1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
3
|
Di Mauro A, Santorsola M, Savarese G, Sirica R, Ianniello M, Cossu AM, Ceccarelli A, Sabbatino F, Bocchetti M, Carratù AC, Pentimalli F, Ferrara G, Nasti G, Caraglia M, Ottaiano A. High tumor mutational burden assessed through next-generation sequencing predicts favorable survival in microsatellite stable metastatic colon cancer patients. J Transl Med 2024; 22:1107. [PMID: 39639373 PMCID: PMC11619254 DOI: 10.1186/s12967-024-05927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Microsatellite instability (MSI) is a well-established predictive biomarker for immune checkpoint inhibitor (ICI) response in metastatic colon cancer. Both high MSI and tumor mutational burden (TMB) are markers of genomic instability. However, the prognostic and predictive value of TMB in patients with microsatellite stable (MSS) tumors remains unclear. METHODS We evaluated the prognostic significance of TMB levels in MSS metastatic colon cancer patients undergoing standard treatments. Tumor responses were assessed using RECIST v1.1 criteria. Comprehensive clinical and molecular profiling was conducted, including next-generation sequencing (NGS) for TMB evaluation with the TruSight Oncology® kit. Overall survival (OS) was the primary endpoint. Multivariate Cox regression analysis was utilized to assess the relationship among potential prognostic factors. RESULTS Among 102 MSS metastatic colon cancer patients, high TMB (> 10 mut/mb) was associated with a significantly longer median OS compared to low TMB (70.0 vs 45.0 months, respectively; HR: 0.45; 95% CIs 0.21 to 0.96; P = 0.0396). Multivariate analysis, adjusting for age, gender, number of metastatic sites, response to first-line chemotherapy, RAS mutational status, and liver involvement, identified TMB as an independent prognostic factor, along with response to first-line chemotherapy. CONCLUSIONS Our results highlight the prognostic significance of TMB in MSS metastatic colon cancer patients, suggesting its potential role in patient stratification and treatment decision-making.
Collapse
Affiliation(s)
- Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Mariachiara Santorsola
- Structure of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | | | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale Srl, 80013, Naples, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale Srl, 80013, Naples, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Anna Ceccarelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081, Baronissi, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Anna Chiara Carratù
- Structure of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe Degennaro", Bari, Italy
| | - Gerardo Ferrara
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Guglielmo Nasti
- Structure of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. de Crecchio, 7, 80138, Naples, Italy.
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy.
| | - Alessandro Ottaiano
- Structure of Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
4
|
Devalle S, Aran V, Bastos Júnior CDS, Pannain VL, Brackmann P, Gregório ML, Ferreira Manso JE, Moura Neto V. A panorama of colon cancer in the era of liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100148. [PMID: 40027146 PMCID: PMC11863817 DOI: 10.1016/j.jlb.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025]
Abstract
Colon cancer (CC) is one of the most frequent cancers worldwide being responsible for over 500 thousand deaths in 2022. Its financial and human burden is expected to increase in the next decades accompanying the growing and aging of the global population. Much of this burden could be alleviated considering that the lethality of CC is mostly due to its late diagnosis and failure in the individualized management of patients. Coordinated government actions and implementation of better diagnostic tools capable of detecting CC earlier and of tracking tumoral evolution are mandatory to achieve a reduction in CC's social impact. CtDNA-based liquid biopsy (LB) has great potential to contribute to patients' screening adhesion, CC earlier detection, and to longitudinal tumor follow-up. In this review, we will discuss the latest epidemiological data on CC disease, diagnostic, subtypes, genetics, and treatment management focusing on the advantages and limitations of ctDNA-based LB, including important bottlenecks and solutions necessary for its clinical translation. The latest ctDNA-directed CC clinical trials will also be examined.
Collapse
Affiliation(s)
- Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vera Lucia Pannain
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Brackmann
- Clínica de Coloproctologia do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - Marcelo Leal Gregório
- Instituto de Pesquisas Biomédicas do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Deng S, Gu H, Chen Z, Liu Y, Zhang Q, Chen D, Yi S. PTCH1 mutation as a potential predictive biomarker for immune checkpoint inhibitors in gastrointestinal cancer. Carcinogenesis 2024; 45:351-357. [PMID: 38310539 DOI: 10.1093/carcin/bgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become prominent therapies for gastrointestinal cancer (GC). However, it is urgent to screen patients who can benefit from ICIs. Protein patched homolog 1 (PTCH1) is a frequently altered gene in GC. We attempt to explore the association between PTCH1 mutation and immunotherapy efficacy. The Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 236) with GC (esophageal, gastric and colorectal cancers) patients receiving ICIs was used for discovery and the Peking University Cancer Hospital (PUCH) GC cohort (n = 92) was used for validation. Overall survival (OS) and tumor mutational burden (TMB) of the PTCH1 mutant-type (PTCH1-MUT) and PTCH1 wild-type (PTCH1-WT) groups were compared. Furthermore, GC data were collected from The Cancer Genome Atlas to assess the potential mechanisms. In the MSKCC cohort, PTCH1-MUT group showed significantly better OS (P = 0.017) and higher TMB. Multivariate analysis showed that PTCH1 mutation was associated with better OS. In the PUCH cohort, PTCH1-MUT group showed significantly longer OS (P = 0.036) and progression-free survival, and higher durable clinical benefit and TMB. Immune cell infiltration analysis revealed that PTCH1-MUT group had significantly higher distributions of CD8 T cells, CD4 T cells, NK cells, mast cells and M1 cells. The PTCH1-MUT group showed significantly higher expression of most immune-related genes. Gene set enrichment analysis showed that the PTCH1-MUT group had enriched INF-γ response, INF-α response, glycolysis and reactive oxygen species pathway gene sets. PTCH1 mutation may represent a potential biomarker for predicting ICIs response in GC. Nevertheless, prospective cohort studies should be performed to further validate our results.
Collapse
Affiliation(s)
- Shuangya Deng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haoran Gu
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - ZongYao Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yaqin Liu
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Qin Zhang
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210002, China
| | - Shengen Yi
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
6
|
Marques A, Cavaco P, Torre C, Sepodes B, Rocha J. Tumor mutational burden in colorectal cancer: Implications for treatment. Crit Rev Oncol Hematol 2024; 197:104342. [PMID: 38614266 DOI: 10.1016/j.critrevonc.2024.104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024] Open
Abstract
Although immune checkpoint inhibitors have revolutionized the treatment of several advanced solid cancers, in colorectal cancer, the transformative benefit of these innovative medicines is currently limited to those with deficient mismatch repair or high microsatellite instability. Tumor mutational burden (TMB) has emerged as a potential predictor of immunotherapy benefit, but the lack of standardization in its assessment and reporting has hindered the introduction of this biomarker in routine clinical practice. Here, we compiled 45 colorectal cancer studies utilizing numerical thresholds for high-TMB. In this group of studies, TMB cut-offs ranged from 6.88 to 41 mut/Mb and were most often set at 10, 17, or 20 mut/Mb. Additionally, we observed divergent TMB definitions and inconsistent disclosure of specific methodological details, which collectively emphasize the substantial lack of harmonization within the field. Ongoing efforts to harmonize TMB assessment will be critical to validate TMB as a predictive marker of immunotherapy response.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Patrícia Cavaco
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy Department, Centro Hospitalar de Lisboa Ocidental, Lisboa 1449-005, Portugal
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Lisboa 1649-003, Portugal; Faculdade de Farmácia, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| |
Collapse
|
7
|
Wang Z, Wang Y, Wang S, Ran Q, Peng S, Zhang Y, Zhang J, Zhang D, Wang L, Lan W, Liu Q, Jiang J. Tislelizumab with gemcitabine and cisplatin as a neoadjuvant regimen for muscle-invasive bladder cancer: case series. Ann Med Surg (Lond) 2024; 86:245-251. [PMID: 38222740 PMCID: PMC10783357 DOI: 10.1097/ms9.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction and importance The feasibility of combined tislelizumab with gemcitabine and cisplatin as a neoadjuvant regimen for muscle-invasive bladder cancer (MIBC) remains to be investigated. Case presentation The neoadjuvant treatment not only shrunk tumours significantly but also lowered their stages from T4bN1M0, T3N0M0, and T3bN0M0 to pT1, pT0 and pTis, respectively. The treatment suppressed tumour cell proliferation and promoted luminal-to-basal transition. Clinical discussion MIBC is an aggressive bladder cancer with poor prognosis. All three patients with MIBC benefited greatly from the neoadjuvant regimen (tislelizumab + gemcitabine + cisplatin). It appears that the effect of the treatment is independent of the levels of programmed death-ligand 1 nor the subtype of urothelial bladder cancer. Conclusion Combination of tislelizumab with gemcitabine and cisplatin appeared to be a safe and efficacious neoadjuvant therapy for MIBC.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiang Ran
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Choi Y, Shin D, Hong CP, Shin DM, Cho SH, Kim SS, Bae MA, Hong SH, Jang M, Cho Y, Han GM, Shim WJ, Jung JH. The effects of environmental Microplastic on wharf roach (Ligia exotica): A Multi-Omics approach. CHEMOSPHERE 2023:139122. [PMID: 37276999 DOI: 10.1016/j.chemosphere.2023.139122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
This is the first report to evaluate the potential effects of microplastics (MPs) on wild wharf roaches (Ligia exotica) in a shoreline habitant. L. exotica is an important plastic detritus consumer in coastal area. A survey was conducted from May to June in the years 2019 and 2020 in two South Korean nearshore sites: Nae-do (as MPs-uncontaminated) and Maemul-do (as MPs-contaminated). MPs (>20 μm in size) were detected highly in gastrointestinal tracts of the L. exotica from Maemul-do, at an average level of 50.56 particles/individual. They were detected in much lower levels in the L. exotica from Nae-do. at an average rate of 1.00 particles/individual. The polymer type and shape were dominated by expanded polystyrene (EPS, 93%) and fragment (99.9%) in L. exotica from Maemul-do. Especially, Hexabromocyclododecanes, brominated flame retardants added to EPS, have been detected highly in L. exotica from Maemul-do (630.86 ± 587.21 ng/g l. w.) than those of Nae-do (detection limit: 10.5 ng/g l. w). Genome-wide transcriptome profiling revealed altered expression of genes associated with fatty acid metabolic processes, the innate-immune response-activating system and vesicle cytoskeletal trafficking in L. exotica from Maemul-do. The activation of the p53 signaling pathway (which is related to proteasome, ER regulation and cell morphogenesis) is likely to be involved in the EPS-uptake of wild L. exotica. Four neurosteroids were also detected in head tissue, and cortisol and progesterone concentrations differed significantly in L. exotica from Maemul-do. Our findings also suggest that resident plastic detritus consumer might be a useful indicator organism for evaluating pollution and potential effects of environmental microplastics.
