1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Xu H, Wang Z, Sa S, Yang Y, Zhang X, Li D. Identification of novel compound heterozygous variants of the ALMS1 gene in a child with Alström syndrome by whole genome sequencing. Gene 2024; 929:148827. [PMID: 39122231 DOI: 10.1016/j.gene.2024.148827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Alström syndrome (ALMS), a rare recessively inherited ciliopathy caused by mutations in ALMS1, is characterized by retinal dystrophy, childhood obesity, sensorineural hearing loss, and type 2 diabetes mellitus. The majority of pathogenic variants in ALMS1 are nonsense and frameshift mutations, which would lead to premature protein truncation, whereas copy number variants are seldom reported. METHODS Herein, we present a 10-year-old Chinese girl with ALMS. The potential causative genetic variant was confirmed through whole genome sequencing, quantitative real-time PCR analysis, and Sanger sequencing. Additionally, breakpoint analysis was performed to determine the exact breakpoint site of the large deletion and elucidate its probable formation mechanism. RESULTS The patient had a cor triatriatum sinister (CTS) structure. Genetic analysis identified novel compound heterozygous variants in the patient, consisting of a frameshift variant c.4414_4415delGT (p.V1472Nfs*26) in ALMS1 and a novel large deletion at chr2:73,612,355-73,626,339, which encompasses exon 1 of the ALMS1 gene. Moreover, breakpoint analysis revealed that the large deletion probably formed through the microhomology-mediated end joining (MMEJ) mechanism due to the 6-bp microhomologies (TCCTTC) observed at both ends of the breakpoints. CONCLUSIONS In this study, novel compound heterozygous variants in the ALMS1 gene were identified in an ALMS patient with a CTS structure. The molecular confirmation of these variants expands the mutational spectrum of ALMS1, while the manifestation of ALMS in the patient provides additional clinical insights into this syndrome.
Collapse
Affiliation(s)
- Haikun Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ziju Wang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Sha Sa
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ying Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China.
| | - Dejun Li
- Center for Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| |
Collapse
|
3
|
Jecan-Toader D, Trifa A, Lucian B, Pop TL, Cainap SS. Alström syndrome-wide clinical variability within the same variant: a case report and literature review. Front Pediatr 2024; 12:1463903. [PMID: 39386013 PMCID: PMC11461243 DOI: 10.3389/fped.2024.1463903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Alström disease is a rare disorder caused by various variants in the ALMS1 gene. It is characterised by multiorgan involvement, namely neurosensory deficits, endocrine and metabolic disturbances, cardiomyopathy, and hepatic and renal dysfunction. The disease exhibits marked interindividual variability, both in clinical manifestations and age of onset. Several attempts have been made to establish a relationship between phenotype and genotype, with little success. Methods We present the case of an infant who presented with dilated cardiomyopathy, above-average weight and neurosensory deficits, raising the suspicion for Alström syndrome, later confirmed through genetic testing. Moreover, we conducted an extensive literature search to identify all reported cases having the same variant as our patient, in order to evaluate whether specific mutated alleles have a role in determining phenotype-genotype associations. Results A 4-month-old female infant with a recent history of bronchiolitis was referred to our centre due to a systolic murmur. In our service, the clinical exam was significant for above-average weight, dyspnea, wheezing and a grade II systolic murmur. Echocardiography revealed dilated cardiomyopathy with severe systolic dysfunction of the left ventricle. Laboratory investigations revealed elevated NT-proBNP and troponin levels, along with positive IgM antibodies for CMV and EBV. Dilated cardiomyopathy attributed to viral myocarditis was suspected. Treatment with ACE inhibitors and diuretics was started, with a favourable response initially. However, after a few months, the patient presented with vertical nystagmus and head bobbing. The ophthalmologic exam revealed cone-rode dystrophy. Considering the constellation of symptoms, Alström syndrome was suspected. Genetic testing revealed a homozygous variant [c.4156dup (p.Thr1386Asnfs*15)] in the ALMS1 gene, confirming the diagnosis. Conclusion Our literature review revealed 8 additional cases harbouring the same variant as our patient, five in a heterozygous state, two in a homozygous state and one with only one allele identified. The identified patients presented high heterogeneity of clinical manifestations and age of onset. The heterogeneity persisted even in patients with homozygous variants, suggesting the involvement of factors beyond the specific disease-causing variant in determining disease manifestation. Therefore, genotype-phenotype correlations might not be supported by specific variants.
Collapse
Affiliation(s)
- Diana Jecan-Toader
- Medical Oncology Discipline, Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| | - Adrian Trifa
- Discipline of Medical Genetics; Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center of Expertise for Rare Pulmonary Diseases, Clinical Hospital of Infectious Diseases and Pneumophysiology “Dr. Victor Babes”Timisoara, Romania
- Breast Cancer Center, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Bogdan Lucian
- Pediatric Department, “Dr. Constantin Opris” Emergency County Hospital, Baia Mare, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Sorana Cainap
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
- 2nd Pediatric Discipline, Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Abosabie SAS, Abosabie SA, Alfaifi J, Alqahtani YA, Shati AA, Alotaibi NA, Alghamdi OA, Alotaibi GN, Baabdullah AA, Kabrah LK, Kamal NM, Oshi MAM, Abdallah EAA. Unraveling Alström syndrome: Homozygous mutation c.2729C>G in ALMS1 gene across an extended family. Mol Genet Genomic Med 2024; 12:e2314. [PMID: 37937857 PMCID: PMC10767606 DOI: 10.1002/mgg3.2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Alström syndrome (AS) represents an exceptionally rare genetic disorder characterized by a constellation of features including cardiomyopathy, progressive hearing and vision impairment, as well as obesity. This study seeks to elucidate the genetic underpinnings of this syndrome within the Saudi Arabian population. METHODS Employing an extended family cohort, we conducted an exhaustive molecular genetic assessment to delineate the presence of Alström syndrome. Additionally, we conducted an extensive review of existing literature from Saudi population to contextualize our findings within the broader understanding of the disorder in our country. RESULTS Within our studied extended family, we identified two individuals harboring the homozygous pathogenic mutation (c.2729C>G) in the ALMS1 gene [NM_015120.4:c.2729C>G (p.Ser910*)]. Notably, carrier status was observed in the parents, whereas some siblings exhibited typical alleles while others were carriers of the mutation. Intriguingly, a review of the literature unveiled six distinct reports documenting a total of 20 Alström syndrome patients within the Saudi Arabian population, each presenting with distinct novel mutations. CONCLUSIONS In cases featuring cardiomyopathy, obesity, and progressive hearing and vision loss, Alström syndrome merits inclusion within the differential diagnosis. To confirm the diagnosis, molecular genetic assessment of the ALMS1 gene is imperative, offering definitive clarity amidst the complex clinical presentation. This investigation reinforces the importance of genetic scrutiny for precise diagnosis and highlights the unique genetic landscape of Alström syndrome within the Saudi Arabian population.
