1
|
Kalmer M, Grasshoff M, Maié T, Pannen K, Toledo MA, Vieri M, Olschok K, Lemanzyk R, Lazarevic J, Junge B, Baumeister J, Galauner A, Chapal Ilani N, Bar D, Colin E, Cheng M, Schifflers J, Kricheldorf K, Schemionek M, Brümmendorf TH, Weiskirchen R, Shlush L, Zenke M, Chatain N, Costa IG, Koschmieder S. Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alfa. Blood Adv 2025; 9:1873-1887. [PMID: 39874500 PMCID: PMC12008703 DOI: 10.1182/bloodadvances.2024012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Interferon alfa (IFN-α) is approved for the therapy of patients with polycythemia vera (PV), a subtype of myeloproliferative neoplasm (MPN). Some patients achieve molecular responses (MRs), but clonal factors sensitizing for MRs remain elusive. We integrated colony formation assays with single-cell RNA sequencing (scRNA-seq) and genotyping in PV-derived cells and healthy controls (HCs) to dissect how IFN-α targets diseased clones during erythroid differentiation. IFN-α significantly decreased colony growth in MPNs and HCs with variable transcriptional responses observed in individual colonies. scRNA-seq of colonies demonstrated more mature erythroid colonies in PV than HCs. JAK2V617F-mutant cells exhibited upregulated STAT5A, heme, and G2M checkpoint pathways compared with JAK2WT cells from the same patients. Subgroup analysis revealed that IFN-α significantly decreased immature erythrocytic cells in PV (basophilic erythroblasts P < .05; polychromatic erythroblasts P < .05) but not in HCs. CD71-/CD235a+ cells from HCs (P < .05) but not PV were inhibited by IFN-α, and the number of reticulocytes was less affected in PV. Robust IFN-α responses persisted throughout differentiation, leading to significant apoptosis in PV. Apoptotic cells displayed downregulation of ribosomal genes. This link between apoptosis and ribosomal genes was corroborated through the analysis of mitochondrial variants, demonstrating IFN-α-induced eradication of specific clones, characterized by elevated expression of ribosomal genes. Our findings indicate that PV-derived clones either undergo apoptosis or pass through differentiation, overall reducing the cycling mutant cells over long-term treatment. Furthermore, the significance of ribosomal genes and clonal prerequisites in IFN-α's therapeutic mechanism is underscored, shedding light on the intricate dynamics of IFN-α treatment in PV.
Collapse
Affiliation(s)
- Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Martin Grasshoff
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Marcelo A.S. Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Rebecca Lemanzyk
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Jelena Lazarevic
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Baerbel Junge
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Angela Galauner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Noa Chapal Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Bar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elia Colin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joelle Schifflers
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Liran Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| |
Collapse
|
2
|
Kiladjian JJ. Pegylated interferon: the who, why, and how. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:535-540. [PMID: 39644027 DOI: 10.1182/hematology.2024000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Interferon alpha (IFN-α) is a fascinating molecule with many biological properties yet to be fully understood. Among these properties, several have demonstrated usefulness for targeting malignant cells, including hematopoietic cells from patients with myeloproliferative neoplasms. Indeed, IFN-α has been used for decades across all myeloproliferative neoplasms, but only recently a new form, ropegIFN-α2b, was approved to treat patients with polycythemia vera. Many phase 2 and more recently phase 3 studies have demonstrated IFN-α's promise in treating patients with essential thrombocythemia and early-stage myelofibrosis. In addition, although not approved in that situation, IFN-α is the only cytoreductive therapy that can be used during pregnancy. Today, IFN-α is a key medicine for polycythemia vera and essential thrombocythemia, while its place in the management of myelofibrosis must be better defined. The advantages of IFN therapy include a well-known safety profile, high rates of clinical and molecular responses, and a unique ability to deeply reduce the mutant allele burden of most of the driver mutations causing myeloproliferative neoplasms. Recent preliminary data from prospective studies suggest that molecular responses may be correlated with prolonged event-free survival, raising the hope that IFN therapy may ultimately alter the natural history of many diseases.
Collapse
|
3
|
Sørensen AL, Skov V, Kjær L, Bjørn ME, Eickhardt-Dalbøge CS, Larsen MK, Nielsen CH, Thomsen C, Rahbek Gjerdrum LM, Knudsen TA, Ellervik C, Overgaard UM, Andersen CL, Hasselbalch H. Combination therapy with ruxolitinib and pegylated interferon alfa-2a in newly diagnosed patients with polycythemia vera. Blood Adv 2024; 8:5416-5425. [PMID: 39163611 PMCID: PMC11526083 DOI: 10.1182/bloodadvances.2024013170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
ABSTRACT We report the 2-year end-of-study results from the phase 2 COMBI II clinical trial investigating the combination treatment of ruxolitinib and low-dose pegylated interferon alfa-2a in patients with newly diagnosed polycythemia vera (PV). The primary outcome was safety and key secondary endpoints were efficacy, based on hematologic parameters, quality-of-life measurements, and JAK2V617F variant allele frequency (VAF). We used the 2013 European LeukemiaNet and International Working Group-Myeloproliferative Neoplasms Research remission criteria. The remission criteria included remissions in symptoms, splenomegaly, peripheral blood counts, and bone marrow. We included 25 patients with PV with a median age of 70 years; 5 of those had prior thromboembolic events and 3 had computed tomography-verified splenomegaly. Two patients stopped both study drugs; 1 of these due to progression to post-PV myelofibrosis, the only one with a grade 3 infection. No events of herpes zoster infections were observed. None of the patients discontinued treatment due to psychiatric symptoms. The peripheral blood cell count remission rate was 92% at 24 months. Using the 2013 European LeukemiaNet and International Working Group-Myeloproliferative Neoplasms Research remission criteria, 14 (56%) achieved remission at 24 months; 3 (12%) achieved complete remission and 11 (44%) achieved partial remission. The following items from the Myeloproliferative Neoplasm Symptom Total Symptom Score were significantly reduced: abdominal discomfort, night sweats, itching, and bone pain. The median JAK2V617F VAF decreased from 47% (95% confidence interval [CI], 35-59) to 7% (95% CI, 3-15), and 60% of patients achieved molecular remission. In conclusion, combination treatment improved cell counts; bone marrow cellularity, and fibrosis; and decreased JAK2V617F VAF; with acceptable toxicity in patients with PV. The trial was registered at www.clinicaltrialsregister.eu as #EudraCT2018-004150-13.
Collapse
Affiliation(s)
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Emil Bjørn
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Claus H Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Thomsen
- Department of Diagnostic Imaging, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Research, Production, and Innovation, Soroe, Denmark
- Department of Pathology, Harvard Medical School, Boston, MA
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Malthe Overgaard
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Hans Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
4
|
Chen C, Kuo M, Wang Y, Pei S, Huang M, Chen C, Huang C, Chen Y, Shih L. Treatment outcome and germline predictive factors of ropeginterferon alpha-2b in myeloproliferative neoplasm patients. Cancer Med 2024; 13:e7166. [PMID: 38572926 PMCID: PMC10993704 DOI: 10.1002/cam4.7166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Studies have shown that some single nucleotide polymorphisms (SNPs) could serve as excellent markers in foretelling the treatment outcome of interferon (IFN) in myeloproliferative neoplasms (MPN). However, most work originated from western countries, and data from different ethnic populations have been lacking. METHODS To gain insights, targeted sequencing was performed to detect myeloid-associated mutations and SNPs in eight loci across three genes (IFNL4, IFN-γ, and inosine triphosphate pyrophosphatase [ITPA]) to explore their predictive roles in our cohort of 21 ropeginterferon alpha-2b (ROPEG)-treated MPN patients, among whom real-time quantitative PCR was also performed periodically to monitor the JAK2V617F allele burden in 19 JAK2V617F-mutated cases. RESULTS ELN response criteria were adopted to designate patients as good responders if they achieved complete hematological responses (CHR) within 1 year (CHR1) or attained major molecular responses (MMR), which occurred in 70% and 45% of the patients, respectively. IFNL4 and IFN-γ gene SNPs were infrequent in our population and were thus excluded from further analysis. Two ITPA SNPs rs6051702 A>C and rs1127354 C>A were associated with an inferior CHR1 rate and MMR rate, respectively. The former seemed to be linked to grade 2 or worse hepatotoxicity as well, although the comparison was of borderline significance only (50%, vs. 6.7% in those with common haplotype, p = 0.053). Twelve patients harbored 19 additional somatic mutations in 12 genes, but the trajectory of these mutations varied considerably and was not predictive of any response. CONCLUSIONS Overall, this study provided valuable information on the ethnics- and genetics-based algorithm in the treatment of MPN.
