ERK1/2 pathway, exacerbating α-Syn-induced lysosomal dysfunction and causing more pathological α-Syn accumulation. Finally, HT22 cells were cocultured with TREM2 knockdown of BV-2 cells pretreated with recombinant human A53T α-Syn preformed fibrils (PFFs). The coculture experiments showed that TREM2 knockdown in BV-2 cells pretreated with PFFs enhanced the phosphorylation of α-Syn and promoted apoptosis in HT22 cells via inhibiting α-Syn degradation. In conclusion, TREM2 deficiency exacerbates cognitive impairment in PD by exacerbating α-Syn-induced microglial lysosomal dysfunction, identifying TREM2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Jiezhu Feng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Zhongling Fu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Mengshi Liao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Tongtong Deng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Kaicheng Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Jianwei Xie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
- Department of Neurology, Longyan First Hospital, Fujian Province, China
| | - Jieshan Chi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Lu Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Zhu W, Zhou Y, Wang Y, Guo L, Liu C. TREM2 in cardiovascular diseases: Mechanisms and therapeutic perspectives. Ageing Res Rev 2025; 109:102774. [PMID: 40381736 DOI: 10.1016/j.arr.2025.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/04/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, with immune responses playing a central role in their pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) is a key immune regulator in CVDs, influencing inflammation, lipid metabolism, and tissue repair. This review comprehensively examines TREM2's structure, function, and signaling pathways, highlighting its roles in atherosclerosis, myocardial infarction, hypertension, atrial fibrillation, and heart failure. In atherosclerosis, macrophages with high TREM2 expression (TREM2hi macrophages) promote plaque progression in early stages but enhance plaque stability in advanced stages. In myocardial infarction, TREM2 modulates macrophage diversity and efferocytosis, aiding cardiac repair. TREM2 also plays a protective role in hypertensive heart disease by reducing inflammation and promoting tissue repair. Challenges in targeting TREM2 therapeutically include its context-dependent effects and complex signaling pathways. Future research should focus on elucidating TREM2's mechanisms in CVDs and developing stage-specific therapies.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.
| | - Yufan Wang
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China.
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, PR China.
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, PR China.
| |
Collapse
|
5
|
Campagner A, Marconi L, Bianchi E, Arosio B, Rossi P, Annoni G, Lucchi TA, Montano N, Cabitza F. Uncovering hidden subtypes in dementia: An unsupervised machine learning approach to dementia diagnosis and personalization of care. J Biomed Inform 2025; 165:104799. [PMID: 40118356 DOI: 10.1016/j.jbi.2025.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 02/01/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Dementia represents a growing public health challenge, affecting an increasing number of individuals. It encompasses a broad spectrum of cognitive impairments, ranging from mild to severe stages, each of which demands varying levels of care. Current diagnostic approaches often treat dementia as a uniform condition, potentially overlooking clinically significant subtypes, which limits the effectiveness of treatment and care strategies. This study seeks to address the limitations of traditional diagnostic methods by applying unsupervised machine learning techniques to a large, multi-modal dataset of dementia patients (encompassing multiple data sources including clinical, demographic, gene expression and protein concentrations), with the aim of identifying distinct subtypes within the population. The primary focus is on differentiating between mild and severe stages of dementia to improve diagnostic accuracy and personalize treatment plans. METHODS The dataset analyzed included 911 individuals, described by 157 multi-modal characteristics, encompassing clinical, genomic, proteomic and sociodemographic features. After handling missing data, the dataset was reduced to 561 rows and 135 columns. Various dimensionality reduction techniques were applied to improve the feature-to-patient ratio, and unsupervised clustering methods were employed to identify potential subtypes. The major novelty in our methodology regards the combination of different techniques, bridging high-dimensional statistical inference, multi-modal dimensionality reduction and clustering analysis, to appropriately model the multi-modal nature of the data and ensure clinical relevance. RESULTS The analysis revealed distinct clusters within the dementia population, each characterized by specific clinical and demographic profiles. These profiles included variations in biomarkers, cognitive scores, and disability levels. The findings suggest the presence of previously unrecognized subgroups, distinguished by their genomic, proteomic, and clinical characteristics. CONCLUSION This study demonstrates that unsupervised machine learning can effectively identify clinically relevant subtypes of dementia, with important implications for diagnosis and personalized treatment. Further research is required to validate these findings and investigate their potential to improve patient outcomes.
Collapse
Affiliation(s)
| | - Luca Marconi
- Department of Computer Science, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Edoardo Bianchi
- Department of Computer Science, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Rossi
- General Medicine, Hospital San Leopoldo Mandic, Merate, Italy
| | - Giorgio Annoni
- Department of Medicine, University of Milano-Bicocca, Milan, Italy
| | | | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Cabitza
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy; Department of Computer Science, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
6
|
Islam R, Choudhary HH, Zhang F, Mehta H, Yoshida J, Thomas AJ, Hanafy K. Microglial TLR4-Lyn kinase is a critical regulator of neuroinflammation, Aβ phagocytosis, neuronal damage, and cell survival in Alzheimer's disease. Sci Rep 2025; 15:11368. [PMID: 40175501 PMCID: PMC11965285 DOI: 10.1038/s41598-025-96456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
Disease-Associated Microglia (DAM) are a focus in Alzheimer's disease (AD) research due to their central involvement in the response to amyloid-beta plaques. Microglial Toll-like receptor 4 (TLR4) is instrumental in the binding of fibrillary amyloid proteins, while Lyn kinase (Lyn) is a member of the Src family of non-receptor tyrosine kinases involved in immune signaling. Lyn is a novel, non-canonical, intracellular adaptor with diverse roles in cell-specific signaling which directly binds to TLR4 to modify its function. Lyn can be activated in response to TLR4 stimulation, leading to phosphorylation of various substrates and modulation of inflammatory and phagocytosis signaling pathways. Here, we investigated the TLR4-Lyn interaction in neuroinflammation using WT, 5XFAD, and 5XFAD x Lyn-/- mouse models by western blotting (WB), co-immunoprecipitation (co-IP), immunohistochemistry (IHC) and flow cytometric (FC) analysis. A spatial transcriptomic analysis of microglia in WT, 5XFAD, and 5XFAD x Lyn-/- mice revealed essential genes involved in neuroinflammation, Aβ phagocytosis, and neuronal damage. Finally, we explored the effects of a synthetic, TLR4-Lyn modulator protein (TLIM) through an in vitro AD model using primary murine microglia. Our WB, co-IP, IHC, and FC data show an increased, novel, direct protein-protein interaction between TLR4 and Lyn kinase in the brains of 5XFAD mice compared to WT. Furthermore, in the absence of Lyn (5XFAD x Lyn-/- mice); increased expression of protective Syk kinase was observed, enhanced microglial Aβ phagocytosis, increased astrocyte activity, decreased neuronal dystrophy, and a further increase in the cell survival signaling and protective DAM population was noted. The DAM population in 5XFAD mice which produce more inflammatory cytokines and phagocytose more Aβ were observed to express greater levels of TLR4 and Lyn. Pathway analysis comparison between WT, 5XFAD, and 5XFAD x Lyn-/- mice supported these findings via our microglial spatial transcriptomic analysis. Finally, we created an in vitro co-culture system with primary murine microglial and primary murine hippocampal cells exposed to Aβ as a model of AD. When these co-cultures were treated with our TLR4-Lyn Interaction Modulators (TLIMs), an increase in Aβ phagocytosis and a decrease in neuronal dystrophy was seen. Lyn kinase has a central role in modulating TLR4-induced inflammation and Syk-induced protection in a 5XFAD mouse model. Our TLIMs ameliorate AD sequalae in an in vitro model of AD and could be a promising therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Rezwanul Islam
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Feng Zhang
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Hritik Mehta
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Jun Yoshida
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Ajith J Thomas
- Cooper Medical School of Rowan University, Camden, NJ, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Khalid Hanafy
- Cooper Medical School of Rowan University, Camden, NJ, USA.
