1
|
Ma L, Zhang Y, Luo Z, Zheng L, Jiang Y, Zou M, Zheng Y, Kong L, Wang X. Discovery of phenylisoxazolidine analogs targeting receptor interacting protein kinase 1 with anti-inflammatory activity. Eur J Med Chem 2025; 290:117530. [PMID: 40153932 DOI: 10.1016/j.ejmech.2025.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Receptor Interacting Protein Kinase1 (RIPK1) is a key regulator of necroptosis and plays an important role in various inflammatory signaling and cell death processes. GSK963 has been reported to inhibit RIPK1 with limited anti-necroptotic effect. We designed and prepared a series of phenylisoxazolidine analogs based on GSK963 to improve their anti-necroptotic activity. After several turns of structure activity relationship (SAR) studies, compound 22, encoded with KWML-22, was found to have good anti-necroptotic activity (EC50 = 30.0 nM) and enzymatic activity (IC50 = 6.9 nM) against RIPK1. In a TNF-α-induced inflammation in vivo model, a dose of 10 mg/kg protected mice from hypothermia and death. Our results suggest that 22 is a promising lead compound for the study of inflammatory diseases.
Collapse
Affiliation(s)
- Liangliang Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Long Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuhan Jiang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Meiting Zou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yiwei Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
2
|
Feng K, Li J, Li J, Li Z, Li Y. Prognostic implications of ERLncRNAs in ccRCC: a novel risk score model and its association with tumor mutation burden and immune microenvironment. Discov Oncol 2025; 16:225. [PMID: 39985635 PMCID: PMC11846825 DOI: 10.1007/s12672-025-01870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
INTRODUCTION/BACKGROUND The specific role of efferocytosis-related long noncoding RNAs (ERLncRNAs) in Clear Cell Renal Cell Carcinoma (ccRCC) has not been thoroughly examined. This study aims to identify and validate a signature of ERLncRNAs for prognostic prediction and characterization of the immune landscape in individuals with ccRCC. MATERIALS AND METHODS Analysis of ccRCC samples was conducted by utilizing clinical and RNA sequencing information obtained from The Cancer Genome Atlas (TCGA). Pearson correlation analysis was utilized to identify lncRNAs associated with efferocytosis, which was then used to create a new prognostic model through univariate Cox regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise multivariate Cox analysis. In order to investigate the biological significance, we performed a functional enrichment analysis to assess how well the model predicts outcomes. Differences in the immune landscape were observed through a comparison of immune cell infiltration, tumor mutational burden (TMB), and tumor microenvironment (TME) characteristics. Following this, drug sensitivity analysis was conducted. RESULTS This led to the identification of a unique signature consisting of seven ERLncRNAs (LINC01615, RUNX3-AS1, FOXD2-AS1, AC002070.1, LINC02747, LINC00944, and AC092296.1). Model performance was measured by Kaplan-Meier curves and receiver operating characteristic (ROC) curves. The nomogram and C-index provided additional validation of the strong correlation between the risk signature and clinical decision-making. CONCLUSION On the whole, our innovative signature exhibits potential for prognostic prediction and assessment of immunotherapeutic response in patients with ccRCC.