Collapse
Affiliation(s)
- Chih‐Cheng Chen
- Division of Hematology and OncologyChang Gung Memorial HospitalChiayiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Ming‐Chung Kuo
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Division of Hematology‐OncologyChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Ying‐Hsuan Wang
- Division of Hematology and OncologyChang Gung Memorial HospitalChiayiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Sung‐Nan Pei
- Department of Hema‐OncologyE‐Da Cancer Hospital, I‐Shou UniversityKaohsiungTaiwan
| | - Ming‐Lih Huang
- Division of Hematology and OncologyDa Chien General HospitalMiaoliTaiwan
| | - Chiu‐Chen Chen
- Division of Hematology‐OncologyChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Cih‐En Huang
- Division of Hematology and OncologyChang Gung Memorial HospitalChiayiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yi‐Yang Chen
- Division of Hematology and OncologyChang Gung Memorial HospitalChiayiTaiwan
| | - Lee‐Yung Shih
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Division of Hematology‐OncologyChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| |
Collapse
|
5
|
Bartoszewska E, Molik K, Woźniak M, Choromańska A. Telomerase Inhibition in the Treatment of Leukemia: A Comprehensive Review. Antioxidants (Basel) 2024; 13:427. [PMID: 38671875 PMCID: PMC11047729 DOI: 10.3390/antiox13040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Leukemia, characterized by the uncontrolled proliferation and differentiation blockage of myeloid or lymphoid precursor cells, presents significant therapeutic challenges despite current treatment modalities like chemotherapy and stem cell transplantation. Pursuing novel therapeutic strategies that selectively target leukemic cells is critical for improving patient outcomes. Natural products offer a promising avenue for developing effective chemotherapy and preventive measures against leukemia, providing a rich source of biologically active compounds. Telomerase, a key enzyme involved in chromosome stabilization and mainly active in cancer cells, presents an attractive target for intervention. In this review article, we focus on the anti-leukemic potential of natural substances, emphasizing vitamins (such as A, D, and E) and polyphenols (including curcumin and indole-3-carbinol), which, in combination with telomerase inhibition, demonstrate reduced cytotoxicity compared to conventional chemotherapies. We discuss the role of human telomerase reverse transcriptase (hTERT), particularly its mRNA expression, as a potential therapeutic target, highlighting the promise of natural compounds in leukemia treatment and prevention.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Klaudia Molik
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (K.M.)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Gou P, Liu D, Ganesan S, Lauret E, Maslah N, Parietti V, Zhang W, Meignin V, Kiladjian JJ, Cassinat B, Giraudier S. Genomic and functional impact of Trp53 inactivation in JAK2V617F myeloproliferative neoplasms. Blood Cancer J 2024; 14:1. [PMID: 38177095 PMCID: PMC10766605 DOI: 10.1038/s41408-023-00969-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Classical myeloproliferative neoplasms (MPNs) are characterized by the proliferation of myeloid cells and the risk of transformation into myelofibrosis or acute myeloid leukemia (AML) and TP53 mutations in MPN patients are linked to AML. However, JAK2V617F has been reported to impact the TP53 response to DNA damage, suggesting potential overlapping role of TP53 inactivation in MPN. We established a mouse model showing that JAK2V617F/Vav-Cre/Trp53-/- mice displayed a similar phenotype to JAK2V617F/Vav-Cre mice, but their proliferation was outcompeted in competitive grafts. RNA-Seq revealed that half of the genes affected by JAK2V617F were affected by p53-inactivation, including the interferon pathway. To validate this finding, mice were repopulated with a mixture of wild-type and JAK2V617F (or JAK2V617F/Vav-Cre/Trp53-/-) cells and treated with pegylated interferonα. JAK2V617F-reconstituted mice entered complete hematological remission, while JAK2V617F/Vav-Cre /Trp53-/--reconstituted mice did not, confirming that p53 loss induced interferon-α resistance. KEGG and Gene Ontology analyses of common deregulated genes showed that these genes were mainly implicated in cytokine response, proliferation, and leukemia evolution, illustrating that in this mouse model, the development of MPN is not affected by TP53 inactivation. Taken together, our results show that many genetic modifications induced by JAK2V617F are influenced by TP53, the MPN phenotype may not be. Trp53 loss alone is insufficient to induce rapid leukemic transformation in steady-state hematopoiesis in JAK2V617F MPN, and Trp53 loss may contribute to interferon resistance in MPN.
Collapse
Affiliation(s)
- Panhong Gou
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France
- Université de Paris Cité, Paris, France
| | - Duanya Liu
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France
- Université de Paris Cité, Paris, France
| | | | - Evelyne Lauret
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Nabih Maslah
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France
- Université de Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Veronique Parietti
- Université de Paris Cité, Paris, France
- INSERM/CNRS US53/UAR2030, Institut de Recherche Saint-Louis, Paris, France
| | | | - Véronique Meignin
- Université de Paris Cité, Paris, France
- Histo-pathological Department, Hôpital Saint-Louis, Paris, France
| | - Jean-Jacques Kiladjian
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France
- Université de Paris Cité, Paris, France
- Centre Investigations Cliniques, Hôpital Saint-Louis, Paris, France
| | - Bruno Cassinat
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Stephane Giraudier
- Inserm UMR-S 1131, Hôpital Saint-Louis, Paris, France.
- Université de Paris Cité, Paris, France.
- Service de Biologie Cellulaire, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
9
|
de Castro FA, Mehdipour P, Chakravarthy A, Ettayebi I, Loo Yau H, Medina TS, Marhon SA, de Almeida FC, Bianco TM, Arruda AGF, Devlin R, de Figueiredo-Pontes LL, Chahud F, da Costa Cacemiro M, Minden MD, Gupta V, De Carvalho DD. Ratio of stemness to interferon signalling as a biomarker and therapeutic target of myeloproliferative neoplasm progression to acute myeloid leukaemia. Br J Haematol 2024; 204:206-220. [PMID: 37726227 DOI: 10.1111/bjh.19107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Progression to aggressive secondary acute myeloid leukaemia (sAML) poses a significant challenge in the management of myeloproliferative neoplasms (MPNs). Since the physiopathology of MPN is closely linked to the activation of interferon (IFN) signalling and that AML initiation and aggressiveness is driven by leukaemia stem cells (LSCs), we investigated these pathways in MPN to sAML progression. We found that high IFN signalling correlated with low LSC signalling in MPN and AML samples, while MPN progression and AML transformation were characterized by decreased IFN signalling and increased LSC signature. A high LSC to IFN expression ratio in MPN patients was associated with adverse clinical prognosis and higher colony forming potential. Moreover, treatment with hypomethylating agents (HMAs) activates the IFN signalling pathway in MPN cells by inducing a viral mimicry response. This response is characterized by double-stranded RNA (dsRNA) formation and MDA5/RIG-I activation. The HMA-induced IFN response leads to a reduction in LSC signature, resulting in decreased stemness. These findings reveal the frequent evasion of viral mimicry during MPN-to-sAML progression, establish the LSC-to-IFN expression ratio as a progression biomarker, and suggests that HMAs treatment can lead to haematological response in murine models by re-activating dsRNA-associated IFN signalling.
Collapse
Affiliation(s)
- Fabíola Attié de Castro
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Parinaz Mehdipour
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Ankur Chakravarthy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ilias Ettayebi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tiago Silva Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Felipe Campos de Almeida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia (INCT-iii), Salvador, Brazil
| | - Thiago Mantello Bianco
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andrea G F Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rebecca Devlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology Division, Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Chahud
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Duminuco A, Harrington P, Harrison C, Curto-Garcia N. Polycythemia Vera: Barriers to and Strategies for Optimal Management. Blood Lymphat Cancer 2023; 13:77-90. [PMID: 38146420 PMCID: PMC10749566 DOI: 10.2147/blctt.s409443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Polycythemia vera (PV) is a subtype of myeloproliferative neoplasms characterized by impaired quality of life and severe complications. Despite the increasingly in-depth knowledge of this condition, it necessitates a multifaceted management approach to mitigate symptoms and prevent thrombotic and hemorrhagic events, ensuring prolonged survival. The therapeutic landscape has been revolutionized in recent years, where venesection and hydroxycarbamide associated with antiplatelet therapy have a central role and are now accompanied by other drugs, such as interferon and Janus kinase inhibitors. Ongoing research and advancements in targeted therapies hold promise for further enhancing the therapeutic choice for PV management.
Collapse
Affiliation(s)
- Andrea Duminuco
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Haematology with BMT Unit, A.O.U. Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Patrick Harrington
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Claire Harrison
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Natalia Curto-Garcia
- Department of Haematology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Popova-Labachevska M, Cvetanoski M, Ridova N, Trajkova S, Stojanovska-Jakimovska S, Mojsovska T, Stojanoski Z, Pivkova-Veljanovska A, Panovska-Stavridis I. Effectiveness of Ropeginterferon Alfa-2B in High-Risk Patients with Philadelphia Chromosome Negative Myeloproliferative Neoplasms- Evaluation of Clinicohaematologic Response, and Safety Profile: Single Centre Experience. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2023; 44:57-62. [PMID: 38109450 DOI: 10.2478/prilozi-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Background: Treatment of Philadelphia chromosome negative myeloproliferative neoplasms (Ph - MPNs) requires individualized approach depending on multiple factors. Novel pegylated Interferon (IFN) formulations have become an attractive therapeutic option in young Ph- MPN patients associated with better patient compliance. Methods: In this retrospective observational study a total of 16 high-risk Ph- MPN patients treated off-label with ropeginterferon alfa-2b given twice monthly, were included. Median follow-up was 24 months. High-risk patients were defined using the IPSET score. Response to treatment was evaluated using ELN, IWG-MET EUMNET standardized criteria and occurrence of side effects was documented. Results: 11 patients were female (68.8%) and 5 male (31.2%); average age at diagnosis was 36 years (17-51); 12 patients (75%) had ET, one (6.2%) PV and three (18.8%) hypercellular phase of PMF. JAK2V617F mutation was detected in 10 patients (62.5%), CALR in three (18.8%), and three (18.7%) were triple-negative cases. In 7 patients (43.7%), ropeginterferon alfa-2b was used in first-line, and 9 (56.3%) were previously treated with HU and/or standard IFN. Among initially ropeginterferon alfa-2b treated patients, complete haematological response was observed in 4/7 (57.1%), partial in 2/7 (28.6%) and suboptimal in one (14.3%). Complete haematological response was observed in 8/9 (88.9%) among previously treated patients. Average time to blood count normalization was 8 weeks, at a dose ranging between 100mcg and 300mcg. Side effects were observed in one patient (6.2%). Conclusion: Our experience is in support of previous studies regarding ropeginterferon alfa-2b efficacy and safety profile in the treatment of young patients with Ph- MPNs.
Collapse
Affiliation(s)
- Marija Popova-Labachevska
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | - Milche Cvetanoski
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | - Nevenka Ridova
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | - Sanja Trajkova
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | | | - Tara Mojsovska
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | - Zlate Stojanoski
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| | | | - Irina Panovska-Stavridis
- 1University clinic of hematology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, RN Macedonia
| |
Collapse
|
12
|
Xiu NN, Yang XD, Xu J, Ju B, Sun XY, Zhao XC. Leukemic transformation during anti-tuberculosis treatment in aplastic anemia-paroxysmal nocturnal hemoglobinuria syndrome: A case report and review of literature. World J Clin Cases 2023; 11:6908-6919. [PMID: 37901004 PMCID: PMC10600849 DOI: 10.12998/wjcc.v11.i28.6908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Accumulating evidence demonstrates that autoimmune hematopoietic failure and myeloid neoplasms have an intrinsic relationship with regard to clonal hematopoiesis and disease evolution. In approximately 10%-15% of patients with severe aplastic anemia (SAA), the disease phenotype is transformed into myeloid neoplasms following antithymocyte globulin plus cyclosporine-based immunosuppressive therapy. In some of these patients, myeloid neoplasms appear during or shortly after immunosuppressive therapy. Leukemic transformation in SAA patients during anti-tuberculosis treatment has not been reported. CASE SUMMARY A middle-aged Chinese female had a 6-year history of non-SAA and a 2-year history of paroxysmal nocturnal hemoglobinuria (PNH). With aggravation of systemic inflammatory symptoms, severe pancytopenia developed, and her hemoglobinuria disappeared. Laboratory findings in cytological, immunological and cytogenetic analyses of bone marrow samples met the diagnostic criteria for "SAA." Definitive diagnosis of disseminated tuberculosis was made in the search for infectious niches. Remarkable improvement in hematological parameters was achieved within 1 mo of anti-tuberculosis treatment, and complete hematological remission was achieved within 4 mo of treatment. Frustratingly, the hematological response lasted for only 3 mo, and pancytopenia reemerged. At this time, cytological findings (increased bone marrow cellularity and an increased percentage of myeloblasts that accounted for 16.0% of all nucleated hematopoietic cells), immunological findings (increased percentage of cluster of differentiation 34+ cells that accounted for 12.28% of all nucleated hematopoietic cells) and molecular biological findings (identification of somatic mutations in nucleophosmin-1 and casitas B-lineage lymphoma genes) revealed that "SAA" had transformed into acute myeloid leukemia with mutated nucleophosmin-1. The transformation process suggested that the leukemic clones were preexistent but were suppressed in the PNH and SAA stages, as development of symptomatic myeloid neoplasm through acquisition and accumulation of novel oncogenic mutations is unlikely in an interval of only 7 mo. Aggravation of inflammatory stressors due to disseminated tuberculosis likely contributed to the repression of normal and leukemic hematopoiesis, and the relief of inflammatory stressors due to anti-tuberculosis treatment contributed to penetration of neoplastic hematopoiesis. The concealed leukemic clones in the SAA and PNH stages raise the possibility of an inflammatory stress-fueled antileukemic mechanism. CONCLUSION Aggravated inflammatory stressors can repress normal and leukemic hematopoiesis, and relieved inflammatory stressors can facilitate penetration of neoplastic hematopoiesis.
