1
|
Cao Y, Zheng H, Zhu Z, Yao L, Tian W, Cao L. Clinical and Genetic Spectrum in a Large Cohort of Hereditary Spastic Paraplegia. Mov Disord 2024; 39:651-662. [PMID: 38291924 DOI: 10.1002/mds.29728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Next-generation sequencing-based molecular assessment has benefited the diagnosis of hereditary spastic paraplegia (HSP) subtypes. However, the clinical and genetic spectrum of HSP due to large fragment deletions/duplications has yet to be fully defined. OBJECTIVE We aim to better characterize the clinical phenotypes and genetic features of HSP and to provide new thoughts on diagnosis. METHODS Whole-exome sequencing (WES) was performed in patients with clinically suspected HSP, followed by multiple ligation-dependent probe amplification (MLPA) sequentially carried out for those with negative findings in known causative genes. Genotype-phenotype correlation analyses were conducted under specific genotypes. RESULTS We made a genetic diagnosis in 60% (162/270) of patients, of whom 48.9% (132/270) had 24 various subtypes due to point mutations (SPG4/SPG11/SPG35/SPG7/SPG10/SPG5/SPG3A/SPG2/SPG76/SPG30/SPG6/SPG9A/SPG12/SPG15/SPG17/SPG18/SPG26/SPG49/SPG55/SPG56/SPG57/SPG62/SPG78/SPG80). Thirty patients were found to have causative rearrangements by MLPA (11.1%), among which SPG4 was the most prevalent (73.3%), followed by SPG3A (16.7%), SPG6 (3.3%), SPG7 (3.3%), and SPG11 (3.3%). Clinical analysis showed that some symptoms were often related to specific subtypes, and rearrangement-related SPG3A patients seemingly had later onset. We observed a presumptive anticipation among SPG4 and SPG3A families due to rearrangement. CONCLUSIONS Based on the largest known Asian HSP cohort, including the largest subgroup of rearrangement-related pedigrees, we gain a comprehensive understanding of the clinical and genetic spectrum of HSP. We propose a diagnostic flowchart to sequentially detect the causative genes in practice. Large fragment mutations account for a considerable proportion of HSP, and thus, MLPA screening acts as a beneficial supplement to routine WES. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yuwen Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Haoran Zheng
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zeyu Zhu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Suzhou Hospital of Anhui Medical University, Suzhou Municipal Hospital of Anhui Province, Suzhou, China
| | - Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
2
|
Tziortzouda P, Steyaert J, Scheveneels W, Sicart A, Stoklund Dittlau K, Barbosa Correia AM, Burg T, Pal A, Hermann A, Van Damme P, Moens TG, Van Den Bosch L. PP2A and GSK3 act as modifiers of FUS-ALS by modulating mitochondrial transport. Acta Neuropathol 2024; 147:41. [PMID: 38363426 PMCID: PMC10873455 DOI: 10.1007/s00401-024-02689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which currently lacks effective treatments. Mutations in the RNA-binding protein FUS are a common cause of familial ALS, accounting for around 4% of the cases. Understanding the mechanisms by which mutant FUS becomes toxic to neurons can provide insight into the pathogenesis of both familial and sporadic ALS. We have previously observed that overexpression of wild-type or ALS-mutant FUS in Drosophila motor neurons is toxic, which allowed us to screen for novel genetic modifiers of the disease. Using a genome-wide screening approach, we identified Protein Phosphatase 2A (PP2A) and Glycogen Synthase Kinase 3 (GSK3) as novel modifiers of FUS-ALS. Loss of function or pharmacological inhibition of either protein rescued FUS-associated lethality in Drosophila. Consistent with a conserved role in disease pathogenesis, pharmacological inhibition of both proteins rescued disease-relevant phenotypes, including mitochondrial trafficking defects and neuromuscular junction failure, in patient iPSC-derived spinal motor neurons (iPSC-sMNs). In FUS-ALS flies, mice, and human iPSC-sMNs, we observed reduced GSK3 inhibitory phosphorylation, suggesting that FUS dysfunction results in GSK3 hyperactivity. Furthermore, we found that PP2A acts upstream of GSK3, affecting its inhibitory phosphorylation. GSK3 has previously been linked to kinesin-1 hyperphosphorylation. We observed this in both flies and iPSC-sMNs, and we rescued this hyperphosphorylation by inhibiting GSK3 or PP2A. Moreover, increasing the level of kinesin-1 expression in our Drosophila model strongly rescued toxicity, confirming the relevance of kinesin-1 hyperphosphorylation. Our data provide in vivo evidence that PP2A and GSK3 are disease modifiers, and reveal an unexplored mechanistic link between PP2A, GSK3, and kinesin-1, that may be central to the pathogenesis of FUS-ALS and sporadic forms of the disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jolien Steyaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Wendy Scheveneels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Katarina Stoklund Dittlau
