1
|
Kirchhoff R, Kampschulte N, Rothweiler C, Rohwer N, Weylandt K, Schebb NH. An Optimized Ex Vivo n-3 PUFA Supplementation Strategy for Primary Human Macrophages Shows That DHA Suppresses Prostaglandin E2 Formation. Mol Nutr Food Res 2025; 69:e202400716. [PMID: 39676434 PMCID: PMC11704825 DOI: 10.1002/mnfr.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Evidence suggests beneficial effects of long-chain n-3 polyunsaturated fatty acids (PUFAs) in inflammatory diseases. However, the underlying mechanisms are still subject of research. For this purpose, we developed an ex vivo n-3 PUFA supplementation strategy. M2-like macrophages were supplemented for 2-3 days with 20-40 µM docosahexaenoic acid (DHA) during differentiation. Quality parameters include <3% oxylipins for PUFA-preparation, total fatty acids (FAs) <10 mM, and low oxylipins in plasma, n-3 PUFA <0.25 mM for the selection of donors of plasma as well as %n-6 in highly unsaturated fatty acids (HUFAs) ≥70% for donors of cells. Following supplementation, PUFA pattern of cells was shifted toward one described for blood and tissue from subjects with higher n-3 and lower n-6 PUFAs. This was accompanied by a decrease of arachidonic acid-derived oxylipins in a dose- and time-dependent manner in favor of n-3 PUFA ones. Stimulation with LPS resulted in decreased levels of pro-inflammatory prostaglandins in the DHA-supplemented cells, but no changes in cytokines. In vitro supplementation studies with n-3 PUFA need rigorous controls to exclude the background formation of oxylipins. By accounting for these possible confounders the described approach allows the mechanistic investigation of n-3 PUFAs in primary human immune cells, offering an alternative for intervention studies.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadja Kampschulte
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Carina Rothweiler
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of TechnologyBrandenburg Medical School and University of PotsdamPotsdamGermany
- Department of Molecular ToxicologyGerman Institute of Human NutritionPotsdam‐Rehbruecke, NuthetalGermany
| | - Karsten‐Henrich Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and OncologyUniversity Hospital Ruppin‐Brandenburg, Brandenburg Medical SchoolNeuruppinGermany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural SciencesUniversity of WuppertalWuppertalGermany
| |
Collapse
|
2
|
Lamantia V, Bissonnette S, Beaudry M, Cyr Y, Rosiers CD, Baass A, Faraj M. EPA and DHA inhibit LDL-induced upregulation of human adipose tissue NLRP3 inflammasome/IL-1β pathway and its association with diabetes risk factors. Sci Rep 2024; 14:27146. [PMID: 39511203 PMCID: PMC11543682 DOI: 10.1038/s41598-024-73672-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Elevated numbers of atherogenic lipoproteins (apoB) predict the incidence of type 2 diabetes (T2D). We reported that this may be mediated via the activation of the NLRP3 inflammasome, as low-density lipoproteins (LDL) induce interleukin-1 beta (IL-1β) secretion from human white adipose tissue (WAT) and macrophages. However, mitigating nutritional approaches remained unknown. We tested whether omega-3 eicosapentaenoic and docosahexaenoic acids (EPA and DHA) treat LDL-induced upregulation of WAT IL-1β-secretion and its relation to T2D risk factors. Twelve-week intervention with EPA and DHA (2.7 g/day, Webber Naturals) abolished baseline group-differences in WAT IL-1β-secretion between subjects with high-apoB (N = 17) and low-apoB (N = 16) separated around median plasma apoB. Post-intervention LDL failed to trigger IL-1β-secretion and inhibited it in lipopolysaccharide-stimulated WAT. Omega-3 supplementation also improved β-cell function and postprandial fat metabolism in association with higher blood EPA and mostly DHA. It also blunted the association of WAT NLRP3 and IL1B expression and IL-1β-secretion with multiple cardiometabolic risk factors including adiposity. Ex vivo, EPA and DHA inhibited WAT IL-1β-secretion in a dose-dependent manner. In conclusion, EPA and DHA treat LDL-induced upregulation of WAT NLRP3 inflammasome/IL-1β pathway and related T2D risk factors. This may aid in the prevention of T2D and related morbidities in subjects with high-apoB.Clinical Trail Registration ClinicalTrials.gov (NCT04496154): Omega-3 to Reduce Diabetes Risk in Subjects with High Number of Particles That Carry "Bad Cholesterol" in the Blood - Full Text View - ClinicalTrials.gov.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Myriam Beaudry
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada
| | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Alexis Baass
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Montréal Diabetes Research Center (MDRC), Montréal, QC, Canada.
- Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Engelen MPKJ, Simbo SY, Ruebush LE, Thaden JJ, Ten Have GAM, Harrykissoon RI, Zachria AJ, Calder PC, Pereira SL, Deutz NEP. Functional and metabolic effects of omega-3 polyunsaturated fatty acid supplementation and the role of β-hydroxy-β-methylbutyrate addition in chronic obstructive pulmonary disease: A randomized clinical trial. Clin Nutr 2024; 43:2263-2278. [PMID: 39181037 DOI: 10.1016/j.clnu.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Short-term (4 weeks) supplementation with n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has recently been shown to improve protein metabolism in a dose dependent way in normal weight patients with Chronic Obstructive Pulmonary Disease (COPD). Furthermore, EPA/DHA supplementation was able to increase extremity lean soft tissue but not muscle function. No studies are available combining n-3 PUFAs and the leucine metabolite β-hydroxy-β-methylbutyrate (HMB) supplementation in chronic clinical conditions. Whether adding HMB to daily EPA/DHA supplementation for 10 weeks enhances muscle and brain health, daily functional performance, and quality of life of patients with COPD by further improving their protein and amino acid homeostasis remains unknown. METHODS Patients with COPD (GOLD: II-IV, n = 46) received daily for 10 weeks, according to a randomized double-blind placebo-controlled three-group design, EPA/DHA (n = 16), EPA/DHA to which HMB was added (n = 14), or placebo (n = 16). The daily dose of 2.0 g of EPA/DHA or soy + corn oil as the placebo was provided via gel capsules, and 3.0 g of Ca-HMB or maltodextrin as placebo as powders. At pre- and post-intervention, a pulse mixture of multiple amino acids was administered to measure postabsorptive net protein breakdown (netPB as primary endpoint) and whole body production (WBP) and conversion rates of the amino acids. As secondary endpoints, lean soft tissue and fat mass were assessed by dual-energy X-ray absorptiometry, upper and lower muscle function by handgrip and single leg isokinetic dynamometry, brain (cognitive, wellbeing) health by assessments, daily functional performance by measuring 6-min walk distance, 4-m gait speed, and postural balance, and quality of life by questionnaire. Plasma enrichments and concentrations were analyzed by LC-MS/MS, and systemic inflammatory profile and metabolic hormones by Luminex. RESULTS HMB + EPA/DHA but not EPA/DHA supplementation increased postabsorptive netPB (p = 0.028), and WBPs of glutamine (p = 0.024), taurine (p = 0.039), and tyrosine (p = 0.036). Both EPA/DHA and HMB + EPA/DHA supplementation resulted in increased WBP of phenylalanine (p < 0.05). EPA/DHA but not HMB + EPA/DHA was able to increase WBP of arginine (p = 0.030), citrulline (p = 0.008), valine (p = 0.038), and conversion of citrulline to arginine (p = 0.009). Whole body and extremity fat mass were reduced after HMB + EPA/DHA supplementation only, whereas lean soft tissue was increased after EPA/DHA (p = 0.049) and HMB + EPA/DHA (p = 0.073). No other significant findings were observed. Reductions in several proinflammatory cytokines were observed in the HMB + EPA/DHA group including IL-2, IL-17, IL-6, IL-12P40, and TNF-β (p < 0.05). CONCLUSIONS Ten weeks of supplementation with 2 g of EPA/DHA daily is sufficient to induce muscle gain in COPD but HMB is needed to induce fat loss. Whether HMB is solely responsible for the fat mass loss or has a synergistic effect with EPA/DHA remains unclear. The increase in net protein breakdown observed with HMB + EPA/DHA supplementation may indicate a beneficial enhanced protein turnover cycling associated with increased lean soft tissue. CLINICAL TRIAL REGISTRY ClinicalTrials.gov; NCT03796455.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA; Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA.
| | - Sunday Y Simbo
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Laura E Ruebush
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - John J Thaden
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Dept. Kinesiology and Sport Management, Texas A&M University, College Station, USA
| | - Rajesh I Harrykissoon
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Pulmonary, Critical Care and Sleep Medicine, Scott and White Medical Center, College Station, TX, USA
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton and NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Nicolaas E P Deutz
- Primary Care & Rural Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Boutanquoi PM, Khan AS, Cabeza L, Jantzen L, Gautier T, Yesylevskyy S, Ramseyer C, Masson D, Van Waes V, Hichami A, Khan NA. A novel fatty acid analogue triggers CD36-GPR120 interaction and exerts anti-inflammatory action in endotoxemia. Cell Mol Life Sci 2024; 81:176. [PMID: 38598021 PMCID: PMC11006773 DOI: 10.1007/s00018-024-05207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1β, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1β, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.