Collapse
Affiliation(s)
- Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Dong Yang
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Jia Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| |
Collapse
|
13
|
Sun XY, Yang XD, Xu J, Xiu NN, Ju B, Zhao XC. Tuberculosis-induced aplastic crisis and atypical lymphocyte expansion in advanced myelodysplastic syndrome: A case report and review of literature. World J Clin Cases 2023; 11:4713-4722. [PMID: 37469724 PMCID: PMC10353497 DOI: 10.12998/wjcc.v11.i19.4713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is caused by malignant proliferation and ineffective hematopoiesis. Oncogenic somatic mutations and increased apoptosis, necroptosis and pyroptosis lead to the accumulation of earlier hematopoietic progenitors and impaired productivity of mature blood cells. An increased percentage of myeloblasts and the presence of unfavorable somatic mutations are signs of leukemic hematopoiesis and indicators of entrance into an advanced stage. Bone marrow cellularity and myeloblasts usually increase with disease progression. However, aplastic crisis occasionally occurs in advanced MDS.
CASE SUMMARY A 72-year-old male patient was definitively diagnosed with MDS with excess blasts-1 (MDS-EB-1) based on an increase in the percentages of myeloblasts and cluster of differentiation (CD)34+ hematopoietic progenitors and the identification of myeloid neoplasm-associated somatic mutations in bone marrow samples. The patient was treated with hypomethylation therapy and was able to maintain a steady disease state for 2 years. In the treatment process, the advanced MDS patient experienced an episode of progressive pancytopenia and bone marrow aplasia. During the aplastic crisis, the bone marrow was infiltrated with sparsely distributed atypical lymphocytes. Surprisingly, the leukemic cells disappeared. Immunological analysis revealed that the atypical lymphocytes expressed a high frequency of CD3, CD5, CD8, CD16, CD56 and CD57, suggesting the activation of autoimmune cytotoxic T-lymphocytes and natural killer (NK)/NKT cells that suppressed both normal and leukemic hematopoiesis. Elevated serum levels of inflammatory cytokines, including interleukin (IL)-6, interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α), confirmed the deranged type I immune responses. This morphological and immunological signature led to the diagnosis of severe aplastic anemia secondary to large granule lymphocyte leukemia. Disseminated tuberculosis was suspected upon radiological examinations in the search for an inflammatory niche. Antituberculosis treatment led to reversion of the aplastic crisis, disappearance of the atypical lymphocytes, increased marrow cellularity and 2 mo of hematological remission, providing strong evidence that disseminated tuberculosis was responsible for the development of the aplastic crisis, the regression of leukemic cells and the activation of CD56+ atypical lymphocytes. Reinstitution of hypomethylation therapy in the following 19 mo allowed the patient to maintain a steady disease state. However, the patient transformed the disease phenotype into acute myeloid leukemia and eventually died of disease progression and an overwhelming infectious episode.
CONCLUSION Disseminated tuberculosis can induce CD56+ lymphocyte infiltration in the bone marrow and in turn suppress both normal and leukemic hematopoiesis, resulting in the development of aplastic crisis and leukemic cell regression.
Collapse
Affiliation(s)
- Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Dong Yang
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Jia Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| |
Collapse
|
14
|
Ju B, Xiu NN, Xu J, Yang XD, Sun XY, Zhao XC. Flared inflammatory episode transforms advanced myelodysplastic syndrome into aplastic pancytopenia: A case report and literature review. World J Clin Cases 2023; 11:4105-4116. [PMID: 37388797 PMCID: PMC10303598 DOI: 10.12998/wjcc.v11.i17.4105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a hematological neoplasm, and an increase in myeloblasts is representative of leukemic hematopoiesis in advanced MDS. Low-risk MDS usually exhibits deranged autoimmunity resembling that of aplastic anemia (AA), whereas advanced MDS is characterized by a phenotype of immune exhaustion. MDS can be normo/hyperplastic or hypoplastic. Generally, bone marrow cellularity and myeloblasts increase with disease progression. Transformation from advanced MDS to AA-like syndrome with leukemic cell regression has not previously been reported.
CASE SUMMARY A middle-aged Chinese woman had a 4-year history of leukocytopenia. Six months prior to admission, the patient developed gradually worsening fatigue and performance status. The leukocytopenia further progressed. She was diagnosed with MDS with excess blasts-2 based on increased bone marrow cellularity and an increased percentage of myeloblasts on marrow and blood smears, an increased percentage of cluster of differentiation (CD)34+CD33+ progenitors in immunotyping analysis, a normal karyotype in cytogenetic analysis, and the identification of somatic mutations in CBL, KMT2D and NF1 in molecular analysis. Initially, neutropenia was the predominant hematological abnormality, with mild anemia and thrombocytosis, and the degree of fatigue was far more severe than the degree of anemia. In the following months, the patient experienced several febrile episodes. Intravenous antibiotic treatments were able to control the febrile episodes, but the elevated inflammatory indices persisted. The hematological parameters dramatically fluctuated with the waxing and waning of the inflammatory episodes. With recurrent flares of the inflammatory condition, agranulocytosis and severe anemia developed, with mild thrombocytopenia. During the patient’s hospitalization, computed tomography (CT) scans revealed the presence of extensive inflammatory lesions involving the lungs, mediastinum, pleura, gastrointestinal tract, peritoneum and urinary tract, with imaging features suggestive of the reactivation of disseminated tuberculosis. Reevaluation of the bone marrow smears revealed that the cellularity became hypoplastic, and the leukemic cells regressed, suggesting that both normal and leukemic hematopoiesis had been heavily suppressed. Immunological analysis of the bone marrow samples revealed a decreased percentage of CD34+ cells and an immunological signature resembling that of severe AA (SAA), confirming the regression of the leukemic cells by autoimmune-mediated attacks. The patient demonstrated resistance to multiple drugs, including antituberculotics, recombinant human granulocyte colony-stimulating factor, broad-spectrum antibiotics, voriconazole, ganciclovir, immune suppressants, eltrombopag and intravenous immunoglobulin, which further worsened the hematological injury and patient’s performance status. The patient eventually died of overwhelming infection and multidrug resistance.
CONCLUSION Advanced MDS can transform to aplastic cytopenia with leukemic cell regression and an immunological signature of SAA during inflammatory flare-ups.
Collapse
Affiliation(s)
- Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Jia Xu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Dong Yang
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| |
Collapse
|
15
|
Barbui T, Vannucchi AM, De Stefano V, Carobbio A, Ghirardi A, Carioli G, Masciulli A, Rossi E, Ciceri F, Bonifacio M, Iurlo A, Palandri F, Benevolo G, Pane F, Ricco A, Carli G, Caramella M, Rapezzi D, Musolino C, Siragusa S, Rumi E, Patriarca A, Cascavilla N, Mora B, Cacciola E, Mannarelli C, Loscocco GG, Guglielmelli P, Gesullo F, Betti S, Lunghi F, Scaffidi L, Bucelli C, Vianelli N, Bellini M, Finazzi MC, Tognoni G, Rambaldi A. Ropeginterferon versus Standard Therapy for Low-Risk Patients with Polycythemia Vera. NEJM EVIDENCE 2023; 2:EVIDoa2200335. [PMID: 38320126 DOI: 10.1056/evidoa2200335] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Whether phlebotomy alone can adequately maintain target hematocrit in patients with low-risk polycythemia vera (PV) remains elusive. METHODS: In a phase 2 open-label randomized trial, we compared ropeginterferon alfa-2b (ropeg; 100 μg every 2 weeks) with phlebotomy only regarding maintenance of a median hematocrit level (≤45%) over 12 months in the absence of progressive disease (primary end point). In follow-up, crossover to the alternative treatment group was allowed if the primary end point was not met. RESULTS: In total, 127 patients were enrolled (ropeg: n=64; standard group: n=63). The primary end point was met in 81% and 51% in the ropeg and standard groups, respectively. Responders continued the assigned treatment until month 24 and maintained response in 83% and 59%, respectively (P=0.02). Ropeg responders less frequently experienced moderate/severe symptoms (33% vs. 67% in the standard group) and palpable splenomegaly (14% vs. 37%) and showed normalization of ferritin levels and blood counts. Nonresponders at 12 months crossed over to the standard (n=9) or ropeg (n=23) group; in patients switched to ropeg only, 7 of 23 met the response criteria in 12 months, and phlebotomy need was high (4.7 per patient per year). Discontinuation because of adverse events occurred in seven patients treated with ropeg. CONCLUSIONS: In this 24-month trial, ropeg was superior to phlebotomy alone in maintaining hematocrit on target. No dose-limiting side effects or toxicities were noted; 9.2% of patients on ropeg and no patients on standard treatment developed neutropenia. (Funded by AOP Health and others; ClinicalTrials.gov number, NCT03003325.)