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Adriana Margarida Barbosa Correia
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Instituto Superior Técnico-Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Thibaut Burg
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden Rossendorf, 01328, Dresden, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- Deutsches Zentrum Fur Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas G Moens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Pedroso JL, Vale TC, Freitas JLD, Araújo FMM, Meira AT, Neto PB, França MC, Tumas V, Teive HAG, Barsottini OGP. Movement disorders in hereditary spastic paraplegias. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1000-1007. [PMID: 38035585 PMCID: PMC10689114 DOI: 10.1055/s-0043-1777005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia. OBJECTIVE To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases. METHODS We conducted a narrative review of the literature, including case reports, case series, review articles and observational studies published in English until December 2022. RESULTS Juvenile or early-onset parkinsonism with variable levodopa-responsiveness have been reported, mainly in SPG7 and SPG11. Dystonia can be observed in patients with SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 and SPG76. Tremor is not a frequent finding in patients with SPG, but it is described in different types of SPG, including SPG7, SPG9, SPG11, SPG15, and SPG76. Myoclonus is rarely described in SPG, affecting patients with SPG4, SPG7, SPG35, SPG48, and SPOAN (spastic paraplegia, optic atrophy, and neuropathy). SPG4, SPG6, SPG10, SPG27, SPG30 and SPG31 may rarely present with ataxia with cerebellar atrophy. And autosomal recessive SPG such as SPG7 and SPG11 can also present with ataxia. CONCLUSION Patients with SPG may present with different forms of movement disorders such as parkinsonism, dystonia, tremor, myoclonus and ataxia. The specific movement disorder in the clinical manifestation of a patient with SPG may be a clinical clue for the diagnosis.
Collapse
Affiliation(s)
- Jose Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil.
| | - Thiago Cardoso Vale
- Universidade Federal de Juiz de Fora, Hospital Universitário, Departamento de Clínica Médica, Serviço de Neurologia, Juiz de Fora MG, Brazil.
| | | | - Filipe Miranda Milagres Araújo
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | - Alex Tiburtino Meira
- Universidade Federal da Paraíba, Departamento de Medicina Interna, Serviço de Neurologia, João Pessoa PB, Brazil.
| | - Pedro Braga Neto
- Universidade Federal do Ceará, Departamento de Medicina Clínica, Divisão de Neurologia, Fortaleza CE, Brazil.
- Universidade Estadual do Ceará, Centro de Ciências da Saúde, Fortaleza CE, Brazil.
| | - Marcondes C. França
- Universidade Estadual de Campinas, Departamento de Neurologia, Campinas SP, Brazil.
| | - Vitor Tumas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | | | | |
Collapse
|
4
|
Xiang Y, Lyu R, Hu J. Oligomeric scaffolding for curvature generation by ER tubule-forming proteins. Nat Commun 2023; 14:2617. [PMID: 37147312 PMCID: PMC10162974 DOI: 10.1038/s41467-023-38294-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
The reticulons and receptor expression-enhancing proteins (REEPs) in the endoplasmic reticulum (ER) are necessary and sufficient for generating ER tubules. However, the mechanism of curvature generation remains elusive. Here, we systematically analyze components of the REEP family based on AI-predicted structures. In yeast REEP Yop1p, TM1/2 and TM3/4 form hairpins and TM2-4 exist as a bundle. Site-directed cross-linking reveals that TM2 and TM4 individually mediate homotypic dimerization, allowing further assembly into a curved shape. Truncated Yop1p lacking TM1 (equivalent to REEP1) retains the curvature-generating capability, undermining the role of the intrinsic wedge. Unexpectedly, both REEP1 and REEP5 fail to replace Yop1p in the maintenance of ER morphology, mostly due to a subtle difference in oligomerization tendency, which involves not only the TM domains, but also the TM-connecting cytosolic loop and previously neglected C-terminal helix. Several hereditary spastic paraplegia-causing mutations in REEP1 appear at the oligomeric interfaces identified here, suggesting compromised self-association of REEP as a pathogenic mechanism. These results indicate that membrane curvature stabilization by integral membrane proteins is dominantly achieved by curved, oligomeric scaffolding.
