1
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. Mol Psychiatry 2025:10.1038/s41380-025-02997-z. [PMID: 40188316 DOI: 10.1038/s41380-025-02997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Dominguez G, Wu Y, Zhou J. Epigenetic Regulation and Neurodevelopmental Disorders: From MeCP2 to the TCF20/PHF14 Complex. Genes (Basel) 2024; 15:1653. [PMID: 39766920 PMCID: PMC11728296 DOI: 10.3390/genes15121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies. Recently, the TCF20/PHF14 chromatin complex was identified in the mammalian brain, expanding the list of chromatin regulatory remodelers implicated in NDDs. This complex-which includes MeCP2, RAI1, TCF20, PHF14, and HMG20A-plays a vital role in epigenetic and transcriptional regulation. METHODS We review and summarize current research and clinical reports pertaining to the different components of the MeCP2-interacting TCF20/PHF14 complex. We examine the NDDs associated with the TCF20/PHF14 complex, explore the molecular and neuronal functions of its components, and discuss emerging therapeutic strategies targeting this complex to mitigate symptoms, with broader applicability to other NDDs. RESULTS Mutations in the genes encoding the components of the MeCP2-interacting TCF20/PHF14 complex have been linked to various NDDs, underscoring its critical contribution to brain development and NDD pathogenesis. CONCLUSIONS The MeCP2-interacting TCF20/PHF14 complex and its associated NDDs could serve as a model system to provide insight into the interplay between epigenetic regulation and NDD pathogenesis.
Collapse
Affiliation(s)
- Gaea Dominguez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Yongji Wu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
| | - Jian Zhou
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (G.D.); (Y.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Honda T, Kurita K, Arai Y, Pandey H, Sawa A, Furukubo-Tokunaga K. FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:112. [PMID: 39604386 PMCID: PMC11603133 DOI: 10.1038/s41537-024-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development. We show that DISC1 overexpression in the dfmr1null heterozygous background causes synaptic alterations at the larval neuromuscular junctions that are distinct from those in the wild-type background. Loss of dfmr1 modifies the DISC1 overexpression phenotype in synaptic formation, suppressing the formation of synapse boutons. Interaction between the two genes was further supported molecularly by the results that dfmr1 mutations suppress the DISC1-mediated upregulations of the postsynaptic expression of a glutamate receptor and the expression of ELKS/CAST protein, Bruchpilot, in presynaptic motoneurons. Moreover, DISC1 overexpression in the dfmr1null heterozygous background causes downregulation of a MAP1 family protein, Futsch. These results thus suggest an intriguing converging mechanism controlled by FMR1 and DISC1 in the developing glutamatergic synapses.
Collapse
Affiliation(s)
- Takato Honda
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusettes Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusettes General Hospital, Harvard Medical School, Boston, MA, USA.
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Pharmacology, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Johns Hopkins Medicine, Baltimore, MD, USA
| | | |
Collapse
|
4
|
Cankar N, Beschorner N, Tsopanidou A, Qvist FL, Colaço AR, Andersen M, Kjaerby C, Delle C, Lambert M, Mundt F, Weikop P, Jucker M, Mann M, Skotte NH, Nedergaard M. Sleep deprivation leads to non-adaptive alterations in sleep microarchitecture and amyloid-β accumulation in a murine Alzheimer model. Cell Rep 2024; 43:114977. [PMID: 39541211 DOI: 10.1016/j.celrep.2024.114977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired sleep is a common aspect of aging and often precedes the onset of Alzheimer's disease. Here, we compare the effects of sleep deprivation in young wild-type mice and their APP/PS1 littermates, a murine model of Alzheimer's disease. After 7 h of sleep deprivation, both genotypes exhibit an increase in EEG slow-wave activity. However, only the wild-type mice demonstrate an increase in the power of infraslow norepinephrine oscillations, which are characteristic of healthy non-rapid eye movement sleep. Notably, the APP/PS1 mice fail to enhance norepinephrine oscillations 24 h after sleep deprivation, coinciding with an accumulation of cerebral amyloid-β protein. Proteome analysis of cerebrospinal fluid and extracellular fluid further supports these findings by showing altered protein clearance in APP/PS1 mice. We propose that the suppression of infraslow norepinephrine oscillations following sleep deprivation contributes to increased vulnerability to sleep loss and heightens the risk of developing amyloid pathology in early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Beschorner
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anastasia Tsopanidou
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Filippa L Qvist
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Proteomics Research Infrastructure, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mie Andersen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Filip Mundt
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department for Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Niels Henning Skotte
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of Autism Spectrum Disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596962. [PMID: 39605704 PMCID: PMC11601228 DOI: 10.1101/2024.06.01.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Nagai M, Porter RS, Miyasato M, Wang A, Gavilan CM, Hughes ED, Wu MC, Saunders TL, Iwase S. Neuronal splicing of the unmethylated histone H3K4 reader, PHF21A, prevents excessive synaptogenesis. J Biol Chem 2024; 300:107881. [PMID: 39395799 PMCID: PMC11605454 DOI: 10.1016/j.jbc.2024.107881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
PHF21A is a histone-binding protein that recognizes unmethylated histone H3K4, the reaction product of LSD1 histone demethylase. PHF21A and LSD1 form a complex, and both undergo neuron-specific microexon splicing. The PHF21A neuronal microexon interferes with nucleosome binding, whereas the LSD1 neuronal microexon weakens H3K4 demethylation activity and can alter the substrate specificity to H3K9 or H4K20. However, the temporal expression patterns of PHF21A and LSD1 splicing isoforms during brain development and their biological roles remain unknown. In this work, we report that neuronal PHF21A isoform expression precedes neuronal LSD1 expression during human neuron differentiation and mouse brain development. The asynchronous splicing events resulted in stepwise deactivation of the LSD1-PHF21A complex in reversing H3K4 methylation. An unbiased proteomics survey revealed that the enzymatically inactive LSD1-PHF21A complex interacts with neuron-specific binding partners, including MYT1-family transcription factors and post-transcriptional mRNA processing proteins such as VIRMA. The interaction with the neuron-specific components, however, did not require the PHF21A microexon, indicating that the neuronal proteomic milieu, rather than the microexon-encoded PHF21A segment, is responsible for neuron-specific complex formation. Finally, by using two Phf21a mutant mouse models, we found that Phf21a neuronal splicing prevents excess synapse formation that otherwise would occur when canonical PHF21A is expressed in neurons. These results suggest that the role of the PHF21A microexon is to dampen LSD1-mediated H3K4 demethylation, thereby containing aberrant synaptogenesis.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert S Porter
- Genetics & Genomics Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Maxwell Miyasato
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aijia Wang
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, Michigan, USA
| | - Cecilia M Gavilan
- Genetics & Genomics Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, Michigan, USA; Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Cillari N, Neri G, Pisanti N, Milazzo P, Borello U. RettDb: the Rett syndrome omics database to navigate the Rett syndrome genomic landscape. Database (Oxford) 2024; 2024:baae109. [PMID: 39414258 PMCID: PMC11482253 DOI: 10.1093/database/baae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder occurring almost exclusively in females and leading to a variety of impairments and disabilities from mild to severe. In >95% cases, RTT is due to mutations in the X-linked gene MECP2, but the molecular mechanisms determining RTT are unknown at present, and the complexity of the system is challenging. To facilitate and provide guidance to the unraveling of those mechanisms, we developed a database resource for the visualization and analysis of the genomic landscape in the context of wild-type or mutated Mecp2 gene in the mouse model. Our resource allows for the exploration of differential dynamics of gene expression and the prediction of new potential MECP2 target genes to decipher the RTT disorder molecular mechanisms. Database URL: https://biomedinfo.di.unipi.it/rett-database/.
Collapse
Affiliation(s)
- Nico Cillari
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Giuseppe Neri
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| | - Nadia Pisanti
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa 56127, Italy
| | - Ugo Borello
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, Pisa 56127, Italy
| |
Collapse
|
8
|
Hudac CM, Dommer K, Mahony M, DesChamps TD, Cairney B, Earl R, Kurtz-Nelson EC, Bradshaw J, Bernier RA, Eichler EE, Neuhaus E, Webb SJ, Shic F. Visual and auditory attention in individuals with DYRK1A and SCN2A disruptive variants. Autism Res 2024:10.1002/aur.3202. [PMID: 39080977 PMCID: PMC11779982 DOI: 10.1002/aur.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
This preliminary study sought to assess biomarkers of attention using electroencephalography (EEG) and eye tracking in two ultra-rare monogenic populations associated with autism spectrum disorder (ASD). Relative to idiopathic ASD (n = 12) and neurotypical comparison (n = 49) groups, divergent attention profiles were observed for the monogenic groups, such that individuals with DYRK1A (n = 9) exhibited diminished auditory attention condition differences during an oddball EEG paradigm whereas individuals with SCN2A (n = 5) exhibited diminished visual attention condition differences noted by eye gaze tracking when viewing social interactions. Findings provide initial support for alignment of auditory and visual attention markers in idiopathic ASD and neurotypical development but not monogenic groups. These results support ongoing efforts to develop translational ASD biomarkers within the attention domain.