Collapse
Affiliation(s)
- Tiziano Barbui
- Fondazione per la Ricerca Ospedale di Bergamo (FROM) Ente del Terzo Settore (ETS), Bergamo, Italy
| | - Alessandro Maria Vannucchi
- Centro di Ricerca ed Innovazione per le Malattie Mieloproliferative (CRIMM), Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Valerio De Stefano
- Dipartimento di Scienze Radiologiche ed Ematologiche, Sezione di Ematologia, Università Cattolica del Sacro Cuore - Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome
| | - Alessandra Carobbio
- Fondazione per la Ricerca Ospedale di Bergamo (FROM) Ente del Terzo Settore (ETS), Bergamo, Italy
| | - Arianna Ghirardi
- Fondazione per la Ricerca Ospedale di Bergamo (FROM) Ente del Terzo Settore (ETS), Bergamo, Italy
| | - Greta Carioli
- Fondazione per la Ricerca Ospedale di Bergamo (FROM) Ente del Terzo Settore (ETS), Bergamo, Italy
| | - Arianna Masciulli
- Fondazione per la Ricerca Ospedale di Bergamo (FROM) Ente del Terzo Settore (ETS), Bergamo, Italy
| | - Elena Rossi
- Dipartimento di Scienze Radiologiche ed Ematologiche, Sezione di Ematologia, Università Cattolica del Sacro Cuore - Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome
| | - Fabio Ciceri
- Unità Operativa di Ematologia e Trapianto Midollo Osseo, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan
| | - Massimiliano Bonifacio
- Department of Medicine, Section of Hematology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandra Iurlo
- Unità Operativa Complessa di Ematologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda - Ospedale Maggiore Policlinico, Milan
| | - Francesca Palandri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Istituto di Ematologia "L. & A. Seragnoli", Bologna, Italy
| | - Giulia Benevolo
- Struttura Complessa di Ematologia Universitaria, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Fabrizio Pane
- Unità Operativa Complessa di Ematologia e Trapianti di Midollo, Azienda Ospedaliera Universitaria Federico II di Napoli, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - Alessandra Ricco
- Unità Operativa di Ematologia con Trapianto, Azienda Ospedaliera Universitaria "Consorziale Policlinico" di Bari, Bari, Italy
| | - Giuseppe Carli
- Unità Operativa Complessa di Ematologia, Azienda Unità Sanitaria Locale Socio Sanitaria (ULSS) 8 Berica, Ospedale San Bortolo di Vicenza, Vicenza, Italy
| | - Marianna Caramella
- Divisione di Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Grande Ospedale Metropolitano Niguarda, Milan
| | - Davide Rapezzi
- Divisione di Ematologia, Azienda Ospedaliera S. Croce e Carle di Cuneo, Cuneo, Italy
| | - Caterina Musolino
- Unità Operativa Complessa di Ematologia, Azienda Ospedaliera Universitaria Policlinico "G. Martino", Messina, Italy
| | - Sergio Siragusa
- Divisione di Ematologia, Azienda Ospedaliera Universitaria Policlinico "P. Giaccone", Palermo, Italy
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Divisione di Ematologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo di Pavia, Pavia, Italy
| | - Andrea Patriarca
- Struttura Complessa a Direzione Universitaria (SCDU) di Ematologia, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy
| | - Nicola Cascavilla
- Unità Operativa di Ematologia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Barbara Mora
- Unità Operativa di Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Emma Cacciola
- Unità Operativa di Emostasi Centro Federato Federazione Centri per la Diagnosi della Trombosi e la Sorveglianza delle terapie Antitrombotiche (FCSA), Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G. F. Ingrassia", Azienda Ospedaliera Universitaria Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Carmela Mannarelli
- Centro di Ricerca ed Innovazione per le Malattie Mieloproliferative (CRIMM), Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Giuseppe Gaetano Loscocco
- Centro di Ricerca ed Innovazione per le Malattie Mieloproliferative (CRIMM), Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- Centro di Ricerca ed Innovazione per le Malattie Mieloproliferative (CRIMM), Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Francesca Gesullo
- Centro di Ricerca ed Innovazione per le Malattie Mieloproliferative (CRIMM), Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Silvia Betti
- Dipartimento di Scienze Radiologiche ed Ematologiche, Sezione di Ematologia, Università Cattolica del Sacro Cuore - Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome
| | - Francesca Lunghi
- Unità Operativa di Ematologia e Trapianto Midollo Osseo, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan
| | - Luigi Scaffidi
- Department of Medicine, Section of Hematology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cristina Bucelli
- Unità Operativa Complessa di Ematologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda - Ospedale Maggiore Policlinico, Milan
| | - Nicola Vianelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero Universitaria di Bologna, Istituto di Ematologia "L. & A. Seragnoli", Bologna, Italy
| | - Marta Bellini
- Struttura Complessa di Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Chiara Finazzi
- Struttura Complessa di Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan
| | - Gianni Tognoni
- Centro di Coordinamento Nazionale dei Comitati Etici, Agenzia Italiana del Farmaco (AIFA), Rome
| | - Alessandro Rambaldi
- Struttura Complessa di Ematologia, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
- Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan
| |
Collapse
|
16
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
17
|
Establishment of isogenic induced pluripotent stem cells with or without pathogenic mutation for understanding the pathogenesis of myeloproliferative neoplasms. Exp Hematol 2023; 118:12-20. [PMID: 36511286 DOI: 10.1016/j.exphem.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Identification and functional characterization of disease-associated genetic traits are crucial for understanding the pathogenesis of hematologic malignancies. Various in vitro and in vivo models, including cell lines, primary cells, and animal models, have been established to examine these genetic alterations. However, their nonphysiologic conditions, diverse genetic backgrounds, and species-specific differences often limit data interpretation. To evaluate somatic mutations in myeloproliferative neoplasms (MPNs), we used CRISPR/Cas9 combined with the piggyBac transposon system to establish isogenic induced pluripotent stem (iPS) cell lines with or without JAK2V617F mutation, a driver mutation of MPNs. We induced hematopoietic stem/progenitor cells (HSPCs) from these iPS cells and observed phenotypic differences during hematopoiesis using fluorescence-activated cell sorting analysis. HSPCs with pathogenic mutations exhibited cell-autonomous erythropoiesis and megakaryopoiesis, which are hallmarks in the bone marrow of patients with MPNs. Furthermore, we used these HSPCs as a model to validate therapeutic compounds and showed that interferon alpha selectively inhibited erythropoiesis and megakaryopoiesis in mutant HSPCs. These results demonstrate that genome editing is feasible for establishing isogenic iPS cells, studying genetic elements to understand the pathogenesis of MPNs, and evaluating therapeutic compounds against MPNs.
Collapse
|
18
|
Real world experience with ropeginterferon alpha-2b (Besremi) in essential thrombocythaemia and polycythaemia vera following exposure to pegylated interferon alfa-2a (Pegasys). Leuk Res Rep 2022; 19:100360. [PMID: 36590864 PMCID: PMC9801096 DOI: 10.1016/j.lrr.2022.100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Despite widespread use of Pegylated forms of Inteferon in the management of Myeloproliferative Neoplasms (MPN), most clinicians have experience predominantly with peginterferon alfa-2a (Pegasys). Third generation pegylated IFNα, ropeginterferon alfa-2b (ropegIFN; Besremi), was recommended by the European Medicine Authority (EMA) for treatment of Polycythaemia Vera (PV) following a Phase III trial (PROUD-PV / CONTINUATION-PV). FDA approval for PV, regardless of treatment history, was subsequently granted in November 2021. We hereby demonstrate the safety and tolerability of ropegIFN in a series of MPN patients at variable doses. It corroborates reports of efficacy of ropegIFN in patients with PV and use in pregnancy.
Collapse
|
19
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Murakami S, Barroca V, Perié L, Bravard A, Bernardino-Sgherri J, Tisserand A, Devanand C, Edmond V, Magniez A, Tenreira Bento S, Torres C, Pasquier F, Plo I, Vainchenker W, Villeval JL, Roméo PH, Lewandowski D. In Vivo Monitoring of Polycythemia Vera Development Reveals Carbonic Anhydrase 1 as a Potent Therapeutic Target. Blood Cancer Discov 2022; 3:285-297. [PMID: 35290450 PMCID: PMC9327731 DOI: 10.1158/2643-3230.bcd-21-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/21/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Current murine models of myeloproliferative neoplasms (MPNs) cannot examine how MPNs progress from a single bone marrow source to the entire hematopoietic system. Thus, using transplantation of knock-in JAK2V617F hematopoietic cells into a single irradiated leg, we show development of polycythemia vera (PV) from a single anatomic site in immunocompetent mice. Barcode experiments reveal that grafted JAK2V617F stem/progenitor cells migrate from the irradiated leg to nonirradiated organs such as the contralateral leg and spleen, which is strictly required for development of PV. Mutant cells colonizing the nonirradiated leg efficiently induce PV in nonconditioned recipient mice and contain JAK2V617F hematopoietic stem/progenitor cells that express high levels of carbonic anhydrase 1 (CA1), a peculiar feature also found in CD34+ cells from patients with PV. Finally, genetic and pharmacologic inhibition of CA1 efficiently suppresses PV development and progression in mice and decreases PV patients' erythroid progenitors, strengthening CA1 as a potent therapeutic target for PV. SIGNIFICANCE Follow-up of hematopoietic malignancies from their initiating anatomic site is crucial for understanding their development and discovering new therapeutic avenues. We developed such an approach, used it to characterize PV progression, and identified CA1 as a promising therapeutic target of PV. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Shohei Murakami
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Vilma Barroca
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Leïla Perié
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Anne Bravard
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Jacqueline Bernardino-Sgherri
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Caroline Devanand
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Valérie Edmond
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Aurélie Magniez
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Claire Torres
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | - Isabelle Plo
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | | | | | - Paul-Henri Roméo
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Daniel Lewandowski
- CEA-INSERM UMR1274, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Direction de la Recherche Fondamentale (DRF), CEA, Fontenay aux Roses, France
- Université Paris Diderot, Paris, France
- Université Paris Saclay, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms favorably impacts deregulation of oxidative stress genes and antioxidative defense mechanisms. PLoS One 2022; 17:e0270669. [PMID: 35771847 PMCID: PMC9246201 DOI: 10.1371/journal.pone.0270669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is considered a major driving force for clonal expansion and evolution in the Philadelphia-negative myeloproliferative neoplasms, which include essential thrombocythemia, polycythemia vera and primary myelofibrosis (MPNs). One of the key mutation drivers is the JAK2V617F mutation, which has been shown to induce the generation of reactive oxygen species (ROS). Using whole blood gene expression profiling, deregulation of several oxidative stress and anti-oxidative defense genes has been identified in MPNs, including significant downregulation of TP53, the NFE2L2 or NRF2 genes. These genes have a major role for maintaining genomic stability, regulation of the oxidative stress response and in modulating migration or retention of hematopoietic stem cells. Therefore, their deregulation might give rise to increasing genomic instability, increased chronic inflammation and disease progression with egress of hematopoietic stem cells from the bone marrow to seed in the spleen, liver and elsewhere. Interferon-alpha2 (rIFNα) is increasingly being recognized as the drug of choice for the treatment of patients with MPNs. Herein, we report the first gene expression profiling study on the impact of rIFNα upon oxidative stress and antioxidative defense genes in patients with MPNs (n = 33), showing that rIFNα downregulates several upregulated oxidative stress genes and upregulates downregulated antioxidative defense genes. Treatment with rIFNα induced upregulation of 19 genes in ET and 29 genes in PV including CXCR4 and TP53. In conclusion, this rIFNα- mediated dampening of genotoxic damage to hematopoietic cells may ultimately diminish the risk of additional mutations and accordingly clonal evolution and disease progression towards myelofibrotic and leukemic transformation.