Collapse
Affiliation(s)
- Yun Xiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Rui Lyu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Fussiger H, Pereira BLDS, Padilha JPD, Donis KC, Siebert M, Brusius-Facchin AC, Baldo G, Saute JAM, Chen K, Virmond LA, Silva MFB, Minillo RM, Almeida TF, Pelegrino KO, Ferreira AFM, Colichio GBC, Oliveira APA, Teixeira ACB, Carlos CD, da Matta MC, Lima MM, Yamada RY, Cintra VP, Campilongo GP, Camargo SK, Oliveira TFG, Coelho AVC, de Albuquerque RS, de Souza EA, Júnior MAP, Caraciolo MP, Cervato MC, Gomes CS, Moura LMS, Guedes RLM, Barreiro RAS, Reis RS, Val FC, Oliveira JB, Siebert M, Brusius‐Facchin AC, Baldo G, Saute JAM, Rare‐Genomes Project Consortium. Copy number variations in SPAST and ATL1 are rare among Brazilians. Clin Genet 2022; 103:580-584. [PMID: 36537231 DOI: 10.1111/cge.14280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Copy number variations (CNV) may represent a significant proportion of SPG4 and SPG3A diagnosis, the most frequent autosomal dominant subtypes of hereditary spastic paraplegias (HSP). We aimed to assess the frequency of CNVs in SPAST and ATL1 and to update the molecular epidemiology of HSP families in southern Brazil. A cohort study that included 95 Brazilian index cases with clinical suspicion of HSP was conducted between April 2011 and September 2022. Multiplex Ligation Dependent Probe Amplification (MLPA) was performed in 41 cases without defined diagnosis by different massive parallel sequencing techniques (MPS). Diagnosis was obtained in 57/95 (60%) index cases, 15/57 (26.3%) being SPG4. Most frequent autosomal recessive HSP subtypes were SPG7 followed by SPG11, SPG76 and cerebrotendinous xanthomatosis. No CNVs in SPAST and ATL1 were found. Copy number variations are rare among SPG4 and SPG3A families in Brazil. Considering the possibility of CNVs detection by specific algorithms with MPS data, we consider that this is likely the most cost-effective approach to investigate CNVs in these genes in low-risk populations, with MLPA being reserved as an orthogonal confirmatory test.
Collapse
Affiliation(s)
- Helena Fussiger
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Janice Pacheco Dias Padilha
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karina Carvalho Donis
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | -
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Marina Siebert
- Laboratory Research Unit, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Guilherme Baldo
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marina Siebert
- Laboratory Research Unit, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre Brazil
| | | | - Guilherme Baldo
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre Brazil
- Department of Internal Medicine Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | |
Collapse
|
6
|
Nan H, Chu M, Liu L, Xie K, Wu L. A novel truncating variant of SPAST associated with hereditary spastic paraplegia indicates a haploinsufficiency pathogenic mechanism. Front Neurol 2022; 13:1005544. [DOI: 10.3389/fneur.2022.1005544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
IntroductionHereditary spastic paraplegias (HSPs) are genetic neurodegenerative diseases. The most common form of pure HSP that is inherited in an autosomal dominant manner is spastic paraplegia type 4 (SPG4), which is caused by mutations in the SPAST gene. Different theories have been proposed as the mechanism underlying SPAST-HSP for different types of genetic mutations, including gain- and loss-of-function mechanisms. To better understand the mutation mechanisms, we performed genetic analysis and investigated a truncating SPAST variant that segregated with disease in one family.Objectives and methodsWe described a pure HSP pedigree with family members across four generations. We performed genetic analysis and investigated a novel frameshift pathogenic variant (c.862_863dupAC, p. H289Lfs*27) in this family. We performed reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, and quantitative RT-PCR using total RNA from an Epstein-Barr virus-induced lymphoblastoid cell line produced from the proband. We also performed Western blotting on cell lysates to investigate if the protein expression of spastin is affected by this variant.ResultsThis variant (c.862_863dupAC, p. H289Lfs*27) co-segregated with pure HSP in this family and is not registered in any public database. Measurement of SPAST transcripts in lymphoblasts from the proband demonstrated a reduction of SPAST transcript levels through likely nonsense-mediated mRNA decay. Immunoblot analyses demonstrated a reduction of spastin protein expression levels in lymphoblasts.ConclusionWe report an SPG4 family with a novel heterozygous frameshift variant p.H289Lfs*27 in SPAST. Our study implies haploinsufficiency as the pathogenic mechanism for this variant and expands the known mutation spectrum of SPAST.
Collapse
|
7
|
ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A 2022; 119:2117554119. [PMID: 35101986 PMCID: PMC8833162 DOI: 10.1073/pnas.2117554119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 01/03/2023] Open
Abstract
Portions of the endoplasmic reticulum (ER) are degraded by autophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins. We show that ER-phagy requires assembly of actin at sites of contact between the edges of ER sheets and endocytic pits on the plasma membrane. Actin assembly may help to bring an element of the ER carrying the selective autophagy receptor Atg40 into the cell interior, where it associates with Atg11, a scaffold needed to recruit components for autophagosome assembly. Understanding the mechanism by which regions of the ER are selected for degradation and sequestered within autophagosomes may help in the development of novel approaches to treat diseases that result from the accumulation of misfolded proteins within the ER. Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.