Collapse
Affiliation(s)
- Pierre-Marie Boutanquoi
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Lucas Jantzen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Thomas Gautier
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Semen Yesylevskyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
- Receptor.AI Inc., 20-22 Wenlock Road, London, N1 7GU, UK
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, Kiev, 03028, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
| | - David Masson
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| |
Collapse
|
5
|
Hosseini F, Hemmati A, Takabi FS, Naeini F, Shab Bidar S. A dose-response meta-analysis of randomized clinical trials investigating the effects of omega-3 supplementation on body weight in patients with cancer cachexia. Clin Nutr ESPEN 2024; 59:378-386. [PMID: 38220400 DOI: 10.1016/j.clnesp.2023.12.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Cachexia is one of the side effects of cancer diseases that can be reduced weight, and lower overall survival. Weight loss has been associated with adverse outcomes in both cancer patients and patients with benign diseases. There is no definitive treatment for fully reverse cachexia. studies showed higher levels of inflammatory markers in patient with cachectic cancer. Therefore, this study aimed to investigate the dose-response effects of omega-3 as an anti-inflammatory supplement on body weight in patients with cancer cachexia. METHODS Online databases including PubMed, Scopus, and Web of Science were systematically searched by relevant keywords up to January 2022. Random effect analysis was applied to perform meta-analysis. Subgroup analyses were performed to find heterogeneity sources. Quality assessment was conducted using Revised Cochrane Collaboration's tool II. Trim and fill analysis were also carried out in case of the presence of publication bias. The certainty in the evaluations was assessed by the GRADE approach. RESULTS Omega-3 supplementation resulted in a significant increase of body weight in patients with cancer cachexia when the age of study participants was ≥67 years and the baseline weight of them was ≤60 kg (WMD = 0.99; 95 % CI: 0.06, 1.92 and WMD = 1.22; 95 % CI: 0.14, 2.30, respectively). Also, there was a non-significant linear relationship between the dosage of omega-3 supplementation and body weight in patients with cancer cachexia. CONCLUSION Omega-3 supplementation may be a promising agent to increase body weight in patients with cancer cachexia. Also, a non-significant linear relationship between the dosage of omega-3 supplementation and body weight was found in these patients.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Amirhossein Hemmati
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Shirani Takabi
- Department of Medical Physics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| | - Sakineh Shab Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Donnarumma D, Di Salle A, Micalizzi G, Vento F, La Tella R, Iannotta P, Trovato E, Melone MAB, Rigano F, Donato P, Mondello L, Peluso G. Human blood lipid profiles after dietary supplementation of different omega 3 ethyl esters formulations. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123922. [PMID: 37976941 DOI: 10.1016/j.jchromb.2023.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The validity of omega 3 fatty acids (ω3 FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as dietary supplements has been widely proved. It's well known in fact, that they protect against cardiovascular diseases, reduce the levels of triacylglycerides (TAGs) and cholesteryl esters (CEs) in blood, and have anti-inflammatory activity. For these reasons, in the last few years the production of dietary supplement containing ω3 has increased significantly. In this context, the possibility to obtain ω3 and other high value molecules from alternative sources as fish waste, in accordance with the principles of circular economy, becomes an enormous attractive. In addition, the opportunity of creating new products, with greater health benefits, represents an interesting challenge. The current study was focused on the extraction of ω3 fatty acids and peptides from tuna waste industry, to realize a new dietary supplement. To this purpose, a supercritical fluid extraction (SFE) method was developed to separate, isolate, and enrich the different fractions subsequently used to produce an innovative formulate. The obtained supplement was characterized in terms of fatty acids esterified ester (FAEE) composition by gas chromatography (GC) coupled to both flame ionization detection (FID) and mass spectrometry (MS), and content of heavy metals by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of ω3 supplementation on metabolism and circulating lipid profiles was tested on 12 volunteers and assessed by GC-FID analysis of whole blood collected on paper support (Dried Blood Spot, DBS) at the beginning of the study and after thirty days. The results of plasma fatty acids levels after 30 days showed a significant decrease in the ω6/ω3 ratio, as well as the saturated/polyunsaturated fatty acids (SFA/PUFA) ratio, compared to subjects who took the ω3 ethyl esters unformulated. The novel formulated supplements proved to be extremely interesting and promising products, due to a significant increase in bioavailability, that makes it highly competitive in the current panorama of the nutraceutical industry.
Collapse
Affiliation(s)
- Danilo Donnarumma
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Vento
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta La Tella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Emanuela Trovato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA.
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paola Donato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET) - CNR, Naples, Italy; Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
7
|
Navarro López E, Jiménez Callejón MJ, Macías Sánchez MD, González Moreno PA, Robles Medina A. Obtaining eicosapentaenoic acid-enriched polar lipids from microalga Nannochloropsis sp. by lipase-catalysed hydrolysis. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Dietary trans fatty acids and risk of colorectal cancer: a systematic review and meta-analysis of observational studies. Eur J Nutr 2023; 62:563-572. [PMID: 36322289 DOI: 10.1007/s00394-022-03034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Although trans fatty acid has been associated with diabetes and cardiovascular disorders, studies gave conflicting results when examined their impact on colorectal cancer (CRC). The present systematic review and meta-analysis aimed to summarize the current evidence regarding the association between dietary and tissue trans fatty acids and the risk of CRC. METHODS We searched PubMed/MEDLINE, EMBASE, Scopus, Web of Science (ISI), and Google Scholar without date and language limitation up to May 2022 and included the eligible studies. The quality of included studies was assessed using the Newcastle-Ottawa scale. The overall odds ratios (ORs) were derived using a random-effects model. RESULTS In assessment of dietary trans fatty acids 18 studies, including eight cohort, 10 case-control, and observational data from one randomized control trial were included. Although Dietary trans fats were associated with higher risk of CRC (OR = 1.093, 95% CI 1.017, 1.176, P = 0.016; I2 = 61.3%), Subgroup analysis by study design yielded an insignificant effect for case-control (OR = 1.152, 95% CI 1.000, 1.328, P = 0.050; I2 = 77.2%) and cohort (OR = 1.027, 95% CI 0.976, 1.081, P = 0.299; I2 = 0%) studies. Although there was no significant association of trans fatty acids with rectal cancer (OR = 1.093, 95% CI 0.984 to 1.215, P = 0.098; I2 = 0%), there was for colon cancer (OR = 1.91, 95% CI 1.062 to 1.335, P = 0.003; I2 = 37.6%).The analysis of four studies that evaluated the relation between tissue trans fat and CRC revealed meaningful result (OR = 0.745, 95% CI 0.619, 0.896, P = 0.002; I2 = 42.6%). While subgroup assessments for colon cancer (OR = 0.804, 95% CI 0.583, 1.109, P = 0.183; I2 = 0%) and plasma trans fatty acids OR = 0.853, 95% CI 0.633, 1.150, P = 0.298; I2 = 0%) were insignificant. CONCLUSION Dietary trans fatty acids increased the risk of CRC, whereas tissue trans fatty acids had a protective effect on CRC. Nonetheless, neither type of trans fatty acid increased the risk of colon or rectal cancer; thus, more prospective studies are needed to determine the validity of these associations.
Collapse
|
9
|
Song H, Cong Z, Wang C, He M, Liu C, Gao P. Research progress on Walnut oil: Bioactive compounds, health benefits, extraction methods, and medicinal uses. J Food Biochem 2022; 46:e14504. [PMID: 36369998 DOI: 10.1111/jfbc.14504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Walnut oil is extracted from walnut kernels (Juglans regia Linne) or iron walnut kernels (Juhlans sigillata Dode). The percentage of oil in walnuts is 52%-70%. The main constituents in oil are fatty acids, phenols, sterols, squalene, melatonin, vitamins, and minerals. Many extraction methods such as supercritical carbon dioxide extraction, maceration, modified "bligh and dyer extraction," aqueous enzymatic extraction, ultrasonic extraction, soxhlet extraction, and cold-press extraction methods are reported in the literature. Walnut oil showed anti-inflammatory, antitumor, antioxidant, immunomodulatory, neuroprotective, cardioprotective, antidiabetic, and antihyperlipidemic activities. The reported data in the literature suggest that walnut oil has many health benefits. This review summarizes the extraction methods, bioactive constituents, health benefits, and pharmacological actions of walnut oil. PRACTICAL APPLICATIONS: Walnut oil is a natural vegetable oil of significant importance due to their nutritional, and intelligence-boosting benefits. Several factors, including the processing parameters and the phytochemical profile, affect walnut oil products' flavor and color. In addition, storage environment of walnut oil can also affect walnut oil quality. Apart from the predominant ingredient fatty acids, the chemical composition of walnut oil comprises phenols, sterols, squalene, melatonin, vitamins, and minerals. These bioactive compounds are of potential value owing to their health-promoting benefits, including antioxidant, antitumor, and cholesterol-lowering effects. Many chemical constituents were isolated from walnut oil; however, all the compounds are not explored for their possible medicinal value. Thus, clinical studies, exploration of the therapeutic potential and the molecular mechanisms of all the compounds, and development of convenient dosage forms either for therapeutic or functional food purposes are warranted.