Collapse
Affiliation(s)
| | - Sara A. Abosabie
- Faculty of MedicineCharité—Universitätsmedizin BerlinBerlinGermany
| | - Jaber Alfaifi
- Department of Child Health, College of MedicineUniversity of BishaBishaSaudi Arabia
| | - Youssef A. Alqahtani
- Department of Child Health, College of MedicineKing Khalid UniversityAbhaSaudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of MedicineKing Khalid UniversityAbhaSaudi Arabia
| | | | | | | | | | | | - Naglaa M. Kamal
- Department of Pediatrics and Pediatric Hepatology, Kasralainy Faculty of MedicineCairoEgypt
| | - Mohammed A. M. Oshi
- Departement of PediatricsGaafar Ibnauf Children's Emergency HospitalKhartoumSudan
| | - Enas A. A. Abdallah
- Department of Pediatrics and Pediatric Hepatology, Kasralainy Faculty of MedicineCairoEgypt
| |
Collapse
|
5
|
Bea-Mascato B, Valverde D. Genotype-phenotype associations in Alström syndrome: a systematic review and meta-analysis. J Med Genet 2023; 61:18-26. [PMID: 37321834 PMCID: PMC10803979 DOI: 10.1136/jmg-2023-109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the ALMS1 gene, which encodes a centrosome-associated protein involved in the regulation of several ciliary and extraciliary processes, such as centrosome cohesion, apoptosis, cell cycle control and receptor trafficking. The type of variant associated with ALMS is mostly complete loss-of-function variants (97%) and they are mainly located in exons 8, 10 and 16 of the gene. Other studies in the literature have tried to establish a genotype-phenotype correlation in this syndrome with limited success. The difficulty in recruiting a large cohort in rare diseases is the main barrier to conducting this type of study. METHODS In this study we collected all cases of ALMS published to date. We created a database of patients who had a genetic diagnosis and an individualised clinical history. Lastly, we attempted to establish a genotype-phenotype correlation using the truncation site of the patient's longest allele as a grouping criteria. RESULTS We collected a total of 357 patients, of whom 227 had complete clinical information, complete genetic diagnosis and meta-information on sex and age. We have seen that there are five variants with high frequency, with p.(Arg2722Ter) being the most common variant, with 28 alleles. No gender differences in disease progression were detected. Finally, truncating variants in exon 10 seem to be correlated with a higher prevalence of liver disorders in patients with ALMS. CONCLUSION Pathogenic variants in exon 10 of the ALMS1 gene were associated with a higher prevalence of liver disease. However, the location of the variant in the ALMS1 gene does not have a major impact on the phenotype developed by the patient.
Collapse
Affiliation(s)
- Brais Bea-Mascato
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Diana Valverde
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
6
|
Shi J, Xu K, Zhang X, Xie Y, Chang H, Li Y. A novel missense ALMS1 variant causes aberrant splicing identified in a cohort of patients with Alström syndrome. Front Genet 2023; 13:1104420. [PMID: 36685911 PMCID: PMC9845408 DOI: 10.3389/fgene.2022.1104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose: Alström syndrome (AS) is a rare autosomal recessive disorder caused by variants of ALMS1. The objectives of this study were to describe the clinical and genetic characteristics of 19 Chinese patients with biallelic variants in ALMS1. Methods: We recruited 19 probands with biallelic disease-causing ALMS1 variants. All patients underwent ophthalmic and systematic evaluations and comprehensive molecular genetic analysis. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays were performed to observe the effect of a novel missense variant on ALMS1 pre-mRNA splicing. Results: We identified 33 causative variants in ALMS1, including 15 frameshift small indels, 14 non-sense variants, two gross deletions, one splicing variant, and one missense variant. RT-PCR showed that the missense variant c.9542G>A (p.R3181Q) altered pre-mRNA splicing to generate a truncated protein p. (Ser3082Asnfs*6). Retinal dystrophy (RD) was noted in all the patients, followed by metabolism disturbance (obesity or acanthosis nigricans) in 66.7% and hearing impairment in 61.1% of the patients. Patient systemic symptom numbers and their age at evaluation showed a significant positive correlation, and BCVA and age at the last examination showed a moderate correlation. All patients exhibited early-onset RD and severe visual impairment. The exception was one patient carrying homozygous p. R3181Q, who showed a mild visual defect and atypical retinal phenotype. Conclusion: Our findings expand the pathogenic variant spectrum of ALMS1 and provide the first verification of a novel missense variant caused AS by aberrant pre-mRNA splicing. Patients with AS might demonstrate varied clinical spectra; therefore, genetic analysis is vital for the early and accurate diagnosis of patients with atypical AS.
Collapse
|
7
|
Ahmed MN, Jabin N, Iktidar MA, Arafat SM, Khan AH, Mitra A, Chowdhury R. A child resides within a young adult: The first reported case of Alström syndrome in Bangladesh. Clin Case Rep 2022; 10:e6720. [PMID: 36514460 PMCID: PMC9731160 DOI: 10.1002/ccr3.6720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A 32-year-old male case with short stature presented to us with audio-visual impairment, obesity, impaired glucose tolerance, dyslipidemia, and hypogonadism. The single-gene genetic analysis revealed an ALMS1 gene mutation. A diagnosis of ALMS was reached for meeting one major and four minor criteria.
Collapse
Affiliation(s)
| | - Nowshin Jabin
- Directorare General of Health ServicesDhakaBangladesh
| | | | | | | | - Avrow Mitra
- Sher‐e‐Bangla medical college hospitalBarishalBangladesh
| | | |
Collapse
|
8
|
Dedeoglu S, Dede E, Oztunc F, Gedikbasi A, Yesil G, Dedeoglu R. Mutation identification and prediction for severe cardiomyopathy in Alström syndrome, and review of the literature for cardiomyopathy. Orphanet J Rare Dis 2022; 17:359. [PMID: 36109815 PMCID: PMC9479229 DOI: 10.1186/s13023-022-02483-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Alström syndrome (ALMS) is a rare autosomal recessive genetic disorder that is caused by homozygous or compound heterozygous mutation in the ALMS1 gene. Dilated cardiomyopathy (DCM) is one of the well-recognized features of the syndrome ranging from sudden-onset infantile DCM to adult-onset cardiomyopathy, sometimes of the restrictive hypertrophic form with a poor prognosis. We aimed to evaluate severe cardiomyopathy in Alström syndrome in infancy and display susceptible specific mutations of the disease, which may be linked to severe DCM. Secondarily we reviewed published mutations in ALMS1 with cardiomyopathies in the literature. Method We represent new mutagenic alleles related to severe cardiomyopathy and cardiac outcome in this patient cohort. We evaluated echocardiographic studies of nine Turkish patients diagnosed with Alström syndrome (between 2014 and 2020, at age two weeks to twenty years). Thus, we examined the cardiac manifestations of a single-centre prospective series of nine children with specific ALMS mutations and multisystem involvement. All patients underwent genetic and biochemical testing, electrocardiograms, and echocardiographic imaging to evaluate systolic strain with speckle tracking. Results Four of the patients died from cardiomyopathy. Three patients (including three of the four fatalities) with the same mutation (c.7911dupC [p.Asn2638Glnfs*24]) had cardiomyopathy with intra-familial variability in the severity of cardiomyopathy. Global longitudinal strain, a measure of systolic contractile function, was abnormal in all patients that can be measured. Conclusion Cardiac function in ALMS patients with infantile cardiomyopathy appears to have different clinical spectrums depending on the mutagenic allele. The c.7911dupC (p. Asn2638Glnfs*24) mutation can be related to severe cardiomyopathy. Parents can be informed and consulted about the progression of severe cardiomyopathy in a child carrying this mutagenic allele. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02483-7.