Collapse
|
8
|
A novel insertion mutation in atlastin 1 is associated with spastic quadriplegia, increased membrane tethering, and aberrant conformational switching. J Biol Chem 2021; 298:101438. [PMID: 34808209 PMCID: PMC8688574 DOI: 10.1016/j.jbc.2021.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/07/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neuropathies affecting upper motor neurons and causing progressive gait disorder. Mutations in the gene SPG3A/atlastin-1 (ATL1), encoding a dynamin superfamily member, which utilizes the energy from GTP hydrolysis for membrane tethering and fusion to promote the formation of a highly branched, smooth endoplasmic reticulum (ER), account for approximately 10% of all HSP cases. The continued discovery and characterization of novel disease mutations are crucial for our understanding of HSP pathogenesis and potential treatments. Here, we report a novel disease-causing, in-frame insertion in the ATL1 gene, leading to inclusion of an additional asparagine residue at position 417 (N417ins). This mutation correlates with complex, early-onset spastic quadriplegia affecting all four extremities, generalized dystonia, and a thinning of the corpus callosum. We show using limited proteolysis and FRET-based studies that this novel insertion affects a region in the protein central to intramolecular interactions and GTPase-driven conformational change, and that this insertion mutation is associated with an aberrant prehydrolysis state. While GTPase activity remains unaffected by the insertion, membrane tethering is increased, indicative of a gain-of-function disease mechanism uncommon for ATL1-associated pathologies. In conclusion, our results identify a novel insertion mutation with altered membrane tethering activity that is associated with spastic quadriplegia, potentially uncovering a broad spectrum of molecular mechanisms that may affect neuronal function.
Collapse
|
9
|
Rudenskaya GE, Kadnikova VA, Bessonova LA, Sparber PA, Kurbatov SA, Mironovich OL, Konovalov FA, Ryzhkova OP. [Autosomal dominant spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:75-87. [PMID: 34184482 DOI: 10.17116/jnevro202112105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To estimate the proportion and spectrum of infrequent autosomal dominant spastic paraplegias in a group of families with DNA-confirmed diagnosis and to investigate their molecular and clinical characteristics. MATERIAL AND METHODS Ten families with 6 AD-SPG: SPG6 (n=1), SPG8 (n=2), SPG9A (n=1), SPG12 (n=1), SPG17 (n=3), SPG31 (n=2) were studied using clinical, genealogical, molecular-genetic (massive parallel sequencing, spastic paraplegia panel, whole-exome sequencing, multiplex ligation-dependent amplification, Sanger sequencing) and bioinformatic methods. RESULTS AND CONCLUSION Nine heterozygous mutations were detected in 6 genes, including the common de novo mutation p.Gly106Arg in NIPA1 (SPG6), the earlier reported mutation p.Val626Phe in WASHC5 (SPG8) in isolated case and the novel p.Val695Ala in WASHC5 (SPG8) in a family with 4 patients, the novel mutation p.Thr301Arg in RTN2 (SPG12) in a family with 2 patients, the novel mutation c.105+4A>G in REEP1 (SPG31) in a family with 4 patients and the reported earlier p.Lys101Lys in REEP1 (SPG31) in a family with 3 patients, the known de novo mutation p.Arg252Gln in ALDH18A1 (SPG9A) in two monozygous twins; the common mutation p.Ser90Leu in BSCL2 (SPG17) in a family with 3 patients and in isolated case, reported mutation p.Leu363Pro in a family with 2 patients. SPG6, SPG8, SPG12 and SPG31 presented 'pure' phenotypes, SPG31 had most benign course. Age of onset varied in SPG31 family and was atypically early in SPG6 case. Patients with SPG9A and SPG17 had 'complicated' paraplegias; amyotrophy of hands typical for SPG17 was absent in a child and in an adolescent from 2 families, but may develop later.
Collapse
Affiliation(s)
- G E Rudenskaya
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - V A Kadnikova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - L A Bessonova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - P A Sparber
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - S A Kurbatov
- Voronezh Regional Clinical Consultative and Diagnostic Center, Vodonezh, Russia
| | - O L Mironovich
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - F A Konovalov
- Genomed LLC, Laboratory of Clinical Bioinformatics, Moscow, Russia
| | - O P Ryzhkova
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| |
Collapse
|
10
|
Erfanian Omidvar M, Torkamandi S, Rezaei S, Alipoor B, Omrani MD, Darvish H, Ghaedi H. Genotype-phenotype associations in hereditary spastic paraplegia: a systematic review and meta-analysis on 13,570 patients. J Neurol 2021; 268:2065-2082. [PMID: 31745725 DOI: 10.1007/s00415-019-09633-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022]
Abstract
AIMS The hereditary spastic paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders. Although, several genotype-phenotype studies have carried out on HSPs, the association between genotypes and clinical phenotypes remain incomplete since most studies are small in size or restricted to a few genes. Accordingly, this study provides the systematic meta-analysis of genotype-phenotype associations in HSP. METHODS AND RESULTS We retrieved literature on genotype-phenotype associations in patients with HSP and mutated SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54, SPG5. In total, 147 studies with 13,570 HSP patients were included in our meta-analysis. The frequency of mutations in SPAST (25%) was higher than REEP1 (3%), as well as ATL1 (5%) in AD-HSP patients. As for AR-HSP patients, the rates of mutations in SPG11 (18%), SPG15 (7%) and SPG7 (13%) were higher than SPG5 (5%), as well as SPG35 (8%) and SPG54 (7%). The mean age of AD-HSP onset for ATL1 mutation-positive patients was earlier than patients with SPAST, REEP1 mutations. Also, the tendency toward younger age at AR-HSP onset for SPG35 was higher than other mutated genes. It is noteworthy that the mean age at HSP onset ranged from infancy to adulthood. As for the gender distribution, the male proportion in SPG7-HSP (90%) and REEP1-HSP (78%) was markedly high. The frequency of symptoms was varied among patients with different mutated genes. The rates of LL weakness, superficial sensory abnormalities, neuropathy, and deep sensory impairment were noticeably high in REEP1 mutations carriers. Also, in AR-HSP patients with SPG11 mutations, the presentation of symptoms including pes cavus, Neuropathy, and UL spasticity was higher. CONCLUSION Our comprehensive genotype-phenotype assessment of available data displays that the mean age at disease onset and particular sub-phenotypes are associated with specific mutated genes which might be beneficial for a diagnostic procedure and differentiation of the specific mutated genes phenotype among diverse forms of HSP.