Collapse
Affiliation(s)
- Kunlun Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250013, Shandong, China
| | - Jingxiang Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianye Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhichao Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Yahui Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
3
|
Yao K, Shi Z, Zhao F, Tan C, Zhang Y, Fan H, Wang Y, Li X, Kong J, Wang Q, Li D. RIPK1 in necroptosis and recent progress in related pharmaceutics. Front Immunol 2025; 16:1480027. [PMID: 40007541 PMCID: PMC11850271 DOI: 10.3389/fimmu.2025.1480027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Necroptosis is a programmed form of cell death. Receptor-interacting serine/threonine protein kinase l (RIPK1) is a crucial protein kinase that regulates the necroptosis pathway. Increased expression of death receptor family ligands such as tumor necrosis factor (TNF) increases the susceptibility of cells to apoptosis and necroptosis. RIPK1, RIPK3, and mixed-lineage kinase-like domain (MLKL) proteins mediate necrosis. RIPK1-mediated necroptosis further promotes cell death and inflammation in the pathogenesis of liver injury, skin diseases, and neurodegenerative diseases. The N-terminal kinase domain of RIPK1 is significant in the induction of cell death and can be used as a vital drug target for inhibitors. In this paper, we outline the pathways of necroptosis and the role RIPK1 plays in them and suggest that targeting RIPK1 in therapy may help to inhibit multiple cell death pathways.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhihao Shi
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Fengya Zhao
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Cong Tan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yixin Zhang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yingzhe Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Kong
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Dingxi Li
- Department of Gynaecology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Amusan OT, Wang S, Yin C, Koehler HS, Li Y, Tenev T, Wilson R, Bellenie B, Zhang T, Wang J, Liu C, Seong K, Poorbaghi SL, Yates J, Shen Y, Upton JW, Meier P, Balachandran S, Guo H. RIPK1 is required for ZBP1-driven necroptosis in human cells. PLoS Biol 2025; 23:e3002845. [PMID: 39982916 PMCID: PMC11844899 DOI: 10.1371/journal.pbio.3002845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 02/23/2025] Open
Abstract
Necroptosis initiated by the host sensor Z-NA binding protein 1 (ZBP1) is essential for host defense against a growing number of viruses, including herpes simplex virus 1 (HSV-1). Studies with HSV-1 and other necroptogenic stimuli in murine settings have suggested that ZBP1 triggers necroptosis by directly complexing with the kinase RIPK3. Whether this is also the case in human cells, or whether additional co-factors are needed for ZBP1-mediated necroptosis, is unclear. Here, we show that ZBP1-induced necroptosis in human cells requires RIPK1. We have found that RIPK1 is essential for forming a stable and functional ZBP1-RIPK3 complex in human cells, but is dispensable for the formation of the equivalent murine complex. The receptor-interacting protein (RIP) homology interaction motif (RHIM) in RIPK3 is responsible for this difference between the 2 species, because replacing the RHIM in human RIPK3 with the RHIM from murine RIPK3 is sufficient to overcome the requirement for RIPK1 in human cells. These observations describe a critical mechanistic difference between mice and humans in how ZBP1 engages in necroptosis, with important implications for treating human diseases.
Collapse
Affiliation(s)
- Oluwamuyiwa T. Amusan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Shuqi Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Chaoran Yin
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Heather S. Koehler
- School of Molecular Biosciences, Washington State University, Pullman, Washington State, United States of America
| | - Yixun Li
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London, United Kingdom
| | - Ting Zhang
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Chang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kim Seong
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Seyedeh L. Poorbaghi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Joseph Yates
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Yuchen Shen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jason W. Upton
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Siddharth Balachandran
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Hongyan Guo
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
5
|
Gonen OM, Porter T, Wang B, Xue F, Ma Y, Song L, Sun P, Fan W, Shen Y. Safety, Pharmacokinetics and Target Engagement of a Novel Brain Penetrant RIPK1 Inhibitor (SIR9900) in Healthy Adults and Elderly Participants. Clin Transl Sci 2025; 18:e70151. [PMID: 39960838 PMCID: PMC11832029 DOI: 10.1111/cts.70151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Receptor-interacting serine/threonine kinase 1 (RIPK1) regulates inflammatory signaling and induces apoptosis and necroptosis. Pharmacological inhibition of RIPK1 kinase activity has demonstrated efficacy in animal models of neurodegenerative, autoimmune and inflammatory diseases. SIR9900 is a potent and selective novel small molecule RIPK1 inhibitor. This first-in-human, phase I, randomized, double-blind, placebo-controlled study evaluated the safety, pharmacokinetics, and pharmacodynamics of single (3-200 mg) and multiple (3-60 mg daily for 10 days) ascending oral doses of SIR9900 in healthy adult (18-64 years, n = 80) and elderly participants (≥ 65 years, multiple doses 30 mg, n = 8). The study included a food effect component. Overall, SIR9900 was safe and well tolerated with no concerning dose-dependent trends in safety observed. SIR9900 was rapidly absorbed with a plasma maximum concentration time (Tmax) of 3.0-4.0 h and plasma half-life (t1/2) of 31.92-37.75 h following single doses. Similar Tmax and t1/2 results were observed following multiple doses. Systemic exposure to SIR9900 increased in a dose-proportional manner and was similar between adult and elderly participants. No appreciable food effect was observed. The cerebrospinal fluid to unbound plasma ratio was 1.15. A robust pharmacodynamic effect was demonstrated with approximately 90% peripheral target engagement at 3 h post-dose, and sustained RIPK1 inhibition over the 10-day treatment period. The promising safety, pharmacokinetic, and pharmacodynamic profile of SIR9900 with central nervous system penetrating potential in healthy adult and elderly participants supports its further clinical development in patients with inflammatory and degenerative diseases, particularly in the central nervous system.