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation at Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA.
| |
Collapse
|
7
|
Wang X, Wang Y, Yang L, Zhang Y, Yang L. TREM2 + macrophages: a key role in disease development. Front Immunol 2025; 16:1550893. [PMID: 40242752 PMCID: PMC12000036 DOI: 10.3389/fimmu.2025.1550893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Triggering receptors expressed on myeloid cells 2 (TREM2), an immune receptor expressed on myeloid cells, has garnered considerable attention in recent years due to its role in unique signaling pathways and diverse biological functions, including phagocytosis, lipid metabolism, cell survival, and inflammatory responses. Although TREM2 is expressed in various cell types, such as macrophages, dendritic cells (DCs), osteoclasts, and others, where it exhibits context-dependent functional characteristics, it is mainly expressed in macrophages. Notably, TREM2 is implicated in the development and progression of multiple diseases, playing dual and often opposing roles in noncancerous diseases and cancers. This review aims to highlight the pivotal role of TREM2 in macrophages and immune-related diseases, elucidate its underlying mechanisms of action, explore its potential as a clinical diagnostic and prognostic marker, and propose therapeutic strategies targeting TREM2 based on current clinical trial data, providing comprehensive guidance and references for clinical practice.
Collapse
Affiliation(s)
- Xinxin Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunhan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| |
Collapse
|
8
|
Xu S, Yang B, Yu W, Gao Y, Cai H, Wang Z. TREM2 as a Therapeutic Target in Atherosclerosis. Cell Biol Int 2025; 49:305-316. [PMID: 39891588 DOI: 10.1002/cbin.12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Atherosclerosis is driven by the expansion of cholesterol-loaded foamy macrophages in the arterial intima. Single-cell RNA sequencing has recently revealed the transcriptional landscape of macrophages in these atherosclerotic plaques and uncovered a population of foamy cell-like myeloid cells expressing triggering receptor expressed on myeloid cells-2 (TREM2)-TREM2hi macrophages. Fundamental research has brought essential insight into the significance of TREM2 for foam macrophage survival and atherosclerosis progression, making TREM2 as a therapeutic target in atherosclerosis possible. This review retraces TREM2's winding route from pure knowledge to therapeutic interventions, as well as the potential feasibility of its clinical application for atherosclerosis.
Collapse
Affiliation(s)
- Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Honghua Cai
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Que X, Zhang T, Liu X, Yin Y, Xia X, Gong P, Song W, Qin Q, Xu ZQD, Tang Y. The role of TREM2 in myelin sheath dynamics: A comprehensive perspective from physiology to pathology. Prog Neurobiol 2025; 247:102732. [PMID: 40021075 DOI: 10.1016/j.pneurobio.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Demyelinating disorders, characterizing by the loss of myelin integrity, present significant challenges due to their impact on neurological function and lack of effective treatments. Understanding the mechanisms underlying myelin damage is crucial for developing therapeutic strategies. Triggering receptor expressed on myeloid cells 2 (TREM2), a pivotal immune receptor predominantly found on microglial cells, plays essential roles in phagocytosis and lipid metabolism, vital processes in neuroinflammation and immune regulation. Emerging evidence indicates a close relationship between TREM2 and various aspects of myelin sheath dynamics, including maintenance, response to damage, and regeneration. This review provides a comprehensive discussion of TREM2's influence on myelin physiology and pathology, highlighting its therapeutic potential and putative mechanisms in the progression of demyelinating disorders.
Collapse
Affiliation(s)
- Xinwei Que
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Tongtong Zhang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xueyu Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Ping Gong
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Weiyi Song
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China; Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| | - Zhi-Qing David Xu
- Departments of Neurobiology and Pathology, Capital Medical University, Beijing 100069, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China.
| |
Collapse
|
10
|
Santol J, Rajcic D, Ortmayr G, Hoebinger C, Baranovskyi TP, Rumpf B, Schuler P, Probst J, Aiad M, Kern AE, Ammann M, Jankoschek AS, Weninger J, Gruenberger T, Starlinger P, Hendrikx T. Soluble TREM2 reflects liver fibrosis status and predicts postoperative liver dysfunction after liver surgery. JHEP Rep 2025; 7:101226. [PMID: 40124168 PMCID: PMC11929072 DOI: 10.1016/j.jhepr.2024.101226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 03/25/2025] Open
Abstract
Background & Aims Triggering receptor expressed on myeloid cells 2 (TREM2)-expressing macrophages and systemic levels of soluble TREM2 (sTREM2) appear critical in the development of chronic liver disease (CLD) and seem relevant in its detection. The aim of this study was to examine sTREM2 as a marker for early CLD and its potential to predict posthepatectomy liver failure (PHLF) in patients undergoing partial hepatectomy. Methods sTREM2 was assessed in the plasma of 108 patients undergoing liver resection. Blood was drawn prior to surgery (preop) and on the first and fifth postoperative day. Results Preop sTREM2 levels were similar across different indications for resection (p = 0.091). Higher preop sTREM2 levels were associated with advanced hepatic fibrosis (p = 0.030) and PHLF (p = 0.007). Fibrosis-4 index (FIB-4) (p = 0.619) and model for end-stage liver disease (MELD) (p = 0.590) did not show a difference between patients grouped by their CLD. Comparing the AUC from receiver-operating characteristic analysis, sTREM2 (AUC = 0.708) outperformed FIB-4 (AUC = 0.529), MELD (AUC = 0.587), Child-Pugh grading (AUC = 0.570) and LiMAx (liver maximum capacity test) (AUC = 0.516) in predicting PHLF. Similarly, in uni- and multivariate analysis, only sTREM2 proved predictive for PHLF (p = 0.023). High-risk (p = 0.003) and low-risk (p = 0.011) cut-offs for systemic sTREM2 levels could identify patients at risk for adverse outcomes after surgery. Finally, high sTREM2 was associated with decreased overall survival after liver surgery (p <0.001). Conclusions Circulating sTREM2 shows sensitivity for early-stage, asymptomatic liver disease, irrespective of the underlying indication for liver surgery. Assessment of CLD via sTREM2 monitoring could improve early detection of CLD and improve outcomes after liver surgery. Impact and implications Soluble TREM2 (sTREM2) has previously been shown to correlate with the degree of chronic liver disease. We found that even in patients undergoing liver resection, who generally do not suffer from end-stage liver disease, sTREM2 reflects liver fibrosis status and predicts postoperative development of liver dysfunction. This is especially relevant for liver surgeons and patients, as postoperative liver dysfunction is the main reason for postoperative mortality. Our findings are also important for hepatologists, as early detection of liver fibrosis and cirrhosis is paramount for overall patient survival and we can show that even in a cohort with a median model for end-stage liver disease score of 6, sTREM2 is able to distinguish patients based on their liver fibrosis status.