Collapse
Affiliation(s)
- Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Parmedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak St., Shahid Chamran Highway, Tehran, IR, Iran.
| |
Collapse
|
11
|
Nan H, Okamoto K, Gao L, Morishima Y, Ichinose Y, Koh K, Hashiyada M, Adachi N, Takiyama Y. A Japanese SPG4 Patient with a Confirmed De Novo Mutation of the SPAST Gene. Intern Med 2020; 59:2311-2315. [PMID: 32522921 PMCID: PMC7578612 DOI: 10.2169/internalmedicine.4599-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spastic paraplegia type 4 (SPG4) is caused by mutations of the SPAST gene and is the most common form of autosomal-dominantly inherited pure hereditary spastic paraplegia (HSP). We herein report a Japanese patient with SPG4 with a confirmed de novo mutation of SPAST. On exome sequencing and Sanger sequencing, we identified the heterozygous missense mutation p.R460L in the SPAST gene. This mutation was absent in the parents, and the paternity and maternity of the parents were both confirmed. The patient showed a pure SPG4 phenotype with an infantile onset. This study may expand the clinical and genetic findings for SPG4.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Kensho Okamoto
- Department of Neurology, Ehime Prefectural Central Hospital, Japan
| | - Lihua Gao
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yuto Morishima
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yuta Ichinose
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | | | - Noboru Adachi
- Department of Legal Medicine, Graduate School of Medical Sciences, University of Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Japan
| |
Collapse
|
12
|
Ma X, He J, Liu X, Fan D. Screening for REEP1 Mutations in 31 Chinese Hereditary Spastic Paraplegia Families. Front Neurol 2020; 11:499. [PMID: 32655478 PMCID: PMC7325443 DOI: 10.3389/fneur.2020.00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background: REEP1 is a common cause of autosomal dominant hereditary spastic paraplegia (HSP) but is rare in China. The pathological mechanism of REEP1 is not fully understood. Methods: We screened for REEP1 mutations in 31 unrelated probands from Chinese HSP families using next-generation sequencing targeting pathogenic genes for HSP and other related diseases. All variants were validated by Sanger sequencing. The proband family members were also screened for variants for the segregation analysis. All previously reported REEP1 mutations and cases were reviewed to clarify the genetic and clinical features of REEP1-related HSP. Results: A pathogenic mutation, REEP1c. 125G>A (p.Trp42*), was detected in a pure HSP family from North China out of 31 HSP families (1/31). This locus, which is located in the second hydrophobic domain of REEP1, is detected in both Caucasian patients with complicated HSP phenotypes and Chinese pure HSP families. Conclusion: REEP1-related HSP can be found in the Chinese population. The 42nd residue is a novel transethnic mutation hotspot. Mutations in this spot can lead to both complicated and pure form of HSP. Identification of transethnic hotspot will contribute to clarify the underlying pathological mechanisms.