Collapse
Affiliation(s)
- Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhufeng Cong
- Shandong Institute of Cancer Prevention and Treatment, Jinan, China
| | - Changlin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Jin X, Xu XT, Tian MX, Dai Z. Omega-3 polyunsaterated fatty acids improve quality of life and survival, but not body weight in cancer cachexia: A systematic review and meta-analysis of controlled trials. Nutr Res 2022; 107:165-178. [PMID: 36283229 DOI: 10.1016/j.nutres.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/27/2022]
Abstract
Several clinical trials have reported that patients with cancer cachexia can benefit from n-3 polyunsaturated fatty acids (n-3 PUFAs) supplements; however, the results have been conflicting. This systematic review and meta-analysis aimed to evaluate the effect of n-3 PUFAs on cancer cachexia. A search of the PubMed, Embase, and Cochrane Library databases was performed to identify the included randomized controlled trials. Trials including patients with cancer cachexia who were administered a course of n-3 PUFAs were included. A meta-analysis on body weight, lean body weight, proinflammatory factors, quality of life, and median duration of survival was conducted. A total of 12 randomized controlled trials with 1184 patients were included. No effect on body weight (standard mean difference [SMD], 0.10; 95% CI, -0.06 to 0.26; P = .236), lean body weight (SMD, -0.17; 95% CI, -0.36 to 0.03, P = .095), or proinflammatory factors (interleukin-6: SMD, 0.31; 95% CI, -0.14 to 0.75; P = .18; tumor necrosis factor-α: SMD, -0.85; 95% CI, -2.39 to 0.69; P = .28) was observed. The use of n-3 PUFAs was associated with a significant improvement in quality of life (SMD, 0.70; 95% CI, 0.01-1.40; P = .048) and median duration of survival (median survival ratio, 1.10; 95% CI, 1.02-1.19; P = .014). For patients with cancer cachexia, our meta-analysis indicated that n-3 PUFAs improved quality of life and survival, but not body weight.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xin-Tian Xu
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Xing Tian
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Dai
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Ferracane A, Aloisi I, Galletta M, Zoccali M, Tranchida PQ, Micalizzi G, Mondello L. Automated sample preparation and fast GC–MS determination of fatty acids in blood samples and dietary supplements. Anal Bioanal Chem 2022; 414:8423-8435. [DOI: 10.1007/s00216-022-04379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022]
|
12
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
13
|
Yang W, Liu H, Xu L, Yu T, Zhao X, Yao S, Zhao Q, Barnes S, Cohn SM, Dann SM, Zhang H, Zuo X, Li Y, Cong Y. GPR120 Inhibits Colitis Through Regulation of CD4 + T Cell Interleukin 10 Production. Gastroenterology 2022; 162:150-165. [PMID: 34536451 PMCID: PMC8678294 DOI: 10.1053/j.gastro.2021.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS G protein-coupled receptor (GPR) 120 has been implicated in regulating metabolic syndromes with anti-inflammatory function. However, the role of GPR120 in intestinal inflammation is unknown. Here, we investigated whether and how GPR120 regulates CD4+ T cell function to inhibit colitis development. METHODS Dextran sodium sulfate (DSS)-induced colitis model, Citrobacter rodentium infection model, and CD4+ T cell adoptive transfer model were used to analyze the role of GPR120 in regulating colitis development. The effect of GPR120 on CD4+ T cell functions was analyzed by RNA sequencing, flow cytometry, and Seahorse metabolic assays. Mice were administered GPR120 agonist for investigating the potential of GPR120 agonist in preventing and treating colitis. RESULTS Deficiency of GPR120 in CD4+ T cells resulted in more severe colitis in mice upon dextran sodium sulfate insult and enteric infection. Transfer of GPR120-deficient CD4+CD45Rbhi T cells induced more severe colitis in Rag-/- mice with lower intestinal interleukin (IL) 10+CD4+ T cells. Treatment with the GPR120 agonist CpdA promoted CD4+ T cell production of IL10 by up-regulating Blimp1 and enhancing glycolysis, which was regulated by mTOR. GPR120 agonist-treated wild-type, but not IL10-deficient and Blimp1-deficient, T helper 1 cells induced less severe colitis. Furthermore, oral administration of GPR120 agonist protected mice from intestinal inflammation in both prevention and treatment schemes. Gpr120 expression was positively correlated with Il10 expression in the human colonic mucosa, including patients with inflammatory bowel diseases. CONCLUSIONS Our findings show the role of GPR120 in regulating intestinal CD4+ T cell production of IL10 to inhibit colitis development, which identifies GPR120 as a potential therapeutic target for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Han Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Leiqi Xu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Tianming Yu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Xiaojing Zhao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | | | - Sean Barnes
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Steven M Cohn
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Sara M Dann
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas; Department of Pathology, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
14
|
Cristina NM, Lucia D. Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients 2021; 13:4337. [PMID: 34959889 PMCID: PMC8706789 DOI: 10.3390/nu13124337] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Nutritional well-being is a fundamental aspect for the health, autonomy and, therefore, the quality of life of all people, but especially of the elderly. It is estimated that at least half of non-institutionalized elderly people need nutritional intervention to improve their health and that 85% have one or more chronic diseases that could improve with correct nutrition. Although prevalence estimates are highly variable, depending on the population considered and the tool used for its assessment, malnutrition in the elderly has been reported up to 50%. Older patients are particularly at risk of malnutrition, due to multiple etiopathogenetic factors which can lead to a reduction or utilization in the intake of nutrients, a progressive loss of functional autonomy with dependence on food, and psychological problems related to economic or social isolation, e.g., linked to poverty or loneliness. Changes in the aging gut involve the mechanical disintegration of food, gastrointestinal motor function, food transit, intestinal wall function, and chemical digestion of food. These alterations progressively lead to the reduced ability to supply the body with adequate levels of nutrients, with the consequent development of malnutrition. Furthermore, studies have shown that the quality of life is impaired both in gastrointestinal diseases, but especially in malnutrition. A better understanding of the pathophysiology of malnutrition in elderly people is necessary to promote the knowledge of age-related changes in appetite, food intake, homeostasis, and body composition in order to better develop effective prevention and intervention strategies to achieve healthy aging.
Collapse
Affiliation(s)
- Neri Maria Cristina
- Division of Gastroenterology, Geriatric Institute Pio Albergo Trivulzio, 20146 Milan, Italy
| | - d’Alba Lucia
- Department of Gastroenterology and Endoscopy, San Camillo Forlanini Hospital, 00149 Rome, Italy;
| |
Collapse
|
15
|
Jeyakumar SM, Vajreswari A. Pharmaconutrition strategy to resolve SARS-CoV-2-induced inflammatory cytokine storm in non-alcoholic fatty liver disease: Omega-3 long-chain polyunsaturated fatty acids. World J Clin Cases 2021; 9:9333-9349. [PMID: 34877270 PMCID: PMC8610854 DOI: 10.12998/wjcc.v9.i31.9333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is one of the primary factors associated with the causation and/or progression of several lifestyle disorders, including obesity, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). NAFLD is a spectrum of disorders, and starts with simple steatosis, progresses to non-alcoholic steatohepatitis, and then advances to fibrosis, cirrhosis and finally, hepatocellular carcinoma, due to perpetual cycles of insults caused by inflammation and other cellular stress. Emerging evidence has documented that patients with NAFLD have severe coronavirus disease 2019 (COVID-19), and patients with COVID-19 have a higher liver injury and mortality. Although the exact cause or mechanism is not known, inflammatory cytokine storm is a characteristic feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and is known to be associated with higher mortality among COVID-19 patients. Therefore, the COVID-19 pandemic seems to be a major concern in NAFLD patients, who have contracted SARS-CoV-2 infection and develop COVID-19. This is evident in patients at any stage of the NAFLD spectrum, as the inflammatory cytokine storm may cause and/or aggravate the progression or severity of NAFLD. Thus, there is a need for resolution of the inflammatory cytokine storm in these patients. A large body of evidence has demonstrated the efficacy of omega-3 long-chain polyunsaturated fatty acids (ω-3 LCPUFA) in NAFLD conditions, due to their anti-inflammatory, immunomodulatory and anti-viral properties. Therefore, intervention with ω-3 LCPUFA, an effective pharmaconutrient along with the standard treatment for COVID-19 may be useful in the management of the NAFLD spectrum in COVID-19 patients with pre-existing NAFLD conditions by resolving the inflammatory cytokine storm and thereby attenuating its progression. Although there are challenges in implementation, optimistically they can be circumvented and the pharmaconutrition strategy may be potentially helpful in tackling both the pandemics; NAFLD and COVID-19 at least in this subset of patients.
Collapse
Affiliation(s)
- Shanmugam M Jeyakumar
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | | |
Collapse
|
16
|
Kelaiditis CF, Gibson EL, Dyall SC. The effects of a high eicosapentaenoic acid multinutrient supplement on measures of stress, anxiety and depression in young adults: Study protocol for NutriMOOD, a randomised double-blind placebo-controlled trial. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102335. [PMID: 34461561 DOI: 10.1016/j.plefa.2021.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Anxiety disorders affect nearly 20% of young adults aged 18-29 years. First-line treatment for anxiety disorders comprises pharmacotherapy and Cognitive Behavioural Therapy, options often criticised for their low efficacy and safety. In contrast, fish-oil-based supplements comprising omega-3 polyunsaturated fatty acids and supporting nutrients are gaining recognition as safe and effective alternatives. Here we present the protocol for a randomised, double-blind, placebo-controlled trial investigating the effects of a high eicosapentaenoic acid multinutrient supplement on validated measures of anxiety and depression in healthy university students experiencing non-clinical levels of anxiety and depression. The primary outcome is improvement in anxiety compared to the placebo group assessed via the Generalised Anxiety Disorder Assessment-7 scale. The participants will be randomised to active treatment comprising a daily dose of 1125 mg eicosapentaenoic acid, 441 mg docosahexaenoic acid, 330 mg magnesium and 7.5 mg vitamin E, or placebo, for 24 weeks, and will complete validated questionnaires and tablet-based tasks sensitive to mood at baseline and end of intervention. Circulating fatty acids and key biomarkers will also be assessed. The students will be genotyped for polymorphisms thought to influence the relationship between long-chain omega-3 polyunsaturated fatty acids and affect. Trial registration; ClinicalTrials.gov, NCT04844034.
Collapse
Affiliation(s)
| | - E Leigh Gibson
- School of Psychology, University of Roehampton, London, UK
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
17
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
18
|
Xu XT, Huang H, Tian MX, Hu RC, Dai Z, Jin X. A four-oil intravenous lipid emulsion improves markers of liver function, triglyceride levels and shortens length of hospital stay in adults: a systematic review and meta-analysis. Nutr Res 2021; 92:1-11. [PMID: 34157593 DOI: 10.1016/j.nutres.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/30/2022]
Abstract
Clinical trials have reported that a four-oil intravenous lipid emulsion (SMOFlipid) play a positive role in immune function, but showed inconsistent outcomes compared to other lipid emulsions. A systematic review and meta-analysis was conducted to evaluate the effect of SMOFlipid on liver function, triglycerides (TG), inflammatory markers, and clinical outcomes in hospitalized adults after short-term use compared to others. A search of the PubMed, Medline, Embase, China National Knowledge Infrastructure, and Wanfang databases was performed to identify the included randomized controlled trials. Trials with adults who were administrated a short-term course of SMOFlipid were included. A meta-analysis on liver function markers, TG, inflammatory markers, and clinical outcomes was conducted. A total of 18 randomized controlled trials with 1188 patients were included. Compared to other lipid emulsions, SMOFlipid was associated with a significant reduction in ALT, AST, γ-glutamyltransferase, total bilirubin, TG, C-reactive protein and length of hospital stay. No effect on serum interleukin-6 levels or adverse events were observed. For adult patients, our meta-analysis indicated that SMOFlipid may be beneficial to the liver and prone to prevent hyperlipidemia. The SMOFlipid also shortened length of hospital stay.