Collapse
|
9
|
Beqiri-Jashari A, Janchevska A, Ahmeti I, Doksimovski F, Cipanovska M, Teov B, Stefanovska ES, Plaseska-Karanfilska D, Gucev Z. Alström Syndrome with Early Vision and Hearing Impairement. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2022; 43:159-162. [PMID: 35843912 DOI: 10.2478/prilozi-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alström syndrome (ALMS) is an autosomal recessive disorder characterized by multiple organ involvement, including progressive cone-rod dystrophy, sensorineural hearing loss, childhood obesity, and type 2 diabetes mellitus. Pathogenic variants in the ALMS1 gene are the known cause for the occurrence of this devastating condition. Here we report on a 12 year old boy referred to the University Clinic with early signs of impaired hearing and vision, obesity, and scoliosis. Central vision was first affected, followed by peripheral vision. In addition, his weight began increasing after the age of two years, reaching 78 kg at a height of 157 cm (BMI 31.64). No polydactyly was present. His mental development was normal in spite of his hearing and vision impairments. There was acanthosis nigricans on the neck. ECG and the cardiac ultrasound were normal. At the age of 12 years, his testicles are 12 ml and his pubertal status is P2 A2. OGTT revealed impaired glucose tolerance with elevated insulin concentrations 121ulU/mL (reference range 2,00-29,1 ulU/mL). Renal function was unaffected, liver functions were normal. Uric acid and lipids were within normal plasma concentrations. A Whole Exome Sequencing was performed and a homozygous ALMS1 pathogenic, frameshift gene variant (LRG_741t1(ALMS1):c.4156dup; p.Thr1386AsnfsTer15) was determined as the cause of the disease. Both parents were carriers for the variant. The absence of mental retardation and polydactyly differentiates Alström and Bardet-Biedle syndrome.
Collapse
Affiliation(s)
| | | | - Irfan Ahmeti
- University Clinic for Endocrinology, Diabetes and Metabolic Diseases, Medical Faculty Skopje, RN Macedonia
| | - Filip Doksimovski
- University Clinic for Paediatrics, Medical Faculty Skopje, RN Macedonia
| | - Marija Cipanovska
- University Clinic for Paediatrics, Medical Faculty Skopje, RN Macedonia
| | - Bojan Teov
- University Clinic for Paediatrics, Medical Faculty Skopje, RN Macedonia
| | - Emilija Sukarova Stefanovska
- Macedonian Academy of Sciences and Arts, Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Skopje, Skopje Macedonia
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts, Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Skopje, Skopje Macedonia
| | - Zoran Gucev
- University Clinic for Paediatrics, Medical Faculty Skopje, RN Macedonia
| |
Collapse
|
10
|
Huang L, Guo M, Zhou Y, Liang T, Li N. Identification of ALMS1 pathogenic variants in Chinese patients with Alström syndrome. Ophthalmic Genet 2022; 43:573-575. [PMID: 35786123 DOI: 10.1080/13816810.2022.2092759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Maosheng Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianwei Liang
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Department of Ophthalmology, Children's Hospital, Capital Institute of Pediatrics, Beijing,
| |
Collapse
|
11
|
Liu Z, Chen X. Whole-exome sequencing establishes a diagnosis of Alstrom syndrome: a case report. Transl Pediatr 2022; 11:589-594. [PMID: 35558979 PMCID: PMC9085958 DOI: 10.21037/tp-21-623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/14/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Alstrom syndrome (ALMS) is a rare genetic disorder. ALMS is characterized by progressive bilateral sensorineural hearing impairment, cone-rod dystrophy, infantile-onset cardiomyopathy, hypertriglyceridemia, accelerated non-alcoholic fatty liver disease, renal dysfunction and insulin-resistant diabetes mellitus (DM). DM typically develop in childhood or adolescence. Dilated cardiomyopathy may arise in infancy. Clinical symptoms appear with great variability and severity. Several cases have been reported worldwide; however, diagnosis remains challenging. CASE DESCRIPTION We report an 8-year-and-11-month-old female diagnosed with ALMS who had a long history of obesity and amblyopia from infancy. We found high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in this patient. She showed no hearing disfunction. Recently, she presented with sudden-onset insulin-resistant DM. Genetic analysis revealed the heterozygous mutations c.8366delT, p.L2789* and c.6829C>T, p.R2277*. c.8366delT, which results in premature protein termination, has not been reported previously in ALMS1. Although the patient's two sisters died of acute heart failure following infection at 4 and 14 months respectively, she showed no signs of cardiomyopathy until now. CONCLUSIONS This case provides an unusual cause of genetic syndrome associated with diabetes. A detailed medical history, physical examination and appropriate gene analysis are critical for diagnosis. Our case identifies a novel ALMS1 mutation and reaffirms the great clinical variation of this disease even within families.
Collapse
Affiliation(s)
- Ziqin Liu
- Department of Endocrinology, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Xiaobo Chen
- Department of Endocrinology, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
12
|
Jiang P, Xiao L, Guo Y, Hu R, Zhang BY, He Y. Novel mutations of the Alström syndrome 1 gene in an infant with dilated cardiomyopathy: A case report. World J Clin Cases 2022; 10:2330-2335. [PMID: 35321175 PMCID: PMC8895183 DOI: 10.12998/wjcc.v10.i7.2330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alström syndrome (AS) is a rare autosomal recessive disease that is generally induced by mutations of the Alström syndrome 1 (ALMS1) gene. We report a case of AS, extend the spectrum of ALMS1 mutations and highlight the biological role of ALMS1 to explore the relationship between dilated cardiomyopathy (DCM) and mutations in ALMS1.
CASE SUMMARY We present the case of an infant with AS mainly manifesting with DCM that was caused by a novel mutation of the ALMS1 gene. Whole-exome sequencing revealed a simultaneous large deletion and point mutation in ALMS1, leading to frameshift and missense mutations, respectively, rather than nonsense or frameshift mutations, which have been reported previously. Upon optimized anti-remodeling therapy, biohumoral exams and arrhythmic burden of the infant were alleviated at follow-up after 6 mo.
CONCLUSION We identified novel mutations of ALMS1 and extended the spectrum of ALMS1 mutations in an infant with AS.