Collapse
Affiliation(s)
- Caitlin M. Hudac
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Kelsey Dommer
- Seattle Children’s Research Institute, Seattle, WA USA
| | | | - Trent D. DesChamps
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Brianna Cairney
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | | | - Jessica Bradshaw
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Sara Jane Webb
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Frederick Shic
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Pediatrics, University of Washington, Seattle WA USA
| |
Collapse
|
9
|
Boucherie C, Alkailani M, Jossin Y, Ruiz-Reig N, Mahdi A, Aldaalis A, Aittaleb M, Tissir F. Auts2 enhances neurogenesis and promotes expansion of the cerebral cortex. J Adv Res 2024:S2090-1232(24)00296-0. [PMID: 39013538 DOI: 10.1016/j.jare.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 07/18/2024] Open
Abstract
INTRODUCTION The AUTS2 gene is associated with various neurodevelopmental and psychiatric disorders and has been suggested to play a role in acquiring human-specific traits. Functional analyses of Auts2 knockout mice have focused on postmitotic neurons, and the reported phenotypes do not faithfully recapitulate the whole spectrum of AUTS2-related human diseases. OBJECTIVE The objective of the study is to assess the role of AUTS2 in the biology of neural progenitor cells, cortical neurogenesis and expansion; and understand how its deregulation leads to neurological disorders. METHODS We screened the literature and conducted a time point analysis of AUTS2 expression during cortical development. We used in utero electroporation to acutely modulate the expression level of AUTS2 in the developing cerebral cortex in vivo, and thoroughly characterized cortical neurogenesis and morphogenesis using immunofluorescence, cell tracing and sorting, transcriptomic profiling, and gene ontology enrichment analyses. RESULTS In addition to its expression in postmitotic neurons, we showed that AUTS2 is also expressed in neural progenitor cells at the peak of neurogenesis. Upregulation of AUTS2 dramatically altered the differentiation program and fate determination of cortical progenitors. Notably, it increased the number of basal progenitors and neurons and changed the expression of hundreds of genes, among which 444 have not been implicated in mouse brain development or function. CONCLUSION The study provides evidence that AUTS2 is expressed in germinal zones and plays a key role in fate decision of neural progenitor cells with impact on corticogenesis. It also presents comprehensive lists of AUTS2 target genes thus advancing the molecular mechanisms underlying AUTS2-associated diseases and the evolutionary expansion of the cerebral cortex.
Collapse
Affiliation(s)
- Cédric Boucherie
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Maisa Alkailani
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Yves Jossin
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium
| | - Asma Mahdi
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Arwa Aldaalis
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Mohamed Aittaleb
- Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar
| | - Fadel Tissir
- Université Catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Avenue Mounier 73, Box B1.73.16, Brussels, Belgium; Hamad Bin Khalifa University, College of Health and Life Sciences, Doha, Qatar.
| |
Collapse
|
10
|
Kramer M, Goodwin S, Wappel R, Borio M, Offit K, Feldman DR, Stadler ZK, McCombie WR. Exploring the genetic and epigenetic underpinnings of early-onset cancers: Variant prioritization for long read whole genome sequencing from family cancer pedigrees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601096. [PMID: 39005350 PMCID: PMC11244929 DOI: 10.1101/2024.06.27.601096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Despite significant advances in our understanding of genetic cancer susceptibility, known inherited cancer predisposition syndromes explain at most 20% of early-onset cancers. As early-onset cancer prevalence continues to increase, the need to assess previously inaccessible areas of the human genome, harnessing a trio or quad family-based architecture for variant filtration, may reveal further insights into cancer susceptibility. To assess a broader spectrum of variation than can be ascertained by multi-gene panel sequencing, or even whole genome sequencing with short reads, we employed long read whole genome sequencing using an Oxford Nanopore Technology (ONT) PromethION of 3 families containing an early-onset cancer proband using a trio or quad family architecture. Analysis included 2 early-onset colorectal cancer family trios and one quad consisting of two siblings with testicular cancer, all with unaffected parents. Structural variants (SVs), epigenetic profiles and single nucleotide variants (SNVs) were determined for each individual, and a filtering strategy was employed to refine and prioritize candidate variants based on the family architecture. The family architecture enabled us to focus on inapposite variants while filtering variants shared with the unaffected parents, significantly decreasing background variation that can hamper identification of potentially disease causing differences. Candidate d e novo and compound heterozygous variants were identified in this way. Gene expression, in matched neoplastic and pre-neoplastic lesions, was assessed for one trio. Our study demonstrates the feasibility of a streamlined analysis of genomic variants from long read ONT whole genome sequencing and a way to prioritize key variants for further evaluation of pathogenicity, while revealing what may be missing from panel based analyses.
Collapse
|
11
|
Shiraishi T, Katayama Y, Nishiyama M, Shoji H, Miyakawa T, Mizoo T, Matsumoto A, Hijikata A, Shirai T, Mayanagi K, Nakayama KI. The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry 2024; 29:2145-2160. [PMID: 38438524 DOI: 10.1038/s41380-024-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
Collapse
Affiliation(s)
- Taichi Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yuta Katayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
12
|
Hudac CM, Friedman NR, Ward VR, Estreicher RE, Dorsey GC, Bernier RA, Kurtz-Nelson EC, Earl RK, Eichler EE, Neuhaus E. Characterizing Sensory Phenotypes of Subgroups with a Known Genetic Etiology Pertaining to Diagnoses of Autism Spectrum Disorder and Intellectual Disability. J Autism Dev Disord 2024; 54:2386-2401. [PMID: 37031308 PMCID: PMC10083138 DOI: 10.1007/s10803-023-05897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/10/2023]
Abstract
We aimed to identify unique constellations of sensory phenotypes for genetic etiologies associated with diagnoses of autism spectrum disorder (ASD) and intellectual disability (ID). Caregivers reported on sensory behaviors via the Sensory Profile for 290 participants (younger than 25 years of age) with ASD and/or ID diagnoses, of which ~ 70% have a known pathogenic genetic etiology. Caregivers endorsed poor registration (i.e., high sensory threshold, passive behaviors) for all genetic subgroups relative to an "idiopathic" comparison group with an ASD diagnosis and without a known genetic etiology. Genetic profiles indicated prominent sensory seeking in ADNP, CHD8, and DYRK1A, prominent sensory sensitivities in SCN2A, and fewer sensation avoidance behaviors in GRIN2B (relative to the idiopathic ASD comparison group).
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of South Carolina, 1800 Gervais Street, Columbia, SC, 29201, USA.
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA.
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC, USA.
| | - Nicole R Friedman
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Victoria R Ward
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Rachel E Estreicher
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Grace C Dorsey
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
13
|
Benavidez HR, Johansson M, Jones E, Rea H, Kurtz-Nelson EC, Miles C, Whiting A, Eayrs C, Earl R, Bernier RA, Eichler EE, Neuhaus E. Predicting Intervention Use in Youth with Rare Variants in Autism-Associated Genes. J Autism Dev Disord 2024:10.1007/s10803-024-06414-2. [PMID: 38809474 PMCID: PMC11604814 DOI: 10.1007/s10803-024-06414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Specialized multidisciplinary supports are important for long-term outcomes for autistic youth. Although family and child factors predict service utilization in autism, little is known with respect to youth with rare, autism-associated genetic variants, who frequently have increased psychiatric, developmental, and behavioral needs. We investigate the impact of family factors on service utilization to determine whether caregiver (autistic features, education, income) and child (autistic features, sex, age, IQ, co-occurring conditions) factors predicted service type (e.g., speech, occupational, behavioral) and intensity (hours/year) among children with autism-associated variants (N = 125), some of whom also had a confirmed ASD diagnosis. Analyses revealed variability in the types of services used across a range of child demographic, behavioral, and mental health characteristics. Speech therapy was the most received service (87.2%). Importantly, behavior therapy was the least received service and post-hoc analyses revealed that use of this therapy was uniquely predicted by ASD diagnosis. However, once children received a particular service, there was largely comparable intensity of services, independent of caregiver and child factors. Findings suggest that demographic and clinical factors impact families' ability to obtain services, with less impact on the intensity of services received. The low receipt of therapies that specifically address core support needs in autism (i.e., behavior therapy) indicates more research is needed on the availability of these services for youth with autism-associated variants, particularly for those who do not meet criteria for an ASD diagnosis but do demonstrate elevated and impactful child autistic features as compared to the general population.
Collapse
Affiliation(s)
| | - Margaret Johansson
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Jones
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Hannah Rea
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
- Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Conor Miles
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Alana Whiting
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Curtis Eayrs
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Rachel Earl
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA.