Collapse
Affiliation(s)
- Youmi Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea
| | - Dongju Shin
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea
| | | | | | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, North Korea
| | - Seong Soon Kim
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, North Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, North Korea; Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, North Korea
| | - Sang Hee Hong
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea
| | - Mi Jang
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea
| | - Youna Cho
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea
| | - Gi Myung Han
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea
| | - Won Joon Shim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, 53201, North Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon, 34113, North Korea.
| |
Collapse
|
9
|
Dalens L, Lecuelle J, Favier L, Fraisse C, Lagrange A, Kaderbhai C, Boidot R, Chevrier S, Mananet H, Derangère V, Truntzer C, Ghiringhelli F. Exome-Based Genomic Markers Could Improve Prediction of Checkpoint Inhibitor Efficacy Independently of Tumor Type. Int J Mol Sci 2023; 24:ijms24087592. [PMID: 37108755 PMCID: PMC10144126 DOI: 10.3390/ijms24087592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have improved the care of patients in multiple cancer types. However, PD-L1 status, high Tumor Mutational Burden (TMB), and mismatch repair deficiency are the only validated biomarkers of efficacy for ICIs. These markers remain imperfect, and new predictive markers represent an unmet medical need. Whole-exome sequencing was carried out on 154 metastatic or locally advanced cancers from different tumor types treated by immunotherapy. Clinical and genomic features were investigated using Cox regression models to explore their capacity to predict progression-free survival (PFS). The cohort was split into training and validation sets to assess validity of observations. Two predictive models were estimated using clinical and exome-derived variables, respectively. Stage at diagnosis, surgery before immunotherapy, number of lines before immunotherapy, pleuroperitoneal, bone or lung metastasis, and immune-related toxicity were selected to generate a clinical score. KRAS mutations, TMB, TCR clonality, and Shannon entropy were retained to generate an exome-derived score. The addition of the exome-derived score improved the prediction of prognosis compared with the clinical score alone. Exome-derived variables could be used to predict responses to ICI independently of tumor type and might be of value in improving patient selection for ICI therapy.
Collapse
Affiliation(s)
- Lorraine Dalens
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
| | - Julie Lecuelle
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
| | - Laure Favier
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Cléa Fraisse
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Aurélie Lagrange
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Courèche Kaderbhai
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Romain Boidot
- Department of Biopathology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Sandy Chevrier
- Department of Biopathology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Hugo Mananet
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
| | - Valentin Derangère
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
- Department of Biopathology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | - Caroline Truntzer
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UFR des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
- Genomic and Immunotherapy Medical Institute, Dijon University Hospital, 21000 Dijon, France
| |
Collapse
|
10
|
Li B, Zhang G, Xu X. APC mutation correlated with poor response of immunotherapy in colon cancer. BMC Gastroenterol 2023; 23:95. [PMID: 36977982 PMCID: PMC10053134 DOI: 10.1186/s12876-023-02725-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE APC (adenomatous polyposis coli) gene mutation is a central initialization in colon cancer tumorigenesis. However, the connection between APC gene mutation and immunotherapy efficacy for colon cancer remains unknown. This study aimed to explore the impact of APC mutation on immunotherapy efficacy for colon cancer. METHODS Colon cancer data from The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC) were used for the combined analysis. Survival analysis was performed to evaluate the association between APC mutation and immunotherapy efficacy in colon cancer patients. The expressions of immune check point molecules, tumor mutation burden (TMB), CpG methylation level, tumor purity (TP), microsatellite instability (MSI) status and tumor-infiltrating lymphocyte (TIL) in the two APC status were compared to evaluate the associations between APC mutation and immunotherapy efficacy indicators. Gene set enrichment analysis (GSEA) was performed to identify signaling pathways related to APC mutation. RESULTS APC was the most frequently mutated gene in colon cancer. The survival analysis demonstrated that APC mutation was correlated with a worse immunotherapy outcome. APC mutation was associated with lower TMB, lower expression of immune check point molecules (PD-1/PD-L1/PD-L2), higher TP, lower MSI-High proportion and less CD8 + T cells and follicular helper T cells infiltration. GSEA indicated that APC mutation up-regulated mismatch repair pathway, which may play a negative role in evoking an antitumor immune response. CONCLUSION APC mutation is associated with worse immunotherapy outcome and inhibition of antitumor immunity. It can be used as a negative biomarker to predict immunotherapy response.
Collapse
Affiliation(s)
- Bing Li
- Department of Medical Oncology, The Affiliated Hospital of Putian University, No. 999 Dongzhen Road, Licheng District, Putian, Fujian, 351100, China
| | - Guoliang Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Xuejie Xu
- Department of Medical Oncology, The Affiliated Hospital of Putian University, No. 999 Dongzhen Road, Licheng District, Putian, Fujian, 351100, China.
| |
Collapse
|
11
|
Gao Z, Bai Y, Lin A, Jiang A, Zhou C, Cheng Q, Liu Z, Chen X, Zhang J, Luo P. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment. Mol Cancer 2023; 22:31. [PMID: 36793048 PMCID: PMC9930367 DOI: 10.1186/s12943-023-01722-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors (ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs combined with γδT cells as a good treatment option.