Collapse
Affiliation(s)
- Xin-Tian Xu
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Huang
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Xing Tian
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ren-Chong Hu
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Dai
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Jin
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Wang YN, Wu XQ, Zhang DD, Hu HH, Liu JL, Vaziri ND, Guo Y, Zhao YY, Miao H. Polyporus Umbellatus Protects Against Renal Fibrosis by Regulating Intrarenal Fatty Acyl Metabolites. Front Pharmacol 2021; 12:633566. [PMID: 33679418 PMCID: PMC7934088 DOI: 10.3389/fphar.2021.633566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Chronic renal failure (CRF) results in significant dyslipidemia and profound changes in lipid metabolism. Polyporus umbellatus (PPU) has been shown to prevent kidney injury and subsequent kidney fibrosis. Methods: Lipidomic analysis was performed to explore the intrarenal profile of lipid metabolites and further investigate the effect of PPU and its main bioactive component, ergone, on disorders of lipid metabolism in rats induced by adenine. Univariate and multivariate statistical analyses were performed for choosing intrarenal differential lipid species in CRF rats and the intervening effect of n-hexane extract of PPU and ergone on CRF rats. Results: Compared with control group, decreased creatinine clearance rate indicated declining kidney function in CRF group. Based on the lipidomics, we identified 65 lipid species that showed significant differences between CRF and control groups. The levels of 12 lipid species, especially fatty acyl lipids including docosahexaenoic acid, docosapentaenoic acid (22n-3), 10,11-Dihydro-12R-hydroxy-leukotriene C4, 3-hydroxydodecanoyl carnitine, eicosapentaenoic acid, hypogeic acid and 3-hydroxypentadecanoic acid had a strong linear correlation with creatinine clearance rate, which indicated these lipid species were associated with impaired renal function. In addition, receiver operating characteristics analysis showed that 12 lipid species had high area under the curve values with high sensitivity and specificity for differentiating CRF group from control group. These changes are related to the perturbation of fatty acyl metabolism. Treatment with PPU and ergone improved the impaired kidney function and mitigated renal fibrosis. Both chemometrics and cluster analyses showed that rats treated by PPU and ergone could be separated from CRF rats by using 12 lipid species. Intriguingly, PPU treatment could restore the levels of 12 lipid species, while treatment with ergone could only reverse the changes of six fatty acids in CRF rats. Conclusion: Altered intrarenal fatty acyl metabolites were implicated in pathogenesis of renal fibrosis. PPU and ergone administration alleviated renal fibrosis and partially improved fatty acyl metabolism. These findings suggest that PPU exerted its renoprotective effect by regulating fatty acyl metabolism as a potential biochemical mechanism. Therefore, these findings indicated that fatty acyl metabolism played an important role in renal fibrosis and could be considered as an effective therapeutic avenue against renal fibrosis.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Xia-Qing Wu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Dan-Dan Zhang
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - He-He Hu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Jian-Ling Liu
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| | - Hua Miao
- Faculty of Life Science and Medicine, Northwest University, Shaanxi, China
| |
Collapse
|
20
|
So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, Lamon-Fava S. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2021; 316:90-98. [PMID: 33303222 DOI: 10.1016/j.atherosclerosis.2020.11.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. METHODS After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. RESULTS Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. CONCLUSIONS EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
21
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
22
|
Antunes MM, Godoy G, Fernandes IDL, Manin LP, Zappielo C, Masi LN, de Oliveira VAB, Visentainer JV, Curi R, Bazotte RB. The Dietary Replacement of Soybean Oil by Canola Oil Does Not Prevent Liver Fatty Acid Accumulation and Liver Inflammation in Mice. Nutrients 2020; 12:E3667. [PMID: 33260679 PMCID: PMC7760057 DOI: 10.3390/nu12123667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil (S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1 expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes F4/80, TNF-α, IL-1β, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced by a HCD.
Collapse
Affiliation(s)
- Marina Masetto Antunes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Guilherme Godoy
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| | - Ingrid de Lima Fernandes
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Luciana Pelissari Manin
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Caroline Zappielo
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Vivian Araújo Barbosa de Oliveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Jesuí Vergílio Visentainer
- Department of Chemistry, State University of Maringá, Maringá 87020-900, Brazil; (I.d.L.F.); (L.P.M.); (C.Z.); (J.V.V.)
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 03342-000, Brazil; (L.N.M.); (V.A.B.d.O.); (R.C.)
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (M.M.A.); (G.G.)
| |
Collapse
|
23
|
Miao F, Shan C, Shah SAH, Akhtar RW, Wang X, Ning D. Effect of walnut (Juglans sigillata) oil on intestinal antioxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice. J Food Biochem 2020; 45:e13567. [PMID: 33222270 DOI: 10.1111/jfbc.13567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022]
Abstract
The study investigated the anti-oxidant, anti-inflammatory, immunity, and gut microbiota modulation in mice (n = 60; 15 mice/group) after intragastric administration of walnut oil (WO; three groups (low (LD), medium (MD), and high doses (HD): 2.5, 5, and 10 ml/kg, respectively) and normal control (NC, saline). WO significantly increased the median villous height/crypt depth (VH/CD) ratio, the activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in intestinal mucosa. WO exerted the anti-inflammatory effects by decreasing the expression of tumor necrosis factor-α (TNF-α) in the duodenal mucosa. All groups shared 157 operational taxonomic units (OTUs; 97% similarity) representing nine phyla. The relative abundance in gut microbiota shifted from more pathogenic bacteria-Helicobacter (NC: 22% versus MD: 3%) toward probiotic-Lactobacillus (NC: 19% versus MD: 40%). The immune organ index (spleen) and contents of secretory immunoglobulin A (S-IgA) were increased from small intestine. In conclusion, WO decreased the oxidative stress, inflammation, and improved the immunity and beneficial gut microbiota in the mice. PRACTICAL APPLICATIONS: Walnut oil (WO) is widely used in traditional medicine around the world and is prescribed as beneficial food oil in agro-industry. However, the intestinal benefits of WO have not been explored extensively, and even its therapeutic mechanism still remains unknown in modern medicine. In this study, WO from Juglans sigillata was investigated for its preventive and protective effects on the intestinal mucosa in mice including anti-oxidant, anti-inflammatory, immunity, and gut microbiota modulation. WO decreased the oxidative stress, inflammation, and improved immunity and beneficial gut microbiota in the mice. WO has shown strong probiotic effect on the gut, and thus, can be considered as a potential candidate in food. The study outcome would enhance utilization of WO for the prevention of gastrointestinal diseases (e.g., Helicobacter, etc.) both in animals and human (inflammatory bowel diseases, IBD) and the formulation of functional foods.
Collapse
Affiliation(s)
- Fujun Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Syed Aftab Hussain Shah
- Pakistan Scientific & Technological Information Center, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Rana Waseem Akhtar
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, China
| |
Collapse
|
24
|
Jaček M, Hrnčířová D, Rambousková J, Dlouhý P, Tůma P. Effect of Food with Low Enrichment of N-3 Fatty Acids in a Two-Month Diet on the Fatty Acid Content in the Plasma and Erythrocytes and on Cardiovascular Risk Markers in Healthy Young Men. Nutrients 2020; 12:nu12082207. [PMID: 32722083 PMCID: PMC7468964 DOI: 10.3390/nu12082207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
Polyunsaturated fatty acids of the n-3 series (n-3 PUFA) exhibit a number of favorable effects on the human organism and it is desirable to increase their intake in the diet. For this purpose, flaxseed oil was added to a chicken-feed mixture for the production of meat and eggs. The content of n-3 PUFA in the obtained meat was increased from 250 mg (reference value) to 900 mg in 100 g of meat and from 110 mg (reference value) to 190 mg in 100 g of whole egg; the enriched products are designated as omega-3 meat and omega-3 eggs. Omega-3 meat and eggs were subsequently fed for a period of eight weeks in an amount of 480 g of meat and four eggs (228 g netto) a week to a group of 14 healthy volunteers, whose body composition parameters were measured and blood was analyzed biochemically to determine blood lipids, coagulation parameters, plasma, and erythrocyte fatty acid spectrum composition. A control group of 14 volunteers was fed normal chicken and eggs in the same regime. The performed dietary intervention increases the intake of long-chain PUFA (LC-PUFA) by 37 mg per day, which represents 7–15% of the recommended daily dose. The performed tests demonstrated that the consumption of omega-3 enriched meat and eggs significantly increases the content of n-3 PUFA in the erythrocytes, which are a long-term indicator of fatty acid intake. This intervention has no demonstrable effect on the basic body parameters, such as body weight, fat content, Body Mass Index (BMI), and also on the plasma cholesterol level, high-density lipoprotein (HDL), low-density lipoprotein (LDL), blood clotting and inflammation markers, and omega-3 index.
Collapse
Affiliation(s)
| | | | | | | | - Petr Tůma
- Correspondence: ; Tel.: +42-0-267-102-585
| |
Collapse
|
25
|
Moreno-Indias I, Hernández-Castellano LE, Sánchez-Macías D, Morales-delaNuez A, Torres A, Argüello A, Castro N. Milk Replacer Supplementation with Docosahexaenoic Acid from Microalgae Does Not Affect Growth and Immune Status in Goat Kids. Animals (Basel) 2020; 10:ani10071233. [PMID: 32698513 PMCID: PMC7401510 DOI: 10.3390/ani10071233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The consumption of docosahexaenoic acid (DHA) has beneficial effects on human health. Meat from suckling goat kids is highly valuable, especially in Mediterranean countries. Based on this, several strategies have been implemented to increase the content of DHA in foodstuffs such as meat and meat products. Several studies have observed how feeding diverse sources of DHA can improve the fatty acid profile in goat kid meat. However, few studies have focused on the effect of using these DHA supplements on growth and the immune system development in these animals. Consequently, this study aimed to evaluate the effect of different levels of DHA supplementation on growth and the immune system development in newborn goat kids. The current study showed that the DHA supplementation did not affect either growth or the immune status of goat kids during the first 35 days of life. Abstract Consumption of polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA), has beneficial effects for consumers’ health. Consequently, there is an increased interest in enhancing meat fatty acid profiles (i.e., PUFA and DHA content) through diverse nutritional strategies. This study aimed to investigate the effect of supplementing a microalgae-derived product rich in DHA on growth and immune system development in newborn goat kids. In this experiment, newborn goat kids were fed milk replacer (MR) supplemented with three levels of a microalgae-derived product rich in DHA (DHA-Gold®, Martek Biosciences, MD, USA). Groups were designed as follows: MR-NS (milk replacer without DHA-Gold® supplementation; n = 10), MR-DHA-9 (9 g of DHA-Gold®/L milk replacer; n = 10) and MR-DHA-18 (18 g of DHA-Gold®/L milk replacer; n = 10). The immune status of the kids was evaluated by the plasma IgG and IgM concentrations, as well as by the complement system and chitotriosidase activities. Dietary supplementation with DHA did not affect either growth or innate and humoral immunity (p > 0.05). This study concludes that supplementation with DHA does not cause negative effects on growth and immune status in newborn goat kids.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Lorenzo E. Hernández-Castellano
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
- Correspondence:
| | - Davinia Sánchez-Macías
- Animal Production and Industrialization Unit, Department of Agroindustrial Engineering, Universidad Nacional de Chimborazo, 060150 Riobamba, Ecuador;
| | - Antonio Morales-delaNuez
- Agrobiotechnology Group, Instituto de Productos Naturales y Agrobiología (IPNA), Spanish Research Council (CSIC), 38206 La Laguna, Spain;
| | - Alexandr Torres
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas. Canary Islands Institute for Agricultural Research, 38200 La Laguna, Spain;
| | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Spain; (I.M.-I.); (A.A.); (N.C.)