Collapse
Affiliation(s)
- Ping Jiang
- Department Of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Liang Xiao
- Department of Pediatric, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Yuan Guo
- Department Of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Rong Hu
- Department of Medical Ultrasonics, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Bo-Yi Zhang
- Department of Medical Ultrasonics, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Yi He
- Department Of Cardiology, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| |
Collapse
|
13
|
Zhang Q, Ding Y, Feng B, Tang Y, Chen Y, Wang Y, Chang G, Liu S, Wang J, Li Q, Fu L, Wang X. Molecular and Phenotypic Expansion of Alström Syndrome in Chinese Patients. Front Genet 2022; 13:808919. [PMID: 35211159 PMCID: PMC8861322 DOI: 10.3389/fgene.2022.808919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alström syndrome (ALMS) is a rare inherited metabolic disease and ciliopathy. Large cohorts of ALMS are lacking around the world. Detailed genetic and phenotypic data were obtained from all affected individuals. Olfactory function was evaluated by the Chinese Smell Identification Test and facial pattern was analyzed with Face2gene. Fifty ALMS patients were included in this study, aged from 0.3 to 21.7 years old. Sixty-one ALMS1 variants in 50 patients from 47 different families were confirmed, including 59 truncating and two exon deletions. Twenty-four of those variants were novel. We also summarized all previously reported cases of Chinese ALMS patients (69 patients) and identified specific and common variants within the Chinese population. Besides, the Chinese Smell Identification Test scores in patients was lower than that in controls (11.97 Vs. 10.44, p < .05), indicating olfactory identification impairments in ALMS patients. The facial pattern in ALMS patients was also distinctive from that of the controls (p < .05). In conclusion, this is the largest cohort of Chinese ALMS patients. We have successfully identified both specific and common variants in our cohort. We found a new phenotype of olfactory impairments in ALMS patients through a case-control study.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biyun Feng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Abstract
Usher syndrome (USH) is the most common genetic condition responsible for combined loss of hearing and vision. Balance disorders and bilateral vestibular areflexia are also observed in some cases. The syndrome was first described by Albrecht von Graefe in 1858, but later named by Charles Usher, who presented a large number of cases with hearing loss and retinopathy in 1914. USH has been grouped into three main clinical types: 1, 2, and 3, which are caused by mutations in different genes and are further divided into different subtypes. To date, nine causative genes have been identified and confirmed as responsible for the syndrome when mutated: MYO7A, USH1C, CDH23, PCDH15, and USH1G (SANS) for Usher type 1; USH2A, ADGRV1, and WHRN for Usher type 2; CLRN1 for Usher type 3. USH is inherited in an autosomal recessive pattern. Digenic, bi-allelic, and polygenic forms have also been reported, in addition to dominant or nonsyndromic forms of genetic mutations. This narrative review reports the causative forms, diagnosis, prognosis, epidemiology, rehabilitation, research, and new treatments of USH.
Collapse
|
15
|
Rosenberg AGW, Pater MRA, Pellikaan K, Davidse K, Kattentidt-Mouravieva AA, Kersseboom R, Bos-Roubos AG, van Eeghen A, Veen JMC, van der Meulen JJ, van Aalst-van Wieringen N, Hoekstra FME, van der Lely AJ, de Graaff LCG. What Every Internist-Endocrinologist Should Know about Rare Genetic Syndromes in Order to Prevent Needless Diagnostics, Missed Diagnoses and Medical Complications: Five Years of 'Internal Medicine for Rare Genetic Syndromes'. J Clin Med 2021; 10:jcm10225457. [PMID: 34830739 PMCID: PMC8622899 DOI: 10.3390/jcm10225457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with complex rare genetic syndromes (CRGS) have combined medical problems affecting multiple organ systems. Pediatric multidisciplinary (MD) care has improved life expectancy, however, transfer to internal medicine is hindered by the lack of adequate MD care for adults. We have launched an MD outpatient clinic providing syndrome-specific care for adults with CRGS, which, to our knowledge, is the first one worldwide in the field of internal medicine. Between 2015 and 2020, we have treated 720 adults with over 60 syndromes. Eighty-nine percent of the syndromes were associated with endocrine problems. We describe case series of missed diagnoses and patients who had undergone extensive diagnostic testing for symptoms that could actually be explained by their syndrome. Based on our experiences and review of the literature, we provide an algorithm for the clinical approach of health problems in CRGS adults. We conclude that missed diagnoses and needless invasive tests seem common in CRGS adults. Due to the increased life expectancy, an increasing number of patients with CRGS will transfer to adult endocrinology. Internist-endocrinologists (in training) should be aware of their special needs and medical pitfalls of CRGS will help prevent the burden of unnecessary diagnostics and under- and overtreatment.
Collapse
Affiliation(s)
- Anna G. W. Rosenberg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Minke R. A. Pater
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Karlijn Pellikaan
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | - Kirsten Davidse
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
| | | | - Rogier Kersseboom
- Stichting Zuidwester, 3241 LB Middelharnis, The Netherlands; (A.A.K.-M.); (R.K.)
| | - Anja G. Bos-Roubos
- Center of Excellence for Neuropsychiatry, Vincent van Gogh, 5803 DN Venray, The Netherlands;
| | - Agnies van Eeghen
- ‘s Heeren Loo, Care Group, 3818 LA Amersfoort, The Netherlands;
- Department of Pediatrics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - José M. C. Veen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Jiske J. van der Meulen
- ‘s Heeren Loo, Care Providing Agency, 6733 SC Wekerom, The Netherlands; (J.M.C.V.); (J.J.v.d.M.)
| | - Nina van Aalst-van Wieringen
- Department of Physical Therapy, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Franciska M. E. Hoekstra
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Department of Internal Medicine, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands
| | - Aart J. van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
| | - Laura C. G. de Graaff
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (A.G.W.R.); (M.R.A.P.); (K.P.); (K.D.); (F.M.E.H.); (A.J.v.d.L.)
- Dutch Center of Reference for Prader-Willi Syndrome, 3015 GD Rotterdam, The Netherlands
- Academic Center for Growth Disorders, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- ENCORE—Dutch Center of Reference for Neurodevelopmental Disorders, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Turner Syndrome, 3015 GD Rotterdam, The Netherlands
- Dutch Center of Reference for Disorders of Sex Development, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
16
|
Zhang JJ, Wang JQ, Sun MQ, Xu D, Xiao Y, Lu WL, Dong ZY. Alström syndrome with a novel mutation of ALMS1 and Graves’ hyperthyroidism: A case report and review of the literature. World J Clin Cases 2021; 9:3200-3211. [PMID: 33969109 PMCID: PMC8080750 DOI: 10.12998/wjcc.v9.i13.3200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alström syndrome (AS, OMIM ID 203800) is a rare disease involving multiple organs in children and is mostly reported in non-Chinese patients. In the Chinese population, there are few reports on the clinical manifestations and pathogenesis of AS. This is the first report on the association between AS and Graves’ hyperthyroidism.
CASE SUMMARY An 8-year-old Chinese girl was diagnosed with AS. Two years later, Graves’ hyperthyroidism developed with progressive liver dysfunction. The patient’s clinical data were collected; DNA from peripheral blood of the proband, parents and sibling was collected for gene mutation detection using the second-generation sequencing method and gene panel for diabetes. The association between the patient’s genotype and clinical phenotype was analyzed. She carried the pathogenic compound heterozygous mutation of ALMS1 (c.2296_2299del4 and c.11460C>A). These stop-gain mutations likely caused truncation of the ALMS1 protein.