Collapse
Affiliation(s)
- Zhifei Gao
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 People’s Republic of China
| | - Yifeng Bai
- grid.54549.390000 0004 0369 4060The Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Anqi Lin
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China
| | - Aimin Jiang
- grid.73113.370000 0004 0369 1660The Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chaozheng Zhou
- grid.284723.80000 0000 8877 7471The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong 510282 People’s Republic of China ,grid.284723.80000 0000 8877 7471The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- grid.216417.70000 0001 0379 7164The Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733The Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xin Chen
- The Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jian Zhang
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
12
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Wang G, Miao C, Mo L, Kahlert UD, Wu J, Ou M, Huang R, Feng R, Pang W, Shi W. MYCBP2 expression correlated with inflammatory cell infiltration and prognosis immunotherapy in thyroid cancer patients. Front Immunol 2022; 13:1048503. [PMID: 36582246 PMCID: PMC9792662 DOI: 10.3389/fimmu.2022.1048503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Immune checkpoint inhibitors (ICIs) have shown promising results for the treatment of multiple cancers. ICIs and related therapies may also be useful for the treatment of thyroid cancer (TC). In TC, Myc binding protein 2 (MYCBP2) is correlated with inflammatory cell infiltration and cancer prognosis. However, the relationship between MYCBP2 expression and ICI efficacy in TC patients is unclear. Methods We downloaded data from two TC cohorts, including transcriptomic data and clinical prognosis data. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to predict the efficacy of ICIs in TC patients. MCPcounter, xCell, and quanTIseq were used to calculate immune cell infiltration scores. Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA) were used to evaluate signaling pathway scores. Immunohistochemical (IHC) analysis and clinical follow up was used to identify the MYCBP2 protein expression status in patients and associated with clinical outcome. Results A higher proportion of MYCBP2-high TC patients were predicted ICI responders than MYCBP2-low patients. MYCBP2-high patients also had significantly increased infiltration of CD8+ T cells, cytotoxic lymphocytes (CTLs), B cells, natural killer (NK) cells and dendritic cells (DC)s. Compared with MYCBP2-low patients, MYCBP2-high patients had higher expression of genes associated with B cells, CD8+ T cells, macrophages, plasmacytoid dendritic cells (pDCs), antigen processing and presentation, inflammatory stimulation, and interferon (IFN) responses. GSEA and ssGSEA also showed that MYCBP2-high patients had significantly increased activity of inflammatory factors and signaling pathways associated with immune responses.In addiation, Patients in our local cohort with high MYCBP2 expression always had a better prognosis and greater sensitivity to therapy while compared to patients with low MYCBP2 expression after six months clinic follow up. Conclusions In this study, we found that MYCBP2 may be a predictive biomarker for ICI efficacy in TC patients. High MYCBP2 expression was associated with significantly enriched immune cell infiltration. MYCBP2 may also be involved in the regulation of signaling pathways associated with anti-tumor immune responses or the production of inflammatory factors.
Collapse
Affiliation(s)
- Guilin Wang
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Mo
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery,University Clinic for General, Visceral, Vascular and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jinfeng Wu
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Minglin Ou
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Renxiang Huang
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Ruifa Feng
- Breast Center, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang, ; Wenjie Shi,
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Ruifa Feng, ; Weiyi Pang, ; Wenjie Shi,
| | - Wenjie Shi
- Molecular and Experimental Surgery,University Clinic for General, Visceral, Vascular and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany,University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany,*Correspondence: Ruifa Feng, ; Weiyi Pang, ; Wenjie Shi,
| |
Collapse
|
14
|
Xu Y, Wang C, Li S, Zhou H, Feng Y. Prognosis and immune response of a cuproptosis-related lncRNA signature in low grade glioma. Front Genet 2022; 13:975419. [PMID: 36338998 PMCID: PMC9633682 DOI: 10.3389/fgene.2022.975419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cuproptosis is a newly discovered new mechanism of programmed cell death, and its unique pathway to regulate cell death is thought to have a unique role in understanding cancer progression and guiding cancer therapy. However, this regulation has not been studied in low grade glioma (LGG) at present. In this study, data on low grade glioma patients were downloaded from the TCGA database. We screened the genes related to cuproptosis from the published papers and confirmed the lncRNAs related to them. We applied univariate/multivariate, and LASSO regression algorithms, finally identified 11 lncRNAs for constructing prognosis prediction models, and constructed a risk scoring model. The reliability and validity test of the model indicated that the model could well distinguish the prognosis and survival of LGG patients. Furthermore, the analyses of immunotherapy, immune microenvironment, as well as functional enrichment were also performed. Finally, we verified the expression of these six prognostic key lncRNAs using real-time polymerase chain reaction (RT-PCR). In conclusion, this study is the first analysis based on cuproptosis-related lncRNAs in LGG and aims to open up new directions for LGG therapy.
Collapse
Affiliation(s)
- Yifan Xu
- *Correspondence: Yifan Xu, ; Yugong Feng,
| | | | | | | | | |
Collapse
|
15
|
Shi C, Qin K, Lin A, Jiang A, Cheng Q, Liu Z, Zhang J, Luo P. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J Exp Clin Cancer Res 2022; 41:268. [PMID: 36071479 PMCID: PMC9450390 DOI: 10.1186/s13046-022-02469-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demonstrate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combination therapy, accompanied by a review that summarizes currently identified and promising predictors of response to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs are achieved.
Collapse
|
16
|
Yu L, Gong C. Pancancer analysis of a potential gene mutation model in the prediction of immunotherapy outcomes. Front Genet 2022; 13:917118. [PMID: 36092890 PMCID: PMC9459043 DOI: 10.3389/fgene.2022.917118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune checkpoint blockade (ICB) represents a promising treatment for cancer, but predictive biomarkers are needed. We aimed to develop a cost-effective signature to predict immunotherapy benefits across cancers.Methods: We proposed a study framework to construct the signature. Specifically, we built a multivariate Cox proportional hazards regression model with LASSO using 80% of an ICB-treated cohort (n = 1661) from MSKCC. The desired signature named SIGP was the risk score of the model and was validated in the remaining 20% of patients and an external ICB-treated cohort (n = 249) from DFCI.Results: SIGP was based on 18 candidate genes (NOTCH3, CREBBP, RNF43, PTPRD, FAM46C, SETD2, PTPRT, TERT, TET1, ROS1, NTRK3, PAK7, BRAF, LATS1, IL7R, VHL, TP53, and STK11), and we classified patients into SIGP high (SIGP-H), SIGP low (SIGP-L) and SIGP wild type (SIGP-WT) groups according to the SIGP score. A multicohort validation demonstrated that patients in SIGP-L had significantly longer overall survival (OS) in the context of ICB therapy than those in SIGP-WT and SIGP-H (44.00 months versus 13.00 months and 14.00 months, p < 0.001 in the test set). The survival of patients grouped by SIGP in non-ICB-treated cohorts was different, and SIGP-WT performed better than the other groups. In addition, SIGP-L + TMB-L (approximately 15% of patients) had similar survivals to TMB-H, and patients with both SIGP-L and TMB-H had better survival. Further analysis on tumor-infiltrating lymphocytes demonstrated that the SIGP-L group had significantly increased abundances of CD8+ T cells.Conclusion: Our proposed model of the SIGP signature based on 18-gene mutations has good predictive value for the clinical benefit of ICB in pancancer patients. Additional patients without TMB-H were identified by SIGP as potential candidates for ICB, and the combination of both signatures showed better performance than the single signature.
Collapse
Affiliation(s)
- Lishan Yu
- Yanqi Lake Beijing Institute Mathematical Sciences and Applications, Beijing, China
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Caifeng Gong,
| |
Collapse
|
17
|
Patients deriving long-term benefit from immune checkpoint inhibitors demonstrate conserved patterns of site-specific mutations. Sci Rep 2022; 12:11490. [PMID: 35798829 PMCID: PMC9263148 DOI: 10.1038/s41598-022-15714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy and are now the preferred treatment for several tumor types. Though ICIs have shown remarkable efficacy in several cancer histologies, in many cases providing long-term disease control, not all patients will derive clinical benefit from such approaches. Given the lack of a reliable predictive biomarker for therapeutic responses to ICIs, we conducted a retrospective analysis of publicly available genomic data from a large pan-cancer cohort of patients receiving ICI-based immunotherapy. Consistent with previous results, patients in the combined cohort deriving a long-term survival benefit from ICIs were more likely to have a higher tumor mutational burden (TMB). However, this was not uniform across tumor-types, failing to predict for long-term survivorship in most non-melanoma cancers. Interestingly, long-term survivors in most cancers had conserved patterns of mutations affecting several genes. In melanoma, this included mutations affecting TET1 or PTPRD. In patients with colorectal cancer, mutations affecting TET1, RNF43, NCOA3, LATS1, NOTCH3, or CREBBP were also associated with improved prognosis, as were mutations affecting PTPRD, EPHA7, NTRK3, or ZFHX3 in non-small cell lung cancer, RNF43, LATS1, or CREBBP mutations in bladder cancer, and VHL mutations in renal cell carcinoma patients. Thus, this study identified several genes that may have utility as predictive biomarkers for therapeutic responses in patients receiving ICIs. As many have no known relationship to immunotherapy or ICIs, these genes warrant continued exploration, particularly for cancers in which established biomarkers such as PD-L1 expression or TMB have little predictive value.