| |
Collapse
|
26
|
Bakker N, van den Helder RS, Stoutjesdijk E, van Pelt J, Houdijk APJ. Effects of perioperative intravenous ω-3 fatty acids in colon cancer patients: a randomized, double-blind, placebo-controlled clinical trial. Am J Clin Nutr 2020; 111:385-395. [PMID: 31826232 DOI: 10.1093/ajcn/nqz281] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The postoperative inflammatory response contributes to tissue healing and recovery but overwhelming inflammation is associated with postoperative complications. n-3 (ω-3) PUFAs modulate inflammatory responses and may help to prevent a proinflammatory cascade. OBJECTIVES We aimed to investigate the effects of perioperative intravenous n-3 PUFAs on inflammatory cytokines in colon cancer surgery. METHODS This study is a randomized, double-blind, placebo-controlled clinical trial. Forty-four patients undergoing elective colon resection for nonmetastasized cancer were randomly assigned to 2 intravenous n-3 PUFA or saline control infusions the night before and the morning after surgery. Blood was sampled at 6 perioperative time points for changes in cytokines in serum and in LPS-stimulated whole blood samples and leukocyte membrane fatty acid profiles. RESULTS Twenty-three patients received saline and 21 patients received n-3 PUFAs. Patient and operation characteristics were equal between groups, except for open resection (saline n = 5 compared with n-3 PUFA n = 0, P = 0.056). Ex-vivo IL-6 after LPS stimulation was significantly higher in the n-3 PUFA group at the first day after surgery (P = 0.014), but not different at the second day after surgery (P = 0.467). White blood cell count was higher in the n-3 PUFA group at the fourth day after surgery (P = 0.029). There were more patients with infectious complications in the n-3 PUFA group (8 compared with 3, P = 0.036). There were no overall differences in serum IL-6, IL-10, C-reactive protein, and length of stay. The administration of n-3 PUFAs resulted in rapid increases in leukocyte membrane n-3 PUFA content. CONCLUSIONS In the n-3 PUFA group a clear relation with serum and LPS-stimulated cytokines was not found but, unexpectedly, more infectious complications occurred. Caution is thus required with the off-label use of a perioperative intravenous n-3 PUFA emulsion as a standalone infusion in the time sequence reported in the present study in colon resections with primary anastomosis. This trial was registered at clinicaltrials.gov as NCT02231203.
Collapse
Affiliation(s)
- Nathalie Bakker
- Northwest Clinics Alkmaar, Alkmaar, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Alexander P J Houdijk
- Northwest Clinics Alkmaar, Alkmaar, Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
28
|
McDaniel JC, Rausch J, Tan A. Impact of omega-3 fatty acid oral therapy on healing of chronic venous leg ulcers in older adults: Study protocol for a randomized controlled single-center trial. Trials 2020; 21:93. [PMID: 31948466 PMCID: PMC6966808 DOI: 10.1186/s13063-019-3970-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background This trial addresses the global problem of chronic venous leg ulcers (CVLUs), wounds that cause significant infirmity for an estimated 9.7 million people annually, mainly older adults with comorbidities. Advanced therapies are needed because standard topical therapies are often ineffective or yield only short-term wound healing. Thus, we are testing a new oral therapy containing the bioactive elements of fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for targeting and reducing the high numbers of activated polymorphonuclear leukocytes (PMN) in wound microenvironments that keep CVLUs “trapped” in a chronic inflammatory state. Methods This double-blind RCT will include 248 eligible adults ≥ 55 years of age with CVLUs receiving standard care at a large Midwest outpatient wound clinic. Participants are randomized to two groups: 12 weeks of daily oral therapy with EPA + DHA (1.87 g/day of EPA + 1.0 g/day of DHA) or daily oral therapy with placebo. At 0, 4, 8, and 12 weeks, across the two groups, we are pursuing three specific aims: Aim 1. Compare levels of EPA + DHA-derived lipid mediators, and inflammatory cytokines in blood and wound fluid; Subaim 1a. Compare inflammatory cytokine gene expression by PMNs in blood; Aim 2. Compare PMN activation in blood and wound fluid, and PMN-derived protease levels in wound fluid; Aim 3. Compare reduction in wound area, controlling for factors known to impact healing, and determine relationships with lipid mediators, cytokines, and PMN activation. Subaim 3a. Compare frequency of CVLU recurrence and levels of study variables in blood between the randomly assigned two subgroups (continuing EPA + DHA therapy versus placebo therapy beyond week 12) within the EPA + DHA group with healed CVLUs after 3 months of therapy. Subaim 3b. Compare symptoms of pain at all time points and quality of life at first and last time points across the two groups and two subgroups. Discussion This trial will provide new evidence about the effectiveness of EPA + DHA oral therapy to target and reduce excessive PMN activation systemically and locally in patients with CVLUs. If effective, this therapy may facilitate healing and thus be a new adjunct treatment for CVLUs in the aging population. Trial registration ClinicalTrials.gov, NCT03576989; Registered on 13 June 2018.
Collapse
Affiliation(s)
- Jodi C McDaniel
- College of Nursing, The Ohio State University, 372 Newton Hall, 1585 Neil Avenue, Columbus, OH, 43210-1289, USA.
| | - Jamie Rausch
- College of Nursing, The Ohio State University, 372 Newton Hall, 1585 Neil Avenue, Columbus, OH, 43210-1289, USA
| | - Alai Tan
- College of Nursing, The Ohio State University, 372 Newton Hall, 1585 Neil Avenue, Columbus, OH, 43210-1289, USA
| |
Collapse
|
29
|
Liu J, Huang H, Yang Q, Zhao J, Zhang H, Chen W, Peng X, Gu Z. Dietary Supplementation of n-3 LCPUFAs Prevents Salmonellosis in a Murine Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:128-137. [PMID: 31825613 DOI: 10.1021/acs.jafc.9b05899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Salmonellosis is a world-wide epidemic, and n-3 long chain polyunsaturated fatty acids (LCPUFAs) possess various health benefits. This study is aimed to investigate the preventive effects of n-3 LCPUFAs against Salmonella infection. By pretreatment with n-3 LCPUFAs, but not n-6 LCPUFAs, the survival rate of the infected mice was increased. Further studies showed that n-3 LCPUFAs significantly increased the fecal contents of short-chain fatty acids (SCFAs). The cytokine expression in the liver and production in serum were both modulated by n-3 LCPUFAs into an anti-inflammatory profile against infection. Moreover, the changes in gut microbiota by n-3 LCPUFAs favored the host against pathogens, closely related to the modified SCFA production and immune responses. In conclusion, n-3 LCPUFAs prevented Salmonella infection through multiple mechanisms, especially by the interaction with gut microbiota and host immunology. Our results suggested great perspectives for n-3 LCPUFAs and their related products to control the prevalence of Salmonella, a most predominant food-borne pathogen.
Collapse
Affiliation(s)
- Junsheng Liu
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| | | | | | | | | | - Wei Chen
- Beijing Innovation Centre of Food Nutrition and Human Health , Beijing Technology and Business University (BTBU) , Beijing 100048 , P. R. China
| | - Xichun Peng
- Department of Food Science and Engineering , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| | | |
Collapse
|
30
|
Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, Pisani F, Renzi D, Galiè E, Mengarelli A. The Effect of Docosahexaenoic Acid and α-Lipoic Acid as Prevention of Bortezomib-Related Neurotoxicity in Patients With Multiple Myeloma. Integr Cancer Ther 2019; 18:1534735419888584. [PMID: 31868025 PMCID: PMC6928538 DOI: 10.1177/1534735419888584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and Aims: In cancer patients, a common complication during chemotherapy is chemotherapy-induced peripheral neuropathy (CIPN). For this reason, we decided to conduct a phase II prospective study on 33 patients with multiple myeloma at first diagnosis, to evaluate whether a nutraceutical compound given for 6 months during bortezomib (BTZ) treatment succeeded in preventing the onset of neurotoxicity. Methods: Neurological evaluation, electroneurography, and functional and quality of life (QoL) scales were performed at baseline and after 6 months. We administered a tablet containing docosahexaenoic acid 400 mg, α-lipoic acid 600 mg, vitamin C 60 mg, and vitamin E 10 mg bid for 6 months. Results: Concerning the 25 patients who completed the study, at 6-month follow-up, 10 patients had no neurotoxicity (NCI-CTCAE [National Cancer Institute-Common Terminology Criteria for Adverse Events] = 0), while 13 progressed to NCI-CTCAE grade 1, 1 had NCI-CTCAE grade 1 with pain, and 1 experienced a NCI-CTCAE grade 2. Painful symptoms were reported only in 2 patients, and we observed stability on functional and QoL scales in all patients. None of the 25 patients stopped chemotherapy due to neurotoxicity. Conclusions: Our data seem to indicate that the co-administration of a neuroprotective agent during BTZ treatment can prevent the appearance/worsening of symptoms related to CIPN, avoiding the interruption of BTZ and maintaining valuable functional autonomy to allow normal daily activities. We believe that prevention remains the mainstay to preserve QoL in this particular patient population, and that future studies with a larger patient population are needed.