Collapse
Affiliation(s)
- Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Constanze Hoebinger
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Taras P. Baranovskyi
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| | - Benedikt Rumpf
- Hospital Barmherzige Schwestern, Department of Surgery, Vienna, Austria
| | - Pia Schuler
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Joel Probst
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Monika Aiad
- Medical University of Vienna, Vienna, Austria
| | | | - Markus Ammann
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | | | | | - Thomas Gruenberger
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna Austria
| | - Tim Hendrikx
- Department of Laboratory Medicine, KILM, Medical University Vienna, Vienna, Austria
| |
Collapse
|
11
|
Zhou C, Liang C, Zhang R, Wang Y, Luo S, Pan J. TREM2 improves coagulopathy and lung inflammation in sepsis through the AKT-mTOR pathway. Int Immunopharmacol 2025; 150:114330. [PMID: 39970715 DOI: 10.1016/j.intimp.2025.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Sepsis is a systemic inflammatory response syndrome triggered by infection, often accompanied by severe coagulopathy, leading to high mortality. Tissue factor (TF) plays a pivotal role in sepsis by promoting both coagulation and inflammation. Recently, TREM2 (Triggering Receptor Expressed on Myeloid cells 2) has emerged as a key regulator of macrophage function, but its specific role in sepsis remains unclear. METHODS An in vitro sepsis model was established by stimulating RAW264.7 cells with 10 μg/mL lipopolysaccharide (LPS) for 6 h, with four groups: Negative Control (NC), NC + LPS, TREM2, and TREM2 + LPS. Inflammatory cytokines and coagulation factors were measured in each group. Cells in the TREM2 and TREM2 + LPS groups were pretreated with TREM2 overexpression plasmid for 48 h. In vivo, mice were assigned to Sham, TREM2, Cecal Ligation and Puncture (CLP), CLP + NC, and CLP + TREM2 groups. Mice in the NC group received macrophages via tail vein injection, while those in the TREM2 and CLP + TREM2 groups received TREM2-overexpressing macrophages. Lung tissue and plasma samples were collected to assess inflammatory cytokines, coagulation factors, and signaling pathway activity. RESULTS TREM2 overexpression significantly improved survival, reduced lung inflammation, and alleviated coagulopathy in mice. It increased platelet counts and reduced fibrin deposition. Furthermore, TREM2 inhibited TF release from macrophages by suppressing aberrant activation of the AKT-mTOR signaling pathway, thereby modulating the macrophage inflammatory response. CONCLUSIONS TREM2 plays a crucial protective role in sepsis-associated coagulopathy, suggesting that it could serve as a potential therapeutic target, providing novel strategies to improve clinical outcomes in sepsis patients.
Collapse
Affiliation(s)
- Chen Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Chenglong Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Rongrong Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Ying Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Shuang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingye Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, 325000, China.
| |
Collapse
|
12
|
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation 2025; 22:60. [PMID: 40033338 PMCID: PMC11877772 DOI: 10.1186/s12974-025-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Amyloid-β (Aβ) accumulation and neurofibrillary tangles are two key histological features resulting in progressive and irreversible neuronal loss and cognitive decline. The macrophages of the central nervous system (CNS) belong to the innate immune system and comprise parenchymal microglia and CNS-associated macrophages (CAMs) at the CNS interfaces (leptomeninges, perivascular space and choroid plexus). Microglia and CAMs have received attention as they may play a key role in disease onset and progression e. g., by clearing amyloid beta (Aβ) through phagocytosis. Genome-wide association studies (GWAS) have revealed that human microglia and CAMs express numerous risk genes for AD, further highlighting their potentially critical role in AD pathogenesis. Microglia and CAMs are tightly controlled by environmental factors, such as the host microbiota. Notably, it was further reported that the composition of the gut microbiota differed between AD patients and healthy individuals. Hence, emerging studies have analyzed the impact of gut bacteria in different preclinical mouse models for AD as well as in clinical studies, potentially enabling promising new therapeutic options.
Collapse
Affiliation(s)
- Philipp Schaible
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Henschel
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Ashwini P, Subhash B, Amol M, Kumar D, Atmaram P, Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer's disease. Acta Pharm Sin B 2025; 15:1281-1310. [PMID: 40370532 PMCID: PMC12069117 DOI: 10.1016/j.apsb.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 05/16/2025] Open
Abstract
Alzheimer's disease, a significant contributor to dementia, is rapidly becoming a serious healthcare concern in the 21st century. The alarming number of patients with Alzheimer's disease is steadily increasing, which is contributed by the dearth of treatment options. The current treatment for Alzheimer's disease is heavily dependent on symptomatic treatment that has failed to cure the disease despite huge investments in the development of drugs. The clinical treatment of Alzheimer's disease with limited drugs is generally targeted towards the inhibition of N-methyl-d-aspartate receptor and acetylcholine esterase, which only elevate cognition levels for a limited period. Beyond the aforementioned molecular targets, β-amyloid was much explored with little success and thus created a feel and palpable growing emphasis on discovering new putative and novel targets for AD. This has inspired medicinal chemists to explore new targets, including microglia, triggering receptors expressed on myeloid cells 2 (Trem-2), and notum carboxylesterase, to discover new lead compounds. This review explores the functions, pathophysiological roles, and importance of all AD-related targets that address therapeutic and preventive approaches for the treatment and protection of Alzheimer's disease.
Collapse
Affiliation(s)
- Patil Ashwini
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Bodhankar Subhash
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Muthal Amol
- Department of Pharmacology, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
- University of California, Davis, CA 95616, USA
| | - Pawar Atmaram
- Department of Pharmaceutics, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| | - Kulkarni Ravindra
- Department of Pharmaceutical Chemistry, BVDU’S Poona College of Pharmacy, Erandwane Pune-411038, Maharashtra, India
| |
Collapse
|
14
|
Fu J, Wang R, He J, Liu X, Wang X, Yao J, Liu Y, Ran C, Ye Q, He Y. Pathogenesis and therapeutic applications of microglia receptors in Alzheimer's disease. Front Immunol 2025; 16:1508023. [PMID: 40028337 PMCID: PMC11867950 DOI: 10.3389/fimmu.2025.1508023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, continuously monitor the brain's microenvironment through their array of specific receptors. Once brain function is altered, microglia are recruited to specific sites to perform their immune functions, including phagocytosis of misfolded proteins, cellular debris, and apoptotic cells to maintain homeostasis. When toxic substances are overproduced, microglia are over-activated to produce large amounts of pro-inflammatory cytokines, which induce chronic inflammatory responses and lead to neurotoxicity. Additionally, microglia can also monitor and protect neuronal function through microglia-neuron crosstalk. Microglia receptors are important mediators for microglia to receive external stimuli, regulate the functional state of microglia, and transmit signals between cells. In this paper, we first review the role of microglia-expressed receptors in the pathogenesis and treatment of Alzheimer's disease; moreover, we emphasize the complexity of targeting microglia for therapeutic interventions in neurodegenerative disorders to inform the discovery of new biomarkers and the development of innovative therapeutics.