Collapse
|
22
|
Carnaz Simões AM, Holmström MO, Aehnlich P, Rahbech A, Radziwon-Balicka A, Zamora C, Wirenfeldt Klausen T, Skov V, Kjær L, Ellervik C, Fassi DE, Vidal S, Hasselbalch HC, Andersen MH, Thor Straten P. Patients With Myeloproliferative Neoplasms Harbor High Frequencies of CD8 T Cell-Platelet Aggregates Associated With T Cell Suppression. Front Immunol 2022; 13:866610. [PMID: 35603202 PMCID: PMC9120544 DOI: 10.3389/fimmu.2022.866610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are chronic cancers of the hematopoietic stem cells in the bone marrow, and patients often harbor elevated numbers of circulating platelets (PLT). We investigated the frequencies of circulating PLT-lymphocyte aggregates in MPN patients and the effect of PLT-binding on CD8 T cell function. The phenotype of these aggregates was evaluated in 50 MPN patients and 24 controls, using flow cytometry. In vitro studies compared the proliferation, cytokine release, and cytoxicity of PLT-bound and PLT-free CD8 T cells. Frequencies of PLT-CD8 T cell aggregates, were significantly elevated in MPN patients. Advanced disease stage and CALR mutation associated with the highest aggregate frequencies with a predominance of PLT-binding to antigen-experienced CD8 T cells. PLT-bound CD8 T cells showed reduction in proliferation and cytotoxic capacity. Our data suggest that CD8 T cell responses are jeopardized in MPN patients. JAK2 and CALR exon 9 mutations – the two predominant driver mutations in MPN – are targets for natural T cell responses in MPN patients. Moreover, MPN patients have more infections compared to background. Thus, PLT binding to antigen experienced CD8 T cells could play a role in the inadequacy of the immune system to control MPN disease progression and prevent recurrent infections.
Collapse
Affiliation(s)
- Ana Micaela Carnaz Simões
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Pia Aehnlich
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Anne Rahbech
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Aneta Radziwon-Balicka
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Carlos Zamora
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tobias Wirenfeldt Klausen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Data and Innovation Support, Region Zealand, Sorø, Denmark
| | - Daniel El Fassi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Silvia Vidal
- IIB-Sant Pau- Institut Rec. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Mads Hald Andersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tefferi A, Ianotto JC, Mathews V, Samuelsson J, Szuber N, Xiao Z, Hokland P. Myeloproliferative neoplasms - a global view. Br J Haematol 2022; 198:953-964. [PMID: 35482584 DOI: 10.1111/bjh.18213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jan Samuelsson
- Department of Hematology, Linköping University Hospital, Linköping, Sweden
| | - Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Canada
| | - Zhijian Xiao
- MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Peter Hokland
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Kiladjian JJ, Klade C, Georgiev P, Krochmalczyk D, Gercheva-Kyuchukova L, Egyed M, Dulicek P, Illes A, Pylypenko H, Sivcheva L, Mayer J, Yablokova V, Krejcy K, Empson V, Hasselbalch HC, Kralovics R, Gisslinger H. Long-term outcomes of polycythemia vera patients treated with ropeginterferon Alfa-2b. Leukemia 2022; 36:1408-1411. [PMID: 35210530 PMCID: PMC9061291 DOI: 10.1038/s41375-022-01528-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Jean-Jacques Kiladjian
- Université de Paris, AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM, CIC1427, Paris, France.
| | | | | | - Dorota Krochmalczyk
- Teaching Unit of the Hematology Department, University Hospital in Krakow, Krakow, Poland
| | - Liana Gercheva-Kyuchukova
- Clinical Hematology Clinic, Multiprofile Hospital for Active Treatment "Sveta Marina", Varna, Bulgaria
| | - Miklos Egyed
- Department of Internal Medicine II, Kaposi Mor County Teaching Hospital, Kaposvar, Hungary
| | - Petr Dulicek
- Department of Clinical Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Arpad Illes
- Department of Hematology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Halyna Pylypenko
- Department of Hematology, Regional Treatment and Diagnostics Hematology Centre, Cherkasy Regional Oncology Centre, Cherkasy, Ukraine
| | - Lylia Sivcheva
- First Department of Internal Medicine, Multiprofile Hospital for Active Treatment - HristoBotev, Vratsa, Bulgaria
| | - Jiří Mayer
- Clinic of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Vera Yablokova
- Department of Hematology, Yaroslavl Regional Clinical Hospital, Yaroslavl, Russia
| | | | | | - Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, University of Copenhagen, Copenhagen, Denmark
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Heinz Gisslinger
- Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
25
|
Sun Y, Cai Y, Cen J, Zhu M, Pan J, Wang Q, Wu D, Chen S. Pegylated Interferon Alpha-2b in Patients With Polycythemia Vera and Essential Thrombocythemia in the Real World. Front Oncol 2021; 11:797825. [PMID: 34993148 PMCID: PMC8724125 DOI: 10.3389/fonc.2021.797825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several clinical trials have shown promising efficacy of pegylated interferon (Peg-IFN) in the first- and second-line polycythemia vera (PV) and essential thrombocythemia (ET). However, the efficacy and safety of Peg-IFN in the real world have rarely been reported. Hence, we conducted a prospective, single-center, single-arm, open exploratory study, which aimed to explore the hematologic response, molecular response, safety, and tolerability of patients with PV and ET treated with Peg-IFN in the real world. This study included newly diagnosed or previously treated patients with PV and ET, aged 18 years or older, admitted to the Department of Hematology of the First Affiliated Hospital of Soochow University from November 2017 to October 2019. The results revealed that complete hematological response (CHR) was achieved in 66.7% of patients with PV and 76.2% of patients with ET, and the molecular response was obtained in 38.5% of patients with PV and 50% of patients with ET after 48 weeks of Peg-IFN treatment. Peg-IFN is safe, effective and well tolerated in most patients. In the entire cohort, 4 patients (9.1%) discontinued treatment due to drug-related toxicity. In conclusion, Peg-IFN is a promising strategy in myeloproliferative neoplasms (MPNs), and Peg-IFN alone or in combination with other drugs should be further explored to reduce treatment-related toxicity and improve tolerability.
Collapse
Affiliation(s)
- Yingxin Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifeng Cai
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jiannong Cen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinlan Pan
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qian Wang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China
- Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- *Correspondence: Suning Chen,
| |
Collapse
|
26
|
Kaempferol sensitizes tumor necrosis factor-related apoptosis-inducing ligand-resistance chronic myelogenous leukemia cells to apoptosis. Mol Biol Rep 2021; 49:19-29. [PMID: 34820749 DOI: 10.1007/s11033-021-06778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL, an apoptosis-inducing cytokine, has attracted much attention in the treatment of cancer for its selective toxicity to malignant rather than normal cells. However, the apoptosis-inducing ability of TRAIL is weaker than expected primarily due to cancer cell resistance. As one of the dietary flavonoids, kaempferol, has been shown to be antiproliferative and might have a protective effect against TRAIL resistance, particularly for hematologic malignancies. METHODS AND RESULTS Here, we studied the potential of kaempferol to enhance the TRAIL-induced cytotoxicity and apoptosis in human chronic myelogenous leukemia (CML) cell line K-562, as well as the expression of specific genes with impact on TRAIL signal regulation. Analysis of flowcytometry data showed that treatment with kaempferol did enhance sensitivity of CML cells to pro-apoptotic effects of anti-TRAIL antibody. Although the gene expression levels were heterogeneous, cFLIP, cIAP1 and cIAP2 expression were generally downregulated where co-treatment of kaempferol and TRAIL was employed and these effects appeared to be dose-dependent. We further demonstrated that the expression of death receptors 4 and 5 tended to increase subsequent to the combination treatment. CONCLUSIONS Consequently, it is reasonable to conclude that sensitization of chronic leukemia cells to TRAIL by kaempferol in vitro should be considered as a way of focusing clinical attention on leukemia therapy.
Collapse
|
27
|
Hasselbalch HC, Silver RT. New Perspectives of Interferon-alpha2 and Inflammation in Treating Philadelphia-negative Chronic Myeloproliferative Neoplasms. Hemasphere 2021; 5:e645. [PMID: 34805764 PMCID: PMC8601345 DOI: 10.1097/hs9.0000000000000645] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Richard T Silver
- Myeloproliferative Neoplasms Center, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
28
|
Dagher T, Maslah N, Edmond V, Cassinat B, Vainchenker W, Giraudier S, Pasquier F, Verger E, Niwa-Kawakita M, Lallemand-Breitenbach V, Plo I, Kiladjian JJ, Villeval JL, de Thé H. JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med 2021; 218:211476. [PMID: 33075130 PMCID: PMC7579737 DOI: 10.1084/jem.20201268] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Interferon α (IFNα) is used to treat JAK2V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.