Collapse
|
18
|
Feng W, Lin A, Sun L, Wei T, Ying H, Zhang J, Luo P, Zhu W. Activation of the chemokine receptor 3 pathway leads to a better response to immune checkpoint inhibitors in patients with metastatic urothelial carcinoma. Cancer Cell Int 2022; 22:186. [PMID: 35562800 PMCID: PMC9107140 DOI: 10.1186/s12935-022-02604-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have made important breakthrough in anti-tumor therapy, however, no single biomarker can accurately predict their efficacy. Studies have found that tumor microenvironment is a key factor for determining the response to ICI therapy. Cytokine receptor 3 (C-X-C Motif Chemokine Receptor 3, CXCR3) pathway has been reported to play an important role in the migration, activation, and response of immune cells. We analyzed survival data, genomics, and clinical data from patients with metastatic urothelial carcinoma (mUC) who received ICI treatment to explore the relationship between CXCR3 pathway activation and the effectiveness of ICIs. The Cancer Genome Atlas Bladder Urothelial Carcinoma cohort and six other cohorts receiving ICI treatment were used for mechanism exploration and validation. In the ICI cohort, we performed univariate and multivariate COX analyses and discovered that patients in the CXCR3-high group were more sensitive to ICI treatment. A Kaplan–Meier analysis demonstrated that patients in the high CXCR3-high group had a better prognosis than those in the CXCR3-low group (P = 0.0001, Hazard Ratio = 0.56; 95% CI 0.42−0.75). CIBERSORT analysis found that mUC patients in the CXCR3-high group had higher levels of activated CD8+ T cells, M1 macrophages, and activated NK cells and less regulatory T cell (Treg) infiltration. Immunogenicity analysis showed the CXCR3-high group had higher tumor neoantigen burden (TNB). Our study suggests that CXCR3 pathway activation may be a novel predictive biomarker for the effectiveness of immunotherapy in mUC patients.
Collapse
Affiliation(s)
- Wenqin Feng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Le Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Haoxuan Ying
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
19
|
Lin A, Qi C, Wei T, Li M, Cheng Q, Liu Z, Luo P, Zhang J. CAMOIP: a web server for comprehensive analysis on multi-omics of immunotherapy in pan-cancer. Brief Bioinform 2022; 23:6565619. [PMID: 35395670 DOI: 10.1093/bib/bbac129] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have completely changed the approach pertaining to tumor diagnostics and treatment. Similarly, immunotherapy has also provided much needed data about mutation, expression and prognosis, affording an unprecedented opportunity for discovering candidate drug targets and screening for immunotherapy-relevant biomarkers. Although existing web tools enable biologists to analyze the expression, mutation and prognostic data of tumors, they are currently unable to facilitate data mining and mechanism analyses specifically related to immunotherapy. Thus, we effectively developed our own web-based tool, called Comprehensive Analysis on Multi-Omics of Immunotherapy in Pan-cancer (CAMOIP), in which we are able to successfully screen various prognostic markers and analyze the mechanisms involved in biomarker expression and function, as well as immunotherapy. The analyses include information relevant to survival analysis, expression analysis, mutational landscape analysis, immune infiltration analysis, immunogenicity analysis and pathway enrichment analysis. This comprehensive analysis of biomarkers for immunotherapy can be carried out by a click of CAMOIP, and the software should greatly encourage the further development of immunotherapy. CAMOIP provides invaluable evidence that bridges the information between the data of cancer genomics based on immunotherapy, providing comprehensive information to users and assisting in making the value of current ICI-treated data available to all users. CAMOIP is available at https://www.camoip.net.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Qi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengyao Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Yu J, Yang K, Zheng J, Sun X, Zhao W. Establishment of a novel prognostic signature based on an identified expression profile of integrin superfamily to predict overall survival of patients with colorectal adenocarcinoma. Gene 2022; 808:145990. [PMID: 34624456 DOI: 10.1016/j.gene.2021.145990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022]
Abstract
The abnormal expression of integrin superfamily members commonly related to kinds of malignancies. However, the role of integrins in predicting the prognosis of cancers is still little known, especially for colorectal cancer that is one of the leading causes of cancer-related death. RNA-seq data and clinical features of colorectal adenocarcinoma (COAD) patients were derived from The Cancer Genome Atlas (TCGA), used to analyze the expression pattern and genomic alterations of integrin genes in the COAD cohort. Unsupervised hierarchical clustering divided COAD patients into two clusters (clusters 1 & 2), and we observed that patients in cluster 2 with high expressions of most integrin genes had worse clinical features and shorter overall survival (a median OS: 67.25 months vs 99.93 months, p = 0.012), compared to those in cluster 1. Combined with univariate Cox regression analysis, Pearson Correlation Coefficients (PCC), and Principal Component Analysis (PCA), an integrin-related signature was established, including ITGA1, ITGA5, ITGA7, ITGA11, ITGAX, ITGAM, ITGB1, and ITGB5. And the AUC values for OS at 1, 3, and 5 years was 0.61, 0.59, and 0.56, further demonstrating the predicting capacity of our signature. Furthermore, overexpression of which also significantly correlated with poorer prognosis of colon cancer patients in a separate validation cohort, GSE17536 (p < 0.05). Meanwhile, the AUC values for OS in the validation cohort at 1, 3, and 5 years was 0.62, 0.59, and 0.59. Additionally, enrichment analysis indicated significant differences between cluster 1 and cluster 2 in the biological processes of cell adhesion, signal transduction, extracellular matrix, immune system, and in tumor microenvironment (TME), which were crucial to the progression of tumor. The findings supplied compelling evidence that our signature could be a novel prognostic biomarker for COAD patients, and these genes had the potential to be therapeutic targets.
Collapse
Affiliation(s)
- Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Kui Yang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| | - Wei Zhao
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, People's Republic of China.
| |
Collapse
|
21
|
Pottoo FH, Iqubal A, Iqubal MK, Salahuddin M, Rahman JU, AlHajri N, Shehadeh M. miRNAs in the Regulation of Cancer Immune Response: Effect of miRNAs on Cancer Immunotherapy. Cancers (Basel) 2021; 13:6145. [PMID: 34885253 PMCID: PMC8656569 DOI: 10.3390/cancers13236145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
In the last few decades, carcinogenesis has been extensively explored and substantial research has identified immunogenic involvement in various types of cancers. As a result, immune checkpoint blockers and other immune-based therapies were developed as novel immunotherapeutic strategies. However, despite being a promising therapeutic option, immunotherapy has significant constraints such as a high cost of treatment, unpredictable toxicity, and clinical outcomes. miRNAs are non-coding, small RNAs actively involved in modulating the immune system's multiple signalling pathways by binding to the 3'-UTR of target genes. miRNAs possess a unique advantage in modulating multiple targets of either the same or different signalling pathways. Therefore, miRNA follows a 'one drug multiple target' hypothesis. Attempts are made to explore the therapeutic promise of miRNAs in cancer so that it can be transported from bench to bedside for successful immunotherapeutic results. Therefore, in the current manuscript, we discussed, in detail, the mechanism and role of miRNAs in different types of cancers relating to the immune system, its diagnostic and therapeutic aspect, the effect on immune escape, immune-checkpoint molecules, and the tumour microenvironment. We have also discussed the existing limitations, clinical success and the prospective use of miRNAs in cancer.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Noora AlHajri
- Mayo Clinic, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi 127788, United Arab Emirates
| | - Mustafa Shehadeh
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
22
|
Chen L, Zhou Q, Liu J, Zhang W. CTNNB1 Alternation Is a Potential Biomarker for Immunotherapy Prognosis in Patients With Hepatocellular Carcinoma. Front Immunol 2021; 12:759565. [PMID: 34777372 PMCID: PMC8581472 DOI: 10.3389/fimmu.2021.759565] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background The emergence of immune checkpoint inhibitors (ICIs) marks the beginning of a new era of immunotherapy for hepatocellular carcinoma (HCC), however, not all patients respond successfully to this treatment. A major challenge for HCC immunotherapy is the development of ways to screen for those patients that would benefit from this type of treatment and determine the optimal treatment plan for individual patients. Therefore, it is important to find a biomarker which allows for the stratification of HCC patients, which distinguishes responders from non-responders, thereby further improving the clinical benefits for those undergoing immunotherapy. Methods We used univariate and multivariate Cox risk proportional regression models to evaluate the relationship between non-synonymous mutations with a mutation frequency greater than 10%. We made a prognosis of an immunotherapy HCC cohort using mutation and prognosis data. An additional three HCC queues from the cbioportal webtool were used for further verification. The CIBERSORT, IPS, quanTIseq, and MCPcounter algorithms were used to evaluate the immune cells. PCA and z-score algorithm were used to calculate immune-related signature with published gene sets. Gene set enrichment analysis (GSEA) was used to compare the differences in the pathway-based enrichment scores of candidate genes between mutant and wild types. Results Univariate and multivariate Cox results showed that only CTNNB1-Mutant(CTNNB1-MUT) was associated with progression-free survival (PFS) of HCC patients in the immunotherapy cohort. After excluding the potential bias introduced by other clinical features, it was found that CTNNB1-MUT served as an independent predictor of the prognosis of HCC patients after immunotherapy (P < 0.05; HR > 1). The results of the tumor immune microenvironment (TIME) analysis showed that patients with CTNNB1-MUT had significantly reduced activated immune cells [such as T cells, B cells, M1-type macrophages, and dendritic cells (DCs)], significantly increased M2-type macrophages, a significantly decreased expression of immunostimulating molecules, low activity of the immune activation pathways (cytokine pathway, immune cell activation and recruitment) and highly active immune depletion pathways (fatty acid metabolism, cholesterol metabolism, and Wnt pathway). Conclusions In this study, we found CTNNB1-MUT to be a potential biomarker for HCC immunotherapy patients, because it identified those patients are less likely to benefit from ICIs.