Collapse
Affiliation(s)
- Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - RuoXuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JiHui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XiaoJing Liu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - JuMing Yao
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - ChongZhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - QingSong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Farzan M, Saberi-Rounkian M, Asadi-Rizi A, Heidari Z, Farzan M, Fathi M, Aghaei A, Azadegan-Dehkordi F, Bagheri N. The emerging role of the microglia triggering receptor expressed on myeloid cells (TREM) 2 in multiple sclerosis. Exp Neurol 2025; 384:115071. [PMID: 39586397 DOI: 10.1016/j.expneurol.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The chronic inflammatory condition known as multiple sclerosis (MS) causes inflammation and demyelination in the central nervous system (CNS). The activation of multiple cell types, including the CNS's resident immune cells called microglia, is a component of the immunological response in MS. Recently, the triggering receptor expressed on myeloid cells (TREM) family has emerged as a crucial player in modulating microglial function and subsequent neuroinflammation. Understanding the role of TREM receptors in MS pathogenesis could provide insightful information on how to develop new therapeutic approaches. MAIN BODY The TREM family consists of several receptors, including TREM-1 and TREM-2, which can be expressed on both immune cells, such as myeloid cells and microglia, and non-immune cells. These receptors interact with their respective ligands and regulate signaling pathways, ultimately leading to the control of microglial activation and inflammatory reactions. TREM-2, in particular, has garnered significant interest because of its connection with MS and other neurodegenerative diseases. The activation of microglia through TREM receptors in MS is thought to influence the equilibrium between helpful and detrimental inflammatory responses. TREM receptors can promote the phagocytosis of myelin debris and remove apoptotic cells, thus contributing to tissue repair and regeneration. However, excessive or dysregulated activation of microglia mediated by TREM receptors can lead to the release of pro-inflammatory cytokines and neurotoxic factors, exacerbating neuroinflammation and neurodegeneration in MS. CONCLUSION The emerging role of the TREM family in demyelinating diseases highlights the importance of microglia in disease pathogenesis. Understanding the mechanisms by which TREM receptors modulate microglial function can provide valuable insights into the development of targeted therapies for these disorders. By selectively targeting TREM receptors, it may be possible to harness their beneficial effects on tissue repair while dampening their detrimental pro-inflammatory responses. Further research is warranted to elucidate the precise signaling pathways and ligand interactions involved in TREM-mediated microglial activation, which could uncover novel therapeutic avenues for treating MS and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Masoumeh Saberi-Rounkian
- Student Research committee, School of Paramedicine, Guilan University of Medical sciences, Rasht, Iran
| | - Atefeh Asadi-Rizi
- Young researchers and Elite club, Flavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Heidari
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Aghaei
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Medical Plants Research Center, Basic Health Sciences institute, Shahrekord University of Medical sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Mishra S, Swain PS, Pati S, Dehury B. Extracellular domain of TREM2 possess two distinct ligand recognition sites: Insights from machine-learning guided docking and all-atoms molecular dynamics simulations. Heliyon 2025; 11:e41414. [PMID: 39866401 PMCID: PMC11759634 DOI: 10.1016/j.heliyon.2024.e41414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations. Besides the known binding site formed by complementarity-determining regions (CDR) 1 and CDR2 loops, which enables the binding of different anionic ligands, our study identifies the presence of second binding site formed by β-strands towards the C-terminal end. We observe a dense network of hydrophobic contacts formed between the explored ligands and CDR loops and β-strands, specifically CDR1, CDR2, β-strand C', loop connecting β-strand D and E, and loop connecting β-strand E and F. Ligand binding in immunoglobulin-like ectodomain increases the conformational flexibility of CDR2 loop, thus most frequently observed pathogenic variants i.e. R47H and R62H in TREM2 may affect the development and progression of AD. Our knowledge-based and machine-learning guided docking and physics-based simulations study unveils deep insights into the endogenous ligand recognition by the positive surface ligand binding site and distant core site pave the way for exploration of other small molecules towards development of novel therapeutics against Alzheimer's disease.
Collapse
Affiliation(s)
- Sarbani Mishra
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Preety Sthutika Swain
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pati
- ICMR-regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
17
|
Solana-Manrique C, Sánchez-Pérez AM, Paricio N, Muñoz-Descalzo S. Two- and Three-Dimensional In Vitro Models of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Applications. Int J Mol Sci 2025; 26:620. [PMID: 39859333 PMCID: PMC11766061 DOI: 10.3390/ijms26020620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level. However, they often lack the native tissue environment complexity, limiting their ability to fully recapitulate their features. In contrast, 3D models offer a more physiologically relevant platform by mimicking the 3D brain tissue architecture. These models can incorporate multiple cell types, including neurons, astrocytes, and microglia, creating a microenvironment that closely resembles the brain's complexity. Bioengineering approaches allow researchers to better replicate cell-cell interactions, neuronal connectivity, and disease-related phenotypes. Both 2D and 3D models have their advantages and limitations. While 2D cultures provide simplicity and scalability for high-throughput screening and basic processes, 3D models offer enhanced physiological relevance and better replicate disease phenotypes. Integrating findings from both model systems can provide a better understanding of NDs, ultimately aiding in the development of novel therapeutic strategies. Here, we review existing 2D and 3D in vitro models for the study of PD and AD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Ana María Sánchez-Pérez
- Instituto de Materiales Avanzados (INAM), Universidad de Jaume I, Avda Sos Banyat s/n, 12071 Castellón de la Plana, Spain;
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe “Físico” 17, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
18
|
Sheng Z, Wang L, Chen M, Zhong F, Wu S, Liang S, Song J, Chen L, Chen Y, Chen S, Yu W, Lü Y. Cerebrospinal fluid β2-microglobulin promotes the tau pathology through microglia-astrocyte communication in Alzheimer's disease. Alzheimers Res Ther 2025; 17:2. [PMID: 39748415 PMCID: PMC11697900 DOI: 10.1186/s13195-024-01665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) β2-microglobulin (β2M) has been demonstrated as an important factor in β-amyloid (Aβ) neurotoxicity and a potential target for Alzheimer's disease (AD). However, more investigation is required to ascertain the relationship between β2M and glial activities in AD pathogenesis. METHODS In this study, 211 participants from the Alzheimer's disease Neuroimaging Initiative (ADNI) with CSF and Plasma β2M, CSF glial fibrillary acidic protein (GFAP), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), Aβ42, phosphorylated-tau (P-tau) and total tau (T-tau) were divided into four groups, stage 0, 1, 2, and suspected non-AD pathology (SNAP) based on the National Institute on Aging- Alzheimer's Association (NIA-AA) criteria. Multiple linear regression, linear mixed effects models, and causal mediation analyses bootstrapped 10,000 iterations were used to investigate the underlying associations among β2M and CSF biomarkers at baseline and during a longitudinal visit. RESULTS CSF β2M concentration decreased with amyloid in stage 1 compared with stage 0 and increased with tau pathology and neurodegeneration in stage 2 and SNAP compared with stage 1. Moreover, CSF β2M level was positively correlated with the Aβ42 (β = 0.230), P-tau (β = 0.564), T-tau (β = 0.603), GFAP (β = 0.552), and sTREM2 (β = 0.641) (all P < 0.001). CSF β2M was only longitudinally correlated with T-tau change. The correlation of CSF β2M with P-tau (proportion = 25.4%, P < 0.001) and T-tau (proportion = 26.7%, P < 0.001) was partially mediated by GFAP in total participants, reproduced in late-life individuals. Furthermore, the astrocyte cascade also partially mediated the pathological relationship between CSF β2M and tau pathology (β2M → GFAP → YKL-40 → P-tau/T-tau, IE: 0.424-0.435, all P < 0.001). Nevertheless, the mediation effects of sTREM2 were not significant. Additionally, there was no association between plasma β2M and CSF biomarkers. CONCLUSIONS CSF β2M is dynamic in AD pathology and associated with neuroinflammation. CSF GFAP might mediate the association between β2M and tau pathology, complementing the existing research on the effect of β2M in AD pathology and providing a new perspective on treatment.