Collapse
Affiliation(s)
| | - Tim Porter
- Avance Clinical Pty LtdAdelaideSouth AustraliaAustralia
| | - Buwei Wang
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Fenchao Xue
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Yongfen Ma
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Linan Song
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Pei Sun
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Weiliang Fan
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| | - Yang Shen
- Sironax Aus Pty Ltd (a Subsidiary of Sironax Ltd)SydneyNew South WalesAustralia
| |
Collapse
|
6
|
Wang J, Tao X, Liu Z, Yan Y, Cheng P, Liu B, Du H, Niu B. Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications. Pharmacol Res 2025; 212:107596. [PMID: 39800175 DOI: 10.1016/j.phrs.2025.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies. Recent studies have demonstrated the importance of non-coding RNAs (ncRNAs) in the development and progression of SA-ALI. This review focuses on the critical roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating "cytokine storms", oxidative stress, mitochondrial dysfunction, and programmed cell death in SA-ALI, and summarizes the current state and limitations of existing studies on lncRNAs and circRNAs in SA-ALI. By integrating advancements in high-throughput sequencing technologies, this review provides novel insights into the dual potential of ncRNAs as diagnostic biomarkers and therapeutic targets, offers new ideas for SA-ALI diagnosis and treatment research and highlights potential challenges in clinical translation.
Collapse
Affiliation(s)
- Jialian Wang
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Xingyu Tao
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400016, China
| | - Yuan Yan
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Peifeng Cheng
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Bin Liu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Bailin Niu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China.
| |
Collapse
|
7
|
Wang Y, Weng L, Wu X, Du B. The role of programmed cell death in organ dysfunction induced by opportunistic pathogens. Crit Care 2025; 29:43. [PMID: 39856779 PMCID: PMC11761187 DOI: 10.1186/s13054-025-05278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from pathogen infection and characterized by organ dysfunction. Programmed cell death (PCD) during sepsis has been associated with the development of multiple organ dysfunction syndrome (MODS), impacting various physiological systems including respiratory, cardiovascular, renal, neurological, hematological, hepatic, and intestinal systems. It is well-established that pathogen infections lead to immune dysregulation, which subsequently contributes to MODS in sepsis. However, recent evidence suggests that sepsis-related opportunistic pathogens can directly induce organ failure by promoting PCD in parenchymal cells of each affected organ. This study provides an overview of PCD in damaged organ and the induction of PCD in host parenchymal cells by opportunistic pathogens, proposing innovative strategies for preventing organ failure in sepsis.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xunyao Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Bin Du
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
8
|
Zhang P, Liu W, Wang S, Wang Y, Han H. Ferroptosisand Its Role in the Treatment of Sepsis-Related Organ Injury: Mechanisms and Potential Therapeutic Approaches. Infect Drug Resist 2024; 17:5715-5727. [PMID: 39720615 PMCID: PMC11668052 DOI: 10.2147/idr.s496568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis is a complicated clinical disease caused by a defective host response to infection, leading to elevated morbidity and fatality globally. Sepsis patients have a significant risk of life-threatening organ damage, including hearts, brains, lungs, kidneys, and livers. Nevertheless, the molecular pathways driving organ injury in sepsis are not well known. Ferroptosis, a non-apoptotic cell death, occurs due to iron metabolism disturbance and lipid peroxide buildup. Multiple studies indicate that ferroptosis has a significant role in decreasing inflammation and lipid peroxidation during sepsis. Ferroptosis inhibitors and medications, aimed at the most studied ferroptosis process, including Xc-system, Nrf2/GPX4 axis, and NCOA4-FTH1-mediated ferritinophagy, alleviating sepsis effectively. However, few clinical trials demonstrated ferroptosis-targeted drugs's effectiveness in sepsis. Our study examines ferroptosis-targeted medicinal agents and their potential benefits for treating sepsis-associated organ impairment. This review indicates that ferroptosis suppression by pharmaceutical means may be a useful therapy for sepsis-associated organ injury.