Collapse
Affiliation(s)
- Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaodan Zhou
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Li Y, Ma Y, Wu Z, Zeng F, Song B, Zhang Y, Li J, Lui S, Wu M. Tumor Mutational Burden Predicting the Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:751407. [PMID: 34659255 PMCID: PMC8511407 DOI: 10.3389/fimmu.2021.751407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives For colorectal cancer patients, traditional biomarker deficient mismatch repair/microsatellite instability (dMMR/MSI) is an accurate predictor of immune checkpoint inhibitors (ICIs). Recent years, researchers considered tumor mutation burden (TMB) as another predictive biomarker which means the number of nonsynonymous mutations in cancer cells. Several studies have proven that TMB can evaluate the efficacy of ICI therapy in diverse types of cancer, especially in non-small cell lung cancer and melanoma. However, studies on the association between TMB and the response to ICI therapy in colorectal cancer alone are still lacking. In this study, we aim to verify the effect of TMB as a biomarker in predicting the efficacy of ICIs in colorectal cancer. Methods We searched the PubMed and Ovid MEDLINE databases up to May 1, 2021 and screened studies for eligibility. Thirteen studies published from 2015 to 2021 with 5062 patients were included finally. We extracted and calculated hazard ratios (HRs) and odds ratios (ORs) of overall survival (OS) and objective response rates (ORRs) and their 95% confidence intervals (95% CIs). Pooled HR and OR were evaluated to compare OS and ORR between TMB-high and TMB-low groups in colorectal cancer patients. Meanwhile, we assessed heterogeneity with the I2 statistic and p-values and performed publication bias assessments, sensitivity analyses, and subgroup analyses to search the cause of heterogeneity. Results The TMB-high patient group had a longer OS than the TMB-low patient group (HR = 0.68, 95% CI: 0.51, 0.92, p = 0.013) among colorectal cancer patients receiving ICIs. In addition, the TMB-high patient group was superior in terms of ORR (OR = 19.25, 95% CI: 10.06, 36.82, p < 0.001) compared to the TMB-low patient group. Conclusions In conclusion, this meta-analysis revealed that TMB can be used as a potential predictive biomarker of colorectal cancer patients receiving ICI therapy. Nevertheless, this finding is not stable enough. Therefore, many more randomized controlled trials are needed to prove that TMB is reliable enough to be used clinically to predict the efficacy of immunotherapy in colorectal cancer. And the most relevant biomarker remains to be determined when TMB high overlaps with other biomarkers like MSI and TILs.
Collapse
Affiliation(s)
- Yan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China.,Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Zhang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jinxing Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Prayugo FB, Kao TJ, Anuraga G, Ta HDK, Chuang JY, Lin LC, Wu YF, Wang CY, Lee KH. Expression Profiles and Prognostic Value of FABPs in Colorectal Adenocarcinomas. Biomedicines 2021; 9:1460. [PMID: 34680577 PMCID: PMC8533171 DOI: 10.3390/biomedicines9101460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the world's leading causes of cancer-related deaths; thus, it is important to detect it as early as possible. Obesity is thought to be linked to a large rise in the CRC incidence as a result of bad dietary choices, such as a high intake of animal fats. Fatty acid-binding proteins (FABPs) are a set of molecules that coordinate intracellular lipid responses and are highly associated with metabolism and inflammatory pathways. There are nine types of FABP genes that have been found in mammals, which are FABP1-7, FABP9, and FABP12. Each FABP gene has its own roles in different organs of the body; hence, each one has different expression levels in different cancers. The roles of FABP family genes in the development of CRC are still poorly understood. We used a bioinformatics approach to examine FABP family gene expression profiles using the Oncomine, GEPIA, PrognoScan, STRING, cBioPortal, MetaCore, and TIMER platforms. Results showed that the FABP6 messenger (m)RNA level is overexpressed in CRC cells compared to normal cells. The overexpression of FABP6 was found to be related to poor prognosis in CRC patients' overall survival. The immunohistochemical results in the Human Protein Atlas showed that FABP1 and FABP6 exhibited strong staining in CRC tissues. An enrichment analysis showed that high expression of FABP6 was significantly correlated with the role of microRNAs in cell proliferation in the development of CRC through the insulin-like growth factor (IGF) signaling pathway. FABP6 functions as an intracellular bile-acid transporter in the ileal epithelium. We looked at FABP6 expression in CRC since bile acids are important in the carcinogenesis of CRC. In conclusion, high FABP6 expression is expected to be a potential biomarker for detecting CRC at the early stage.
Collapse
Affiliation(s)
- Fidelia Berenice Prayugo
- International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
| | - Tzu-Jen Kao
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-J.K.); (J.-Y.C.)
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan; (T.-J.K.); (J.-Y.C.)
- Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Chia Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (G.A.); (H.D.K.T.); (L.-C.L.)
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
25
|
Lin A, Zhang H, Meng H, Deng Z, Gu T, Luo P, Zhang J. TNF-Alpha Pathway Alternation Predicts Survival of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Front Immunol 2021; 12:667875. [PMID: 34603277 PMCID: PMC8481577 DOI: 10.3389/fimmu.2021.667875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Translational research on immune checkpoint inhibitors (ICIs) has been underway. However, in the unselected population, only a few patients benefit from ICIs. Therefore, screening predictive markers of ICI efficacy has become the current focus of attention. We collected mutation and clinical data from an ICI-treated non-small cell lung cancer (NSCLC) cohort. Then, a univariate Cox regression model was used to analyze the relationship between tumor necrosis factor α signaling mutated (TNFα-MT) and the prognosis of immunotherapy for NSCLC. We retrospectively collected 36 NSCLC patients (local-cohort) from the Zhujiang Hospital of Southern Medical University and performed whole-exome sequencing (WES). The expression and mutation data of The Cancer Genome Atlas (TCGA)-NSCLC cohort were used to explore the association between TNFα-MT and the immune microenvironment. A local cohort was used to validate the association between TNFα-MT and immunogenicity. TNFα-MT was associated with significantly prolonged overall survival (OS) in NSCLC patients after receiving immunotherapy. Additionally, TNFα-MT is related to high immunogenicity (tumor mutational burden, neoantigen load, and DNA damage response signaling mutations) and enrichment of infiltrating immune cells. These results suggest that TNFα-MT may serve as a potential clinical biomarker for NSCLC patients receiving ICIs.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongman Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Meng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Deng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianqi Gu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Zhang Y, Li X, Zhou R, Lin A, Cao M, Lyu Q, Luo P, Zhang J. Glycogen Metabolism Predicts the Efficacy of Immunotherapy for Urothelial Carcinoma. Front Pharmacol 2021; 12:723066. [PMID: 34512351 PMCID: PMC8424112 DOI: 10.3389/fphar.2021.723066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Urothelial cancer (UC) is one of the common refractory tumors and chemotherapy is the primary treatment for it. The advent of immune checkpoint inhibitors (ICI) has facilitated the development of treatment strategies for UC patients. To screen out UC patients sensitive to ICI, researchers have proposed that PD-L1, tumor mutation burden and TCGA molecular subtypes can be used as predictors of ICI efficacy. However, the performance of these predictors needs further validation. We need to identify novel biomarkers to screen out UC patients sensitive to ICI. In our study, we collected the data of two clinical cohorts: the ICI cohort and the TCGA cohort. The result of the multivariate Cox regression analysis showed that glycogen metabolism score (GMS) (HR = 1.26, p = 0.017) was the negative predictor of prognosis for UC patients receiving ICI treatment. Low-GMS patients had a higher proportion of patients achieving complete response or partial response to ICI. After the comparison of gene mutation status between high-GMS and low-GMS patients, we identified six genes with significant differences in mutation frequencies, which may provide new directions for potential drug targets. Moreover, we analyzed the immune infiltration status and immune-related genes expression between high-GMS and low-GMS patients. A reduced proportion of tumor-associated fibroblasts and elevated proportion of CD8+ T cells can be observed in low-GMS patients while several immunosuppressive molecules were elevated in the high-GMS patients. Using the sequencing data of the GSE164042 dataset, we also found that myeloid-derived suppressor cell and neutrophil related signature scores were lower in α-glucosidase knockout bladder carcinoma cells when compared to the control group. In addition, angiogenesis, classic carcinogenic pathways, immunosuppressive cells related pathways and immunosuppressive cytokine secretion were mainly enriched in high-GMS patients and cell samples from the control group. Finally, we suspected that the combination treatment of ICI and histone deacetylase inhibitors may achieve better clinical responses in UC patients based on the analysis of drug sensitivity data. In conclusion, our study revealed the predictive value of GMS for ICI efficacy of UC patients, providing a novel perspective for the exploration of new drug targets and potential treatment strategies.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuechun Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Zhao L, Wang Q, Zhao SD, Zhou J, Jiang KW, Ye YJ, Wang S, Shen ZL. Genetic mutations associated with sensitivity to neoadjuvant chemotherapy in metastatic colon cancer: A case report and review of literature. World J Clin Cases 2021; 9:7099-7109. [PMID: 34540965 PMCID: PMC8409210 DOI: 10.12998/wjcc.v9.i24.7099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal liver metastases (CLM) occur in 15%-30% of patients with colorectal cancer (CRC). Advancements in next generation sequencing (NGS) can provide more precise prognoses for cancer patients and help guide clinical treatment. However, the genetic variants that predict high sensitivity to neoadjuvant chemotherapy remain unclear, especially in patients with CLM. The aim of this study was to identify the relevant genetic variants in a single CLM patient and to summarize the current evidence on mutations and single nucleotide polymorphisms (SNPs) that objectively predict sensitivity to neoadjuvant chemotherapy.