- Center on Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
14
|
Hill MD, Gill SS, Le-Niculescu H, MacKie O, Bhagar R, Roseberry K, Murray OK, Dainton HD, Wolf SK, Shekhar A, Kurian SM, Niculescu AB. Precision medicine for psychotic disorders: objective assessment, risk prediction, and pharmacogenomics. Mol Psychiatry 2024; 29:1528-1549. [PMID: 38326562 DOI: 10.1038/s41380-024-02433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Psychosis occurs inside the brain, but may have external manifestations (peripheral molecular biomarkers, behaviors) that can be objectively and quantitatively measured. Blood biomarkers that track core psychotic manifestations such as hallucinations and delusions could provide a window into the biology of psychosis, as well as help with diagnosis and treatment. We endeavored to identify objective blood gene expression biomarkers for hallucinations and delusions, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We were successful in identifying biomarkers that were predictive of high hallucinations and of high delusions states, and of future psychiatric hospitalizations related to them, more so when personalized by gender and diagnosis. Top biomarkers for hallucinations that survived discovery, prioritization, validation and testing include PPP3CB, DLG1, ENPP2, ZEB2, and RTN4. Top biomarkers for delusions include AUTS2, MACROD2, NR4A2, PDE4D, PDP1, and RORA. The top biological pathways uncovered by our work are glutamatergic synapse for hallucinations, as well as Rap1 signaling for delusions. Some of the biomarkers are targets of existing drugs, of potential utility in pharmacogenomics approaches (matching patients to medications, monitoring response to treatment). The top biomarkers gene expression signatures through bioinformatic analyses suggested a prioritization of existing medications such as clozapine and risperidone, as well as of lithium, fluoxetine, valproate, and the nutraceuticals omega-3 fatty acids and magnesium. Finally, we provide an example of how a personalized laboratory report for doctors would look. Overall, our work provides advances for the improved diagnosis and treatment for schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- M D Hill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - S S Gill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - O MacKie
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - R Bhagar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K Roseberry
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - O K Murray
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H D Dainton
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - S K Wolf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Ohio State University Medical Center, Columbus, OH, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Office of the Dean, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indianapolis VA Medical Center, Indianapolis, IN, USA.
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Clifton NE, Lin JQ, Holt CE, O'Donovan MC, Mill J. Enrichment of the Local Synaptic Translatome for Genetic Risk Associated With Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry 2024; 95:888-895. [PMID: 38103876 DOI: 10.1016/j.biopsych.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Genes that encode synaptic proteins or messenger RNA targets of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein) have been linked to schizophrenia and autism spectrum disorder (ASD) through the enrichment of genetic variants that confer risk for these disorders. FMRP binds many transcripts with synaptic functions and is thought to regulate their local translation, a process that enables rapid and compartmentalized protein synthesis required for development and plasticity. METHODS We used summary statistics from large-scale genome-wide association studies of schizophrenia (74,776 cases, 101,023 controls) and ASD (18,381 cases, 27,969 controls) to test the hypothesis that the subset of synaptic genes that encode localized transcripts is more strongly associated with each disorder than nonlocalized transcripts. We also postulated that this subset of synaptic genes is responsible for associations attributed to FMRP targets. RESULTS Schizophrenia associations were enriched in genes encoding localized synaptic transcripts compared to the remaining synaptic genes or to the remaining localized transcripts; this also applied to ASD associations, although only for transcripts observed after stimulation by fear conditioning. The genetic associations with either disorder captured by these gene sets were independent of those derived from FMRP targets. Schizophrenia association was related to FMRP interactions with messenger RNAs in somata, but not in dendrites, while ASD association was related to FMRP binding in either compartment. CONCLUSIONS Our data suggest that synaptic transcripts capable of local translation are particularly relevant to the pathogenesis of schizophrenia and ASD, but they do not characterize the associations attributed to current sets of FMRP targets.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| | - Julie Qiaojin Lin
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; UK Dementia Research Institute, King's College London, London, United Kingdom
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Michael C O'Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Neuhaus E, Rea H, Jones E, Benavidez H, Miles C, Whiting A, Johansson M, Eayrs C, Kurtz-Nelson EC, Earl R, Bernier RA, Eichler EE. Shared and divergent mental health characteristics of ADNP-, CHD8- and DYRK1A-related neurodevelopmental conditions. J Neurodev Disord 2024; 16:15. [PMID: 38622540 PMCID: PMC11017562 DOI: 10.1186/s11689-024-09532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Neurodevelopmental conditions such as intellectual disability (ID) and autism spectrum disorder (ASD) can stem from a broad array of inherited and de novo genetic differences, with marked physiological and behavioral impacts. We currently know little about the psychiatric phenotypes of rare genetic variants associated with ASD, despite heightened risk of psychiatric concerns in ASD more broadly. Understanding behavioral features of these variants can identify shared versus specific phenotypes across gene groups, facilitate mechanistic models, and provide prognostic insights to inform clinical practice. In this paper, we evaluate behavioral features within three gene groups associated with ID and ASD - ADNP, CHD8, and DYRK1A - with two aims: (1) characterize phenotypes across behavioral domains of anxiety, depression, ADHD, and challenging behavior; and (2) understand whether age and early developmental milestones are associated with later mental health outcomes. METHODS Phenotypic data were obtained for youth with disruptive variants in ADNP, CHD8, or DYRK1A (N = 65, mean age = 8.7 years, 40% female) within a long-running, genetics-first study. Standardized caregiver-report measures of mental health features (anxiety, depression, attention-deficit/hyperactivity, oppositional behavior) and developmental history were extracted and analyzed for effects of gene group, age, and early developmental milestones on mental health features. RESULTS Patterns of mental health features varied by group, with anxiety most prominent for CHD8, oppositional features overrepresented among ADNP, and attentional and depressive features most prominent for DYRK1A. For the full sample, age was positively associated with anxiety features, such that elevations in anxiety relative to same-age and same-sex peers may worsen with increasing age. Predictive utility of early developmental milestones was limited, with evidence of early language delays predicting greater difficulties across behavioral domains only for the CHD8 group. CONCLUSIONS Despite shared associations with autism and intellectual disability, disruptive variants in ADNP, CHD8, and DYRK1A may yield variable psychiatric phenotypes among children and adolescents. With replication in larger samples over time, efforts such as these may contribute to improved clinical care for affected children and adolescents, allow for earlier identification of emerging mental health difficulties, and promote early intervention to alleviate concerns and improve quality of life.
Collapse
Affiliation(s)
- Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Center On Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Hannah Rea
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth Jones
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah Benavidez
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Conor Miles
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alana Whiting
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret Johansson
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Curtis Eayrs
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
17
|
Nagai M, Porter RS, Hughes E, Saunders TL, Iwase S. Asynchronous microexon splicing of LSD1 and PHF21A during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586181. [PMID: 38562691 PMCID: PMC10983945 DOI: 10.1101/2024.03.21.586181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
LSD1 histone H3K4 demethylase and its binding partner PHF21A, a reader protein for unmethylated H3K4, both undergo neuron-specific microexon splicing. The LSD1 neuronal microexon weakens H3K4 demethylation activity and can alter the substrate specificity to H3K9 or H4K20. Meanwhile, the PHF21A neuronal microexon interferes with nucleosome binding. However, the temporal expression patterns of LSD1 and PHF21A splicing isoforms during brain development remain unknown. In this work, we report that neuronal PHF21A isoform expression precedes neuronal LSD1 isoform expression during human neuron differentiation and mouse brain development. The asynchronous splicing events resulted in stepwise deactivation of the LSD1-PHF21A complex in reversing H3K4 methylation. We further show that the enzymatically inactive LSD1-PHF21A complex interacts with neuron-specific binding partners, including MYT1-family transcription factors and post-transcriptional mRNA processing proteins such as VIRMA. The interaction with the neuron-specific components, however, did not require the PHF21A microexon, indicating that the neuronal proteomic milieu, rather than the microexon-encoded PHF21A segment, is responsible for neuron-specific complex formation. These results indicate that the PHF21A microexon is dispensable for neuron-specific protein-protein interactions, yet the enzymatically inactive LSD1-PHF21A complex might have unique gene-regulatory roles in neurons.