Collapse
Affiliation(s)
- Pengyu Zhang
- The Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wendi Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Shu Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yuan Wang
- Department of Histology and Embryology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Han Han
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
9
|
Zhang T, Fu W, Zhang H, Li J, Xing B, Cai Y, Zhang M, Liu X, Qi C, Qian L, Hu X, Zhu H, Yang S, Zhang M, Liu J, Li G, Li Y, Xiang R, Qi Z, Hu J, Li Y, Zou C, Wang Q, Jin X, Pang R, Li P, Liu J, Zhang Y, Wang Z, Zhu ZJ, Shan B, Yuan J. Spermidine mediates acetylhypusination of RIPK1 to suppress diabetes onset and progression. Nat Cell Biol 2024; 26:2099-2114. [PMID: 39511379 DOI: 10.1038/s41556-024-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
It has been established that N-acetyltransferase (murine NAT1 (mNAT1) and human NAT2 (hNAT2)) mediates insulin sensitivity in type 2 diabetes. Here we show that mNAT1 deficiency leads to a decrease in cellular spermidine-a natural polyamine exhibiting health-protective and anti-ageing effects-but understanding of its mechanism is limited. We identify that mNAT1 and hNAT2 modulate a type of post-translational modification involving acetylated spermidine, which we name acetylhypusination, on receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-a key regulator of inflammation and cell death. Spermidine supplementation decreases RIPK1-mediated cell death and diabetic phenotypes induced by NAT1 deficiency in vivo. Furthermore, insulin resistance and diabetic kidney disease mediated by vascular pathology in NAT1-deficient mice can be blocked by inhibiting RIPK1. Finally, we demonstrate a decrease in spermidine and activation of RIPK1 in the vascular tissues of human patients with diabetes. Our study suggests a role for vascular pathology in diabetes onset and progression and identifies the inhibition of RIPK1 kinase as a potential therapeutic approach for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Tian Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weixin Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Nankai University, Tianjin, China
| | - Haosong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianlong Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beizi Xing
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuheng Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lihui Qian
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xinbo Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuailong Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ganquan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rong Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhengqiang Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junli Liu
- Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
10
|
Zhang N, Liu J, Guo R, Yan L, Yang Y, Shi C, Zhang M, Shan B, Li W, Gu J, Xu D. Palmitoylation licenses RIPK1 kinase activity and cytotoxicity in the TNF pathway. Mol Cell 2024; 84:4419-4435.e10. [PMID: 39471814 DOI: 10.1016/j.molcel.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Tumor necrosis factor (TNF)-induced receptor-interacting serine/threonine protein kinase 1 (RIPK1)-mediated cell death, including apoptosis and necroptosis, is increasingly recognized as a major driver of inflammatory diseases. Cell death checkpoints normally suppress RIPK1 kinase to safeguard the organism from its detrimental consequences. However, the mechanisms licensing RIPK1 kinase activity when a protective checkpoint is disabled remain unclear. Here, we identified S-palmitoylation as a licensing modification for RIPK1 kinase. TNF induces RIPK1 palmitoylation, mediated by DHHC5 and dependent on K63-linked ubiquitination of RIPK1, which enhances RIPK1 kinase activity by promoting the homo-interaction of its kinase domain and promotes cell death upon cell death checkpoint blockade. Furthermore, DHHC5 is amplified by fatty acid in the livers of mice with metabolic dysfunction-associated steatohepatitis, contributing to increased RIPK1 cytotoxicity observed in this condition. Our findings reveal that ubiquitination-dependent palmitoylation licenses RIPK1 kinase activity to induce downstream cell death signaling and suggest RIPK1 palmitoylation as a feasible target for inflammatory diseases.
Collapse
Affiliation(s)
- Na Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jianping Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rui Guo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lingjie Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chen Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wanjin Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laborshiatory of Aging Studies, Shanghai 201210, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430022, Hubei, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laborshiatory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
11
|
Wu X, Zhao X, Li F, Wang Y, Ou Y, Zhang H, Li X, Wu X, Wang L, Li M, Zhang Y, Liu J, Xing M, Liu H, Tan Y, Wang Y, Xie Y, Zhang H, Luo Y, Li H, Wang J, Sun L, Li Y, Zhang H. MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome. Cell Mol Immunol 2024; 21:1309-1321. [PMID: 39349742 PMCID: PMC11527879 DOI: 10.1038/s41423-024-01217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024] Open
Abstract
The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3-MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.