CASE SUMMARY A 76-year-old male patient, who was diagnosed as stage IV colon cancer with liver metastases, was found to have APC/TP53/KRAS mutations. He showed a good therapeutic response to 12 courses of oxaliplatin regimens combined with Bevacizumab. Genetic analysis of the patient identified 5 genes with 7 detected SNPs that may be related to a better response to chemotherapy drugs. In addition, a critical literature review was performed based on a standardized appraisal form after selecting the articles. Ultimately, 21 eligible studies were appraised to assess the association between gene mutations and good prognosis. Mutations in KRAS, TP53, SMAD4, and APC were identified as being associated with a poor response to chemotherapy drugs, whereas mutations of CREBBP and POLD1 were associated with longer overall survival.
CONCLUSION NGS can identify precise predictors of response to neoadjuvant chemotherapy, leading to improved outcomes for CRC patients.
Collapse
Affiliation(s)
- Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Quan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Shi-Dong Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Jing Zhou
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Ying-Jiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| | - Zhan-Long Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
28
|
Wang Y, Li X, Peng S, Hu H, Wang Y, Shao M, Feng G, Liu Y, Bai Y. Single-Cell Analysis Reveals Spatial Heterogeneity of Immune Cells in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:638374. [PMID: 34513820 PMCID: PMC8424094 DOI: 10.3389/fcell.2021.638374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/13/2021] [Indexed: 01/18/2023] Open
Abstract
The impacts of the tumor microenvironment (TME) on tumor evolvability remain unclear. A challenge for nearly all cancer types is spatial heterogeneity, providing substrates for the emergence and evolvability of drug resistance and leading to unfavorable prognosis. Understanding TME heterogeneity among different tumor sites would provide deeper insights into personalized therapy. We found 9,992 cell profiles of the TME in human lung adenocarcinoma (LUAD) samples at a single-cell resolution. By comparing different tumor sites, we discovered high TME heterogeneity. Single-sample gene set enrichment analysis (ssGSEA) was utilized to explore functional differences between cell subpopulations and between the core, middle and edge of tumors. We identified 8 main cell types and 27 cell subtypes of T cells, B cells, fibroblasts and myeloid cells. We revealed CD4+ naive T cells in the tumor core that express high levels of immune checkpoint molecules and have a higher activity of immune-exhaustion signaling. CD8+ T cell subpopulations in the tumor core correlate with the upregulated activity of transforming growth factor-β (TGF-β) and fibroblast growth factor receptor (FGFR) signaling and downregulated T cell activity. B cell subtypes in the tumor core downregulate cytokine production. In this study, we revealed that there was immunological heterogeneity in the TME of patients with LUAD that have different ratios of immune cells and stromal cells, different functions, and various degrees of activation of immune-related pathways in different tumor parts. Therefore, clarifying the spatial heterogeneity of the tumor in the immune microenvironment can help clinicians design personalized treatments.
Collapse
Affiliation(s)
- Youyu Wang
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Shengkun Peng
- Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Honglin Hu
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuntao Wang
- Department of Oncology, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine the Second Clinical Medical College, Chengdu, China
| | - Mengqi Shao
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Liu
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Zhou X, Liu Y, Xiang J, Wang Y, Wang Q, Xia J, Chen Y, Bai Y. Analysis of Interleukin-1 Signaling Alterations of Colon Adenocarcinoma Identified Implications for Immunotherapy. Front Immunol 2021; 12:665002. [PMID: 34367132 PMCID: PMC8344046 DOI: 10.3389/fimmu.2021.665002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have made breakthrough progress in the treatment of various malignant tumors. However, only some patients receiving ICIs obtain long-lasting clinical effects, and some patients still do not achieve remission. Improving the treatment benefits of this part of the population has become a concern of clinicians. IL-1 signaling plays an important role in the tumor microenvironment (TME). However, the relationship between the IL-1 signaling mutation status and the prognosis of colon adenocarcinoma (COAD) patients receiving ICIs has not been reported. We downloaded the data of a COAD cohort receiving ICIs, including prognostic data and mutation data. Additionally, we downloaded the data of a COAD cohort from The Cancer Genome Atlas (TCGA) database, including clinical data, expression data and mutation data. Gene set enrichment analysis (GSEA) was used to assess differences in the activity of some key physiological pathways between the IL-1 signaling mutated-type (IL-1-MT) and IL-1 signaling wild-type (IL-1-WT) groups. The CIBERSORT algorithm was used to evaluate the contents of immune cells in the TME of COAD patients. The multivariate Cox regression model results suggested that IL-1-MT can be used as an independent predictor of a better prognosis in COAD patients receiving ICIs (P = 0.03, HR = 0.269, 95% CI: 0.082-0.883). Additionally, IL-1-MT COAD patients had significantly longer overall survival (OS) (log-rank P = 0.015). CIBERSORT analysis showed that the IL-1-MT group had high infiltration levels of activated dendritic cells (DCs), M1 macrophages, neutrophils, activated natural killer (NK) cells, activated CD4+ memory T cells and CD8+ T cells. Similarly, the IL-1-MT group had significantly upregulated immunogenicity, including in terms of the tumor mutation burden (TMB), neoantigen load (NAL) and number of mutations in DNA damage repair (DDR) signaling. GSEA showed that the IL-1-MT group was highly enriched in the immune response and proinflammatory mediators. Additionally, the expression levels of immune-related genes, immune checkpoint molecules and immune-related signatures were significantly higher in the IL-1-MT group than in the IL-1-WT group. IL-1-MT may be an independent predictor of a good prognosis in COAD patients receiving ICIs, with significantly longer OS in IL-1-MT COAD patients. Additionally, IL-1-MT was associated with significantly increased immunogenicity, activated immune cell and inflammatory mediator levels and immune response-related scores.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Liu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Xiang
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuntao Wang
- Department of Oncology, The Second Clinical Medical College, The Fifth People's Hospital affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiqian Wang
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianling Xia
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunfei Chen
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Chen Y, Wang X, Deng X, Zhang Y, Liao R, Li Y, Yang H, Chen K. DNA Damage Repair Status Predicts Opposite Clinical Prognosis Immunotherapy and Non-Immunotherapy in Hepatocellular Carcinoma. Front Immunol 2021; 12:676922. [PMID: 34335575 PMCID: PMC8320764 DOI: 10.3389/fimmu.2021.676922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors(ICIs) that activate tumor-specific immune responses bring new hope for the treatment of hepatocellular carcinoma(HCC). However, there are still some problems, such as uncertain curative effects and low objective response rates, which limit the curative effect of immunotherapy. Therefore, it is an urgent problem to guide the use of ICIs in HCC based on molecular typing. We downloaded the The Cancer Genome Atlas-Liver hepatocellular carcinoma(TCGA-LIHC) and Mongolian-LIHC cohort. Unsupervised clustering was applied to the highly variable data regarding expression of DNA damage repair(DDR). The CIBERSORT was used to evaluate the proportions of immune cells. The connectivity map(CMap) and pRRophetic algorithms were used to predict the drug sensitivity. There were significant differences in DDR molecular subclasses in HCC(DDR1 and DDR2), and DDR1 patients had low expression of DDR-related genes, while DDR2 patients had high expression of DDR-related genes. Of the patients who received traditional treatment, DDR2 patients had significantly worse overall survival(OS) than DDR1 patients. In contrast, of the patients who received ICIs, DDR2 patients had significantly prolonged OS compared with DDR1 patients. Of the patients who received traditional treatment, patients with high DDR scores had worse OS than those with low DDR scores. However, the survival of patients with high DDR scores after receiving ICIs was significantly higher than that of patients with low DDR scores. The DDR scores of patients in the DDR2 group were significantly higher than those of patients in the DDR1 group. The tumor microenvironment(TME) of DDR2 patients was highly infiltrated by activated immune cells, immune checkpoint molecules and proinflammatory molecules and antigen presentation-related molecules. In this study, HCC patients were divided into the DDR1 and DDR2 group. Moreover, DDR status may serve as a potential biomarker to predict opposite clinical prognosis immunotherapy and non-immunotherapy in HCC.