Collapse
Affiliation(s)
- Masayoshi Nagai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert S. Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elizabeth Hughes
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Wayhelova M, Vallova V, Broz P, Mikulasova A, Smetana J, Dynkova Filkova H, Machackova D, Handzusova K, Gaillyova R, Kuglik P. Exome sequencing improves the molecular diagnostics of paediatric unexplained neurodevelopmental disorders. Orphanet J Rare Dis 2024; 19:41. [PMID: 38321498 PMCID: PMC10845791 DOI: 10.1186/s13023-024-03056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) and/or associated multiple congenital abnormalities (MCAs) represent a genetically heterogeneous group of conditions with an adverse prognosis for the quality of intellectual and social abilities and common daily functioning. The rapid development of exome sequencing (ES) techniques, together with trio-based analysis, nowadays leads to up to 50% diagnostic yield. Therefore, it is considered as the state-of-the-art approach in these diagnoses. RESULTS In our study, we present the results of ES in a cohort of 85 families with 90 children with severe NDDs and MCAs. The interconnection of the in-house bioinformatic pipeline and a unique algorithm for variant prioritization resulted in a diagnostic yield of up to 48.9% (44/90), including rare and novel causative variants (41/90) and intragenic copy-number variations (CNVs) (3/90). Of the total number of 47 causative variants, 53.2% (25/47) were novel, highlighting the clinical benefit of ES for unexplained NDDs. Moreover, trio-based ES was verified as a reliable tool for the detection of rare CNVs, ranging from intragenic exon deletions (GRIN2A, ZC4H2 genes) to a 6-Mb duplication. The functional analysis using PANTHER Gene Ontology confirmed the involvement of genes with causative variants in a wide spectrum of developmental processes and molecular pathways, which form essential structural and functional components of the central nervous system. CONCLUSION Taken together, we present one of the first ES studies of this scale from the central European region. Based on the high diagnostic yield for paediatric NDDs in this study, 48.9%, we confirm trio-based ES as an effective and reliable first-tier diagnostic test in the genetic evaluation of children with NDDs.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic.
| | - Vladimira Vallova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Petr Broz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Aneta Mikulasova
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jan Smetana
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Dynkova Filkova
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| | - Dominika Machackova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristina Handzusova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czech Republic
| | - Petr Kuglik
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Centre of Molecular Biology and Genetics, University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Wellard NL, Clifton NE, Rees E, Thomas KL, Hall J. The Association of Hippocampal Long-Term Potentiation-Induced Gene Expression with Genetic Risk for Psychosis. Int J Mol Sci 2024; 25:946. [PMID: 38256020 PMCID: PMC10816085 DOI: 10.3390/ijms25020946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Genomic studies focusing on the contribution of common and rare genetic variants of schizophrenia and bipolar disorder support the view that substantial risk is conferred through molecular pathways involved in synaptic plasticity in the neurons of cortical and subcortical brain regions, including the hippocampus. Synaptic long-term potentiation (LTP) is central to associative learning and memory and depends on a pattern of gene expression in response to neuronal stimulation. Genes related to the induction of LTP have been associated with psychiatric genetic risk, but the specific cell types and timepoints responsible for the association are unknown. Using published genomic and transcriptomic datasets, we studied the relationship between temporally defined gene expression in hippocampal pyramidal neurons following LTP and enrichment for common genetic risk for schizophrenia and bipolar disorder, and for copy number variants (CNVs) and de novo coding variants associated with schizophrenia. We observed that upregulated genes in hippocampal pyramidal neurons at 60 and 120 min following LTP induction were enriched for common variant association with schizophrenia and bipolar disorder subtype I. At 60 min, LTP-induced genes were enriched in duplications from patients with schizophrenia, but this association was not specific to pyramidal neurons, perhaps reflecting the combined effects of CNVs in excitatory and inhibitory neuron subtypes. Gene expression following LTP was not related to enrichment for de novo coding variants from schizophrenia cases. Our findings refine our understanding of the role LTP-related gene sets play in conferring risk to conditions causing psychosis and provide a focus for future studies looking to dissect the molecular mechanisms associated with this risk.
Collapse
Affiliation(s)
- Natalie L. Wellard
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Nicholas E. Clifton
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
- Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Elliott Rees
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Kerrie L. Thomas
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| | - Jeremy Hall
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK (E.R.); (K.L.T.); (J.H.)
| |
Collapse
|
20
|
Mosconi MW, Stevens CJ, Unruh KE, Shafer R, Elison JT. Endophenotype trait domains for advancing gene discovery in autism spectrum disorder. J Neurodev Disord 2023; 15:41. [PMID: 37993779 PMCID: PMC10664534 DOI: 10.1186/s11689-023-09511-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with a diverse range of etiological processes, including both genetic and non-genetic causes. For a plurality of individuals with ASD, it is likely that the primary causes involve multiple common inherited variants that individually account for only small levels of variation in phenotypic outcomes. This genetic landscape creates a major challenge for detecting small but important pathogenic effects associated with ASD. To address similar challenges, separate fields of medicine have identified endophenotypes, or discrete, quantitative traits that reflect genetic likelihood for a particular clinical condition and leveraged the study of these traits to map polygenic mechanisms and advance more personalized therapeutic strategies for complex diseases. Endophenotypes represent a distinct class of biomarkers useful for understanding genetic contributions to psychiatric and developmental disorders because they are embedded within the causal chain between genotype and clinical phenotype, and they are more proximal to the action of the gene(s) than behavioral traits. Despite their demonstrated power for guiding new understanding of complex genetic structures of clinical conditions, few endophenotypes associated with ASD have been identified and integrated into family genetic studies. In this review, we argue that advancing knowledge of the complex pathogenic processes that contribute to ASD can be accelerated by refocusing attention toward identifying endophenotypic traits reflective of inherited mechanisms. This pivot requires renewed emphasis on study designs with measurement of familial co-variation including infant sibling studies, family trio and quad designs, and analysis of monozygotic and dizygotic twin concordance for select trait dimensions. We also emphasize that clarification of endophenotypic traits necessarily will involve integration of transdiagnostic approaches as candidate traits likely reflect liability for multiple clinical conditions and often are agnostic to diagnostic boundaries. Multiple candidate endophenotypes associated with ASD likelihood are described, and we propose a new focus on the analysis of "endophenotype trait domains" (ETDs), or traits measured across multiple levels (e.g., molecular, cellular, neural system, neuropsychological) along the causal pathway from genes to behavior. To inform our central argument for research efforts toward ETD discovery, we first provide a brief review of the concept of endophenotypes and their application to psychiatry. Next, we highlight key criteria for determining the value of candidate endophenotypes, including unique considerations for the study of ASD. Descriptions of different study designs for assessing endophenotypes in ASD research then are offered, including analysis of how select patterns of results may help prioritize candidate traits in future research. We also present multiple candidate ETDs that collectively cover a breadth of clinical phenomena associated with ASD, including social, language/communication, cognitive control, and sensorimotor processes. These ETDs are described because they represent promising targets for gene discovery related to clinical autistic traits, and they serve as models for analysis of separate candidate domains that may inform understanding of inherited etiological processes associated with ASD as well as overlapping neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| | - Cassandra J Stevens
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Robin Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Cerase A, Avner P. From X-inactivation to neurodevelopment: CHD8-transcription factors (TFs) competitive binding at regulatory regions of CHD8 target genes can contribute to correct neuronal differentiation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100114. [PMID: 38020809 PMCID: PMC10663126 DOI: 10.1016/j.crneur.2023.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/19/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
The chromodomain helicase DNA-binding protein 8 (CHD8) is a chromatin remodeler whose mutation is associated, with high penetrance, with autism. Individuals with CHD8 mutations share common symptoms such as autistic behaviour, cognitive impairment, schizophrenia comorbidity, and phenotypic features such as macrocephaly and facial defects. Chd8-deficient mouse models recapitulate most of the phenotypes seen in the brain and other organs of humans. It is known that CHD8 regulates - directly and indirectly - neuronal, autism spectrum disorder (ASDs)-associated genes and long non-coding RNAs (lncRNAs) genes, which, in turn, regulate fundamental aspects of neuronal differentiation and brain development and function. A major characteristic of CHD8 regulation of gene expression is its non-linear and dosage-sensitive nature. CHD8 mutations appear to affect males predominantly, although the reasons for this observed sex bias remain- unknown. We have recently reported that CHD8 directly regulates X chromosome inactivation (XCI) through the transcriptional control of the Xist long non-coding RNA (lncRNA), the master regulator of mammalian XCI. We identified a role for CHD8 in regulating accessibility at the Xist promoter through competitive binding with transcription factors (TFs) at Xist regulatory regions. We speculate here that CHD8 might also regulate accessibility at neuronal/ASD targets through a similar competitive binding mechanism during neurogenesis and brain development. However, whilst such a model can reconcile the phenotypic differences observed in Chd8 knock-down (KD) vs knock-out (KO) mouse models, explaining the observed CHD8 non-linear dosage-dependent activity, it cannot on its own explain the observed disease sex bias.