Collapse
Affiliation(s)
- Marta Maschio
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Alessia Zarabla
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Andrea Maialetti
- Center for Tumor-related epilepsy, UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Diana Giannarelli
- Biostatistic Unit, IRCCS Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Svitlana Gumenyuk
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Francesco Pisani
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Daniela Renzi
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Edvina Galiè
- UOSD Neurology, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplantation Unit, Regina Elena National Cancer Institute IRCCS-IFO - Via Elio Chianesi 53, Rome, Italy
| |
Collapse
|
31
|
Fish and fish side streams are valuable sources of high-value components. FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The current practice of fish processing generates increasing quantities of side streams and waste, such as skin, heads, frames, viscera, and fillet cut offs. These may account for up to 70% of the fish used in industrial processing. Low-value fish catches, and under-utilized fish species comprise another source of side streams. These side streams have been discarded in the environment leading to environmental problems or they have ended up as low commercial value products, such as feed for fur animals and aquaculture. However, several studies have shown that fish side streams contain valuable bioactive ingredients and fractions, such as fish oils, proteins and peptides, collagen, gelatin, enzymes, chitin, and minerals. These compounds and fractions may provide the opportunity to develop novel applications in health promoting foods, special feeds, nutraceuticals, pharmaceuticals, and cosmetic products. Better utilization of side streams and low-value fish would simultaneously improve both the environmental and ecological sustainability of production. This review summarizes the current knowledge on fish and fish side streams as sources of high-value components such as peptides with antimicrobial, antioxidative, antihypertensive, and antihyperglycemic properties, proteins such as fish collagen and gelatin, fish enzymes, fish oils and fatty acids, polysaccharides like glucosaminoglycans, chitin and chitosan, vitamin D, and minerals. Production technologies for recovering the high-value fractions and potential product applications are discussed. Furthermore, safety aspects related to the raw material, technologies, and fractions are considered.
Collapse
|
32
|
A Diet Rich in Fish Oil and Leucine Ameliorates Hypercalcemia in Tumour-Induced Cachectic Mice. Int J Mol Sci 2019; 20:ijms20204978. [PMID: 31600911 PMCID: PMC6829241 DOI: 10.3390/ijms20204978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Dietary supplementation with leucine and fish oil rich in omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) has previously been shown to reduce cachexia-related outcomes in C26 tumour-bearing mice. To further explore associated processes and mechanisms we investigated changes in plasma Ca2+ levels, the involvement of parathyroid hormone related protein (PTHrP), and its possible interactions with cyclooxygenase 2 (COX-2). Methods: CD2F1 mice were subcutaneously inoculated with C26 adenocarcinoma cells or sham treated and divided in: (1) controls, (2) tumour-bearing controls, and (3) tumour-bearing receiving experimental diets. After 20 days, body and organ masses and total plasma Ca2+ levels were determined. Furthermore, effects of DHA, EPA and leucine on production of PTHrP were studied in cultured C26 cells. Results: The combination of leucine and fish oil reduced tumour-associated hypercalcemia. Plasma Ca2+ levels negatively correlated with carcass mass and multiple organ masses. DHA was able to reduce PTHrP production by C26 cells in vitro. Results indicate that this effect occurred independently of COX-2 inhibition. Conclusion: Our results suggest that cancer-related hypercalcemia may be ameliorated by a nutritional intervention rich in leucine and fish oil. The effect of fish oil possibly relates to a DHA-induced reduction of PTHrP excretion by the tumour.
Collapse
|
33
|
Wang JF, Zhang HM, Li YY, Xia S, Wei Y, Yang L, Wang D, Ye JJ, Li HX, Yuan J, Pan RR. A combination of omega-3 and plant sterols regulate glucose and lipid metabolism in individuals with impaired glucose regulation: a randomized and controlled clinical trial. Lipids Health Dis 2019; 18:106. [PMID: 31043161 PMCID: PMC6495649 DOI: 10.1186/s12944-019-1048-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Background Lipid metabolism imbalance has been recognized as one of the major drivers of impaired glucose metabolism in the context of type 2 diabetes mellitus (T2DM), the rates of which are steadily increasing worldwide. Impaired glucose regulation (IGR) plays a vital role in the prevention and treatment of T2DM. The goal of this study was to further clarify whether the combination of plant sterols (PS) and omega-3 fatty acids yields any synergistic effect that enhances the prevention and treatment of IGR. Methods A total of 200 participants were randomized to receive PS and omega-3 fatty acids (n = 50), PS alone (n = 50), omega-3 fatty acids alone (n = 50), or placebo soy bean powder plus placebo capsules (n = 50) for 12 weeks. Patient characteristics including body composition, blood pressure, glucose metabolism (Fasting plasma glucose (FPG), fasting insulin (FINS), glycosylated hemoglobin (HbA1c), Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)), lipid metabolism (TG, TC, HDL-C, LDL-C) and inflammatory factors (Hs-CRP, IL-6) were all monitored in these IGR individuals. Results Compared to the placebo group, the group receiving the combined intervention exhibited significantly decreased TG, HDL-C, FBG, HOMA-IR and HbA1c. Omega-3 fatty acids alone were associated with significant reductions in waistline, TG, FBG, HOMA-IR and Hs-CRP. PS alone was only associated with decreased TG and Hs-CRP. No interventions produced significant changes in body weight, BMI, blood pressure, FINS, body fat percentage, visceral fat rating, TC, LDL-C or IL-6. Conclusions In summary, this study has demonstrated for the first time that PS, omega-3 fatty acids or the combination thereof significantly improved inflammation, insulin resistance, as well as glucose and lipid metabolism in IGR individuals. These findings may provide a scientific basis for the development of nutritional products incorporating PS and omega-3 fatty acids, and also for the development of nutritional supplement strategies aimed at preventing the development of disease in the IGR population.
Collapse
Affiliation(s)
- Ji-Fang Wang
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hai-Ming Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yan-Yan Li
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Song Xia
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang District, Jiangsu, 212000, China
| | - Yin Wei
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Ling Yang
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Dong Wang
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jing-Jing Ye
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hao-Xiang Li
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jing Yuan
- Division of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Rui-Rong Pan
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, No. 438 Jiefang Road, Zhenjiang District, Jiangsu, 212000, China.
| |
Collapse
|
34
|
Walter KR, Lin X, Jacobi SK, Käser T, Esposito D, Odle J. Dietary arachidonate in milk replacer triggers dual benefits of PGE 2 signaling in LPS-challenged piglet alveolar macrophages. J Anim Sci Biotechnol 2019; 10:13. [PMID: 30815256 PMCID: PMC6376662 DOI: 10.1186/s40104-019-0321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Respiratory infections challenge the swine industry, despite common medicinal practices. The dual signaling nature of PGE2 (supporting both inflammation and resolution) makes it a potent regulator of immune cell function. Therefore, the use of dietary long chain n-6 PUFA to enhance PGE2 effects merits investigation. Methods Day-old pigs (n = 60) were allotted to one of three dietary groups for 21 d (n = 20/diet), and received either a control diet (CON, arachidonate = 0.5% of total fatty acids), an arachidonate (ARA)-enriched diet (LC n-6, ARA = 2.2%), or an eicosapentaenoic (EPA)-enriched diet (LC n-3, EPA = 3.0%). Alveolar macrophages and lung parenchymal tissue were collected for fatty acid analysis. Isolated alveolar macrophages were stimulated with LPS in situ for 24 h, and mRNA was isolated to assess markers associated with inflammation and eicosanoid production. Culture media were collected to assess PGE2 secretion. Oxidative burst in macrophages was measured by: 1) oxygen consumption and extracellular acidification (via Seahorse), 2) cytoplasmic oxidation and 3) nitric oxide production following 4, 18, and 24 h of LPS stimulation. Results Concentration of ARA (% of fatty acids, w/w) in macrophages from pigs fed LC n-6 was 86% higher than CON and 18% lower in pigs fed LC n-3 (P < 0.01). Following LPS stimulation, abundance of COX-2 and TNF-α mRNA (P < 0.0001), and PGE2 secretion (P < 0. 01) were higher in LC n-6 PAM vs. CON. However, ALOX5 abundance was 1.6-fold lower than CON. Macrophages from CON and LC n-6 groups were 4-fold higher in ALOX12/15 abundance (P < 0.0001) compared to LC n-3. Oxygen consumption and extracellular acidification rates increased over 4 h following LPS stimulation (P < 0.05) regardless of treatment. Similarly, increases in cytoplasmic oxidation (P < 0.001) and nitric oxide production (P < 0.002) were observed after 18 h of LPS stimulation but were unaffected by diet. Conclusions We infer that enriching diets with arachidonic acid may be an effective means to enhance a stronger innate immunologic response to respiratory challenges in neonatal pigs. However, further work is needed to examine long-term safety, clinical efficacy and economic viability. Electronic supplementary material The online version of this article (10.1186/s40104-019-0321-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathleen R Walter
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Xi Lin
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Sheila K Jacobi
- 3Department of Animal Science, Ohio State University, Columbus, Ohio USA
| | - Tobias Käser
- 4Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina USA
| | - Debora Esposito
- 1Department of Animal Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina USA.,2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| | - Jack Odle
- 2Department of Animal Science, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
35
|
Adkins Y, Laugero KD, Mackey B, Kelley DS. Accretion of Dietary Docosahexaenoic Acid in Mouse Tissues Did Not Differ between Its Purified Phospholipid and Triacylglycerol Forms. Lipids 2019; 54:25-37. [DOI: 10.1002/lipd.12115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yuriko Adkins
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| | - Kevin D. Laugero
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| | - Bruce Mackey
- Western Regional Research Center, ARS USDA Albany CA 94710 USA
| | - Darshan S. Kelley
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition University of California Davis 430 West Health Sciences Drive, Davis CA 95616 USA
| |
Collapse
|
36
|
Lamantia V, Bissonnette S, Provost V, Devaux M, Cyr Y, Daneault C, Rosiers CD, Faraj M. The Association of Polyunsaturated Fatty Acid δ-5-Desaturase Activity with Risk Factors for Type 2 Diabetes Is Dependent on Plasma ApoB-Lipoproteins in Overweight and Obese Adults. J Nutr 2019; 149:57-67. [PMID: 30535058 PMCID: PMC6351138 DOI: 10.1093/jn/nxy238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 01/05/2023] Open
Abstract
Background δ-5 and δ-6 desaturases (D5D and D6D) catalyze the endogenous conversion of n-3 (ω-3) and n-6 (ω-6) polyunsaturated fatty acids (PUFAs). Their activities are negatively and positively associated with type 2 diabetes (T2D), respectively, by unclear mechanisms. Elevated plasma apoB-lipoproteins (measured as plasma apoB), which can be reduced by n-3 PUFA intake, promote T2D risk factors. Objective The aim of this study was to test the hypothesis that the association of D5D and D6D activities with T2D risk factors is dependent on plasma apoB. Methods This is a pooled analysis of 2 populations recruited for 2 different metabolic studies. It is a post hoc analysis of baseline data of these subjects [n = 98; 60% women (postmenopausal); mean ± SD body mass index (in kg/m2): 32.8 ± 4.7; mean ± SD age: 57.6 ± 6.3 y]. Glucose-induced insulin secretion (GIIS) and insulin sensitivity (IS) were measured using Botnia clamps. Plasma clearance of a high-fat meal (600 kcal/m2, 66% fat) and white adipose tissue (WAT) function (storage of 3H-triolein-labeled substrate) were assessed in a subpopulation (n = 47). Desaturase activities were estimated from plasma phospholipid fatty acids. Associations were examined using Pearson and partial correlations. Results While both desaturase activities were positively associated with percentage of eicosapentaenoic acid, only D5D was negatively associated with plasma apoB (r = -0.30, P = 0.003). Association of D5D activity with second-phase GIIS (r = -0.23, P = 0.029), IS (r = 0.33, P = 0.015, in women) and 6-h area-under-the-curve (AUC6h) of plasma chylomicrons (apoB48, r = -0.47, P = 0.020, in women) was independent of age and adiposity, but was eliminated after adjustment for plasma apoB. D6D activity was associated in the opposite direction with GIIS (r = 0.24, P = 0.049), IS (r = -0.36, P = 0.004) and AUC6h chylomicrons (r = 0.52, P = 0.004), independent of plasma apoB. Both desaturases were associated with plasma interleukin-1-receptor antagonist (D5D: r = -0.45, P < 0.001 in women; D6D: r = -0.33, P = 0.007) and WAT function (trend for D5D: r = 0.30, P = 0.05; D6D: r = 0.39, P = 0.027) independent of any adjustment. Conclusions Association of D5D activity with IS, lower GIIS, and plasma chylomicron clearance is dependent on plasma apoB in overweight and obese adults.