Collapse
Affiliation(s)
- Xinran Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
13
|
Schieving JH, de Bot ST, van de Pol LA, Wolf NI, Brilstra EH, Frints SG, van Gaalen J, Misra-Isrie M, Pennings M, Verschuuren-Bemelmans CC, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. De novo SPAST mutations may cause a complex SPG4 phenotype. Brain 2020; 142:e31. [PMID: 31157359 DOI: 10.1093/brain/awz140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Jolanda H Schieving
- Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Department of Pediatric Neurology, Nijmegen, The Netherlands
| | - Susanne T de Bot
- Leiden University Medical Center, Department of Neurology, Leiden, The Netherlands
| | - Laura A van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Eva H Brilstra
- University Medical Center Utrecht, Department of Medical Genetics, Utrecht, The Netherlands
| | - Suzanna G Frints
- Maastricht University Medical Center+, Department of Clinical Genetics, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW, School for Oncology, FHML, Maastricht University, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center and Nijmegen, The Netherlands
| | - Mala Misra-Isrie
- Amsterdam University Medical Center, Department of Clinical Genetics, Amsterdam, The Netherlands
| | - Maartje Pennings
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | | | - Erik-Jan Kamsteeg
- Radboud University Medical Center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center and Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Radboud University Medical Center, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behavior, Department of Pediatric Neurology, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Kadnikova VA, Rudenskaya GE, Stepanova AA, Sermyagina IG, Ryzhkova OP. Mutational Spectrum of Spast (Spg4) and Atl1 (Spg3a) Genes In Russian Patients With Hereditary Spastic Paraplegia. Sci Rep 2019; 9:14412. [PMID: 31594988 PMCID: PMC6783457 DOI: 10.1038/s41598-019-50911-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 01/15/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) comprises a heterogeneous group of neurodegenerative disorders, it share common symptom - of progressive lower spastic paraparesis. The most common autosomal dominant (AD) forms of HSP are SPG4 (SPAST gene) and SPG3 (ATL1 gene). In the current research we investigated for the first time the distribution of pathogenic mutations in SPAST and ATL1 genes within a large cohort of Russian HSP patients (122 probands; 69 famillial cases). We determined the frequencies of genetic abnormalities using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and Next Generation Sequencing (NGS) of targeted gene panels. As a result, SPG4 was diagnosed in 30.3% (37/122) of HSP cases, where the familial cases represented 37.7% (26/69) of SPG4. In total 31 pathogenic and likely pathogenic variants were detected in SPAST, with 14 new mutations. Among all detected SPAST variants, 29% were gross deletions and duplications. The proportion of SPG3 variants in Russian cohort was 8.2% (10/122) that were all familial cases. All 10 detected ATL1 mutations were missense substitutions, most of which were in the mutational hot spots of 4, 7, 8, 12 exons, with 2 novel mutations. This work will be helpful for the populational genetics of HSP understanding.
Collapse
Affiliation(s)
- V A Kadnikova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia.
| | - G E Rudenskaya
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - A A Stepanova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - I G Sermyagina
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| | - O P Ryzhkova
- Federal State Budgetary Institution "Research Centre For Medical Genetics", Moscow, 115478, Russia
| |
Collapse
|
15
|
Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications. Semin Cell Dev Biol 2019; 99:133-150. [PMID: 31542222 DOI: 10.1016/j.semcdb.2019.07.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/22/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Because of the extremely polarized morphology, the proper functioning of neurons largely relies on the efficient cargo transport along the axon. Axonal transport defects have been reported in multiple neurodegenerative diseases as an early pathological feature. The discovery of mutations in human genes involved in the transport machinery provide a direct causative relationship between axonal transport defects and neurodegeneration. Here, we summarize the current genetic findings related to axonal transport in neurodegenerative diseases, and we discuss the relationship between axonal transport defects and other pathological changes observed in neurodegeneration. In addition, we summarize the therapeutic approaches targeting the axonal transport machinery in studies of neurodegenerative diseases. Finally, we review the technical advances in tracking axonal transport both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Katarina Stoklund Dittlau
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
16
|
Sandate CR, Szyk A, Zehr EA, Lander GC, Roll-Mecak A. An allosteric network in spastin couples multiple activities required for microtubule severing. Nat Struct Mol Biol 2019; 26:671-678. [PMID: 31285604 PMCID: PMC6761829 DOI: 10.1038/s41594-019-0257-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
The AAA+ ATPase spastin remodels microtubule arrays through severing and its mutation is the most common cause of hereditary spastic paraplegias (HSP). Polyglutamylation of the tubulin C-terminal tail recruits spastin to microtubules and modulates severing activity. Here, we present a ~3.2 Å resolution cryo-EM structure of the Drosophila melanogaster spastin hexamer with a polyglutamate peptide bound in its central pore. Two electropositive loops arranged in a double-helical staircase coordinate the substrate sidechains. The structure reveals how concurrent nucleotide and substrate binding organizes the conserved spastin pore loops into an ordered network that is allosterically coupled to oligomerization, and suggests how tubulin tail engagement activates spastin for microtubule disassembly. This allosteric coupling may apply generally in organizing AAA+ protein translocases into their active conformations. We show that this allosteric network is essential for severing and is a hotspot for HSP mutations.
Collapse
Affiliation(s)
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
17
|
Xiao XW, Du J, Jiao B, Liao XX, Zhou L, Liu XX, Yuan ZH, Guo LN, Wang X, Shen L, Lin ZY. Novel ATL1 mutation in a Chinese family with hereditary spastic paraplegia: A case report and review of literature. World J Clin Cases 2019; 7:1358-1366. [PMID: 31236401 PMCID: PMC6580333 DOI: 10.12998/wjcc.v7.i11.1358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hereditary spastic paraplegias (HSPs) refer to a group of heterogeneous neurodegenerative diseases characterized by lower limbs spasticity and weakness. So far, over 72 genes have been found to cause HSP (SPG1-SPG72). Among autosomal dominant HSP patients, spastic paraplegia 4 (SPG4/SPAST) gene is the most common pathogenic gene, and atlastin-1 (ATL1) is the second most common one. Here we reported a novel ATL1 mutation in a Chinese spastic paraplegia 3A (SPG3A) family, which expands the clinical and genetic spectrum of ATL1 mutations.