Collapse
Affiliation(s)
| | - Philip Avner
- EMBL Rome, Via Ramarini 32, Monterotondo, 00015, RM, Italy
| |
Collapse
|
22
|
Fahey L, Ali D, Donohoe G, Ó Broin P, Morris DW. Genes positively regulated by Mef2c in cortical neurons are enriched for common genetic variation associated with IQ and educational attainment. Hum Mol Genet 2023; 32:3194-3203. [PMID: 37672226 PMCID: PMC10630234 DOI: 10.1093/hmg/ddad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
The myocyte enhancer factor 2 C (MEF2C) gene encodes a transcription factor important for neurogenesis and synapse development and contains common variants associated with intelligence (IQ) and educational attainment (EA). Here, we took gene expression data from the mouse cortex of a Mef2c mouse model with a heterozygous DNA binding-deficient mutation of Mef2c (Mef2c-het) and combined these data with MEF2C ChIP-seq data from cortical neurons and single-cell data from the mouse brain. This enabled us to create a set of genes that were differentially regulated in Mef2c-het mice, represented direct target genes of MEF2C and had elevated in expression in cortical neurons. We found this gene-set to be enriched for genes containing common genetic variation associated with IQ and EA. Genes within this gene-set that were down-regulated, i.e. have reduced expression in Mef2c-het mice versus controls, were specifically significantly enriched for both EA and IQ associated genes. These down-regulated genes were enriched for functionality in the adenylyl cyclase signalling system, which is known to positively regulate synaptic transmission and has been linked to learning and memory. Within the adenylyl cyclase signalling system, three genes regulated by MEF2C, CRHR1, RGS6, and GABRG3, are associated at genome-wide significant levels with IQ and/or EA. Our results indicate that genetic variation in MEF2C and its direct target genes within cortical neurons contribute to variance in cognition within the general population, and the molecular mechanisms involved include the adenylyl cyclase signalling system's role in synaptic function.
Collapse
Affiliation(s)
- Laura Fahey
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Pilib Ó Broin
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| |
Collapse
|
23
|
Forsyth JK, Bearden CE. Rethinking the First Episode of Schizophrenia: Identifying Convergent Mechanisms During Development and Moving Toward Prediction. Am J Psychiatry 2023; 180:792-804. [PMID: 37908094 DOI: 10.1176/appi.ajp.20230736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Jennifer K Forsyth
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| | - Carrie E Bearden
- Department of Psychology, University of Washington, Seattle (Forsyth); Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Behavioral Sciences, and Department of Psychology, University of California, Los Angeles (Bearden)
| |
Collapse
|
24
|
Kurtz-Nelson EC, Rea HM, Petriceks AC, Hudac CM, Wang T, Earl RK, Bernier RA, Eichler EE, Neuhaus E. Characterizing the autism spectrum phenotype in DYRK1A-related syndrome. Autism Res 2023; 16:1488-1500. [PMID: 37497568 PMCID: PMC10530559 DOI: 10.1002/aur.2995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Likely gene-disrupting (LGD) variants in DYRK1A are causative of DYRK1A syndrome and associated with autism spectrum disorder (ASD) and intellectual disability (ID). While many individuals with DYRK1A syndrome are diagnosed with ASD, they may present with a unique profile of ASD traits. We present a comprehensive characterization of the ASD profile in children and young adults with LGDs in DYRK1A. Individuals with LGD variants in DYRK1A (n = 29) were compared to children who had ASD with no known genetic cause, either with low nonverbal IQ (n = 14) or average or above nonverbal IQ (n = 41). ASD was assessed using the ADOS-2, ADI-R, SRS-2, SCQ, and RBS-R. Quantitative score comparisons were conducted, as were qualitative analyses of clinicians' behavioral observations. Diagnosis of ASD was confirmed in 85% and ID was confirmed in 89% of participants with DYRK1A syndrome. Individuals with DYRK1A syndrome showed broadly similar social communication behaviors to children with idiopathic ASD and below-average nonverbal IQ, with specific challenges noted in social reciprocity and nonverbal communication. Children with DYRK1A syndrome also showed high rates of sensory-seeking behaviors. Phenotypic characterization of individuals with DYRK1A syndrome may provide additional information on mechanisms contributing to co-occurring ASD and ID and contribute to the identification of genetic predictors of specific ASD traits.
Collapse
Affiliation(s)
| | - Hannah M. Rea
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aiva C. Petriceks
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Caitlin M. Hudac
- Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
- Carolina Autism and Neurodevelopment Research Center, Columbia, South Carolina, USA
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Rachel K. Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
25
|
Hu M, Bodnar B, Zhang Y, Xie F, Li F, Li S, Zhao J, Zhao R, Gedupoori N, Mo Y, Lin L, Li X, Meng W, Yang X, Wang H, Barbe MF, Srinivasan S, Bethea JR, Mo X, Xu H, Hu W. Defective neurite elongation and branching in Nibp/Trappc9 deficient zebrafish and mice. Int J Biol Sci 2023; 19:3226-3248. [PMID: 37416774 PMCID: PMC10321293 DOI: 10.7150/ijbs.78489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Loss of function in transport protein particles (TRAPP) links a new set of emerging genetic disorders called "TRAPPopathies". One such disorder is NIBP syndrome, characterized by microcephaly and intellectual disability, and caused by mutations of NIBP/TRAPPC9, a crucial and unique member of TRAPPII. To investigate the neural cellular/molecular mechanisms underlying microcephaly, we developed Nibp/Trappc9-deficient animal models using different techniques, including morpholino knockdown and CRISPR/Cas mutation in zebrafish and Cre/LoxP-mediated gene targeting in mice. Nibp/Trappc9 deficiency impaired the stability of the TRAPPII complex at actin filaments and microtubules of neurites and growth cones. This deficiency also impaired elongation and branching of neuronal dendrites and axons, without significant effects on neurite initiation or neural cell number/types in embryonic and adult brains. The positive correlation of TRAPPII stability and neurite elongation/branching suggests a potential role for TRAPPII in regulating neurite morphology. These results provide novel genetic/molecular evidence to define patients with a type of non-syndromic autosomal recessive intellectual disability and highlight the importance of developing therapeutic approaches targeting the TRAPPII complex to cure TRAPPopathies.
Collapse
Affiliation(s)
- Min Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- Department of Clinical Laboratory, Xi'an NO. 3 Hospital, Xi'an, Shaanxi, 710018, China
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Siying Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jin Zhao
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Naveen Gedupoori
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Mo
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Lanyi Lin
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Mary F. Barbe
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenhui Hu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Center for Metabolic Disease Research, Department of Pathalogy and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Obi-Nagata K, Suzuki N, Miyake R, MacDonald ML, Fish KN, Ozawa K, Nagahama K, Okimura T, Tanaka S, Kano M, Fukazawa Y, Sweet RA, Hayashi-Takagi A. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. SCIENCE ADVANCES 2023; 9:eade5973. [PMID: 37294752 PMCID: PMC10256173 DOI: 10.1126/sciadv.ade5973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.
Collapse
Affiliation(s)
- Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| | - Norimitsu Suzuki
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Matthew L. MacDonald
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Katsuya Ozawa
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo 157-8577, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida, Fukui, 910-1193, Japan
| | - Robert A. Sweet
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Akiko Hayashi-Takagi
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| |
Collapse
|
27
|
Nakamura T, Takata A. The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Mol Psychiatry 2023; 28:1868-1889. [PMID: 36878965 PMCID: PMC10575785 DOI: 10.1038/s41380-023-02005-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Despite enormous efforts employing various approaches, the molecular pathology in the schizophrenia brain remains elusive. On the other hand, the knowledge of the association between the disease risk and changes in the DNA sequences, in other words, our understanding of the genetic pathology of schizophrenia, has dramatically improved over the past two decades. As the consequence, now we can explain more than 20% of the liability to schizophrenia by considering all analyzable common genetic variants including those with weak or no statistically significant association. Also, a large-scale exome sequencing study identified single genes whose rare mutations substantially increase the risk for schizophrenia, of which six genes (SETD1A, CUL1, XPO7, GRIA3, GRIN2A, and RB1CC1) showed odds ratios larger than ten. Based on these findings together with the preceding discovery of copy number variants (CNVs) with similarly large effect sizes, multiple disease models with high etiological validity have been generated and analyzed. Studies of the brains of these models, as well as transcriptomic and epigenomic analyses of patient postmortem tissues, have provided new insights into the molecular pathology of schizophrenia. In this review, we overview the current knowledge acquired from these studies, their limitations, and directions for future research that may redefine schizophrenia based on biological alterations in the responsible organ rather than operationalized criteria.
Collapse
Affiliation(s)
- Takumi Nakamura
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Takata
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
28
|
Itai T, Jia P, Dai Y, Chen J, Chen X, Zhao Z. De novo mutations disturb early brain development more frequently than common variants in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2023; 192:62-70. [PMID: 36863698 PMCID: PMC11270591 DOI: 10.1002/ajmg.b.32932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 01/29/2023] [Indexed: 03/04/2023]
Abstract
Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Xiangning Chen
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
29
|
Ng JK, Vats P, Fritz-Waters E, Sarkar S, Sams EI, Padhi EM, Payne ZL, Leonard S, West MA, Prince C, Trani L, Jansen M, Vacek G, Samadi M, Harkins TT, Pohl C, Turner TN. de novo variant calling identifies cancer mutation signatures in the 1000 Genomes Project. Hum Mutat 2022; 43:1979-1993. [PMID: 36054329 PMCID: PMC9771978 DOI: 10.1002/humu.24455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
Detection of de novo variants (DNVs) is critical for studies of disease-related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units-based workflow. We applied our workflow to whole-genome sequencing data from three parent-child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B-cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely-pathogenic sites and significant excess of protein-coding DNVs in IGLL5; a gene known to be involved in B-cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease-related projects.