CONCLUSION The manifestation of hyperthyroidism may suggest rapid progression of AS.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Jun-Qi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Man-Qing Sun
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - De Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Wen-Li Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Zhi-Ya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
Prevalent ALMS1 Pathogenic Variants in Spanish Alström Patients. Genes (Basel) 2021; 12:genes12020282. [PMID: 33669459 PMCID: PMC7920446 DOI: 10.3390/genes12020282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/24/2023] Open
Abstract
Alström syndrome (ALMS) is an ultrarare disease with an estimated prevalence lower than 1 in 1,000,000. It is associated with disease-causing mutations in the Alström syndrome 1 (ALMS1) gene, which codifies for a structural protein of the basal body and centrosomes. The symptomatology involves nystagmus, type 2 diabetes mellitus (T2D), obesity, dilated cardiomyopathy (DCM), neurodegenerative disorders and multiorgan fibrosis. We refined the clinical and genetic diagnosis data of 12 patients from 11 families, all of them from Spain. We also studied the allelic frequency of the different variants present in this cohort and performed a haplotype analysis for the most prevalent allele. The genetic analysis revealed 2 novel homozygous variants located in the exon 8, p.(Glu929Ter) and p.(His1808GlufsTer20) in 2 unrelated patients. These 2 novel variants were classified as pathogenic after an in silico experiment (computer analysis). On the other hand, 2 alleles were detected at a high frequency in our cohort: p.(Tyr1714Ter) (25%) and p.(Ser3872TyrfsTer19) (16.7%). The segregation analysis showed that the pathogenic variant p.(Tyr1714Ter) in 3 families is linked to a rare missense polymorphism, p.(Asn1787Asp). In conclusion, 2 novel pathological mutations have been discovered in homozygosis, as well as a probable founder effect in 3 unrelated families.
Collapse
|
18
|
Saadah OI, Banaganapalli B, Kamal NM, Sahly AN, Alsufyani HA, Mohammed A, Ahmad A, Nasser KK, Al-Aama JY, Shaik NA, Elango R. Identification of a Rare Exon 19 Skipping Mutation in ALMS1 Gene in Alström Syndrome Patients From Two Unrelated Saudi Families. Front Pediatr 2021; 9:652011. [PMID: 33981653 PMCID: PMC8107379 DOI: 10.3389/fped.2021.652011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Alström syndrome (AS) is a very rare childhood disorder characterized by cardiomyopathy, progressive hearing loss and blindness. Inherited genetic variants of ALMS1 gene are the known molecular cause of this disease. The objective of this study was to characterize the genetic basis and understand the genotype-phenotype relationship in Saudi AS patients. Methods: Clinical phenotyping and whole-exome sequencing (WES) analysis were performed on six AS patients belonging to two unrelated consanguineous Saudi families. Sanger sequencing was performed to determine the mode of inheritance of ALMS1 variant in first-degree family relatives and also to ensure its rare prevalence in 100 healthy population controls. Results: We identified that Alström patients from both the families were sharing a very rare ALMS1, 3'-splice site acceptor (c.11873-2 A>T) variant, which skips entire exon-19 and shortens the protein by 80 amino acids. This disease variant was inherited by AS patients in autosomal recessive mode and is not yet reported in any population-specific genetic databases. AS patients carrying this mutation showed heterogeneity in clinical presentations. Computational analysis of the mutant centroid structure of ALMS1 mRNA revealed that exon-19 skipping enlarges the hairpin loop and decreases the free energy, eventually affecting its folding pattern, stability, and function. Hence, we propose c.11873-2A as an AS causative potential founder mutation in Saudi Arabia because it is found in two families lacking a common lineage. Conclusions: We conclude that WES analysis potentially helps in clinical phenotyping, early diagnosis, and better clinical management of Alström patients showing variable clinical expressivity.
Collapse
Affiliation(s)
- Omar I Saadah
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naglaa M Kamal
- Department of Pediatrics, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia.,Pediatric Hepatology Unit, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed N Sahly
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Hadeel A Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Tahani N, Maffei P, Dollfus H, Paisey R, Valverde D, Milan G, Han JC, Favaretto F, Madathil SC, Dawson C, Armstrong MJ, Warfield AT, Düzenli S, Francomano CA, Gunay-Aygun M, Dassie F, Marion V, Valenti M, Leeson-Beevers K, Chivers A, Steeds R, Barrett T, Geberhiwot T. Consensus clinical management guidelines for Alström syndrome. Orphanet J Rare Dis 2020; 15:253. [PMID: 32958032 PMCID: PMC7504843 DOI: 10.1186/s13023-020-01468-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Alström Syndrome (ALMS) is an ultra-rare multisystem genetic disorder caused by autosomal recessive variants in the ALMS1 gene, which is located on chromosome 2p13. ALMS is a multisystem, progressive disease characterised by visual disturbance, hearing impairment, cardiomyopathy, childhood obesity, extreme insulin resistance, accelerated non-alcoholic fatty liver disease (NAFLD), renal dysfunction, respiratory disease, endocrine and urologic disorders. Clinical symptoms first appear in infancy with great variability in age of onset and severity. ALMS has an estimated incidence of 1 case per 1,000,000 live births and ethnically or geographically isolated populations have a higher-than-average frequency. The rarity and complexity of the syndrome and the lack of expertise can lead to delayed diagnosis, misdiagnosis and inadequate care. Multidisciplinary and multiprofessional teams of experts are essential for the management of patients with ALMS, as early diagnosis and intervention can slow the progression of multi-organ dysfunctions and improve patient quality of life.These guidelines are intended to define standard of care for patients suspected or diagnosed with ALMS of any age. All information contained in this document has originated from a systematic review of the literature and the experiences of the authors in their care of patients with ALMS. The Appraisal of Guidelines for Research & Evaluation (AGREE II) system was adopted for the development of the guidelines and for defining the related levels of evidence and strengths of recommendations.These guidelines are addressed to: a) specialist centres, other hospital-based medical teams and staffs involved with the care of ALMS patients, b) family physicians and other primary caregivers and c) patients and their families.
Collapse
Affiliation(s)
- Natascia Tahani
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | - Pietro Maffei
- Department of Medicine (DIMED), Padua University Hospital, Padua, Italy.,Adult MTG3 Chair of ENDO-ERN, Azienda Ospedaliera Padova, Padua, Italy
| | - Hélène Dollfus
- Centre de référence pour les affections rares ophtalmologiques CARGO, FSMR SENSGENE, ERN-EYE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Richard Paisey
- Diabetes Research Unit, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Diana Valverde
- CINBIO (Centro de Investigacion Biomedica), Universidad de Vigo, Vigo, Spain
| | - Gabriella Milan
- Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Joan C Han
- Departments of Pediatrics and Physiology, College of Medicine, University of Tennessee Health Science Center and Pediatric Obesity Program, Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Shyam C Madathil
- Department of Respiratory Medicine, University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Charlotte Dawson
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | - Matthew J Armstrong
- Liver and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Adrian T Warfield
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Selma Düzenli
- Department of Medical Genetics, Abant İzzet Baysal University, Bolu, Turkey
| | - Clair A Francomano
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meral Gunay-Aygun
- Departments of Genetic Medicine and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesca Dassie
- Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Vincent Marion
- Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace, Université de Strasbourg, Strasbourg, France
| | - Marina Valenti
- Italian Association Alström Syndrome, Padua, Italy.,ENDO-ERN ePAG representative in MTG3, Padua, Italy
| | | | | | - Richard Steeds
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Timothy Barrett
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK. .,Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
20
|
Whole exome sequencing identified two homozygous ALMS1 mutations in an Iranian family with Alström syndrome. Gene 2020; 727:144228. [PMID: 31669637 DOI: 10.1016/j.gene.2019.144228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Alström syndrome (AS) is a rare monogenic multi-system ciliopathy disorder with cardinal features, including cone-rod dystrophy, sensory neural hearing loss, metabolic dysfunctions and multiple organ failure caused by bi-allelic mutations in a centrosomal basal body protein-coding gene known as ALMS1. This study aimed to identify pathogenic mutations in a consanguineous Iranian family with AS. Next-generation sequencing was performed on the genomic DNA obtained from a 12 years old girl with AS. According to the bioinformatics analysis, computational modelling and segregation of variants, we identified two homozygous mutations close together in exon 8 of ALMS1 in the patient, including c.7262 G > T and c.7303-7305delAG. The clinically normal parents were heterozygous for both mutations. These mutations have a very rare frequency and only reported in the heterozygous state in the public genomic databases. Overall, due to the large size of the ALMS1 gene and clinical similarity with other ciliopathies and genetic disorders, whole exome sequencing can be useful for the identification of pathogenic mutations and the improvement of AS clinical management.