Collapse
Affiliation(s)
- Yunfei Chen
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xu Wang
- No. 2 Ward of Hepatobiliary Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- No. 2 Ward of Hepatobiliary Surgery, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaofan Deng
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yu Zhang
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Rui Liao
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Youzan Li
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Hongji Yang
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Kai Chen
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The Third Department of Hepatobiliary Surgery and Organ Transplant Center, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
31
|
Zhao H, Danli S, Qian Z, Ye S, Chen J, Tang Z. Identifying GNG4 might play an important role in colorectal cancer TMB. Cancer Biomark 2021; 32:435-450. [PMID: 34275892 DOI: 10.3233/cbm-203009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is one of the most leading cause of cancer death all over the world. The tumor immune microenvironment is illustrated to be necessary for the progress of CRC. And the accumulating evidence indicated that tumor mutation burden (TMB) is effective in differentiating responding population of immune checkpoint inhibitor (ICI) therapies in various cancers. In this study, we aimed to evaluated the potential relationship between TMB and the recurrence risk of CRC. METHODS The transcriptomic and clinical data of CRC patients were collected from The Cancer Genome Atlas (TCGA) database (n= 382). Then the genomic analysis of tumor mutation burden and tumor purity were conducted by a computational method based on transcriptomic data. RESULTS Firstly, we accessed the distribution of TMB and preferences at the gene and mutation level using somatic mutation data from TCGA data about CRC. We identified that high TMB predicted better prognosis of CRC patients. Secondly, the differentially expressed genes (DEGs) between the low TMB and high TMB group was clarified. Then the protein-protein interaction (PPI) analysis was performed, and the results confirmed ten hub genes among the DEGs. Utilizing the GEPIA web-tool, we discovered that GNG4 was up-regulated in tumor tissues, and GNG4 was related to the overall survival (OS) and tumor free survival (TFS) of CRC patients. Therefore, we considered GNG4 was essential for the tumor immune microenvironment of CRC. Furthermore, we also accessed the protein level of GNG4 in CRC and liver metastases from CRC. CONCLUSIONS In this study, GNG4 was demonstrated to be the key element of the CRC TMB, which will be essential for the ICI therapy of CRC. Besides, GNG4 was up-regulated in CRC and liver metastases from CRC tissues. Thus, we thought that GNG4 might play an important role in colorectal cancer TMB and induce its metastasis in liver.
Collapse
Affiliation(s)
- Hongcan Zhao
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Danli
- Pathology Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sunyi Ye
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianzhong Chen
- Institute of Immunology School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Surgery, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhe Tang
- Department of Surgery, Forth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, Zhejiang, China.,Department of Surgery, Second Affiliated hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Wang Y, Chen H, Jiao X, Wu L, Yang Y, Zhang J, Wu L, Liu C, Zhuo N, Li S, Gong J, Li J, Zhang X, Wang X, Peng Z, Qi C, Wang Z, Li J, Li Y, Lu Z, Zhang H, Shen L. PTCH1 mutation promotes antitumor immunity and the response to immune checkpoint inhibitors in colorectal cancer patients. Cancer Immunol Immunother 2021; 71:111-120. [PMID: 34028566 PMCID: PMC8738454 DOI: 10.1007/s00262-021-02966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has emerged as an effective therapeutic strategy for various cancers, including colorectal cancer (CRC), but only a subset of MSI-H patients can benefit from such therapy. Patched1 (PTCH1) is a frequently altered gene in CRCs and its mutations contribute to unregulated Hedgehog (Hh) signaling. In the study, we evaluated the association of PTCH1 mutations with CRC immunity based on our single-center cohort and multiple cancer genomic datasets. Among 21 enrolled patients, six (28.6%) harbored a PTCH1 mutation based on WES analyses. In CRC patients, the PTCH1 mutation subgroup experienced a higher durable clinical benefit rate than the PTCH1 wild-type subgroup (100% vs. 40%, P = 0.017). In addition, patients with the PTCH1 mutation experienced greater progression-free survival (PFS, P = 0.037; HR, 0.208) and overall survival (OS, P = 0.045; HR, 0.185). A validation cohort from the MSKCC also confirmed the correlation between PTCH1 mutation and better prognosis (P = 0.022; HR, 0.290). Mechanically, diverse antitumor immune signatures were more highly enriched in PTCH1-mutated tumors than in PTCH1 wild-type tumors. Furthermore, PTCH1-mutated tumors had higher proportions of CD8 + T cells, activated NK cells, and M1 type macrophage infiltration, as well as elevated gene signatures of several steps in the cancer-immunity cycle. Notably, the PTCH1 mutation was correlated with tumor mutational burden (TMB), loss of heterozygosity score, and copy number variation burden. Our results show that the mutation of PTCH1 is a potential biomarker for predicting the response of CRC patients to immunotherapy.
Collapse
Affiliation(s)
- Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Huan Chen
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Lihong Wu
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Lijia Wu
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Chang Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Na Zhuo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jie Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Yan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
| | - Henghui Zhang
- Biomedical innovation center, Beijing Shijitan Hospital, and School of Oncology, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
33
|
Jiao X, Wei X, Li S, Liu C, Chen H, Gong J, Li J, Zhang X, Wang X, Peng Z, Qi C, Wang Z, Wang Y, Wang Y, Zhuo N, Zhang H, Lu Z, Shen L. A genomic mutation signature predicts the clinical outcomes of immunotherapy and characterizes immunophenotypes in gastrointestinal cancer. NPJ Precis Oncol 2021; 5:36. [PMID: 33947957 PMCID: PMC8096820 DOI: 10.1038/s41698-021-00172-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
The association between genetic variations and immunotherapy benefit has been widely recognized, while such evidence in gastrointestinal cancer remains limited. We analyzed the genomic profile of 227 immunotherapeutic gastrointestinal cancer patients treated with immunotherapy, from the Memorial Sloan Kettering (MSK) Cancer Center cohort. A gastrointestinal immune prognostic signature (GIPS) was constructed using LASSO Cox regression. Based on this signature, patients were classified into two subgroups with distinctive prognoses (p < 0.001). The prognostic value of the GIPS was consistently validated in the Janjigian and Pender cohort (N = 54) and Peking University Cancer Hospital cohort (N = 92). Multivariate analysis revealed that the GIPS was an independent prognostic biomarker. Notably, the GIPS-high tumor was indicative of a T-cell-inflamed phenotype and immune activation. The findings demonstrated that GIPS was a powerful predictor of immunotherapeutic survival in gastrointestinal cancer and may serve as a potential biomarker guiding immunotherapy treatment decisions.