Collapse
Affiliation(s)
- Xiaoxia Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiaoming Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Fang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yang Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangjing Ou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Haiwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiaoming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xuanhui Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Lingxia Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yue Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jianling Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Mingyan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Han Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yongchang Tan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yangyang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yangyang Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Hanwen Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hong Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
12
|
Wu J, Ai T, He P, Shi Q, Li Y, Zhang Z, Chen M, Huang Z, Wu S, Chen W, Han J. Cecal necroptosis triggers lethal cardiac dysfunction in TNF-induced severe SIRS. Cell Rep 2024; 43:114778. [PMID: 39325617 DOI: 10.1016/j.celrep.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor necrosis factor (TNF) induces systemic inflammatory response syndrome (SIRS), and severe SIRS can serve as a model for studying animal death caused by organ failure. Through strategic cecectomy, we demonstrate that necroptosis in the cecum initiates the death process in TNF-treated mice, but it is not the direct cause of death. Instead, we show that it is the cardiac dysfunction downstream of cecum damage that ultimately leads to the death of TNF-treated mice. By in vivo and ex vivo physiological analyses, we reveal that TNF and the damage-associated molecular patterns (DAMPs) released from necroptotic cecal cells jointly target cardiac endothelial cells, triggering caspase-8 activation and subsequent cardiac endothelial damage. Cardiac endothelial damage is a primary cause of the deterioration of diastolic function in the heart of TNF-treated mice. Our research provides insights into the pathophysiological process of TNF-induced lethality.
Collapse
Affiliation(s)
- Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Qilin Shi
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yangxin Li
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ziguan Zhang
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Minwei Chen
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Zhengrong Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Suqin Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Wanze Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518000, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
13
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Wang S, Kurth S, Burger C, Wirtz DC, Schildberg FA, Ossendorff R. TNFα-Related Chondrocyte Inflammation Models: A Systematic Review. Int J Mol Sci 2024; 25:10805. [PMID: 39409134 PMCID: PMC11476358 DOI: 10.3390/ijms251910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Tumor necrosis factor alpha (TNFα), as a key pro-inflammatory cytokine, plays a central role in joint diseases. In recent years, numerous models of TNFα-induced cartilage inflammation have been developed. However, due to the significant differences between these models and the lack of consensus in their construction, it becomes difficult to compare the results of different studies. Therefore, we summarized and compared these models based on important parameters for model construction, such as cell source, cytokine concentration, stimulation time, mechanical stimulation, and more. We attempted to analyze the advantages and disadvantages of each model and provide a compilation of the analytical methods used in previous studies. Currently, TNFα chondrocyte inflammation models can be categorized into four main types: monolayer-based, construct-based, explant-based TNFα chondrocyte inflammation models, and miscellaneous TNFα chondrocyte inflammation models. The most commonly used models were the monolayer-based TNFα chondrocyte inflammation models (42.86% of cases), with 10 ng/mL TNFα being the most frequently used concentration. The most frequently used chondrocyte cell passage is passage 1 (50%). Human tissues were most frequently used in experiments (51.43%). Only five articles included models with mechanical stimulations. We observed variations in design conditions between different models. This systematic review provides the essential experimental characteristics of the available chondrocyte inflammation models with TNFα, and it provides a platform for better comparison between existing and new studies in this field. It is essential to perform further experiments to standardize each model and to find the most appropriate experimental parameters.
Collapse
|
15
|
Girardis M, David S, Ferrer R, Helms J, Juffermans NP, Martin-Loeches I, Povoa P, Russell L, Shankar-Hari M, Iba T, Coloretti I, Parchim N, Nielsen ND. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensive Care Med 2024; 50:1580-1592. [PMID: 39222142 DOI: 10.1007/s00134-024-07586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the immune system, coagulation, and endothelium is critical in regulating the host response to infection. However, in sepsis and other critical illnesses, a dysregulated immune response can lead to excessive alterations in these mechanisms, resulting in coagulopathy, endothelial dysfunction, and multi-organ dysfunction. This review aims to provide a comprehensive analysis of the pathophysiological mechanisms that govern the complex interplay between immune dysfunction, endothelial dysfunction, and coagulation in sepsis. It emphasises clinical significance, evaluation methods, and potential therapeutic interventions. Understanding these mechanisms is essential for developing effective treatments that can modulate the immune response, mitigate thrombosis, restore endothelial function, and ultimately improve patient survival.
Collapse
Affiliation(s)
- Massimo Girardis
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy.