CASE SUMMARY A 9-year-old boy with progressive spastic paraplegia accompanied by right hearing loss and mental retardation for five years was admitted to our hospital. Past history was unremarkable. The family history was positive, and his grandfather and mother had similar symptoms. Neurological examinations revealed hypermyotonia in his lower limbs, hyperreflexia in knee reflex, bilateral positive Babinski signs and scissors gait. The results of blood routine test, liver function test, blood glucose test, ceruloplasmin test and vitamin test were all normal. The serum lactic acid level was significantly increased. The testing for brainstem auditory evoked potential demonstrated that the right side hearing was impaired while the left was normal. Magnetic resonance imaging showed mild atrophy of the spinal cord. The gene panel test revealed that the proband carried an ATL1 c.752A>G p.Gln251Arg (p.Q251R) mutation, and Sanger sequencing confirmed the existence of family co-segregation.
CONCLUSION We reported a novel ATL1 Q251R mutation and a novel clinical phenotype of hearing loss in a Chinese SPG3A family.
Collapse
Affiliation(s)
- Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xi-Xi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zhen-Hua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan Province, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, Hunan Province, China
| | - Zhang-Yuan Lin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
18
|
Kadnikova VA, Ryzhkova OP, Rudenskaya GE, Polyakov AV. Molecular Genetic Diversity and DNA Diagnostics of Hereditary Spastic Paraplegia. ACTA ACUST UNITED AC 2019. [DOI: 10.1134/s2079086419020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rudenskaya GE, Kadnikova VA, Ryzhkova OP. [Common forms of hereditary spastic paraplegias]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:94-104. [PMID: 30874534 DOI: 10.17116/jnevro201911902194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A group of hereditary spastic paraplegias includes about 80 spastic paraplegia genes (SPG): forms with identified (almost 70) or only mapped (about 10) genes. Methods of next generation sequencing (NGS), along with new SPG discovering, modify knowledge about earlier delineated SPG. Clinical and genetic characteristics of common autosomal dominant (SPG4, SPG3, SPG31) and autosomal recessive (SPG11, SPG7, SPG15) forms are presented.
Collapse
Affiliation(s)
| | - V A Kadnikova
- Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
20
|
Elert-Dobkowska E, Stepniak I, Krysa W, Ziora-Jakutowicz K, Rakowicz M, Sobanska A, Pilch J, Antczak-Marach D, Zaremba J, Sulek A. Next-generation sequencing study reveals the broader variant spectrum of hereditary spastic paraplegia and related phenotypes. Neurogenetics 2019; 20:27-38. [PMID: 30778698 PMCID: PMC6411833 DOI: 10.1007/s10048-019-00565-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurodegenerative disorders. Numerous genes linked to HSPs, overlapping phenotypes between HSP subtypes and other neurodegenerative disorders and the HSPs’ dual mode of inheritance (both dominant and recessive) make the genetic diagnosis of HSPs complex and difficult. Out of the original HSP cohort comprising 306 index cases (familial and isolated) who had been tested according to “traditional workflow/guidelines” by Multiplex Ligation-dependent Probe Amplification (MLPA) and Sanger sequencing, 30 unrelated patients (all familial cases) with unsolved genetic diagnoses were tested using next-generation sequencing (NGS). One hundred thirty-two genes associated with spastic paraplegias, hereditary ataxias and related movement disorders were analysed using the Illumina TruSight™ One Sequencing Panel. The targeted NGS data showed pathogenic variants, likely pathogenic variants and those of uncertain significance (VUS) in the following genes: SPAST (spastin, SPG4), ATL1 (atlastin 1, SPG3), WASHC5 (SPG8), KIF5A (SPG10), KIF1A (SPG30), SPG11 (spatacsin), CYP27A1, SETX and ITPR1. Out of the nine genes mentioned above, three have not been directly associated with the HSP phenotype to date. Considering the phenotypic overlap and joint cellular pathways of the HSP, spinocerebellar ataxia (SCA) and amyotrophic lateral sclerosis (ALS) genes, our findings provide further evidence that common genetic testing may improve the diagnostics of movement disorders with a spectrum of ataxia-spasticity signs.