Collapse
Affiliation(s)
- Valérie Lamantia
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Simon Bissonnette
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Viviane Provost
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Marie Devaux
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | - Yannick Cyr
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec
| | | | - Christine Des Rosiers
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Cardiologie de Montréal (ICM), Montréal, Québec
| | - May Faraj
- Faculty of Medicine, Université de Montréal, Montréal, Québec,Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec,Montreal Diabetes Research Center (MDRC), Montréal, Québec,Address correspondence to MF (e-mail: )
| |
Collapse
|
37
|
Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R. Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes. J Nutr Biochem 2018; 64:45-49. [PMID: 30428424 DOI: 10.1016/j.jnutbio.2018.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids, specifically the fish-oil-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been proposed as inflammation-resolving agents via their effects on adipose tissue. OBJECTIVE We proposed to determine the effects of EPA and DHA on human adipocyte differentiation and inflammatory activation in vitro. METHODS Primary human subcutaneous adipocytes from lean and obese subjects were treated with 100 μM EPA and/or DHA throughout differentiation (differentiation studies) or for 72 h postdifferentiation (inflammatory studies). THP-1 monocytes were added to adipocyte wells for co-culture experiments. Subcutaneous and visceral adipose explants from obese subjects were treated for 72 h with EPA and DHA. Oil Red O staining was performed on live cells. Cells were collected for mRNA analysis by quantitative polymerase chain reaction, and media were collected for protein quantification by enzyme-linked immunosorbent assay. RESULTS Incubation with EPA and/or DHA attenuated inflammatory response to lipopolysaccharide (LPS) and monocyte co-culture with reduction in post-LPS mRNA expression and protein levels of IL6, CCL2 and CX3CL1. Expression of inflammatory genes was also reduced in the endogenous inflammatory response in obese adipose. Both DHA and EPA reduced lipid droplet formation and lipogenic gene expression without alteration in expression of adipogenic genes or adiponectin secretion. CONCLUSIONS EPA and DHA attenuate inflammatory activation of in vitro human adipocytes and reduce lipogenesis.
Collapse
Affiliation(s)
- Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kailey Roberts-Lee
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cristina Borcea
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmeen Midgette
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, Pisani F, Renzi D, Galiè E, Mengarelli A. Prevention of Bortezomib-Related Peripheral Neuropathy With Docosahexaenoic Acid and α-Lipoic Acid in Patients With Multiple Myeloma: Preliminary Data. Integr Cancer Ther 2018; 17:1115-1124. [PMID: 30295079 PMCID: PMC6247541 DOI: 10.1177/1534735418803758] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background and Aims: Peripheral neuropathy is a common complication of chemotherapy that can induce marked disability that negatively affects the quality of life in patients with multiple myeloma (MM). The aim of this study was to prevent the onset or the worsening of peripheral neuropathy in MM patients treated with bortezomib (BTZ), using a new nutritional neuroprotective compound. We report preliminary results of 18 out of 33 patients who completed the study. Methods: We administered a tablet of Neuronorm to patients, containing docosahexaenoic acid 400 mg, α-lipoic acid 600 mg, vitamin C 60 mg, and vitamin E 10 mg bid for the whole follow-up period. Neurological visit assessment, electroneurography, and evaluation scales were performed at baseline and after 6 months. Results: At 6 months, 8 patients had no chemotherapy-induced peripheral neuropathy, while 10 patients experienced chemotherapy-induced peripheral neuropathy of grade 1 according to the Common Terminology Criteria for Adverse Events, one of them with pain. Seventeen patients did not report painful symptoms; no limitation of functional autonomy and stability in quality of life domains explored was observed. Conclusions: Our results seem to indicate that early introduction of a neuroprotective agent in our patients with MM treated with BTZ could prevent the onset or the worsening of neuropathic pain, avoiding the interruption of the therapy with BTZ, and maintaining a good functional autonomy to allow normal daily activities. Despite the limitations due to the fact that this is a preliminary study, in a small population, with short follow-up, our data seem to indicate that the nutraceutical may have some potential to be considered for a future trial.
Collapse
Affiliation(s)
- Marta Maschio
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Zarabla
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Maialetti
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svitlana Gumenyuk
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pisani
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Renzi
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edvina Galiè
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- 1 Center for Tumor-Related Epilepsy, UOSD Neurology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
39
|
Coleman DN, Murphy KD, Relling AE. Prepartum fatty acid supplementation in sheep. II. Supplementation of eicosapentaenoic acid and docosahexaenoic acid during late gestation alters the fatty acid profile of plasma, colostrum, milk and adipose tissue, and increases lipogenic gene expression of adipose tissue. J Anim Sci 2018; 96:1181-1204. [PMID: 29365116 DOI: 10.1093/jas/skx013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
The objectives of this study were as follows: 1) to establish whether feeding a source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to ewes during late gestation changes the fatty acid profile of colostrum, milk, ewe adipose tissue, and plasma and subsequently lamb plasma and red blood cells (RBC), and 2) to investigate the effects of EPA and DHA on mRNA expression in ewe adipose tissue. Eighty-four gestating ewes (28 pens, three per pen) were blocked by lambing day and assigned to a diet with an addition of fat at 0.39% of the DM during the last 50 d of gestation using Ca salts of a palm fatty acid distillate (PFAD) high in palmitic and oleic acids or EPA + DHA. Blood samples were taken from ewes on days 20, 1 (parturition), and 30 and from lambs on days 1 and 30 for plasma fatty acid analysis. Fatty analysis of lamb RBC was performed on day 1. Colostrum samples were taken at lambing and milk samples on day 30 for fatty acid analysis. Subcutaneous adipose tissue biopsies were taken from one ewe per pen on day 20 for fatty acid analysis and gene expression analysis of 27 genes. Treatment × day interactions (P < 0.10) were observed for several isomers of C18:1, with concentrations that were greater in plasma of EPA + DHA ewes on day 20, but were not different on day 1 or 30. Plasma concentrations of EPA tended to be greater (P = 0.07), whereas DHA was greater (P < 0.001) in EPA + DHA ewes compared with PFAD ewes. There was no difference in EPA or DHA in adipose tissue with EPA + DHA vs. PFAD supplementation (P > 0.10). Concentrations of fatty acids with 6 to 10 carbons were significantly increased (P < 0.05) in colostrum and milk of EPA + DHA ewes. There was a treatment × day interaction with EPA + DHA ewes yielding greater EPA (P = 0.03) and DHA (P = 0.04) concentrations than PFAD in colostrum, but not in milk. Treatment × day interactions (P < 0.05) were observed for several C18:1 isomers with concentrations that were greater in EPA + DHA ewe colostrum, but were not different between treatments in milk. In lamb plasma and RBC, EPA and DHA were not different between treatments (P > 0.10). The expression of fatty acid synthase and leptin was significantly increased (P < 0.05), whereas the expression of diacylglycerol acyltransferase 2 tended to be increased (P = 0.08) by supplementation of EPA + DHA vs. PFAD. These results suggest that supplementation with EPA and DHA to ewes during late gestation alters the fatty acid profile of plasma, colostrum, and milk and may increase lipogenesis.