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julie Helms
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Strasbourg, France
| | - Nicole P Juffermans
- Department of Intensive Care and Translational Laboratory of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James' Hospital, Dublin, D08 NHY1, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, 08180, Barcelona, Spain
| | - Pedro Povoa
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Lene Russell
- Copenhagen University Hospital Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Manu Shankar-Hari
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Irene Coloretti
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy
| | - Nicholas Parchim
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| | - Nathan D Nielsen
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| |
Collapse
|
16
|
Amusan OT, Wang S, Yin C, Koehler HS, Li Y, Tenev T, Wilson R, Bellenie B, Zhang T, Wang J, Liu C, Seong K, Poorbaghi SL, Yates J, Shen Y, Upton JW, Meier P, Balachandran S, Guo H. RIPK1 is essential for Herpes Simplex Virus-triggered ZBP1-dependent necroptosis in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613393. [PMID: 39345610 PMCID: PMC11429907 DOI: 10.1101/2024.09.17.613393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Necroptosis initiated by the host sensor Z-NA Binding Protein-1 (ZBP1) is essential for host defense against a growing number of viruses, including Herpes Simplex Virus-1 (HSV-1). Studies with HSV-1 and other necroptogenic stimuli in murine settings have suggested that ZBP1 triggers necroptosis by directly complexing with the kinase RIPK3. Whether this is also the case in human cells, or whether additional co-factors are needed for ZBP1-mediated necroptosis, is unclear. Here, we show that ZBP1-induced necroptosis in human cells requires RIPK1. We have found that RIPK1 is essential for forming a stable and functional ZBP1-RIPK3 complex in human cells, but is dispensable for the formation of the equivalent murine complex. The RIP Homology Interaction Motif (RHIM) in RIPK3 is responsible for this difference between the two species, because replacing the RHIM in human RIPK3 with the RHIM from murine RIPK3 is sufficient to overcome the requirement for RIPK1 in human cells. These observations describe a critical mechanistic difference between mice and humans in how ZBP1 engages in necroptosis, with important implications for treating human diseases.
Collapse
Affiliation(s)
- Oluwamuyiwa T. Amusan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Shuqi Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Chaoran Yin
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Yixun Li
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London, SM2 5NG, UK
| | - Ting Zhang
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Chang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kim Seong
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Seyedeh L. Poorbaghi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Joseph Yates
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Yuchen Shen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Jason W. Upton
- Department of Biological Sciences, Auburn University, AL 36849, USA
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Siddharth Balachandran
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hongyan Guo
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
- Lead Contact
| |
Collapse
|
17
|
Peng J, Xiang Y, Liu G, Ling S, Li F. The early prognostic value of the 1-4-day BCM/PA trend after admission in neurocritical patients. Sci Rep 2024; 14:21802. [PMID: 39294206 PMCID: PMC11410815 DOI: 10.1038/s41598-024-72142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
The purpose of this study was to investigate early stage dynamic changes in relevant indicators in neurocritical patients to identify biomarkers that can predict a poor prognosis at an early stage (1-4 days after admission). This study retrospectively collected clinical data, inflammatory indicators, and nutritional indicators from 77 patients at the neurology intensive care unit. The 3-month modified Rankin scale score was used as the outcome indicator. A linear mixed model was used to analyze changes in inflammatory indicators and nutritional indicators in neurocritical patients over time from 1-4 days after admission. Logistic regression was used to determine the independent risk factors for a poor prognosis in neurocritical patients and to construct a predictive model. The predictive efficacy of the model was verified using leave-one-out cross-validation and decision curve analysis methods. The analysis results showed that 1-4 days after admission, the inflammatory indicators of white blood cell and absolute monocyte counts and the nutritional indicators of body cell mass(BCM), fat-free mass, body cell mass/phase angle (BCM/PA), intracellular water, extracellular water, and skeletal muscle index increased overall, while the nutritional indicators of albumin and visceral fat area decreased overall. The logistic multivariate regression model showed that the Charlson comorbidity index (CCI) (odds ratio (OR) = 2.526, 95% CI [1.202, 5.308]), hemoglobin (Hb)(on admission)-Hb(min) (OR = 1.049, 95% CI [1.015, 1.083), BCM(on admission) (OR = 0.794, 95% CI [0.662, 0.952]), and the change in BCM/PA 1-4 days after admission (OR = 1.157, 95% CI [1.070, 1.252]) were independent risk factors for a poor prognosis in neurocritical patients. The predictive analysis showed that the predictive power of Model 1 with BCM/PA (area under the curve (AUC) = 0.95, 95% CI (0.90, 0.99)) was 93%, 65%, 141%, and 133% higher than that of Model 2 without BCM/PA, the CCI, the APACHE II score, and the NRS2002 score (all P < 0.05), respectively. The CCI, Hb(on admission)-Hb(min), BCM(on admission), and an increase in BCM/PA 1-4 days after admission were independently associated with a poor prognosis in neurocritical patients. Of these variables, BCM/PA may be a valid indicator for early stage prediction of a poor prognosis in neurocritical patients.