Collapse
Affiliation(s)
- Zehu Sheng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lanyang Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fuxin Zhong
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shijing Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shuyu Liang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Song
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yingxi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shiyu Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Wang LY, Hu H, Sheng ZH, Hu HY, Zhang ZH, Tan L. Associations among healthy lifestyle characteristics, neuroinflammation, and cerebrospinal fluid core biomarkers of Alzheimer's disease in cognitively intact adults: The CABLE study. J Alzheimers Dis 2024; 102:855-865. [PMID: 39558781 DOI: 10.1177/13872877241291969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND The occurrence of Alzheimer's disease (AD) can be partially prevented through healthy lifestyles, but the mechanisms associated with AD pathology are unclear. OBJECTIVE To explore associations among healthy lifestyle characteristics (HLCs), cerebrospinal fluid (CSF) soluble TREM2 (sTREM2), and AD biomarkers. METHODS From the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study, 924 cognitively normal participants were enrolled in this cross-sectional analysis. We defined the following 11 HLCs: appropriate frequencies of coffee and tea consumption, sufficient frequencies of fish and fruit intake, non-social isolation, adequate sleep, regular physical activity, no depression, never smoking, non-hazardous drinking, and well-maintained blood pressure. We categorized participants according to the number of HLCs reported by participants into favorable, intermediate, and unfavorable lifestyle groups. Multiple linear regression was used to investigate the relationship among HLCs, CSF sTREM2, and AD biomarkers. Mediation effects were tested using a causal mediation analysis having 10,000 bootstrap iterations. RESULTS Included subjects were with a mean age of 61.8 ± 10.2 years, of which 41.8% were female. Sufficient fish intake (β = -0.164, p = 0.017) and well-maintained blood pressure (β = -0.232, p = 0.006) were significantly correlated with lower CSF sTREM2 levels. A larger number of HLCs were associated with lower CSF T-tau (p = 0.001), P-tau (p = 0.012), and sTREM2 (p = 0.040) levels. CSF sTREM2 partially mediated the association between the number of HLCs and CSF tau pathology (mediating proportion T-tau: 22.4%; P-tau: 25.0%). CONCLUSIONS HLCs might impact the pathological processes of AD by regulating neuroinflammation.
Collapse
Affiliation(s)
- Lan-Yang Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zi-Hao Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Telemaco Contreras Colmenares M, de Oliveira Matos A, Henrique Dos Santos Dantas P, Rodrigues do Carmo Neto J, Silva-Sales M, Sales-Campos H. Unveiling the impact of TREM-2 + Macrophages in metabolic disorders. Cell Immunol 2024; 405-406:104882. [PMID: 39369473 DOI: 10.1016/j.cellimm.2024.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid cells 2 (TREM-2) has been widely known by its anti-inflammatory activity. It can be activated in response to microbes and tissue damage, leading to phagocytosis, autophagy, cell polarization and migration, counter inflammation, and tissue repair. So far, the receptor has been largely explored in neurodegenerative disorders, however, a growing number of studies have been investigating its contribution in different pathological conditions, including metabolic diseases, in which (resident) macrophages play a crucial role. In this regard, TREM-2 + macrophages have been implicated in the onset and development of obesity, atherosclerosis, and fibrotic liver disease. These macrophages can be detected in the brain, white adipose tissue, liver, and vascular endothelium. In this review we discuss how different murine models have been demonstrating the ability of such cells to contribute to tissue and body homeostasis by phagocytosing cellular debris and lipid structures, besides contributing to lipid homeostasis in metabolic diseases. Therefore, understanding the role of TREM-2 in metabolic disorders is crucial to expand our current knowledge concerning their immunopathology as well as to foster the development of more targeted therapies to treat such conditions.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | |
Collapse
|
21
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
22
|
Samuels JD, Lukens JR, Price RJ. Emerging roles for ITAM and ITIM receptor signaling in microglial biology and Alzheimer's disease-related amyloidosis. J Neurochem 2024; 168:3558-3573. [PMID: 37822118 PMCID: PMC11955997 DOI: 10.1111/jnc.15981] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Microglia are critical responders to amyloid beta (Aβ) plaques in Alzheimer's disease (AD). Therefore, the therapeutic targeting of microglia in AD is of high clinical interest. While previous investigation has focused on the innate immune receptors governing microglial functions in response to Aβ plaques, how microglial innate immune responses are regulated is not well understood. Interestingly, many of these microglial innate immune receptors contain unique cytoplasmic motifs, termed immunoreceptor tyrosine-based activating and inhibitory motifs (ITAM/ITIM), that are commonly known to regulate immune activation and inhibition in the periphery. In this review, we summarize the diverse functions employed by microglia in response to Aβ plaques and also discuss the innate immune receptors and intracellular signaling players that guide these functions. Specifically, we focus on the role of ITAM and ITIM signaling cascades in regulating microglia innate immune responses. A better understanding of how microglial innate immune responses are regulated in AD may provide novel therapeutic avenues to tune the microglial innate immune response in AD pathology.
Collapse
Affiliation(s)
- Joshua D. Samuels
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J. Price
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
24
|
Shi Z, Das S, Morabito S, Miyoshi E, Stocksdale J, Emerson N, Srinivasan SS, Shahin A, Rahimzadeh N, Cao Z, Silva J, Castaneda AA, Head E, Thompson L, Swarup V. Single-nucleus multi-omics identifies shared and distinct pathways in Pick's and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611761. [PMID: 39282421 PMCID: PMC11398495 DOI: 10.1101/2024.09.06.611761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The study of neurodegenerative diseases, particularly tauopathies like Pick's disease (PiD) and Alzheimer's disease (AD), offers insights into the underlying regulatory mechanisms. By investigating epigenomic variations in these conditions, we identified critical regulatory changes driving disease progression, revealing potential therapeutic targets. Our comparative analyses uncovered disease-enriched non-coding regions and genome-wide transcription factor (TF) binding differences, linking them to target genes. Notably, we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase (UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other cell types. Shared and distinct TF binding patterns were observed in neurons and glial cells across PiD and AD. We validated our findings using CRISPR to excise a predicted enhancer region in UBE3A and developed an interactive database (http://swaruplab.bio.uci.edu/scROAD) to visualize predicted single-cell TF occupancy and regulatory networks.
Collapse
Affiliation(s)
- Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Samuel Morabito
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Jennifer Stocksdale
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Nora Emerson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shushrruth Sai Srinivasan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Arshi Shahin
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Negin Rahimzadeh
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Justine Silva
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andres Alonso Castaneda
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Leslie Thompson
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology Program, University of California, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Matteoli M. The role of microglial TREM2 in development: A path toward neurodegeneration? Glia 2024; 72:1544-1554. [PMID: 38837837 DOI: 10.1002/glia.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
The nervous and the immune systems undergo a continuous cross talk, starting from early development and continuing throughout adulthood and aging. Defects in this cross talk contribute to neurodevelopmental and neurodegenerative diseases. Microglia are the resident immune cells in the brain that are primarily involved in this bidirectional communication. Among the microglial genes, trem2 is a key player, controlling the functional state of microglia and being at the forefront of many processes that require interaction between microglia and other brain components, such as neurons and oligodendrocytes. The present review focuses on the early developmental window, describing the early brain processes in which TREM2 is primarily involved, including the modulation of synapse formation and elimination, the control of neuronal bioenergetic states as well as the contribution to myelination processes and neuronal circuit formation. By causing imbalances during these early maturation phases, dysfunctional TREM2 may have a striking impact on the adult brain, making it a more sensitive target for insults occurring during adulthood and aging.