Collapse
|
21
|
Shurygina MF, Parker MA, Schlechter CL, Chen R, Li Y, Weleber RG, Yang P, Pennesi ME. A case report of two siblings with Alstrom syndrome without hearing loss associated with two new ALMS1 variants. BMC Ophthalmol 2019; 19:246. [PMID: 31810438 PMCID: PMC6898930 DOI: 10.1186/s12886-019-1259-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Alström syndrome (AS) is a rare monogenic disorder characterized by progressive multi-organ pathology including retinal degeneration, hearing impairment and type 2 diabetes. Here we present clinical features in two siblings diagnosed with Alström syndrome associated with two novel changes in ALMS1. Case presentation Two siblings originally diagnosed as having achromatopsia presented with mild light sensitivity, nonspecific otitis media, and mild developmental delay during the first decade of life with a relatively stable ocular appearance during second decade, late onset of nystagmus and dyschromatopsia (after 20 years) and preserved vision during the third decade of life. One sibling had late onset hearing loss and both siblings had symmetric high myopia, normal stature, and ptosis. Clinical findings revealed structural and functional tests consistent with a cone-rod dystrophy. Novel variants c.9894dupC (p.S3298 fs) and c.10769delC (p.T3590 fs) in ALMS1 gene were found. Conclusions Two North American siblings who presented with a mild clinical phenotype of Alström syndrome were found to have novel mutations in ALMS1. These two frame-shift mutations segregated with the disease phenotype lending evidence to their pathogenicity.
Collapse
Affiliation(s)
- Maria F Shurygina
- S. Fyodorov Eye Microsurgery Federal State Institution, 59A, Beskudnikovsky Blvd, Moscow, 127486, Russia
| | - Maria A Parker
- Casey Eye Institute, Oregon Health & Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | - Catie L Schlechter
- Casey Eye Institute, Oregon Health & Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Li
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, 3375 SW Terwilliger Blvd, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Kamal NM, Sahly AN, Banaganapalli B, Rashidi OM, Shetty PJ, Al-Aama JY, Shaik NA, Elango R, Saadah OI. Whole exome sequencing identifies rare biallelic ALMS1 missense and stop gain mutations in familial Alström syndrome patients. Saudi J Biol Sci 2019; 27:271-278. [PMID: 31889847 PMCID: PMC6933154 DOI: 10.1016/j.sjbs.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
Alström syndrome (AS, OMIM ID 203800) is a rare childhood multiorgan disorder, which is widely studied in non-Arab ethnic patients. The clinical and molecular basis of AS and the mode of disease inheritance in consanguineous Arab populations is not well investigated. Therefore, to identify the molecular basis of AS in familial forms, the present study performed whole exome sequencing of 5 AS patients belonging to 2 different Bedouin families from Saudi Arabia. The present study identified the AS causative rare biallelic mutations in ALMS gene:T376S in exon 5 and S909* in exon 8 for family A and an R2721* in exon 10 (R2721*) for family B. ALMS1 targeted genetic sequencing of healthy population controls and family members has confirmed its extremely rare frequency and autosomal recessive mode of inheritance. The truncating mutations S909* and R2721* could cause the loss of CC domains and ALMS motif on C-terminal end of the protein and creates unstable protein, which eventually undergoes intracellular degradation. The premature protein truncating mutations described in our study may eventually provide further insight into the functional domains of the ALMS1 protein and contribute to the understanding of the phenotypic spectrum of AS. Whole exome sequencing based molecular diagnosis is expected to rule out ambiguity surrounding clinical diagnosis of suspected AS cases.
Collapse
Affiliation(s)
- Naglaa M Kamal
- Department of Pediatrics, Pediatric Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Pediatrics, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia
| | - Ahmed N Sahly
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omran M Rashidi
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Preetha J Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders & Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2018; 97:1-17. [PMID: 30421101 PMCID: PMC6327082 DOI: 10.1007/s00109-018-1714-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Collapse
Affiliation(s)
- Tom Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
24
|
Han JC, Reyes-Capo DP, Liu CY, Reynolds JC, Turkbey E, Turkbey IB, Bryant J, Marshall JD, Naggert JK, Gahl WA, Yanovski JA, Gunay-Aygun M. Comprehensive Endocrine-Metabolic Evaluation of Patients With Alström Syndrome Compared With BMI-Matched Controls. J Clin Endocrinol Metab 2018; 103:2707-2719. [PMID: 29718281 PMCID: PMC6276679 DOI: 10.1210/jc.2018-00496] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alström syndrome (AS), a monogenic form of obesity, is caused by recessive mutations in the centrosome- and basal body-associated gene ALMS1. AS is characterized by retinal dystrophy, sensory hearing loss, cardiomyopathy, childhood obesity, and metabolic derangements. OBJECTIVE We sought to characterize the endocrine and metabolic features of AS while accounting for obesity as a confounder by comparing patients with AS to body mass index (BMI)-matched controls. METHODS We evaluated 38 patients with AS (age 2 to 38 years) who were matched with 76 controls (age 2 to 48 years) by age, sex, race, and BMI. Fasting biochemistries, mixed meal test (MMT), indirect calorimetry, dual-energy X-ray absorptiometry, and MRI/magnetic resonance spectroscopy were performed. RESULTS Frequent abnormalities in AS included 76% obesity, 37% type 2 diabetes mellitus (T2DM), 29% hypothyroidism (one-third central, two-thirds primary), 3% central adrenal insufficiency, 57% adult hypogonadism (one-third central, two-thirds primary), and 25% female hyperandrogenism. Patients with AS and controls had similar BMI z scores, body fat, waist circumference, abdominal visceral fat, muscle fat, resting energy expenditure (adjusted for lean mass), free fatty acids, glucagon, prolactin, ACTH, and cortisol. Compared with controls, patients with AS were shorter and had lower IGF-1 concentrations (Ps ≤ 0.001). Patients with AS had significantly greater fasting and MMT insulin resistance indices, higher MMT glucose, insulin, and C-peptide values, higher HbA1c, and higher prevalence of T2DM (Ps < 0.001). Patients with AS had significantly higher triglycerides, lower high-density lipoprotein cholesterol, and a 10-fold greater prevalence of metabolic syndrome (Ps < 0.001). Patients with AS demonstrated significantly greater liver triglyceride accumulation and higher transaminases (P < 0.001). CONCLUSION Severe insulin resistance and T2DM are the hallmarks of AS. However, patients with AS may present with multiple other endocrinopathies affecting growth and development.