Collapse
Affiliation(s)
- Tracy Dagher
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Nabih Maslah
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Valérie Edmond
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Bruno Cassinat
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stéphane Giraudier
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Florence Pasquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Emmanuelle Verger
- Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France
| | - Michiko Niwa-Kawakita
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Valérie Lallemand-Breitenbach
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, INSERM UMR-S1131, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France.,Centre d'Investigations Cliniques, APHP, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Villeval
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hugues de Thé
- INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7212, IRSL, Hôpital Saint-Louis, Paris, France.,Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France.,Service de Biochimie, APHP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
29
|
NK Cells in Myeloproliferative Neoplasms (MPN). Cancers (Basel) 2021; 13:cancers13174400. [PMID: 34503210 PMCID: PMC8431564 DOI: 10.3390/cancers13174400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary NK cells are important innate immune effectors that contribute substantially to tumor control, however the role of NK cells in haematological cancers is not as well understood. The aim of this review is to highlight the importance of the role of NK cells in the management of Ph+ Myeloproliferative Neoplasms, and emphasize the need and possible benefits of a more in-depth investigation into their role in classical MPNs and show potential strategies to harness the anti-tumoral capacities of NK cells. Abstract Myeloproliferative neoplasms (MPNs) comprise a heterogenous group of hematologic neoplasms which are divided into Philadelphia positive (Ph+), and Philadelphia negative (Ph−) or classical MPNs. A variety of immunological factors including inflammatory, as well as immunomodulatory processes, closely interact with the disease phenotypes in MPNs. NK cells are important innate immune effectors and substantially contribute to tumor control. Changes to the absolute and proportionate numbers of NK cell, as well as phenotypical and functional alterations are seen in MPNs. In addition to the disease itself, a variety of therapeutic options in MPNs may modify NK cell characteristics. Reports of suppressive effects of MPN treatment strategies on NK cell activity have led to intensive investigations into the respective compounds, to elucidate the possible negative effects of MPN therapy on control of the leukemic clones. We hereby review the available literature on NK cells in Ph+ and Ph− MPNs and summarize today’s knowledge on disease-related alterations in this cell compartment with particular focus on known therapy-associated changes. Furthermore, we critically evaluate conflicting data with possible implications for future projects. We also aim to highlight the relevance of full NK cell functionality for disease control in MPNs and the importance of considering specific changes related to therapy in order to avoid suppressive effects on immune surveillance.
Collapse
|
30
|
Li BY, Tan W, Zou JL, He Y, Yoshida S, Jiang B, Zhou YD. Role of interferons in diabetic retinopathy. World J Diabetes 2021; 12:939-953. [PMID: 34326947 PMCID: PMC8311473 DOI: 10.4239/wjd.v12.i7.939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the major causes of visual impairment and irreversible blindness in developed regions. Aside from abnormal angiogenesis, inflammation is the most specific and might be the initiating factor of DR. As a key participant in inflammation, interferon-gamma (IFN-γ) can be detected in different parts of the eye and is responsible for the breakdown of the blood-retina barrier and activation of inflammatory cells and other cytokines, which accelerate neovascularization and neuroglial degeneration. In addition, IFN-γ is involved in other vascular complications of diabetes mellitus and angiogenesis-dependent diseases, such as diabetic nephropathy, cerebral microbleeds, and age-related macular degeneration. Traditional treatments, such as anti-vascular endothelial growth factor agents, vitrectomy, and laser photocoagulation therapy, are more effective for angiogenesis and not tolerable for every patient. Many ongoing clinical trials are exploring effective drugs that target inflammation. For instance, IFN-α acts against viruses and angiogenesis and is commonly used to treat malignant tumors. Moreover, IFN-α has been shown to contribute to alleviating the progression of DR and other ocular diseases. In this review, we emphasize the roles that IFNs play in the pathogenesis of DR and discuss potential clinical applications of IFNs in DR, such as diagnosis, prognosis, and therapeutic treatment.
Collapse
Affiliation(s)
- Bing-Yan Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing-Ling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume 830-0011, Fukuoka, Japan
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Ye-Di Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
31
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
32
|
Gu W, Yang R, Xiao Z, Zhang L. Clinical outcomes of interferon therapy for polycythemia vera and essential thrombocythemia: a systematic review and meta-analysis. Int J Hematol 2021; 114:342-354. [PMID: 34091876 DOI: 10.1007/s12185-021-03171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022]
Abstract
Interferon therapy has been used in clinical practice for more than three decades to treat polycythemia vera (PV) and essential thrombocythemia (ET). However, there has been no systematic investigation of its expected outcomes and potential risks. We performed a systematic review and single-arm meta-analysis to assess the clinical outcomes (hematological response, molecular response, vascular events, hematological transformation, and adverse events) after interferon therapy for patients with PV and ET. A systematic search identified 37 reports, including data from 1794 patients that were published before March 2021. The pooled overall hematological response (OHR) rate was 86%, with better OHR rates observed in studies using long-acting interferon (p < 0.001) and studies with younger patients (p = 0.038). The pooled overall molecular response rate was 48%, and inter-study heterogeneity was also related to patient age (p = 0.009). The overall incidence was 0.42/100 person-years for thrombosis, 0.01/100 person-years for hemorrhage, 0.21/100 person-years for myelofibrotic transformation, and 0.08/100 person-years for leukemic transformation. Compared with hydroxyurea, interferon produced a non-inferior hematological response and a superior molecular response. In conclusion, interferon therapy provided high rates of hematological and molecular response for patients with PV and ET and was associated with a favorable prognosis.
Collapse
Affiliation(s)
- Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, 300020, China.
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
- Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, 300020, China.
| |
Collapse
|
33
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
34
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
35
|
Lasho T, Patnaik MM. Novel therapeutic targets for chronic myelomonocytic leukemia. Best Pract Res Clin Haematol 2021; 34:101244. [PMID: 33762099 DOI: 10.1016/j.beha.2021.101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic myelomonocytic leukemia (CMML) is a rare, age-related myeloid neoplasm with overlapping features of myelodysplastic syndromes/myeloproliferative neoplasms. Although gene mutations involving TET2, ASXL1 and SRSF2 are common, there are no specific molecular alterations that define the disease. Allogeneic stem cell transplant is the only curative option, with most patients not qualifying, due to advanced age at diagnosis and comorbidities. The only approved treatment options are hypomethylating agents; drugs that fail to alter the disease course or affect mutant allele burdens. Clinically CMML can be sub-classified into proliferative (pCMML) and dysplastic (dCMML) subtypes, with pCMML being associated with signaling mutations, myeloproliferative features, and a shorter overall survival. Given the paucity of effective treatment strategies there is a need for rationally informed and biomarker driven studies. This report will discuss current and prospective therapies for CMML and discuss the role for personalized therapeutics.
Collapse
Affiliation(s)
- Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
36
|
Benevolo G, Vassallo F, Urbino I, Giai V. Polycythemia Vera (PV): Update on Emerging Treatment Options. Ther Clin Risk Manag 2021; 17:209-221. [PMID: 33758507 PMCID: PMC7981161 DOI: 10.2147/tcrm.s213020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Polycythemia Vera (PV) is a chronic myeloproliferative neoplasm characterized by exuberant red cell production leading to a broad range of symptoms that compromise quality of life and productivity of patients. PV reduces survival expectation, primarily due to thrombotic events, transformation to blast phase and post-PV myelofibrosis or to development of second cancers, which are associates with poor prognosis. Current therapeutic first line recommendations based on risk adapted classification divided patients into two groups, according to age (< or >60 years) and presence of prior thrombotic events. Low-risk patients (age <60 years and no prior history of thrombosis) should be treated with aspirin (81-100 mg/d) and phlebotomy, to maintain hematocrit <45%. High-risk patients (age >60 years and/or prior history of thrombosis), in addition to aspirin and phlebotomies, should receive cytoreductive therapy in order to reduce thrombotic risk. Nowadays hydroxyurea still remains the cytoreductive agent of first choice, reserving Interferon to young patients or childbearing women. During the last years, ruxolitinib emerged as a new treatment in PV patients, as second line therapy: it appeared especially effective in patients with severe pruritus, symptomatic splenomegaly, or post-PV myelofibrosis symptoms. Currently, in PV treatment, several molecules have been tested or are under investigation. At present, the drug that has shown the most encouraging results is givinostat.
Collapse
Affiliation(s)
- Giulia Benevolo
- Division of Haematology, Città della Salute e della Scienza, Turin, Italy
| | - Francesco Vassallo
- Division of Haematology, Città della Salute e della Scienza, Turin, Italy
| | - Irene Urbino
- Division of Haematology, Città della Salute e della Scienza, Turin, Italy
| | - Valentina Giai
- Division of Haematology, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
37
|
Tong J, Sun T, Ma S, Zhao Y, Ju M, Gao Y, Zhu P, Tan P, Fu R, Zhang A, Wang D, Wang D, Xiao Z, Zhou J, Yang R, Loughran SJ, Li J, Green AR, Bresnick EH, Wang D, Cheng T, Zhang L, Shi L. Hematopoietic Stem Cell Heterogeneity Is Linked to the Initiation and Therapeutic Response of Myeloproliferative Neoplasms. Cell Stem Cell 2021; 28:502-513.e6. [PMID: 33621485 DOI: 10.1016/j.stem.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
The implications of stem cell heterogeneity for disease pathogenesis and therapy are poorly defined. JAK2V617F+ myeloproliferative neoplasms (MPNs), harboring the same mutation in hematopoietic stem cells (HSCs), display diverse phenotypes, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These chronic malignant disorders are ideal models to analyze the pathological consequences of stem cell heterogeneity. Single-cell gene expression profiling with parallel mutation detection demonstrated that the megakaryocyte (Mk)-primed HSC subpopulation expanded significantly with enhanced potential in untreated individuals with JAK2V617F+ ET, driven primarily by the JAK2 mutation and elevated interferon signaling. During treatment, mutant HSCs were targeted preferentially in the Mk-primed HSC subpopulation. Interestingly, homozygous mutant HSCs were forced to re-enter quiescence, whereas their heterozygous counterparts underwent apoptosis. This study provides important evidence for the association of stem cell heterogeneity with the pathogenesis and therapeutic response of a malignant disease.