Collapse
Affiliation(s)
- Jeffrey K. Ng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pankaj Vats
- NVIDIA Corporation, Santa Clara, California, USA
| | - Elyn Fritz-Waters
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Sarkar
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eleanor I. Sams
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evin M. Padhi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zachary L. Payne
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shawn Leonard
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marc A. West
- NVIDIA Corporation, Santa Clara, California, USA
| | - Chandler Prince
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Trani
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marshall Jansen
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - George Vacek
- NVIDIA Corporation, Santa Clara, California, USA
| | | | | | - Craig Pohl
- Research Infrastructure Services, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Zug R, Uller T. Evolution and dysfunction of human cognitive and social traits: A transcriptional regulation perspective. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e43. [PMID: 37588924 PMCID: PMC10426018 DOI: 10.1017/ehs.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022] Open
Abstract
Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations. We discuss how human brain and craniofacial traits evolved through partial loss of function (i.e. reduced expression) of these genes, a perspective compatible with the idea of human self-domestication. Moreover, we explain why selection against loss-of-function variants supports the view that mutation-selection-drift, rather than balancing selection, underlies the persistence of psychiatric disorders. Finally, we discuss testable predictions.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, Isles AR, Collins MO, Hall J. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022; 31:3095-3106. [PMID: 35531971 PMCID: PMC9476630 DOI: 10.1093/hmg/ddac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.
Collapse
Affiliation(s)
- Nicholas E Clifton
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Matthew L Bosworth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
32
|
Mojarad BA, Engchuan W, Trost B, Backstrom I, Yin Y, Thiruvahindrapuram B, Pallotto L, Mitina A, Khan M, Pellecchia G, Haque B, Guo K, Heung T, Costain G, Scherer SW, Marshall CR, Pearson CE, Bassett AS, Yuen RKC. Genome-wide tandem repeat expansions contribute to schizophrenia risk. Mol Psychiatry 2022; 27:3692-3698. [PMID: 35546631 PMCID: PMC9708556 DOI: 10.1038/s41380-022-01575-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
Abstract
Tandem repeat expansions (TREs) can cause neurological diseases but their impact in schizophrenia is unclear. Here we analyzed genome sequences of adults with schizophrenia and found that they have a higher burden of TREs that are near exons and rare in the general population, compared with non-psychiatric controls. These TREs are disproportionately found at loci known to be associated with schizophrenia from genome-wide association studies, in individuals with clinically-relevant genetic variants at other schizophrenia loci, and in families where multiple individuals have schizophrenia. We showed that rare TREs in schizophrenia may impact synaptic functions by disrupting the splicing process of their associated genes in a loss-of-function manner. Our findings support the involvement of genome-wide rare TREs in the polygenic nature of schizophrenia.
Collapse
Affiliation(s)
- Bahareh A Mojarad
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Worrawat Engchuan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ian Backstrom
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yue Yin
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bhooma Thiruvahindrapuram
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Linda Pallotto
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleksandra Mitina
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mahreen Khan
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Giovanna Pellecchia
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bushra Haque
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Keyi Guo
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Gregory Costain
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher E Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.
| | - Ryan K C Yuen
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Vilela J, Martiniano H, Marques AR, Santos JX, Rasga C, Oliveira G, Vicente AM. Disease similarity network analysis of Autism Spectrum Disorder and comorbid brain disorders. Front Mol Neurosci 2022; 15:932305. [PMID: 36061363 PMCID: PMC9434349 DOI: 10.3389/fnmol.2022.932305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with heterogeneous clinical presentation, variable severity, and multiple comorbidities. A complex underlying genetic architecture matches the clinical heterogeneity, and evidence indicates that several co-occurring brain disorders share a genetic component with ASD. In this study, we established a genetic similarity disease network approach to explore the shared genetics between ASD and frequent comorbid brain diseases (and subtypes), namely Intellectual Disability, Attention-Deficit/Hyperactivity Disorder, and Epilepsy, as well as other rarely co-occurring neuropsychiatric conditions in the Schizophrenia and Bipolar Disease spectrum. Using sets of disease-associated genes curated by the DisGeNET database, disease genetic similarity was estimated from the Jaccard coefficient between disease pairs, and the Leiden detection algorithm was used to identify network disease communities and define shared biological pathways. We identified a heterogeneous brain disease community that is genetically more similar to ASD, and that includes Epilepsy, Bipolar Disorder, Attention-Deficit/Hyperactivity Disorder combined type, and some disorders in the Schizophrenia Spectrum. To identify loss-of-function rare de novo variants within shared genes underlying the disease communities, we analyzed a large ASD whole-genome sequencing dataset, showing that ASD shares genes with multiple brain disorders from other, less genetically similar, communities. Some genes (e.g., SHANK3, ASH1L, SCN2A, CHD2, and MECP2) were previously implicated in ASD and these disorders. This approach enabled further clarification of genetic sharing between ASD and brain disorders, with a finer granularity in disease classification and multi-level evidence from DisGeNET. Understanding genetic sharing across disorders has important implications for disease nosology, pathophysiology, and personalized treatment.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
- *Correspondence: Astrid Moura Vicente,
| |
Collapse
|
34
|
Khogeer AA, AboMansour IS, Mohammed DA. The Role of Genetics, Epigenetics, and the Environment in ASD: A Mini Review. EPIGENOMES 2022; 6:15. [PMID: 35735472 PMCID: PMC9222497 DOI: 10.3390/epigenomes6020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
According to recent findings, variances in autism spectrum disorder (ASD) risk factors might be determined by several factors, including molecular genetic variants. Accumulated evidence has also revealed the important role of biological and chemical pathways in ASD aetiology. In this paper, we assess several reviews with regard to their quality of evidence and provide a brief outline of the presumed mechanisms of the genetic, epigenetic, and environmental risk factors of ASD. We also review some of the critical literature, which supports the basis of each factor in the underlying and specific risk patterns of ASD. Finally, we consider some of the implications of recent research regarding potential molecular targets for future investigations.
Collapse
Affiliation(s)
- Asim A. Khogeer
- Research Department, The Strategic Planning Administration, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah 24382, Saudi Arabia
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
- Scientific Council, Molecular Research and Training Center, iGene, Jeddah 3925, Saudi Arabia
| | - Iman S. AboMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Neurogenetic Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 2865, Saudi Arabia
| | - Dia A. Mohammed
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
| |
Collapse
|
35
|
Wang HE, Cheng CM, Bai YM, Hsu JW, Huang KL, Su TP, Tsai SJ, Li CT, Chen TJ, Leventhal BL, Chen MH. Familial coaggregation of major psychiatric disorders in first-degree relatives of individuals with autism spectrum disorder: a nationwide population-based study. Psychol Med 2022; 52:1437-1447. [PMID: 32914742 DOI: 10.1017/s0033291720003207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Family coaggregation of attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia have been presented in previous studies. The shared genetic and environmental factors among psychiatric disorders remain elusive. METHODS This nationwide population-based study examined familial coaggregation of major psychiatric disorders in first-degree relatives (FDRs) of individuals with ASD. Taiwan's National Health Insurance Research Database was used to identify 26 667 individuals with ASD and 67 998 FDRs of individuals with ASD. The cohort was matched in 1:4 ratio to 271 992 controls. The relative risks (RRs) and 95% confidence intervals (CI) of ADHD, ASD, BD, MDD and schizophrenia were assessed among FDRs of individuals with ASD and ASD with intellectual disability (ASD-ID). RESULTS FDRs of individuals with ASD have higher RRs of major psychiatric disorders compared with controls: ASD 17.46 (CI 15.50-19.67), ADHD 3.94 (CI 3.72-4.17), schizophrenia 3.05 (CI 2.74-3.40), BD 2.22 (CI 1.98-2.48) and MDD 1.88 (CI 1.76-2.00). Higher RRs of schizophrenia (4.47, CI 3.95-5.06) and ASD (18.54, CI 16.18-21.23) were observed in FDRs of individuals with both ASD-ID, compared with ASD only. CONCLUSIONS The risk for major psychiatric disorders was consistently elevated across all types of FDRs of individuals with ASD. FDRs of individuals with ASD-ID are at further higher risk for ASD and schizophrenia. Our results provide leads for future investigation of shared etiologic pathways of ASD, ID and major psychiatric disorders and highlight the importance of mental health care delivered to at-risk families for early diagnoses and interventions.