Collapse
Affiliation(s)
- Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
26
|
Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, Gholami Pourbadie H. Microglial modulation as a therapeutic strategy in Alzheimer's disease: Focus on microglial preconditioning approaches. J Cell Mol Med 2024; 28:e18554. [PMID: 39103747 DOI: 10.1111/jcmm.18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive disease that causes an impairment of learning and memory. Despite the highly complex pathogenesis of AD, amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) formation are the main hallmarks of AD. Neuroinflammation also has a crucial role in the development of AD. As the central nervous system's innate immune cells, microglial cells are activated in AD and induce inflammation by producing pro-inflammatory mediators. However, microglial activation is not always deleterious. M2-activated microglial cells are considered anti-inflammatory cells, which develop neuroprotection. Various approaches are proposed for managing AD, yet no effective therapy is available for this disorder. Considering the potential protective role of M2 microglia in neurodegenerative disorders and the improvement of these disorders by preconditioning approaches, it can be suggested that preconditioning of microglial cells may be beneficial for managing AD progression. Therefore, this study review microglial preconditioning approaches for preventing and improving AD.
Collapse
Affiliation(s)
- Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Ghasemi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George Perry
- Department of Neuroscience, Development, and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
27
|
Mirdha L. Aggregation Behavior of Amyloid Beta Peptide Depends Upon the Membrane Lipid Composition. J Membr Biol 2024; 257:151-164. [PMID: 38888760 DOI: 10.1007/s00232-024-00314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Protein aggregation plays a crucial role in the development of several neurodegenerative diseases. It is important to understand the aggregation process for the detection of the onset of these diseases. Alzheimer's Disease (AD) is one of the most prevalent neurodegenerative diseases caused by the aggregation of Aβ-40 and Aβ-42 peptides. The smaller oligomers lead to the formation of protein plaque at the neural membranes leading to memory loss and other disorders. Interestingly, aggregation takes place at the neural membranes, therefore the membrane composition seems to play an important role in the aggregation process. Despite a large number of literatures on the effect of lipid composition on protein aggregation, there are very few concise reviews that highlight the role of membrane composition in protein aggregation. In this review, we have discussed the implication of membrane composition on the aggregation of amyloid beta peptide with a special emphasis on cholesterol. We have further discussed the role of the degree of unsaturation of fatty acids and the participation of apolipoprotein E4 (ApoE4) in the onset of AD.
Collapse
Affiliation(s)
- Lipika Mirdha
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
28
|
Zhong Z, Ulmschneider MB, Lorenz CD. Unraveling the Molecular Dance: Insights into TREM2/DAP12 Complex Formation in Alzheimer's Disease through Molecular Dynamics Simulations. ACS OMEGA 2024; 9:28715-28725. [PMID: 38973875 PMCID: PMC11223195 DOI: 10.1021/acsomega.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative condition affecting millions globally. Recent research has implicated variants of the triggering receptor expressed in myeloid cells 2 (TREM2) as risk factors for AD. TREM2, an immunomodulatory receptor on microglial surfaces, plays a pivotal role in regulating microglial activation by association with DNAX-activation protein 12 (DAP12). Despite its significance, the mechanism underlying the formation of the complex between the transmembrane domains (TMDs) of TREM2 and DAP12 remains unclear. This study employs multiscale molecular dynamics (MD) simulations to investigate three TMD complex models, including two derived from experiments and one generated by AlphaFold2. Conducted within a lipid membrane consisting of an 80:20 mixture of phosphatidylcholine (POPC) and cholesterol, our analysis reveals hydrogen-bonding interactions between K26 of TREM2 and D16 of DAP12 in all three models, consistent with previous experimental findings. Our results elucidate the different spatial conformations observed in the models and offer insights into the structure of the TREM2/DAP12 TMD complex. Furthermore, we elucidate the role of charged residues in the assembly structure of the complex within the lipid membrane. These findings enhance our understanding of the molecular mechanism governing TREM2/DAP12 complex formation, providing a foundation for designing novel therapeutic strategies to address AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiwen Zhong
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K.
- Department
of Chemistry, King’s College London, London SE1 1DB, U.K.
| | | | - Christian D. Lorenz
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, U.K.
| |
Collapse
|
29
|
Marques CR, Campos J, Sampaio-Marques B, Antunes FF, Dos Santos Cunha RM, Silva D, Barata-Antunes S, Lima R, Fernandes-Platzgummer A, da Silva CL, Sousa RA, Salgado AJ. Secretome of bone marrow mesenchymal stromal cells cultured in a dynamic system induces neuroprotection and modulates microglial responsiveness in an α-synuclein overexpression rat model. Cytotherapy 2024; 26:700-713. [PMID: 38483360 DOI: 10.1016/j.jcyt.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AIMS Parkinson's disease (PD) is the second most common neurodegenerative disorder. The etiology of the disease remains largely unknown, but evidence have suggested that the overexpression and aggregation of alpha-synuclein (α-syn) play key roles in the pathogenesis and progression of PD. Mesenchymal stromal cells (MSCs) have been earning attention in this field, mainly due to their paracrine capacity. The bioactive molecules secreted by MSCs, i.e. their secretome, have been associated with enhanced neuronal survival as well as a strong modulatory capacity of the microenvironments where the disease develops. The selection of the appropriate animal model is crucial in studies of efficacy assessment. Given the involvement of α-syn in the pathogenesis of PD, the evidence generated from the use of animal models that develop a pathologic phenotype due to the action of this protein is extremely valuable. Therefore, in this work, we established an animal model based on the viral vector-mediated overexpression of A53T α-syn and studied the impact of the secretome of bone marrow mesenchymal stromal cells MSC(M) as a therapeutic strategy. METHODS Adult male rats were subjected to α-syn over expression in the nigrostriatal pathway to model dopaminergic neurodegeneration. The impact of locally administered secretome treatment from MSC(M) was studied. Motor impairments were assessed throughout the study coupled with whole-region (striatum and substantia nigra) confocal microscopy evaluation of histopathological changes associated with dopaminergic neurodegeneration and glial cell reactivity. RESULTS Ten weeks after lesion induction, the animals received secretome injections in the substantia nigra pars compacta (SNpc) and striatum (STR). The secretome used was produced from bone marrow mesenchymal stromal cells MSC(M) expanded in a spinner flask (SP) system. Nine weeks later, animals that received the viral vector containing the gene for A53T α-syn and treated with vehicle (Neurobasal-A medium) presented dopaminergic cell loss in the SNpc and denervation in the STR. The treatment with secretome significantly reduced the levels of α-syn in the SNpc and protected the dopaminergic neurons (DAn) within the SNpc and STR. CONCLUSIONS Our results are aligned with previous studies in both α-syn Caenorhabditis elegans models, as well as 6-OHDA rodent model, revealing that secretome exerted a neuroprotective effect. Moreover, these effects were associated with a modulation of microglial reactivity supporting an immunomodulatory role for the factors contained within the secretome. This further supports the development of new studies exploring the effects and the mechanism of action of secretome from MSC(M) against α-syn-induced neurotoxicity.