Collapse
Affiliation(s)
- Ewelina Elert-Dobkowska
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Karolina Ziora-Jakutowicz
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Pilch
- Department of Paediatric Neurology, Medical University of Silesia, Katowice, Poland
| | - Dorota Antczak-Marach
- Clinic of Neurology of Children and Adolescents, Institute of Mother and Child, Warsaw, Poland
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland.,Division Five of Medical Sciences, Polish Academy of Science, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957, Warsaw, Poland.
| |
Collapse
|
21
|
Rudenskaya GE, Kadnikova VA, Sidorova OP, Beetz C, Illarioshkin SN, Dadaly EL, Proskokova TN, Ryzhkova OP. Hereditary spastic paraplegia type 4 (SPG4) in Russian patients. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:11-20. [DOI: 10.17116/jnevro201911911111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Mészárosová AU, Grečmalová D, Brázdilová M, Dvořáčková N, Kalina Z, Čermáková M, Vávrová D, Smetanová I, Staněk D, Seeman P. Disease-Causing Variants in the ATL1 Gene Are a Rare Cause of Hereditary Spastic Paraplegia among Czech Patients. Ann Hum Genet 2017; 81:249-257. [PMID: 28736820 DOI: 10.1111/ahg.12206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022]
Abstract
Variants in the ATL1 gene have been repeatedly described as the second most frequent cause of hereditary spastic paraplegia (HSP), a motor neuron disease manifested by progressive lower limb spasticity and weakness. Variants in ATL1 have been described mainly in patients with early onset HSP. We performed Sanger sequencing of all coding exons and adjacent intron regions of the ALT1 gene in 111 Czech patients with pure form of HSP and additional Multiplex-Ligation Probe Analysis (MLPA) testing targeting the ATL1 gene in 56 of them. All patients except seven were previously tested by Sanger sequencing of the SPAST gene with negative results. ATL1 diagnostic testing revealed only five missense variants in the ATL1 gene. Four of them are novel, but we suppose only two of them to be pathogenic and causal. The remaining variants are assumed to be benign. MLPA testing in 56 of sequence variant negative patients revealed no gross deletion in the ATL1 gene. Variants in the ATL1 gene are more frequent in patients with early onset HSP, but in general the occurrence of pathogenic variants in the ATL1 gene is low in our cohort, less than 4.5% and less than 11.1% in patients with onset before the age of ten. Variants in the ATL1 gene are a less frequent cause of HSP among Czech patients than has been previously reported among other populations.
Collapse
Affiliation(s)
- Anna Uhrová Mészárosová
- DNA Laboratory, Department of Child Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Dagmar Grečmalová
- Department of Medical Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
| | - Michaela Brázdilová
- Department of Child Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Nina Dvořáčková
- Department of Medical Genetics, Faculty Hospital Ostrava, Ostrava, Czech Republic
| | - Zdeněk Kalina
- Department of Medical Genetics, Faculty Hospital Brno, Brno, Czech Republic
| | - Marie Čermáková
- Centre for Medical Genetics and Reproductive Medicine GENNET, Prague, Czech Republic
| | - Dagmar Vávrová
- Centre for Medical Genetics and Reproductive Medicine GENNET, Prague, Czech Republic
| | - Irena Smetanová
- Centre for Medical Genetics and Reproductive Medicine GENNET, Prague, Czech Republic
| | - David Staněk
- DNA Laboratory, Department of Child Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic
| | - Pavel Seeman
- DNA Laboratory, Department of Child Neurology, Charles University 2nd Medical School and University Hospital Motol, Prague, Czech Republic.,Centre for Medical Genetics and Reproductive Medicine GENNET, Prague, Czech Republic
| |
Collapse
|
23
|
Zhao GH, Liu XM. Clinical features and genotype-phenotype correlation analysis in patients with ATL1 mutations: A literature reanalysis. Transl Neurodegener 2017; 6:9. [PMID: 28396731 PMCID: PMC5379717 DOI: 10.1186/s40035-017-0079-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background The hereditary spastic paraplegias (HSPs) are a group of clinically and genetically heterogeneous disorders. Approximately 10% of the autosomal dominant (AD) HSPs (ADHSPs) have the spastic paraplegia 3A (SPG3A) genotype which is caused by ATL1 gene mutations. Currently there are more than 60 reported ATL1 gene mutations and the genotype-phenotype correlation remains unclear. The study aims to investigate the genotype-phenotype correlation in SPG3A patients. Methods We performed a reanalysis of the clinical features and genotype-phenotype correlations in 51 reported studies exhibiting an ATL1 gene mutation. Results Most HSPs-SPG3A patients exhibited an early age at onset (AAO) of <10 years old, and showed an autosomal dominant pure spastic paraplegia. We found that 14% of the HSPs-SPG3A patients presented complicated phenotypes, with distal atrophy being the most common complicated symptom. The AAO of each mutation group was not statistically significant (P > 0.05). The mutational spectrum associated with ATL1 gene mutation is wide, and most mutations are missense mutations, but do not involve the functional motif of ATL1 gene encoded atlastin-1 protein. Conclusions Our findings indicate that there is no clear genotype-phenotype correlation in HSPs-SPG3A patients. We also find that exons 4, 7, 8 and 12 are mutation hotspots in ATL1 gene. Electronic supplementary material The online version of this article (doi:10.1186/s40035-017-0079-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Hua Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China.,Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000 China
| | - Xiao-Min Liu
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, 16766 China
| |
Collapse
|