Collapse
Affiliation(s)
- Hohui E Wang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Chih-Ming Cheng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ju-Wei Hsu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kai-Lin Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei, Taiwan
| | - Bennett L Leventhal
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
Trappc9 Deficiency Impairs the Plasticity of Stem Cells. Int J Mol Sci 2022; 23:ijms23094900. [PMID: 35563289 PMCID: PMC9101649 DOI: 10.3390/ijms23094900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic mutations of trappc9 cause intellectual disability with the atrophy of brain structures and variable obesity by poorly understood mechanisms. Trappc9-deficient mice develop phenotypes resembling pathological changes in humans and appear overweight shortly after weaning, and thus are useful for studying the pathogenesis of obesity. Here, we investigated the effects of trappc9 deficiency on the proliferation and differentiation capacity of adipose-derived stem cells (ASCs). We isolated ASCs from mice before overweight was developed and found that trappc9-null ASCs exhibited signs of premature senescence and cell death. While the lineage commitment was retained, trappc9-null ASCs preferred adipogenic differentiation. We observed a profound accumulation of lipid droplets in adipogenic cells derived from trappc9-deficient ASCs and marked differences in the distribution patterns and levels of calcium deposited in osteoblasts obtained from trappc9-null ASCs. Biochemical studies revealed that trappc9 deficiency resulted in an upregulated expression of rab1, rab11, and rab18, and agitated autophagy in ASCs. Moreover, we found that the content of neural stem cells in both the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus vastly declined in trappc9-null mice. Collectively, our results suggest that obesity, as well as brain structure hypoplasia induced by the deficiency of trappc9, involves an impairment in the plasticity of stem cells.
Collapse
|
37
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
38
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Lin GN, Song W, Wang W, Wang P, Yu H, Cai W, Jiang X, Huang W, Qian W, Chen Y, Chen M, Yu S, Xu T, Jiao Y, Liu Q, Zhang C, Yi Z, Fan Q, Chen J, Wang Z. De novo mutations identified by whole-genome sequencing implicate chromatin modifications in obsessive-compulsive disorder. SCIENCE ADVANCES 2022; 8:eabi6180. [PMID: 35020433 PMCID: PMC8754407 DOI: 10.1126/sciadv.abi6180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic anxiety disorder with a substantial genetic basis and a broadly undiscovered etiology. Recent studies of de novo mutation (DNM) exome-sequencing studies for OCD have reinforced the hypothesis that rare variation contributes to the risk. We performed, to our knowledge, the first whole-genome sequencing on 53 parent-offspring families with offspring affected with OCD to investigate all rare de novo variants and insertions/deletions. We observed higher mutation rates in promoter-anchored chromatin loops (empirical P = 0.0015) and regions with high frequencies of histone marks (empirical P = 0.0001). Mutations affecting coding regions were significantly enriched within coexpression modules of genes involved in chromatin modification during human brain development. Four genes—SETD5, KDM3B, ASXL3, and FBL—had strong aggregated evidence and functionally converged on transcription’s epigenetic regulation, suggesting an important OCD risk mechanism. Our data characterized different genome-wide DNMs and highlighted the contribution of chromatin modification in the etiology of OCD.
Collapse
Affiliation(s)
- Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Corresponding author. (G.N.L.); (Z.W.)
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Yu
- Novogene Bioinformatics Institute, Beijing, China
| | - Wenxiang Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Xue Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wu Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Wei Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yucan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Tingting Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Jiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Jue Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Corresponding author. (G.N.L.); (Z.W.)
| |
Collapse
|
40
|
Huang X, Fan DS. Autosomal recessive spinocerebellar ataxia type 4 with a VPS13D mutation: A case report. World J Clin Cases 2022; 10:703-708. [PMID: 35097097 PMCID: PMC8771376 DOI: 10.12998/wjcc.v10.i2.703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autosomal recessive spinocerebellar ataxia type 4 (SCAR4) is a type of SCA that is a group of hereditary diseases characterized by gait ataxia. The main clinical features of SCAR4 are progressive cerebellar ataxia, pyramidal signs, neuropathy, and macrosaccadic intrusions. To date, many gene dysfunctions have been reported to be associated with SCAR4.
CASE SUMMARY Here, we report a novel compound heterozygous mutation, c.3288delA (p.Asp1097ThrfsTer6), in the VPS13D gene in a young female Chinese patient. The patient found something wrong with her legs about 10 years ago and presented with the typical characteristics of SCAR4 when she came to the hospital, including ataxia, neuropathy, and positive pyramidal signs. She was then diagnosed with SCAR4 and went home with symptomatic schemes.
CONCLUSION SCAR4 is a hereditary disease characterized by ataxia, pyramidal signs, neuropathy, and macrosaccadic intrusions. We report a novel compound heterozygous mutation, c.3288delA (p.Asp1097ThrfsTer6), in the VPS13D gene, which enriches the gene mutation spectrum and provides additional information about SCAR4.
Collapse
Affiliation(s)
- Xin Huang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China
- Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
| |
Collapse
|
41
|
Blaise AM, Corcoran EE, Wattenberg ES, Zhang YL, Cottrell JR, Koleske AJ. In vitro fluorescence assay to measure GDP/GTP exchange of guanine nucleotide exchange factors of Rho family GTPases. Biol Methods Protoc 2021; 7:bpab024. [PMID: 35087952 PMCID: PMC8789339 DOI: 10.1093/biomethods/bpab024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are enzymes that promote the activation of GTPases through GTP loading. Whole exome sequencing has identified rare variants in GEFs that are associated with disease, demonstrating that GEFs play critical roles in human development. However, the consequences of these rare variants can only be understood through measuring their effects on cellular activity. Here, we provide a detailed, user-friendly protocol for purification and fluorescence-based analysis of the two GEF domains within the protein, Trio. This analysis offers a straight-forward, quantitative tool to test the activity of GEF domains on their respective GTPases, as well as utilize high-throughput screening to identify regulators and inhibitors. This protocol can be adapted for characterization of other Rho family GEFs. Such analyses are crucial for the complete understanding of the roles of GEF genetic variants in human development and disease.
Collapse
Affiliation(s)
- Alyssa M Blaise
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Ellen E Corcoran
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Eve S Wattenberg
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anthony J Koleske
- Departments of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
- Neuroscience, Yale School of Medicine, Yale University, New Haven, CT 06520-8024, USA
| |
Collapse
|
42
|
Rees E, Creeth HDJ, Hwu HG, Chen WJ, Tsuang M, Glatt SJ, Rey R, Kirov G, Walters JTR, Holmans P, Owen MJ, O'Donovan MC. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat Commun 2021; 12:5353. [PMID: 34504065 PMCID: PMC8429694 DOI: 10.1038/s41467-021-25532-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
People with schizophrenia are enriched for rare coding variants in genes associated with neurodevelopmental disorders, particularly autism spectrum disorders and intellectual disability. However, it is unclear if the same changes to gene function that increase risk to neurodevelopmental disorders also do so for schizophrenia. Using data from 3444 schizophrenia trios and 37,488 neurodevelopmental disorder trios, we show that within shared risk genes, de novo variants in schizophrenia and neurodevelopmental disorders are generally of the same functional category, and that specific de novo variants observed in neurodevelopmental disorders are enriched in schizophrenia (P = 5.0 × 10-6). The latter includes variants known to be pathogenic for syndromic disorders, suggesting that schizophrenia be included as a characteristic of those syndromes. Our findings imply that, in part, neurodevelopmental disorders and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology, and support the hypothesis that at least some forms of schizophrenia lie on a continuum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Hugo D J Creeth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Wei J Chen
- National Taiwan University, Taipei, Taiwan
| | - Ming Tsuang
- University of California, San Diego, La Jolla, CA, USA
| | | | - Romain Rey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, F-69000, France
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
43
|
Lindholm Carlström E, Niazi A, Etemadikhah M, Halvardson J, Enroth S, Stockmeier CA, Rajkowska G, Nilsson B, Feuk L. Transcriptome Analysis of Post-Mortem Brain Tissue Reveals Up-Regulation of the Complement Cascade in a Subgroup of Schizophrenia Patients. Genes (Basel) 2021; 12:1242. [PMID: 34440415 PMCID: PMC8393670 DOI: 10.3390/genes12081242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is a genetically complex neuropsychiatric disorder with largely unresolved mechanisms of pathology. Identification of genes and pathways associated with schizophrenia is important for understanding the development, progression and treatment of schizophrenia. In this study, pathways associated with schizophrenia were explored at the level of gene expression. The study included post-mortem brain tissue samples from 68 schizophrenia patients and 44 age and sex-matched control subjects. Whole transcriptome poly-A selected paired-end RNA sequencing was performed on tissue from the prefrontal cortex and orbitofrontal cortex. RNA expression differences were detected between case and control individuals, focusing both on single genes and pathways. The results were validated with RT-qPCR. Significant differential expression between patient and controls groups was found for 71 genes. Gene ontology analysis of differentially expressed genes revealed an up-regulation of multiple genes in immune response among the patients (corrected p-value = 0.004). Several genes in the category belong to the complement system, including C1R, C1S, C7, FCN3, SERPING1, C4A and CFI. The increased complement expression is primarily driven by a subgroup of patients with increased expression of immune/inflammatory response genes, pointing to important differences in disease etiology within the patient group. Weighted gene co-expression network analysis highlighted networks associated with both synaptic transmission and activation of the immune response. Our results demonstrate the importance of immune-related pathways in schizophrenia and provide evidence for elevated expression of the complement cascade as an important pathway in schizophrenia pathology.