Collapse
Affiliation(s)
- Joan C Han
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health, Bethesda,
Maryland
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Departments of Pediatrics and Physiology, University of Tennessee Health
Science Center and Le Bonheur Children’s Foundation Research Institute, Memphis,
Tennessee
- Correspondence and Reprint Requests: Joan C. Han, MD, Departments of Pediatrics and Physiology, University of Tennessee
Health Science Center and Le Bonheur Children’s Foundation Research Institute, 50 North
Dunlap Street, Room 454R, Memphis, Tennessee 38103. E-mail:
| | - Daniela P Reyes-Capo
- Unit on Metabolism and Neuroendocrinology, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health, Bethesda,
Maryland
| | - Chia-Ying Liu
- Radiology and Imaging Sciences, National Institutes of Health Clinical Research
Center, Bethesda, Maryland
| | - James C Reynolds
- Radiology and Imaging Sciences, National Institutes of Health Clinical Research
Center, Bethesda, Maryland
| | - Evrim Turkbey
- Radiology and Imaging Sciences, National Institutes of Health Clinical Research
Center, Bethesda, Maryland
| | - Ismail Baris Turkbey
- Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland
| | - Joy Bryant
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human
Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human
Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jack A Yanovski
- Section on Growth and Obesity, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Meral Gunay-Aygun
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human
Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- The McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics,
Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Geets E, Meuwissen MEC, Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet 2018; 95:23-40. [PMID: 29700824 DOI: 10.1111/cge.13367] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Obesity has become a major health problem worldwide. To date, more than 25 different syndromic forms of obesity are known in which one (monogenic) or multiple (polygenic) genes are involved. This review gives an overview of these forms and focuses more in detail on 6 syndromes: Prader Willi Syndrome and Prader Willi like phenotype, Bardet Biedl Syndrome, Alström Syndrome, Wilms tumor, Aniridia, Genitourinary malformations and mental Retardation syndrome and 16p11.2 (micro)deletions. Years of research provided plenty of information on the molecular genetics of these disorders and the obesity phenotype leading to a more individualized treatment of the symptoms, however, many questions still remain unanswered. As these obesity syndromes have different signs and symptoms in common, it makes it difficult to accurately diagnose patients which may result in inappropriate treatment of the disease. Therefore, the big challenge for clinicians and scientists is to more clearly differentiate all syndromic forms of obesity to provide conclusive genetic explanations and eventually deliver accurate genetic counseling and treatment. In addition, further delineation of the (functions of the) underlying genes with the use of array- or next-generation sequencing-based technology will be helpful to unravel the mechanisms of energy metabolism in the general population.
Collapse
Affiliation(s)
- E Geets
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - M E C Meuwissen
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - W Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
26
|
Tsai MC, Yu HW, Liu T, Chou YY, Chiou YY, Chen PC. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome. Front Genet 2018; 9:110. [PMID: 29720996 PMCID: PMC5915457 DOI: 10.3389/fgene.2018.00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs*10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs*6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.
Collapse
Affiliation(s)
- Meng-Che Tsai
- Depatment of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Wen Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Yin Chou
- Depatment of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Yow Chiou
- Depatment of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
27
|
Safieh LA, Al-Otaibi HM, Lewis RA, Kozak I. Novel Mutations in Two Saudi Patients with Congenital Retinal Dystrophy. Middle East Afr J Ophthalmol 2016; 23:139-41. [PMID: 26957854 PMCID: PMC4759893 DOI: 10.4103/0974-9233.171779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED To report novel mutations in two Saudi children with clinical features of Leber congenital amaurosis (LCA) and Alström syndrome. CASE REPORTS Case 1 was a child with phenotypic features of LCA including oculodigital sign, bilateral enophthalmos, nystagmus, pale disc, and retinal changes. Direct sequencing of the coding sequence of GUCY2D revealed a missense mutation affecting highly conserved position (c. 743C > T; p.S248 L). Case 2 describes a girl with marked nystagmus, photophobia, and retinal changes in both eyes with short and stubby fingers tapering at the distal phalanges. The electroretinograms were nonrecordable in each eye. She had a hearing aid in the left ear, mid-facial hypoplasia, bilateral enophthalmos, and insulin dependent diabetes. Mutation screening of candidates genes revealed a pathogenic mutation in ALMS1 gene (c. 8441C > A, p.S2814). Two novel mutations causing phenotypic LCA and Alström syndrome in Saudi patients from consanguineous families expand the genotypic spectrum of congenital retinal dystrophies.
Collapse
Affiliation(s)
- Leen Abu Safieh
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Humoud M Al-Otaibi
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Richard Alan Lewis
- Department of Ophthalmology, Medicine, Pediatrics, Molecular and Human Genetics, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Igor Kozak
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Paisey RB, Leeson-Beevers K. Current management of Alström syndrome and recent advances in treatment. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1189322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R. B. Paisey
- Diabetes Research, Horizon Centre, Torbay Hospital, Torquay, UK
| | | |
Collapse
|
29
|
Laxer C, Rahman SA, Sherif M, Tahir S, Cayir A, Demirbilek H, Hussain K. A novel ALMS1 homozygous mutation in two Turkish brothers with Alström syndrome. J Pediatr Endocrinol Metab 2016; 29:585-9. [PMID: 26910739 DOI: 10.1515/jpem-2015-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/30/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alström syndrome (AS) is an extremely rare, autosomal recessive disorder characterised by multi-organ features that typically manifest within the first two decades of life. AS is caused by mutations in the Alström syndrome 1 (ALMS1) gene located at 2p13.1. METHODS In the current study, two brothers from a first-cousin consanguineous family presented with a complex phenotype and were suspected of having AS. RESULTS Both brothers were found to be homozygous for a novel nonsense c.7310C>A (p.S2437X) mutation in exon-8 of ALMS1 gene. The consanguineous parents were sequenced and both were heterozygous for the same mutation. CONCLUSIONS This particular mutation has never been reported before and confirmed the diagnosis of AS in the patients. Our work identifies a novel mutation in ALMS1 gene responsible for the complex phenotype of AS in these patients.
Collapse
|
30
|
Lunetta KL, Day FR, Sulem P, Ruth KS, Tung JY, Hinds DA, Esko T, Elks CE, Altmaier E, He C, Huffman JE, Mihailov E, Porcu E, Robino A, Rose LM, Schick UM, Stolk L, Teumer A, Thompson DJ, Traglia M, Wang CA, Yerges-Armstrong LM, Antoniou AC, Barbieri C, Coviello AD, Cucca F, Demerath EW, Dunning AM, Gandin I, Grove ML, Gudbjartsson DF, Hocking LJ, Hofman A, Huang J, Jackson RD, Karasik D, Kriebel J, Lange EM, Lange LA, Langenberg C, Li X, Luan J, Mägi R, Morrison AC, Padmanabhan S, Pirie A, Polasek O, Porteous D, Reiner AP, Rivadeneira F, Rudan I, Sala CF, Schlessinger D, Scott RA, Stöckl D, Visser JA, Völker U, Vozzi D, Wilson JG, Zygmunt M, Boerwinkle E, Buring JE, Crisponi L, Easton DF, Hayward C, Hu FB, Liu S, Metspalu A, Pennell CE, Ridker PM, Strauch K, Streeten EA, Toniolo D, Uitterlinden AG, Ulivi S, Völzke H, Wareham NJ, Wellons M, Franceschini N, Chasman DI, Thorsteinsdottir U, Murray A, Stefansson K, Murabito JM, Ong KK, Perry JRB. Rare coding variants and X-linked loci associated with age at menarche. Nat Commun 2015; 6:7756. [PMID: 26239645 PMCID: PMC4538850 DOI: 10.1038/ncomms8756] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/06/2015] [Indexed: 01/03/2023] Open
Abstract
More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 × 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10(-13)) and FAAH2 (rs5914101, P=4.9 × 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ∼0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.