Collapse
Affiliation(s)
- Danielle Nicole Coleman
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| | | | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| |
Collapse
|
40
|
Tan A, Sullenbarger B, Prakash R, McDaniel JC. Supplementation with eicosapentaenoic acid and docosahexaenoic acid reduces high levels of circulating proinflammatory cytokines in aging adults: A randomized, controlled study. Prostaglandins Leukot Essent Fatty Acids 2018; 132:23-29. [PMID: 29735019 PMCID: PMC5941937 DOI: 10.1016/j.plefa.2018.03.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 02/09/2023]
Abstract
BACKGROUND High levels of circulating proinflammatory cytokines are characteristic of inflammaging, a term coined to describe age-related chronic systemic inflammation involved in the etiology of many age-related disorders including nonhealing wounds. Some studies have shown that supplementing diets with n-3 polyunsaturated fatty acids (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) lowers systemic levels of key proinflammatory cytokines associated with inflammaging. However, findings from the few studies that have focused exclusively on older adults are inconclusive. As such, the objective of this randomized controlled study was to test the effects of EPA+DHA therapy on circulating levels of proinflammatory cytokines in adults in middle to late adulthood. METHODS Plasma levels of fatty acids and interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were measured in 35 participants with chronic venous leg ulcers (mean age: 60.6 years) randomnly assigned to 8 weeks of EPA+DHA therapy (2.5 g/d) or placebo therapy. RESULTS EPA+DHA therapy had a significant lowering effect on levels of IL-6, IL-1β and TNF-α after 4 weeks of therapy and an even greater lowering effect after 8 weeks of therapy. Further, after adjusting for baseline difference, the treatment group had significantly lower levels of IL-6 (p = 0.008), IL-1β (p < 0.001), and TNF-α (p < 0.001) at Week 4 and at Week 8 [IL-6 (p = 0.007), IL-1β (p < 0.001), and TNF-α (p < 0.001)] compared to the control group. CONCLUSION Adults in middle to late adulthood receiving EPA+DHA therapy demonstrated significantly greater reductions in circulating levels of proinflammatory cytokines compared with those receiving placebo therapy. EPA+DHA therapy may be an effective low-risk dietary intervention for assuaging the harmful effects of inflammaging.
Collapse
Affiliation(s)
- Alai Tan
- College of Nursing, The Ohio State University, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
Collapse
|
42
|
Kemse N, Sundrani D, Kale A, Joshi S. Maternal Micronutrients, Omega-3 Fatty Acids and Gene Expression of Angiogenic and Inflammatory Markers in Pregnancy Induced Hypertension Rats. Arch Med Res 2017; 48:414-422. [PMID: 29133192 DOI: 10.1016/j.arcmed.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Preeclampsia is a disorder of pregnancy and is associated with inflammation and altered angiogenesis. The present study examines the effect of micronutrient and omega-3 fatty acid supplementation (individual, as well as combined) on genes involved in inflammation and angiogenesis, as well as global DNA methylation levels in a pregnancy induced hypertension (PIH) rat model. METHODS Pregnant Wistar rats were randomly assigned to six dietary groups: control, PIH (Pregnancy induced hypertension) Induced; PIH Induced with micronutrient supplements with vitamin B12 (PIHB), folate (PIHF), omega-3 fatty acid (PIHO), and combined supplementation (PIHC) (micronutrients and omega-3 fatty acids). Half the dams were dissected on 20 d of gestation to collect placental tissue, and half were allowed to deliver normally on 22 d of gestation and were assigned to a postnatal control diet. The offspring were dissected at 3 month of age. RESULTS PIH induction increased the mRNA levels of the pro inflammatory cytokine IL-6 (p <0.01), while lowering the placental anti inflammatory cytokine IL-10 (p <0.05) at d20 of gestation. It also increased the expression of TNF-α (p <0.05) in the liver of 3 month old offspring. The combined supplementation of folic acid, vitamin B12 and omega-3 fatty acids improved placental IL-10 levels and decreased TNF-α levels in offspring livers. CONCLUSION Our data indicate that a combined supplementation of vitamin B12, folic acid and omega-3 fatty acid was useful for the better management of preeclampsia in an animal model.
Collapse
Affiliation(s)
- Nisha Kemse
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune, India
| | - Deepali Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune, India.
| |
Collapse
|
43
|
Sun Y, Jia X, Hou L, Liu X, Gao Q. Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT 2 Profile PCR Array System. Lipids Health Dis 2017; 16:59. [PMID: 28330470 PMCID: PMC5363041 DOI: 10.1186/s12944-017-0442-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 11/12/2022] Open
Abstract
Background Present study aimed to better understand the potential apoptotic pathways that involved in docosahexaenoic acid (DHA)-induced apoptosis of prostate cancer cells. Methods Human prostate cancer DU145 cells were treated with different concentrations of fish oil, omega-3 PUFA (DHA, and Eicosapentaenoic acid, EPA), or omega-6 PUFA (Arachidonic acid, AA). Cell viability and apoptosis were evaluated by MTT assay and Hoechst staining. Pathway-focused gene expression profiling of DU145 cells was analyzed with the RT2 Profile PCR Array System. The results were verified by real time quantitative polymerase chain reaction (RT-qPCR). Results AA exposure showed no obvious effect on viability of DU145 cells. However, exposure with fish oil, EPA, or DHA for 24 h significantly affected cell viability. The growth inhibition of DHA was more pronounced than that of EPA and showed a time-dependent increase. DHA exposure caused typical apoptotic characteristics. Ten genes were more expressed, while 5 genes were less expressed following DHA exposure. RT-qPCR confirmed the time dependent effect of DHA on the expression of these differentially expressed genes. KEGG pathway analysis showed that DHA may induce the apoptosis of cancer cells preferentially through mediating P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Conclusion Our study demonstrated the beneficial action of DHA on human prostate carcinoma cell line DU145. The pro-apoptotic effect of DHA on DU145 cells may involve mediation various pathways, especially P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Molecular mechanisms of DHA on apoptosis of cancer cells still need to be further clarified. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0442-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital of the People's Liberation Army, Shijiazhuang, 050082, China
| | - Xiaopeng Jia
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.
| | - Lianguo Hou
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xing Liu
- Department of Orthopaedic Trauma, Section II, The Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei, 050011, China
| | - Qiang Gao
- Department of Nutrition and Food hygiene, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
44
|
Abstract
Research of the last two decades showed that chronic low-grade inflammation, elevated blood glucose and insulin levels may play role in the onset of a number of non-communicable diseases such as type 2 diabetes and some forms of cancer. Regular exercise and fasting can ameliorate high blood glucose and insulin levels as well as increase the concentration of plasma ketone bodies. These, in consequence, may lead to reduction of inflammation. Exercise or severe restriction of caloric intake is not always advisable for patients, in particular those suffering from cancer. The ketogenic diet (KD), characterized by high fat, moderate protein and very low carbohydrate composition can evoke a physiological state similar to that triggered by exercise or fasting. These attributes of KD prompted its possible use in treatment of a number of metabolic diseases, including several types of malignancies. Although results from clinical studies employing KD in the treatment of cancer are still limited, the results obtained from animal models are encouraging and show that KD presents a viable option as an adjunct therapy for cancer.
Collapse
|
45
|
Melo RB, de Barros Silva PG, Oriá RB, Melo JUDS, da Silva Martins C, Cunha AM, Vasconcelos PRL. Anti-inflammatory effect of a fatty acid mixture with high ω-9:ω-6 ratio and low ω-6:ω-3 ratio on rats submitted to dental extraction. Arch Oral Biol 2017; 74:63-68. [DOI: 10.1016/j.archoralbio.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022]
|
46
|
Yanez M, Blanchette J, Jabbarzadeh E. Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds. Curr Pharm Des 2017; 23:6347-6357. [PMID: 28521709 PMCID: PMC5681444 DOI: 10.2174/1381612823666170510124348] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - James Blanchette
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Orthopedic Surgery, University of South Carolina School of Medicine, Columbia SC, 29209, USA
| |
Collapse
|
47
|
|
48
|
The content of docosahexaenoic acid in the suckling and the weaning diet beneficially modulates the ability of immune cells to response to stimuli. J Nutr Biochem 2016; 35:22-29. [DOI: 10.1016/j.jnutbio.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022]
|
49
|
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Suárez A. Non-Esterified Fatty Acids Profiling in Rheumatoid Arthritis: Associations with Clinical Features and Th1 Response. PLoS One 2016; 11:e0159573. [PMID: 27487156 PMCID: PMC4972416 DOI: 10.1371/journal.pone.0159573] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives Since lipid compounds are known to modulate the function of CD4+ T-cells and macrophages, we hypothesize that altered levels of serum non-esterified fatty acids (NEFA) may underlie rheumatoid arthritis (RA) pathogenesis. Methods Serum levels of NEFA (palmitic, stearic, palmitoleic, oleic, linoleic, γ-linoleic, arachidonic –AA–, linolenic, eicosapentaenoic –EPA– and docosahexaenoic –DHA–) were quantified by LC-MS/MS after methyl-tert-butylether (MTBE)-extraction in 124 RA patients and 56 healthy controls (HC). CD4+ phenotype was studied by flow cytometry. TNFα, IL-8, VEGF, GM-CSF, IFNγ, IL-17, CCL2, CXCL10, leptin and resistin serum levels were quantified by immunoassays. The effect of FA on IFNγ production by PBMC was evaluated in vitro. Results Lower levels of palmitic (p<0.0001), palmitoleic (p = 0.002), oleic (p = 0.010), arachidonic (p = 0.027), EPA (p<0.0001) and DHA (p<0.0001) were found in RA patients, some NEFA being altered at onset. Cluster analysis identified a NEFA profile (hallmarked by increased stearic and decreased EPA and DHA) overrepresented in RA patients compared to HC (p = 0.002), being associated with clinical features (RF, shared epitope and erosions), increased IFNγ expression in CD4+ T-cells (p = 0.002) and a Th1-enriched serum milieu (IFNγ, CCL2 and CXCL10, all p<0.005). In vitro assays demonstrated that imbalanced FA could underlie IFNγ production by CD4+ T-cells. Finally, changes on NEFA levels were associated with clinical response upon TNFα-blockade. Conclusion An altered NEFA profile can be found in RA patients associated with clinical characteristics of aggressive disease and enhanced Th1 response. These results support the relevance of lipidomic studies in RA and provide a rationale for new therapeutic targets.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mercedes Alperi-López
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | | | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
50
|
Berra A, Tau J, Zapata G, Chiaradia P. Effects of PUFAs in a Mouse Model of HSV-1 Chorioretinitis. Ocul Immunol Inflamm 2016; 25:844-854. [DOI: 10.1080/09273948.2016.1184287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alejandro Berra
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Division Oftalmologia, Hospital de Clinicas, Universidad de Buenos Aires, Argentina
| | - Julia Tau
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Gustavo Zapata
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pablo Chiaradia
- Centro de Imnunopatologias, Departamento de Patologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Division Oftalmologia, Hospital de Clinicas, Universidad de Buenos Aires, Argentina
| |
Collapse
|