Collapse
Affiliation(s)
- Eva Lindholm Carlström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Adnan Niazi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Mitra Etemadikhah
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.R.)
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.R.)
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.L.C.); (A.N.); (M.E.); (J.H.); (S.E.); (B.N.)
| |
Collapse
|
44
|
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021; 15:674563. [PMID: 34483818 PMCID: PMC8414411 DOI: 10.3389/fnins.2021.674563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past years, brain development has been investigated in rodent models, which were particularly relevant to establish the role of specific genes in this process. However, the cytoarchitectonic features, which determine neuronal network formation complexity, are unique to humans. This implies that the developmental program of the human brain and neurological disorders can only partly be reproduced in rodents. Advancement in the study of the human brain surged with cultures of human brain tissue in the lab, generated from induced pluripotent cells reprogrammed from human somatic tissue. These cultures, termed brain organoids, offer an invaluable model for the study of the human brain. Brain organoids reproduce the cytoarchitecture of the cortex and can develop multiple brain regions and cell types. Integration of functional activity of neural cells within brain organoids with genetic, cellular, and morphological data in a comprehensive model for human development and disease is key to advance in the field. Because the functional activity of neural cells within brain organoids relies on cell repertoire and time in culture, here, we review data supporting the gradual formation of complex neural networks in light of cell maturity within brain organoids. In this context, we discuss how the technology behind brain organoids brought advances in understanding neurodevelopmental, pathogen-induced, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lisiane O. Porciúncula
- Department of Biochemistry, Program of Biological Sciences - Biochemistry, Institute of Health and Basic Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Pitia F. Ledur
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
45
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
46
|
Clifton NE, Rees E, Holmans PA, Pardiñas AF, Harwood JC, Di Florio A, Kirov G, Walters JTR, O'Donovan MC, Owen MJ, Hall J, Pocklington AJ. Genetic association of FMRP targets with psychiatric disorders. Mol Psychiatry 2021; 26:2977-2990. [PMID: 33077856 PMCID: PMC8505260 DOI: 10.1038/s41380-020-00912-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Genes encoding the mRNA targets of fragile X mental retardation protein (FMRP) are enriched for genetic association with psychiatric disorders. However, many FMRP targets possess functions that are themselves genetically associated with psychiatric disorders, including synaptic transmission and plasticity, making it unclear whether the genetic risk is truly related to binding by FMRP or is alternatively mediated by the sampling of genes better characterised by another trait or functional annotation. Using published common variant, rare coding variant and copy number variant data, we examined the relationship between FMRP binding and genetic association with schizophrenia, major depressive disorder and bipolar disorder. High-confidence targets of FMRP, derived from studies of multiple tissue types, were enriched for common schizophrenia risk alleles, as well as rare loss-of-function and de novo nonsynonymous variants in schizophrenia cases. Similarly, through common variation, FMRP targets were associated with major depressive disorder, and we present novel evidence of association with bipolar disorder. These relationships could not be explained by other functional annotations known to be associated with psychiatric disorders, including those related to synaptic structure and function. This study reinforces the evidence that targeting by FMRP captures a subpopulation of genes enriched for genetic association with a range of psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Janet C Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Arianna Di Florio
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Andrew J Pocklington
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
47
|
Kummeling J, Stremmelaar DE, Raun N, Reijnders MRF, Willemsen MH, Ruiterkamp-Versteeg M, Schepens M, Man CCO, Gilissen C, Cho MT, McWalter K, Sinnema M, Wheless JW, Simon MEH, Genetti CA, Casey AM, Terhal PA, van der Smagt JJ, van Gassen KLI, Joset P, Bahr A, Steindl K, Rauch A, Keller E, Raas-Rothschild A, Koolen DA, Agrawal PB, Hoffman TL, Powell-Hamilton NN, Thiffault I, Engleman K, Zhou D, Bodamer O, Hoefele J, Riedhammer KM, Schwaibold EMC, Tasic V, Schubert D, Top D, Pfundt R, Higgs MR, Kramer JM, Kleefstra T. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry 2021; 26:2013-2024. [PMID: 32346159 DOI: 10.1038/s41380-020-0725-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
Collapse
Affiliation(s)
- Joost Kummeling
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Margot R F Reijnders
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martina Ruiterkamp-Versteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marga Schepens
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Calvin C O Man
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | - Margje Sinnema
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - James W Wheless
- Division of Pediatric Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Neuroscience Institute & Le Bonheur Comprehensive Epilepsy Program, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Casie A Genetti
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia M Casey
- Division of Pulmonary and Respiratory Diseases, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper J van der Smagt
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, 8952, Zurich, Switzerland
| | - Elmar Keller
- Division of Neuropediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Annick Raas-Rothschild
- Institute of Rare Disease, Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor L Hoffman
- Regional Department of Genetics, Southern California Kaiser Permanente Medical Group, 1188N. Euclid Street, Anaheim, CA, 92801, USA
| | - Nina N Powell-Hamilton
- Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Pathology and Laboratory Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Division of Clinical Genetics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Dihong Zhou
- Department of Pediatrics, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, Skopje, North Macedonia
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Deniz Top
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Maury EA, Walsh CA. Somatic copy number variants in neuropsychiatric disorders. Curr Opin Genet Dev 2021; 68:9-17. [PMID: 33444936 PMCID: PMC8205940 DOI: 10.1016/j.gde.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023]
Abstract
Copy number variants (CNVs) have been implicated in neuropsychiatric disorders, with rare-inherited and de novo CNVs (dnCNVs) having large effects on disease liability. Recent studies started exploring a class of dnCNVs that occur post-zygotically, and are therefore present in some but not all cells of the body. Analogous to conditional mutations in animal models, the presence of risk mutations in a fraction of cells has the potential to enlighten how damaging mutations affect cell-type/cell-circuit specific pathologies leading to neuropsychiatric manifestations. Although mosaic CNVs appear to contribute to a modest fraction of risk (0.3-0.5%), expanding our insights about them with more sensitive experimental and statistical methods, has the potential to help clarify mechanisms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Eduardo A Maury
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Bioinformatics & Integrative Genomics Program and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
49
|
Novel Compound Heterozygous Mutation in TRAPPC9 Gene: The Relevance of Whole Genome Sequencing. Genes (Basel) 2021; 12:genes12040557. [PMID: 33921338 PMCID: PMC8068822 DOI: 10.3390/genes12040557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Advances in high-throughput technologies and its implementation worldwide have had a considerable impact on the elucidation of the molecular causes underlying neurodevelopmental psychiatric disorders, especially for autism spectrum disorder and intellectual disability (ID). Nevertheless, etiology remains elusive in close to 50% of cases, even in those families with multiple affected individuals, strongly hinting at a genetic cause. Here we present a case report of two siblings affected with severe ID and other comorbidities, who embarked on a genetic testing odyssey until diagnosis was reached by using whole genome sequencing (WGS). WGS identified a maternally inherited novel missense variant (NM_031466.7:c.1037G > A; p.Gly346Glu) and a paternally inherited 90 kb intragenic deletion in TRAPPC9 gene. This report demonstrates the clinical utility of WGS in patients who remain undiagnosed after whole exome sequencing.
Collapse
|
50
|
Song W, Wang W, Yu S, Lin GN. Dissection of the Genetic Association between Anorexia Nervosa and Obsessive-Compulsive Disorder at the Network and Cellular Levels. Genes (Basel) 2021; 12:491. [PMID: 33801746 PMCID: PMC8065602 DOI: 10.3390/genes12040491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) exhibit a high co-morbidity rate, similar symptoms, and a shared genetic basis. However, an understanding of the specific underlying mechanisms of these commonalities is currently limited. Here, we collected Genome-Wide Association Analysis results for AN and OCD, and obtained genes hit by the top SNPs as the risk genes. We then carried out an integrative coexpression network analysis to explore the convergence and divergence of AN and OCD risk genes. At first, we observed that the AN risk genes were enriched in coexpression modules that involved extracellular matrix functions and highly are expressed in the postnatal brain, limbic system, and non-neuronal cell types, while the OCD risk genes were enriched in modules of synapse function, the prenatal brain, cortex layers, and neurons. Next, by comparing the expressions from the eating disorder and OCD postmortem patient brain tissues, we observed both disorders have similar prefrontal cortex expression alterations influencing the synapse transmission, suggesting that the two diseases could have similar functional pathways. We found that the AN and OCD risk genes had distinct functional and spatiotemporal enrichment patterns but carried similar expression alterations as a disease mechanism, which may be one of the key reasons they had similar but not identical clinical phenotypes.
Collapse
Affiliation(s)
| | | | | | - Guan Ning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (W.S.); (W.W.); (S.Y.)
| |
Collapse
|