Collapse
Affiliation(s)
- Kathryn L. Lunetta
- Boston University School of Public Health, Department of Biostatistics, Boston, Massachusetts 02118, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
| | - Felix R. Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Reykjavik IS-101, Iceland
| | - Katherine S. Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Joyce Y. Tung
- 23andMe Inc., 1390 Shorebird Way, Mountain View, California 94043, USA
| | - David A. Hinds
- 23andMe Inc., 1390 Shorebird Way, Mountain View, California 94043, USA
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, 140, Cambridge, MA 02142, USA
| | - Cathy E. Elks
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Chunyan He
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Jennifer E. Huffman
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
- Center for Statistical Genetics, Ann Arbor, University of Michigan, Michigan 48109-2029, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Lynda M. Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215
| | - Ursula M. Schick
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA 98109-1024, USA
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus MC, Rotterdam 3015GE, the Netherlands
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Deborah J. Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano 20132, Italy
| | - Carol A. Wang
- School of Women's and Infants' Health, The University of Western Australia, WA-6009, Australia
| | - Laura M. Yerges-Armstrong
- Program in Personalized Medicine, Division of Endocrinology, Diabetes and Nutrition—University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
| | - Caterina Barbieri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano 20132, Italy
| | - Andrea D. Coviello
- Boston University School of Medicine, Department of Medicine, Sections of Preventive Medicine and Endocrinology, Boston, MA, USA
| | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
- University of Sassari, Department of Biomedical Sciences, Sassari, Sassari 07100, Italy
| | - Ellen W. Demerath
- Division of Epidemiology & Community Health, University of Minnesotta, Minneapolis, MN 55455, USA
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Ilaria Gandin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Trieste 34137, Italy
- Department of Clinical Medical Sciences, Surgical and Health, University of Trieste, Trieste 34149, Italy
| | - Megan L. Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Daniel F. Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik IS-101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik IS-101, Iceland
| | - Lynne J. Hocking
- Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Albert Hofman
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam 3015 GE, the Netherlands
| | - Jinyan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rebecca D. Jackson
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, MA 02131, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Ethan M. Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Leslie A. Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Xin Li
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Alanna C. Morrison
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Ailith Pirie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - David Porteous
- Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Alex P. Reiner
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA 98109-1024, USA
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam 3015GE, the Netherlands
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam 3015 GE, the Netherlands
| | - Igor Rudan
- Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Cinzia F. Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano 20132, Italy
| | - David Schlessinger
- National Institute on Aging, Intramural Research Program, Baltimore, MD 20892, USA
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Doris Stöckl
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam 3015GE, the Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Diego Vozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald 17475, Germany
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115, USA
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Cagliari, Sardinia 09042, Italy
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Frank B. Hu
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Simin Liu
- Departments of Epidemiology and Medicine Brown University, Brown University, Providence, RI 02912, USA
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Craig E. Pennell
- School of Women's and Infants' Health, The University of Western Australia, WA-6009, Australia
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115, USA
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich 81377, Germany
| | - Elizabeth A. Streeten
- Program in Personalized Medicine, Division of Endocrinology, Diabetes and Nutrition—University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano 20132, Italy
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam 3015GE, the Netherlands
- Genetic Epidemiology Unit Department of Epidemiology, Erasmus MC, Rotterdam 3015 GE, the Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, Trieste 34137, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Melissa Wellons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02115, USA
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik IS-101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik IS-101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland
| | - Joanne M. Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702-5827, USA
- Boston University School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA 02118, USA
| | - Ken K. Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R. B. Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
31
|
Álvarez-Satta M, Castro-Sánchez S, Valverde D. Alström syndrome: current perspectives. APPLICATION OF CLINICAL GENETICS 2015; 8:171-9. [PMID: 26229500 PMCID: PMC4516341 DOI: 10.2147/tacg.s56612] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alström syndrome (ALMS) is a rare genetic disorder that has been included in the ciliopathies group, in the last few years. Ciliopathies are a growing group of diseases associated with defects in ciliary structure and function. The development of more powerful genetic approaches has been replaced the strategies to follow for getting a successful molecular diagnosis for these patients, especially for those without the typical ALMS phenotype. In an effort to deepen the understanding of the pathogenesis of ALMS disease, much work has been done, in order to establish the biological implication of ALMS1 protein, which is still being elucidated. In addition to its role in ciliary function and structure maintenance, this protein has been implicated in intracellular trafficking, regulation of cilia signaling pathways, and cellular differentiation, among others. All these progresses will lead to identifying therapeutic targets, thus opening the way to future personalized therapies for human ciliopathies.
Collapse
Affiliation(s)
- María Álvarez-Satta
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Sheila Castro-Sánchez
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | - Diana Valverde
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
32
|
Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, Miller NA, Favaretto F, Maffei P, Dollfus H, Vettor R, Naggert JK. Alström Syndrome: Mutation Spectrum of ALMS1. Hum Mutat 2015; 36:660-8. [PMID: 25846608 PMCID: PMC4475486 DOI: 10.1002/humu.22796] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 12/24/2022]
Abstract
Alström Syndrome (ALMS), a recessive, monogenic ciliopathy caused by mutations in ALMS1, is typically characterized by multisystem involvement including early cone-rod retinal dystrophy and blindness, hearing loss, childhood obesity, type 2 diabetes mellitus, cardiomyopathy, fibrosis, and multiple organ failure. The precise function of ALMS1 remains elusive, but roles in endosomal and ciliary transport and cell cycle regulation have been shown. The aim of our study was to further define the spectrum of ALMS1 mutations in patients with clinical features of ALMS. Mutational analysis in a world-wide cohort of 204 families identified 109 novel mutations, extending the number of known ALMS1 mutations to 239 and highlighting the allelic heterogeneity of this disorder. This study represents the most comprehensive mutation analysis in patients with ALMS, identifying the largest number of novel mutations in a single study worldwide. Here, we also provide an overview of all ALMS1 mutations identified to date.
Collapse
Affiliation(s)
- Jan D. Marshall
- The Jackson Laboratory, Bar Harbor, Maine USA
- Alström Syndrome International, Mount Desert, ME USA
| | - Jean Muller
- IGBMC, CNRS UMR 7104/INSERM U964/University of Strasbourg, Illkirch Cedex, France
- Laboratoire ICUBE, UMR CNRS 7357, LBGI, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg Cedex, France
| | | | | | - Stephen F. Kingsmore
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO
| | - Darrell Dinwiddie
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO
- Department of Pediatrics, University of New Mexico, Albuquerque, NM
| | - Emily G. Farrow
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO
| | - Neil A. Miller
- Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, MO
| | | | - Pietro Maffei
- Department of Medicine, University of Padua, Padua, Italy
| | - Hélène Dollfus
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine FMTS, Université de Strasbourg, Strasbourg, France
- Service de Génétique Médicale, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Roberto Vettor
- Department of Medicine, University of Padua, Padua, Italy
| | | |
Collapse
|