Collapse
Affiliation(s)
- Cláudia Raquel Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Ferreira Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raquel Medina Dos Santos Cunha
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rui Amandi Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa S.A., Barco, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS-3Bs PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
30
|
Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev 2024; 162:105724. [PMID: 38762130 DOI: 10.1016/j.neubiorev.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Collapse
Affiliation(s)
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1111, Hungary
| | - Frédéric Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec-Laval University, Quebec G1V0A6, Canada; International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg D-35032, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany
| | - Jean-Christophe Delpech
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Jorine Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Emmy E Hoeksema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Sophie Layé
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, 1018, the Netherlands
| | - Christoph Rummel
- Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Luba Sominsky
- Barwon Health, Geelong, Victoria 3220, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3217, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
31
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
32
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
33
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
34
|
Zhong J, Xing X, Gao Y, Pei L, Lu C, Sun H, Lai Y, Du K, Xiao F, Yang Y, Wang X, Shi Y, Bai F, Zhang N. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 2024; 42:968-984.e9. [PMID: 38788719 DOI: 10.1016/j.ccell.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Lei Pei
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Chenfei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huixin Sun
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yanxing Lai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Kang Du
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Xiuxing Wang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
35
|
Yang R, Li DD, Li XX, Yang XX, Gao HM, Zhang F. Dihydroquercetin alleviates dopamine neuron loss via regulating TREM2 activation. Int J Biol Macromol 2024; 269:132179. [PMID: 38723817 DOI: 10.1016/j.ijbiomac.2024.132179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, marked by the degeneration of dopamine (DA) neurons in the substantia nigra (SN). Current evidence strongly suggests that neuroinflammation, primarily mediated by microglia, contributes to PD pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) might serve as a promising therapeutic target for PD due to its ability to suppress neuroinflammation. Dihydroquercetin (DHQ) is an important natural dihydroflavone and confers apparent anti-inflammatory, antioxidant and anti-fibrotic effects. Recently, DHQ-mediated neuroprotection was exhibited. However, the specific mechanisms of its neuroprotective effects remain incompletely elucidated. METHODS In this study, rat models were utilized to induce damage to DA neurons using lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) to assess the impacts of DHQ on the loss of DA neurons. Furthermore, DA neuronal MN9D cells and microglial BV2 cells were employed to investigate the function of TREM2 in DHQ-mediated DA neuroprotection. Finally, TREM2 knockout mice were used to investigate whether the neuroprotective effects mediated by DHQ through a mechanism dependent on TREM2. RESULTS The main findings demonstrated that DHQ effectively protected DA neurons against neurotoxicity induced by LPS and 6-OHDA and inhibited microglia-elicited neuroinflammation. Meanwhile, DHQ promoted microglial TREM2 signaling activation. Notably, DHQ failed to reduce inflammatory cytokines release and further present neuroprotection from DA neurotoxicity upon TREM2 silencing. Similarly, DHQ didn't exert DA neuroprotection in TREM2 knockout mice. CONCLUSIONS These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dai-di Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao-Xian Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin-Xing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui-Ming Gao
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of medicine, Nanjing University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
36
|
Zheng J, Wang L, Zhao S, Zhang W, Chang Y, Bosco DB, Huang T, Dheer A, Gao S, Xu S, Ayasoufi K, Al-Kharboosh R, Qi F, Xie M, Johnson AJ, Dong H, Quiñones-Hinojosa A, Wu LJ. TREM2 mediates MHCII-associated CD4+ T-cell response against gliomas. Neuro Oncol 2024; 26:811-825. [PMID: 37941134 PMCID: PMC11066911 DOI: 10.1093/neuonc/noad214] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both GBM patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as invivo 2-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in preclinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found that TREM2 enhances the phagocytosis of tumor cells and promotes an immune response by facilitating MHCII-associated CD4+ T-cell responses against gliomas.
Collapse
Affiliation(s)
- Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Wenjing Zhang
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Yuzhou Chang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tao Huang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shan Gao
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Shengze Xu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Rawan Al-Kharboosh
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
37
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
38
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation 2024; 21:67. [PMID: 38481312 PMCID: PMC10938757 DOI: 10.1186/s12974-024-03059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles during development as well as in health and disease. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Box 8057, St. Louis, MO, 63110, USA.
| | - Haowu Jiang
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., CB 8054, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Zhang N, Ji Q, Chen Y, Wen X, Shan F. TREM2 deficiency impairs the energy metabolism of Schwann cells and exacerbates peripheral neurological deficits. Cell Death Dis 2024; 15:193. [PMID: 38453910 PMCID: PMC10920707 DOI: 10.1038/s41419-024-06579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) has been implicated in susceptibility to neurodegenerative disease. Schwann cells (SCs), the predominant glial cell type in the peripheral nervous system (PNS), play a crucial role in myelination, providing trophic support for neurons and nerve regeneration. However, the function of TREM2 in SCs has not been fully elucidated. Here, we found that TREM2 is expressed in SCs but not in neurons in the PNS. TREM2 deficiency leads to disruption of glycolytic flux and oxidative metabolism in SCs, impairing cell proliferation. The energy crisis caused by TREM2 deficiency triggers mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Combined metabolomic analysis demonstrated that energic substrates and energy metabolic pathways were significantly impaired in TREM2-deficient SCs. Moreover, TREM2 deficiency impairs energy metabolism and axonal growth in sciatic nerve, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy. These results indicate that TREM2 is a critical regulator of energy metabolism in SCs and exerts neuroprotective effects on peripheral neuropathy. TREM2 deficiency impairs glycolysis and oxidative metabolism in Schwann cells, resulting in compromised cell proliferation. The energy crisis caused by TREM2 deficiency induces mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Moreover, TREM2 deficiency disrupts the energy metabolism of the sciatic nerve and impairs support for axonal regeneration, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy (by FigDraw).
Collapse
Affiliation(s)
- Nannan Zhang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
- Department of Respiratory and Critical Care, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qingjie Ji
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yunfeng Chen
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiwu Wen
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
40
|
Fioretto L, Gallo C, Mercogliano M, Ziaco M, Nuzzo G, d'Ippolito G, Follero O, DellaGreca M, Giaccio P, Nittoli V, Ambrosino C, Sordino P, Soluri A, Soluri A, Massari R, D'Amelio M, De Palma R, Fontana A, Manzo E. BODIPY-Based Analogue of the TREM2-Binding Molecular Adjuvant Sulfavant A, a Chemical Tool for Imaging and Tracking Biological Systems. Anal Chem 2024; 96:3362-3372. [PMID: 38348659 DOI: 10.1021/acs.analchem.3c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.