Collapse
Affiliation(s)
- Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Yuchen Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Anqi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge CB2 0AW, UK
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53562, USA
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China; CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China; Tianjin Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
38
|
Guijarro-Hernández A, Vizmanos JL. A Broad Overview of Signaling in Ph-Negative Classic Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13050984. [PMID: 33652860 PMCID: PMC7956519 DOI: 10.3390/cancers13050984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is growing evidence that Ph-negative myeloproliferative neoplasms are disorders in which multiple signaling pathways are significantly disturbed. The heterogeneous phenotypes observed among patients have highlighted the importance of having a comprehensive knowledge of the molecular mechanisms behind these diseases. This review aims to show a broad overview of the signaling involved in myeloproliferative neoplasms (MPNs) and other processes that can modify them, which could be helpful to better understand these diseases and develop more effective targeted treatments. Abstract Ph-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT). However, some other non-canonical aberrant mechanisms derived from mutant JAK2 and CALR have also been described. Moreover, additional somatic mutations have been identified in other genes that affect epigenetic regulation, tumor suppression, transcription regulation, splicing and other signaling pathways, leading to the modification of some disease features and adding a layer of complexity to their molecular pathogenesis. All of these factors have highlighted the wide variety of cellular processes and pathways involved in the pathogenesis of MPNs. This review presents an overview of the complex signaling behind these diseases which could explain, at least in part, their phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Correspondence:
| |
Collapse
|
39
|
Handlos Grauslund J, Holmström MO, Jørgensen NG, Klausen U, Weis-Banke SE, El Fassi D, Schöllkopf C, Clausen MB, Gjerdrum LMR, Breinholt MF, Kjeldsen JW, Hansen M, Koschmieder S, Chatain N, Novotny GW, Petersen J, Kjær L, Skov V, Met Ö, Svane IM, Hasselbalch HC, Andersen MH. Therapeutic Cancer Vaccination With a Peptide Derived From the Calreticulin Exon 9 Mutations Induces Strong Cellular Immune Responses in Patients With CALR-Mutant Chronic Myeloproliferative Neoplasms. Front Oncol 2021; 11:637420. [PMID: 33718228 PMCID: PMC7952976 DOI: 10.3389/fonc.2021.637420] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background The calreticulin (CALR) exon 9 mutations that are identified in 20% of patients with Philadelphia chromosome negative chronic myeloproliferative neoplasms (MPN) generate immunogenic antigens. Thus, therapeutic cancer vaccination against mutant CALR could be a new treatment modality in CALR-mutant MPN. Methods The safety and efficacy of vaccination with the peptide CALRLong36 derived from the CALR exon 9 mutations was tested in a phase I clinical vaccination trial with montanide as adjuvant. Ten patients with CALRmut MPN were included in the trial and received 15 vaccines over the course of one year. The primary end point was evaluation of safety and toxicity of the vaccine. Secondary endpoint was assessment of the immune response to the vaccination epitope (www.clinicaltrials.gov identifier NCT03566446). Results Patients had a median age of 59.5 years and a median disease duration of 6.5 years. All patients received the intended 15 vaccines, and the vaccines were deemed safe and tolerable as only two grade three AE were detected, and none of these were considered to be related to the vaccine. A decline in platelet counts relative to the platelets counts at baseline was detected during the first 100 days, however this did not translate into neither a clinical nor a molecular response in any of the patients. Immunomonitoring revealed that four of 10 patients had an in vitro interferon (IFN)-γ ELISPOT response to the CALRLong36 peptide at baseline, and four additional patients displayed a response in ELISPOT upon receiving three or more vaccines. The amplitude of the immune response increased during the entire vaccination schedule for patients with essential thrombocythemia. In contrast, the immune response in patients with primary myelofibrosis did not increase after three vaccines. Conclusion Therapeutic cancer vaccination with peptide vaccines derived from mutant CALR with montanide as an adjuvant, is safe and tolerable. The vaccines did not induce any clinical responses. However, the majority of patients displayed a marked T-cell response to the vaccine upon completion of the trial. This suggests that vaccines directed against mutant CALR may be used with other cancer therapeutic modalities to enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Nicolai Grønne Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Claudia Schöllkopf
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Mette Borg Clausen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Guy Wayne Novotny
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Jesper Petersen
- Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.,Institute for Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
40
|
Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial. LANCET HAEMATOLOGY 2021; 8:e175-e184. [PMID: 33476571 DOI: 10.1016/s2352-3026(20)30373-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is no evidence that phlebotomy alone is sufficient to steadily maintain haematocrit on target level in low-risk patients with polycythaemia vera. This study aimed to compare the efficacy and safety of ropeginterferon alfa-2b on top of the standard phlebotomy regimen with phlebotomy alone. METHODS In 2017, we launched the Low-PV study, a multicentre, open-label, two-arm, parallel-group, investigator-initiated, phase 2 randomised trial with a group-sequential adaptive design. The study involved 21 haematological centres across Italy. Participants were recruited in a consecutive order. Participants enrolled in the study were patients, aged 18-60 years, with a diagnosis of polycythaemia vera according to 2008-16 WHO criteria. Eligible patients were randomly allocated (1:1) to receive either phlebotomy and low-dose aspirin (standard group) or ropeginterferon alfa-2b on top of the standard treatment (experimental group). Randomisation sequence was generated using five blocks of variable sizes proportional to elements of Pascal's triangle. Allocation was stratified by age and time from diagnosis. No masking was done. Patients randomly allocated to the standard group were treated with phlebotomy (300 mL for each phlebotomy to maintain the haematocrit values of lower than 45%) and low-dose aspirin (100 mg daily), if not contraindicated. Patients randomly allocated to the experimental group received ropeginterferon alfa-2b subcutaneously every 2 weeks in a fixed dose of 100 μg on top of the phlebotomy-only regimen. The primary endpoint was treatment response, defined as maintenance of the median haematocrit values of 45% or lower without progressive disease during a 12-month period. Analyses were done by intention-to-treat principle. The study was powered assuming a higher percentage of responders in the experimental group (75%) than in the standard group (50%). Here we report results from the second planned interim analysis when 50 patients had been recruited to each group. The trial is ongoing, and registered with ClinicalTrials.gov, NCT03003325. FINDINGS Between Feb 2, 2017, and March 13, 2020, 146 patients were screened, and 127 patients were randomly assigned to the standard group (n=63) or the experimental group (n=64). The median follow-up period was 12·1 months (IQR 12·0-12·6). For the second pre-planned interim analysis, a higher response rate in the experimental group was seen (42 [84%] of 50 patients) than in the standard group (30 [60%] of 50 patients; absolute difference 24%, 95% CI 7-41%, p=0·0075). The observed z value (2·6001) crossed the critical bound of efficacy (2·5262), and the stagewise adjusted p value early showed superiority of experimental treatment. Thus, the data safety monitoring board decided to stop patient accrual for overwhelming efficacy and to continue the follow-up, as per protocol, for 2 years. Under the safety profile, no statistically significant difference between groups in frequency of adverse events of grade 3 or higher was observed; the most frequently reported adverse events were neutropenia (four [8%] of 50 patients) in the experimental group and skin symptoms (two [4%] of 50 patients) in the standard group. No grade 4 or 5 adverse events occurred. INTERPRETATION Supplementing phlebotomy with ropeginterferon alfa-2b seems to be safe and effective in steadily maintaining haematocrit values on target in low-risk patients with polycythaemia vera. Findings from the current study might have implications for changing the current management of low-risk patients with polycythaemia vera. FUNDING AOP Orphan Pharmaceuticals, Associazione Italiana per la Ricerca sul Cancro.
Collapse
|
41
|
Gill H, Leung GMK, Yim R, Lee P, Pang HH, Ip HW, Leung RYY, Li J, Panagiotou G, Ma ESK, Kwong YL. Myeloproliferative neoplasms treated with hydroxyurea, pegylated interferon alpha-2A or ruxolitinib: clinicohematologic responses, quality-of-life changes and safety in the real-world setting. ACTA ACUST UNITED AC 2020; 25:247-257. [PMID: 32567517 DOI: 10.1080/16078454.2020.1780755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Real-world data of responses, quality-of-life (QOL) changes and adverse events in patients with myeloproliferative neoplasms (MPN) on conventional therapy (hydroxyurea ± anagrelide), pegylated interferon alpha-2A (PEG-IFNα-2A) or ruxolitinib are limited. Methods: We prospectively studied MPN patients receiving conventional therapy, PEG-IFNα-2A or ruxolitinib. Next-generation sequencing of 69 myeloid-related genes was performed. Clinicohematologic responses, adverse events, and QOL (determined by the Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score, MPN-SAF TSS) were evaluated. Results: Seventy men and fifty-five women with polycythemia vera (PV) (N = 23), essential thrombocythemia (ET) (N = 56) and myelofibrosis (MF) (N = 46) were studied for a median of 36 (range: 19-42) months. In PV, responses were comparable for different modalities. CREBBP mutations were associated with inferior responses. In ET, PEG-IFNα-2A resulted in superior clinicohematologic complete responses (CHCR) (P = 0.045). In MF, superior overall response rates (ORR) were associated with ruxolintib (P = 0.018) and JAK2V617F mutation (P = 0.04). For the whole cohort, ruxolitinib led to rapid and sustained reduction in spleen size within the first 6 months, and significant improvement of QOL as reflected by reduction in MPN-SAF TSS (P < 0.001). Adverse events of grades 1-2 were observed in 44%, 62% and 20% of patients receiving conventional therapy, PEG-IFNα-2A and ruxolitinib respectively; and of grade 3-4 in 7% and 9% of patients receiving PEG-IFNα-2A and ruxolitinib. Conclusions: Conventional therapy, PEG-IFNα-2A and ruxolitinib induced responses in all MPN subtypes. PEG-IFNα-2A led to superior CHCR in ET; whereas ruxolitinib resulted in superior ORR in MF, and significant reduction in spleen size and improvement in QOL.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Garret M K Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Rita Yim
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Paul Lee
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Herbert H Pang
- School of Public Health, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ho-Wan Ip
- Department of Pathology, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Rock Y Y Leung
- Department of Pathology, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Jun Li
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, People's Republic of China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Edmond S K Ma
- Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong, People's Republic of China
| | - Yok-Lam Kwong
- Department of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
42
|
Pozzato G, Mazzaro C, Artemova M, Abdurakhmanov D, Grassi G, Crosato I, Mauro E, Ghersetti M, Zorat F, Bomben R, Bulian P, Gattei V. Direct-acting antiviral agents for hepatitis C virus-mixed cryoglobulinaemia: dissociated virological and haematological responses. Br J Haematol 2020; 191:775-783. [PMID: 32790920 DOI: 10.1111/bjh.17036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2025]
Abstract
The hepatitis C virus-positive (HCV+) mixed cryoglobulinaemia (MC) is associated with haematological alterations such as monoclonal B-cell lymphocytosis or non-Hodgkin lymphomas (NHLs). Antiviral therapy for MC, based on interferon and ribavirin, has been shown to be able to eliminate the viral replication as well as the B-cell monoclonal alterations. Many studies have reported the efficacy of direct-acting antivirals (DAAs) in the treatment of HCV+ MC. However, some authors noticed the persistence of haematological diseases despite HCV eradication. To verify the effects of DAAs on B-cell proliferation, we evaluated 67 patients with HCV+ MC. Six patients had an overt NHL and 30% had monoclonal B-lymphocytosis. In 20% of the patients, the mutation L265P of the myeloid differentiation factor 88 (MYD88) gene was detected in peripheral blood. All patients had negative HCV viraemia at week 12; one had a breakthrough, while two cases relapsed. A complete clinical response of vasculitis was seen in 60% of the patients. Among the six patients with NHL, one showed a complete response, whereas in the others there were no changes in the number and size of the nodes. Among the patients carrying a clonal population in peripheral blood, only 22% became negative. These data indicate that DAAs are not able to eliminate the clonal alterations induced by HCV in a large proportion of cases.