Collapse
Affiliation(s)
- Xi Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xin Wei
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuang Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huan Chen
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Jifang Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhi Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhenghang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yujiao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanni Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Na Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
34
|
Zhang Y, Lin A, Li Y, Ding W, Meng H, Luo P, Zhang J. Age and Mutations as Predictors of the Response to Immunotherapy in Head and Neck Squamous Cell Cancer. Front Cell Dev Biol 2020; 8:608969. [PMID: 33363171 PMCID: PMC7755718 DOI: 10.3389/fcell.2020.608969] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The immunosuppressive tumor microenvironment plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSC). Compared to traditional chemoradiotherapy, immune checkpoint inhibitors (ICIs) have become increasingly important in HNSC therapy. Prior studies linked the efficacy of ICIs to PD-L1, microsatellite instability (MSI), HPV infection, tumor mutation burden (TMB), and tumor lymphocyte infiltration in patients with HNSC, but further verification is needed. Additional predictors are needed to recognize HNSC patients with a good response to ICIs. We collected the clinical information and mutation data of HNSC patients from Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA) databases to generate two clinical cohorts. The MSKCC cohort was used to recognize predictors related to the efficacy of ICIs, and the TCGA cohort was used to further examine the immune microenvironment features and signaling pathways that are significantly enriched in the subgroups of predictors. Multivariate Cox regression analysis indicated that age (HR = 0.50, p = 0.014) and ARID1A (HR = 0.13, p = 0.048), PIK3CA (HR = 0.45, p = 0.021), and TP53 (HR = 1.82, p = 0.035) mutations were potential predictors for ICI efficacy in HNSC patients. Age > 65 years and ARID1A or PIK3CA mutations correlated with good overall survival (OS). TP53 mutant-type (MT) patients experienced a worse prognosis than TP53 wild-type (WT) patients. The subgroups associated with a good prognosis (age > 65 years, ARID1A-MT, and PIK3CA-MT) universally had a high TMB and increased expression of immune checkpoint molecules. Although TP53-MT was associated with a high TMB, the expression of most immune checkpoint molecules and immune-related genes was lower in TP53-MT patients than TP53-WT patients, which may reflect low immunogenicity. Pathways related to the immunosuppressive tumor microenvironment were mostly enriched in the subgroups associated with a poor prognosis (age ≤ 65 years, low TMB, ARID1A-WT, PIK3CA-WT, and TP53-MT). In conclusion, the factors age > 65 years, PIK3CA-MT, and ARID1A-MT predicted favorable efficacy for ICI treatment in HNSC patients, and TP53 mutation was a negative predictor.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yonghe Li
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weimin Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Meng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Biomarkers for immune checkpoint therapy targeting programmed death 1 and programmed death ligand 1. Biomed Pharmacother 2020; 130:110621. [PMID: 34321165 DOI: 10.1016/j.biopha.2020.110621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rapidly increasing usages of immune checkpoint therapy for cancer treatment, particularly monoclonal antibodies that target programmed cell death-1 (PD-1) and its ligand PD-L1, have been achieved due to startling durable therapeutic efficacy with limited toxicity. The therapeutics significantly prolonged the overall survival and progression free survival of patients across multiple cancer types. However, the objective response rate of patients receiving this kind of treatment is substantially low. Therefore, it is of great importance to exploit reliable biomarkers that can robustly predict the therapeutic effects. Several biomarkers have been characterized for the selection of patients, which is mainly based on immunological and genetic criteria. Herein, we focus on the current progress regarding the biomarkers for anti-PD-1/PD-L1 therapy.
Collapse
|
36
|
Lin A, Zhang J, Luo P. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer. Front Immunol 2020; 11:2039. [PMID: 32903444 PMCID: PMC7435056 DOI: 10.3389/fimmu.2020.02039] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) patients, especially those with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) tumors, whose sensitivity to immune checkpoint inhibitors (ICIs) is significantly higher than that of patients with microsatellite-stable (MSS)/microsatellite instability-low (MSI-L) tumors, have derived clinical benefits from immunotherapy. Most studies have not systematically evaluated the immune characteristics and immune microenvironments of MSI-H and MSS/MSI-L CRCs. We analyzed the relationship between the MSI status and prognosis of ICI treatment in an immunotherapy cohort. We further used mutation data for the immunotherapy and The Cancer Genome Atlas (TCGA)-CRC [colon adenocarcinoma (COAD) + rectum adenocarcinoma (READ)] cohorts. For mRNA expression, mutation data analysis of the immune microenvironment and immunogenicity under different MSI statuses was performed. Compared with CRC patients with MSS/MSI-L tumors, those with MSI-H tumors significantly benefited from ICI treatment. MSI-H CRC had more immune cell infiltration, higher expression of immune-related genes, and higher immunogenicity than MSS/MSI-L CRC. The MANTIS score, which is used to predict the MSI status, was positively correlated with immune cells, immune-related genes, and immunogenicity. In addition, subtype analysis showed that COAD and READ might have different immune microenvironments. MSI-H CRC may have an inflammatory tumor microenvironment and increased sensitivity to ICIs. Unlike those of MSI-H READ, the immune characteristics of MSI-H COAD may be consistent with those of MSI-H CRC.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Li M, Wang H, Li W, Peng Y, Xu F, Shang J, Dong S, Bu L, Wang H, Wei W, Hu Q, Liu L, Zhao Q. Identification and validation of an immune prognostic signature in colorectal cancer. Int Immunopharmacol 2020; 88:106868. [PMID: 32771948 DOI: 10.1016/j.intimp.2020.106868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant neoplasms worldwide. Although the significant efficacy of immunotherapy has been shown, only limited CRC patients benefit from it. Therefore, we aimed to establish a prognostic signature based on immune-related genes (IRGs) to predict overall survival (OS) and the potential response to immunotherapy in CRC patients. METHODS Gene expression profiles and clinical information of CRC patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The prognostic signature composed of IRGs was established using univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis. CIBERSORT was used to estimate the immune cell infiltration. RESULTS A total of 24 survival-related IRGs were identified from 247 differentially expressed IRGs. Then, 16 IRGs were selected to establish the prognostic signature that stratified the patients into the high-risk and low-risk groups with statistically different survival outcomes. The AUCs of the time-dependent ROC curves indicated that the signature had a strong predictive accuracy in internal and external validation sets. Multivariate cox regression analysis suggested that the signature could also act as an independent prognostic factor for OS. The low-risk group had a higher proportion of immune cell infiltration than the high-risk group, such as CD4 memory resting T cells, activated dendritic cells, and resting dendritic cells. In addition, patients in the high-risk group exhibited higher tumor mutation burden and BRAF mutation. CONCLUSION We developed an immune-related prognostic signature to predict the OS and immune status in CRC patients. We believed that our signature is conducive to better stratification and more precise immunotherapy for CRC patients.
Collapse
Affiliation(s)
- Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shouquan Dong
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lupin Bu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hao Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wanhui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
38
|
Lyu Q, Lin A, Cao M, Xu A, Luo P, Zhang J. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control 2020; 27:1073274820976665. [PMID: 33356494 PMCID: PMC8480364 DOI: 10.1177/1073274820976665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) targeting CTLA-4 or PD1/PDL1 have achieved remarkable success in the treatment of bladder cancer (BLCA), but only a few patients have shown durable clinical benefits. The prognostic role of a mutant form of the tumor suppressor gene TP53 (TP53-MT) in predicting the efficacy of ICIs is highly controversial; therefore, in this study, we obtained data for 210 patients from an immunotherapy cohort, 412 patients from The Cancer Genome Atlas (TCGA)-BLCA cohort and 18 BLCA cell lines from Genomics of Drug Sensitivity in Cancer (GDSC), and we performed integrated bioinformatic analysis to explore the relationships between TP53-MT and clinical benefits derived from ICI treatment and the underlying mechanisms. We conclude that TP53-MT is a potential indicator of a relatively good response to ICIs and associated with prolonged overall survival (OS) (log-rank test, hazard ratio (HR) = 0.65 [95% confidence interval (CI), 0.44-0.99], p = 0.041). Through integrated analysis with several platforms, we found that TP53-MT patients were more likely to benefit from ICIs than wild-type P53 (TP53-WT) patients, which may be the result of 2 major mechanisms. First, the patients with TP53-MT showed stronger tumor antigenicity and tumor antigen presentation, as indicated by a higher tumor mutational load, a higher neoantigen load and increased expression of MHC; second, the antitumor immunity preexisting in tumors was stronger in samples with TP53-MT than in those with TP53-WT, including enrichment of interferon-gamma, positive regulation of TNF secretion pathways and increased expression of some immunostimulatory molecules, such as CXCL9 and CXCL10. This study provided some clues for identifying patients who would potentially benefit from ICIs at the somatic genomic level, developing new indications for targeted second-generation sequencing and promoting the development of precision medicine.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guang Zhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guang Zhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guang Zhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guang Zhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guang Zhou, China
| |
Collapse
|