Collapse
Affiliation(s)
- Laura Fioretto
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marcello Mercogliano
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Marcello Ziaco
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Olimpia Follero
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80136 Napoli, Italy
| | - Paolo Giaccio
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Valeria Nittoli
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
- IEOS-CNR, 80131 Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Sicily Marine Centre, Stazione Zoologica Anton Dohrn, via Consolare Pompea 29, 98167 Messina,Italy
| | - Alessandro Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Andrea Soluri
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Roberto Massari
- National Research Council of Italy (CNR), c/o International Campus "A. Buzzati-Traverso″, Institute of Biochemistry and Cell Biology (IBBC), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Unit of Molecular Neurosciences, University Campus Bio-Medico, via Álvaro del Portillo 21, 00128 Rome, Italy
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Raffaele De Palma
- Clinica di Medicina Interna, Immunologia Clinica e Medicina Traslazionale, Ospedale San Martino, Largo Rosanna Benzi 10, 16132 Genova,Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
- Department of Biology, University of Naples "Federico II″, via Cinthia, Bldg.7, 80126 Naples, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli , Italy
| |
Collapse
|
41
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Sun R, Jiang H. Border-associated macrophages in the central nervous system. Clin Immunol 2024:109921. [PMID: 38316202 DOI: 10.1016/j.clim.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Tissue-resident macrophages play an important role in the local maintenance of homeostasis and immune surveillance. In the central nervous system (CNS), brain macrophages are anatomically divided into parenchymal microglia and non-parenchymal border-associated macrophages (BAMs). Among these immune cell populations, microglia have been well-studied for their roles in normal brain development, neurodegeneration, and brain cancers. BAMs, mostly located in the choroid plexus, meningeal and perivascular spaces, are now gaining increased attention due to advancements in multi-omics technologies and genetic methodologies. Research on BAMs over the past decade has focused on their ontogeny, immunophenotypes, involvement in various CNS diseases, and potential as therapeutic targets. Unlike microglia, BAMs display mixed origins and distinct self-renewal capacity. BAMs are believed to regulate neuroimmune responses associated with brain barriers and contribute to immune-mediated neuropathology. Notably, BAMs have been observed to function in diverse cerebral pathologies, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke, and gliomas. The elucidation of the heterogeneity and diverse functions of BAMs during homeostasis and neuroinflammation is mesmerizing, since it may shed light on the precision medicine that emphasizes deep insights into programming cues in the unique brain immune microenvironment. In this review, we delve into the latest findings on BAMs, covering aspects like their origins, self-renewal capacity, adaptability, and implications in different brain disorders.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Haowu Jiang
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Mansour HM. The interference between SARS-COV-2 and Alzheimer's disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res Rev 2024; 94:102195. [PMID: 38244862 DOI: 10.1016/j.arr.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has infected over 700 million people, with up to 30% developing neurological manifestations, including dementias. However, there is a lack of understanding of common molecular brain markers causing Alzheimer's disease (AD). COVID-19 has etiological cofactors with AD, making patients with AD a vulnerable population at high risk of experiencing more severe symptoms and worse consequences. Both AD and COVID-19 have upregulated several shared kinases, leading to the repositioning of kinase inhibitors (KIs) for the treatment of both diseases. This review provides an overview of the interactions between the immune system and the nervous system in relation to receptor tyrosine kinases, including epidermal growth factor receptors, vascular growth factor receptors, and non-receptor tyrosine kinases such as Bruton tyrosine kinase, spleen tyrosine kinase, c-ABL, and JAK/STAT. We will discuss the promising results of kinase inhibitors in pre-clinical and clinical studies for both COVID-19 and Alzheimer's disease (AD), as well as the challenges in repositioning KIs for these diseases. Understanding the shared kinases between AD and COVID-19 could help in developing therapeutic approaches for both.
Collapse
Affiliation(s)
- Heba M Mansour
- General Administration of Innovative Products, Central Administration of Biological, Innovative Products, and Clinical Studies (Bio-INN), Egyptian Drug Authority (EDA), Giza, Egypt.
| |
Collapse
|
44
|
Arsenault R, Marshall S, Salois P, Li Q, Zhang W. sTREM2 Differentially Affects Cytokine Expression in Myeloid-Derived Cell Models via MAPK-JNK Signaling Pathway. BIOLOGY 2024; 13:87. [PMID: 38392305 PMCID: PMC10886855 DOI: 10.3390/biology13020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
TREM2 is a critical innate immune receptor primarily expressed on myeloid-derived cells, such as microglia and macrophages. Mutations in TREM2 are linked to several neurodegenerative diseases including Alzheimer's disease (AD). TREM2 can be cleaved from the cell membrane and released as soluble TREM2 (sTREM2). sTREM2 levels are shown to peak prior to AD, with its levels fluctuating throughout disease progression. However, the mechanism by which sTREM2 may affect innate immune responses is largely uncharacterized. In this study, we investigated whether sTREM2 can induce inflammatory response in myeloid-derived THP-1 monocytes and macrophages and characterized the signaling mechanisms involved. Our results show that sTREM2 was capable of stimulating the expression of several inflammatory cytokines in THP-1 cells throughout the time course of 2 h to 8 h but inducing anti-inflammatory cytokine expression at later time points. A TREM2 antibody was capable of inhibiting the expression of some cytokines induced by sTREM2 but enhancing others. The complex of sTREM2/TREM2 antibody was shown to enhance IL-1β expression, which was partially blocked by an NLRP3 specific inhibitor, indicating that the complex activated the NRLP3 inflammasome pathway. sTREM2 was also shown to have differential effects on cytokine expression in M0, M1, and M2 macrophages differentiated from THP-1 cells. sTREM2 has a more stimulating effect on cytokine expression in M0 macrophages, less of an effect on M2 macrophages, and some inhibitory effects on cytokine expression in M1 macrophages at early time points. Analyses of several signaling pathways revealed that sTREM2-induced expression of cytokines occurs mainly through MAPK-JNK signaling. Our work reveals differential effects of sTREM2 on cytokine expression profiles of THP-1 cells and macrophages and demonstrates that the MAPK-JNK signaling pathway is mainly responsible for sTREM2-induced cytokine expression.
Collapse
Affiliation(s)
- Ryan Arsenault
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Steven Marshall
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick Salois
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
45
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
46
|
Chen Y, Song S, Parhizkar S, Lord J, Zhu Y, Strickland MR, Wang C, Park J, Travis Tabor G, Jiang H, Li K, Davis AA, Yuede CM, Colonna M, Ulrich JD, Holtzman DM. APOE3ch alters microglial response and suppresses Aβ-induced tau seeding and spread. Cell 2024; 187:428-445.e20. [PMID: 38086389 PMCID: PMC10842861 DOI: 10.1016/j.cell.2023.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear. We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model. We injected AD-tau brain extract to investigate tau seeding and spreading in the presence or absence of amyloid. Similar to the case report, APOE3ch expression resulted in peripheral dyslipidemia and a marked reduction in plaque-associated tau pathology. Additionally, we observed decreased amyloid response and enhanced microglial response around plaques. We also demonstrate increased myeloid cell phagocytosis and degradation of tau aggregates linked to weaker APOE3ch binding to heparin sulfate proteoglycans. APOE3ch influences the microglial response to Aβ plaques, which suppresses Aβ-induced tau seeding and spreading. The results reveal new possibilities to target Aβ-induced tauopathy.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sihui Song
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samira Parhizkar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Lord
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiyang Zhu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R. Strickland
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanung Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiyu Park
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - G. Travis Tabor
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Li
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert A. Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
47
|
Wu Z, Yang S, Fang X, Shu Q, Chen Q. Function and mechanism of TREM2 in bacterial infection. PLoS Pathog 2024; 20:e1011895. [PMID: 38236825 PMCID: PMC10796033 DOI: 10.1371/journal.ppat.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), which is a lipid sensing and phagocytosis receptor, plays a key role in immunity and inflammation in response to pathogens. Here, we review the function and signaling of TREM2 in microbial binding, engulfment and removal, and describe TREM2-mediated inhibition of inflammation by negatively regulating the Toll-like receptor (TLR) response. We further illustrate the role of TREM2 in restoring organ homeostasis in sepsis and soluble TREM2 (sTREM2) as a diagnostic marker for sepsis-associated encephalopathy (SAE). Finally, we discuss the prospect of TREM2 as an interesting therapeutic target for sepsis.
Collapse
Affiliation(s)
- Zehua Wu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shiyue Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiang Shu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qixing Chen
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
48
|
Ponnusamy B, Rajagopal P, Jayaraman S. Pharmacological and Nutritional Approaches to Modulate Microglial Polarization in Cognitive Senescence. GUT MICROBIOME AND BRAIN AGEING 2024:243-259. [DOI: 10.1007/978-981-99-8803-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
49
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
50
|
Augusto-Oliveira M, Arrifano GP, Leal-Nazaré CG, Santos-Sacramento L, Lopes-Araújo A, Royes LFF, Crespo-Lopez ME. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol 2023; 60:6950-6974. [PMID: 37518829 DOI: 10.1007/s12035-023-03492-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Caio G Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica Do Exercício, Centro de Educacão Física E Desportos, Universidade Federal de Santa Maria, Santa Maria, RGS, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| |
Collapse
|