Collapse
Affiliation(s)
- Gabriele Pozzato
- Department of Clinical and Surgical Sciences, University of Trieste, Trieste, Italy
| | - Cesare Mazzaro
- Clinical and Experimental Onco-Haematology Unit, CRO Aviano National Cancer Institute IRCCS, Aviano, Italy
| | - Marina Artemova
- Department of Fundamental Medicine, Moscow State University, Moscow, Russia
| | | | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ivo Crosato
- Department of Clinical and Surgical Sciences, University of Trieste, Trieste, Italy
| | - Endri Mauro
- Department of Internal Medicine, Pordenone General Hospital, Pordenone, Italy
| | - Michela Ghersetti
- Department of Internal Medicine, Pordenone General Hospital, Pordenone, Italy
| | - Francesca Zorat
- Department of Clinical and Surgical Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, CRO Aviano National Cancer Institute IRCCS, Aviano, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Haematology Unit, CRO Aviano National Cancer Institute IRCCS, Aviano, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, CRO Aviano National Cancer Institute IRCCS, Aviano, Italy
| |
Collapse
|
43
|
Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092592. [PMID: 32932806 PMCID: PMC7563255 DOI: 10.3390/cancers12092592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN), which are a heterogeneous group of rare disorders that affect blood cell production in bone marrow, present many significant challenges for clinicians. Though considerable progress has been made, in particular with the JAK1/2 inhibitor ruxolitinib, more effective alternative therapeutic approaches are needed. In the search for new and more efficient therapies, heat shock proteins, also known as stress proteins, and the programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint axis have been found to be of great interest in hematologic malignancies. Here, we review the therapeutic potential of stress protein inhibitors in the management of patients diagnosed with MPN and summarize the accumulating evidence of the role of the PD-1/PD-L1 axis in MPN in order to provide perspectives on future therapeutic opportunities relative to the inhibition of these targets. Abstract Myeloproliferative neoplasms (MPN) are a group of clonal disorders that affect hematopoietic stem/progenitor cells. These disorders are often caused by oncogenic driver mutations associated with persistent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. While JAK inhibitors, such as ruxolitinib, reduce MPN-related symptoms in myelofibrosis, they do not influence the underlying cause of the disease and are not curative. Due to these limitations, there is a need for alternative therapeutic strategies and targets. Heat shock proteins (HSPs) are cytoprotective stress-response chaperones involved in protein homeostasis and in many critical pathways, including inflammation. Over the last decade, several research teams have unraveled the mechanistic connection between STAT signaling and several HSPs, showing that HSPs are potential therapeutic targets for MPN. These HSPs include HSP70, HSP90 (chaperoning JAK2) and both HSP110 and HSP27, which are key factors modulating STAT3 phosphorylation status. Like the HSPs, the PD-1/PD-L1 signaling pathway has been widely studied in cancer, but the importance of PD-L1-mediated immune escape in MPN was only recently reported. In this review, we summarize the role of HSPs and PD-1/PD-L1 signaling, the modalities of their experimental blockade, and the effect in MPN. Finally, we discuss the potential of these emerging targeted approaches in MPN therapy.
Collapse
|
44
|
Sørensen AL, Mikkelsen SU, Knudsen TA, Bjørn ME, Andersen CL, Bjerrum OW, Brochmann N, Patel DA, Gjerdrum LMR, El Fassi D, Kruse TA, Larsen TS, Mourits-Andersen HT, Nielsen CH, Ellervik C, Pallisgaard N, Thomassen M, Kjær L, Skov V, Hasselbalch HC. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica 2020; 105:2262-2272. [PMID: 33054051 PMCID: PMC7556624 DOI: 10.3324/haematol.2019.235648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
We report the final 2-year end-of-study results from the first clinical trial investigating combination treatment with ruxolitinib and low-dose pegylated interferon-α2 (PEG-IFNα2). The study included 32 patients with polycythemia vera and 18 with primary or secondary myelofibrosis; 46 patients were previously intolerant of or refractory to PEGIFNα2. The primary outcome was efficacy, based on hematologic parameters, quality of life measurements, and JAK2 V617F allele burden. We used the 2013 European LeukemiaNet and International Working Group- Myeloproliferative Neoplasms Research and Treatment response criteria, including response in symptoms, splenomegaly, peripheral blood counts, and bone marrow. Of 32 patients with polycythemia vera, ten (31%) achieved a remission which was a complete remission in three (9%) cases. Of 18 patients with myelofibrosis, eight (44%) achieved a remission; five (28%) were complete remissions. The cumulative incidence of peripheral blood count remission was 0.85 and 0.75 for patients with polycythemia vera and myelofibrosis, respectively. The Myeloproliferative Neoplasm Symptom Assessment Form total symptom score decreased from 22 [95% confidence interval (95% CI):, 16-29] at baseline to 15 (95% CI: 10-22) after 2 years. The median JAK2 V617F allele burden decreased from 47% (95% CI: 33-61%) to 12% (95% CI: 6-22%), and 41% of patients achieved a molecular response. The drop-out rate was 6% among patients with polycythemia vera and 32% among those with myelofibrosis. Of 36 patients previously intolerant of PEG-IFNα2, 31 (86%) completed the study, and 24 (67%) of these received PEG-IFNα2 throughout the study. In conclusion, combination treatment improved cell counts, reduced bone marrow cellularity and fibrosis, decreased JAK2 V617F burden, and reduced symptom burden with acceptable toxicity in several patients with polycythemia vera or myelofibrosis. #EudraCT2013-003295-12.
Collapse
Affiliation(s)
- Anders Lindholm Sørensen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Stine Ulrik Mikkelsen
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Christen Lykkegaard Andersen
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nana Brochmann
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Dustin Andersen Patel
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christina Ellervik
- Herlev University Hospital, Copenhagen, Denmark; Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Data and Development Support, Region Zealand, Sorø, Denmark
| | - Niels Pallisgaard
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | |
Collapse
|
45
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
46
|
Ottesen JT, Pedersen RK, Dam MJB, Knudsen TA, Skov V, Kjær L, Andersen M. Mathematical Modeling of MPNs Offers Understanding and Decision Support for Personalized Treatment. Cancers (Basel) 2020; 12:cancers12082119. [PMID: 32751766 PMCID: PMC7466162 DOI: 10.3390/cancers12082119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
(1) Background: myeloproliferative neoplasms (MPNs) are slowly developing hematological cancers characterized by few driver mutations, with JAK2V617F being the most prevalent. (2) Methods: using mechanism-based mathematical modeling (MM) of hematopoietic stem cells, mutated hematopoietic stem cells, differentiated blood cells, and immune response along with longitudinal data from the randomized Danish DALIAH trial, we investigate the effect of the treatment of MPNs with interferon-α2 on disease progression. (3) Results: At the population level, the JAK2V617F allele burden is halved every 25 months. At the individual level, MM describes and predicts the JAK2V617F kinetics and leukocyte- and thrombocyte counts over time. The model estimates the patient-specific treatment duration, relapse time, and threshold dose for achieving a good response to treatment. (4) Conclusions: MM in concert with clinical data is an important supplement to understand and predict the disease progression and impact of interventions at the individual level.
Collapse
Affiliation(s)
- Johnny T. Ottesen
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (R.K.P.); (M.J.B.D.); (M.A.)
- Correspondence:
| | - Rasmus K. Pedersen
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (R.K.P.); (M.J.B.D.); (M.A.)
| | - Marc J. B. Dam
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (R.K.P.); (M.J.B.D.); (M.A.)
| | - Trine A. Knudsen
- Department of Haematology, Zealand University Hospital, Roskilde, 2022 Roskilde, Denmark; (T.A.K.); (V.S.); (L.K.)
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Roskilde, 2022 Roskilde, Denmark; (T.A.K.); (V.S.); (L.K.)
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Roskilde, 2022 Roskilde, Denmark; (T.A.K.); (V.S.); (L.K.)
| | - Morten Andersen
- IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (R.K.P.); (M.J.B.D.); (M.A.)
| |
Collapse
|
47
|
From leeches to interferon: should cytoreduction be prescribed for all patients with polycythemia vera? Leukemia 2020; 34:2837-2839. [PMID: 32678292 DOI: 10.1038/s41375-020-0984-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 11/08/2022]
|
48
|
Holmström MO, Hasselbalch HC, Andersen MH. Cancer Immune Therapy for Philadelphia Chromosome-Negative Chronic Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1763. [PMID: 32630667 PMCID: PMC7407874 DOI: 10.3390/cancers12071763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPN) are neoplastic diseases of the hematopoietic stem cells in the bone marrow. MPN are characterized by chronic inflammation and immune dysregulation. Of interest, the potent immunostimulatory cytokine interferon-α has been used to treat MPN for decades. A deeper understanding of the anti-cancer immune response and of the different immune regulatory mechanisms in patients with MPN has paved the way for an increased perception of the potential of cancer immunotherapy in MPN. Therapeutic vaccination targeting the driver mutations in MPN is one recently described potential new treatment modality. Furthermore, T cells can directly react against regulatory immune cells because they recognize proteins like arginase and programmed death ligand 1 (PD-L1). Therapeutic vaccination with arginase or PD-L1 therefore offers a novel way to directly affect immune inhibitory pathways, potentially altering tolerance to tumor antigens like mutant CALR and mutant JAK2. Other therapeutic options that could be used in concert with therapeutic cancer vaccines are immune checkpoint-blocking antibodies and interferon-α. For more advanced MPN, adoptive cellular therapy is a potential option that needs more preclinical investigation. In this review, we summarize current knowledge about the immune system in MPN and discuss the many opportunities for anti-cancer immunotherapy in patients with MPN.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, DK-2730 Herlev, Denmark;
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
49
|
Current management strategies for polycythemia vera and essential thrombocythemia. Blood Rev 2020; 42:100714. [DOI: 10.1016/j.blre.2020.100714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/02/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
|
50
|
Bartalucci N, Guglielmelli P, Vannucchi AM. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opin Ther Targets 2020; 24:615-628. [PMID: 32366208 DOI: 10.1080/14728222.2020.1762176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| |
Collapse
|