Collapse
Affiliation(s)
- Jingjing Peng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanling Xiang
- Department of Operation Anaesthesia, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Guangwei Liu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuya Ling
- Department of Internal Medicine-Cardiovascular Department, The First Branch of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feng Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
18
|
Liu J, Li L, He S, Zheng X, Zhu D, Kong G, Li P. EXPLORING THE PROGNOSTIC NECROPTOSIS-RELATED GENES AND UNDERLYING MECHANISM IN SEPSIS USING BIOINFORMATICS. Shock 2024; 62:363-374. [PMID: 38920136 PMCID: PMC11460741 DOI: 10.1097/shk.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Sepsis is a life-threatening disease due to a dysregulated host response to infection, with an unknown regulatory mechanism for prognostic necroptosis-related genes (NRGs). Using GEO datasets GSE65682 and GSE134347, we identified six NRG biomarkers ( ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 ) with survival and diagnostic significance through Kaplan-Meier (KM) and receiver operating characteristic (ROC) analyses. Afterward, the ingenuity pathway analysis (IPA) highlighted enrichment in hepatic fibrosis pathways and BEX2 protein. Moreover, we examined their regulatory targets and functional links with necroptotic signaling molecules via miRDB, TargetScan, Network analyst, and GeneMANIA. The molecular regulatory network displayed that hsa-miR-5195-3p and hsa-miR-145-5p regulated ATRX, BACH2, and CD40, while YY1 showed strong connectivity, concurrently controlling LEF1, ATRX, BCL2, BACH2, and CD40. CD40 exhibited similar expression patterns to RIPK3 and MLKL, and LEF1 was functionally associated with MLKL. Additionally, DrugBank analysis identified paclitaxel, docetaxel, and rasagiline as potential BCL2-targeting sepsis treatments. Finally, real-time quantitative PCR confirmed ATRX, TSC1, and LEF1 downregulation in sepsis samples, contrasting CD40's increased expression in CTL samples. In conclusion, ATRX , TSC1 , CD40 , BACH2 , BCL2 , and LEF1 may be critical regulatory targets of necroptosis in sepsis, providing a basis for further necroptosis-related studies in sepsis.
Collapse
Affiliation(s)
- Jie Liu
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuyang He
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zhu
- Department of Emergency, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyao Kong
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ping Li
- General Practice, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Yadav S, El Hamra R, Alturki NA, Ariana A, Bhan A, Hurley K, Gaestel M, Blackshear PJ, Blais A, Sad S. Regulation of Zfp36 by ISGF3 and MK2 restricts the expression of inflammatory cytokines during necroptosis stimulation. Cell Death Dis 2024; 15:574. [PMID: 39117638 PMCID: PMC11310327 DOI: 10.1038/s41419-024-06964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Necrosome activation following TLR- or cytokine receptor-signaling results in cell death by necroptosis which is characterized by the rupture of cell membranes and the consequent release of intracellular contents to the extracellular milieu. While necroptosis exacerbates various inflammatory diseases, the mechanisms through which the inflammatory responses are regulated are not clear. We show that the necrosome activation of macrophages results in an upregulation of various pathways, including the mitogen-activated protein kinase (MAPK) cascade, which results in an elevation of the inflammatory response and consequent expression of several cytokines and chemokines. Programming for this upregulation of inflammatory response occurs during the early phase of necrosome activation and proceeds independently of cell death but depends on the activation of the receptor-interacting protein kinase-1 (RipK1). Interestingly, necrosome activation also results in an upregulation of IFNβ, which in turn exerts an inhibitory effect on the maintenance of inflammatory response through the repression of MAPK-signaling and an upregulation of Zfp36. Activation of the interferon-induced gene factor-3 (ISGF3) results in the expression of ZFP36 (TTP), which induces the post-transcriptional degradation of mRNAs of various inflammatory cytokines and chemokines through the recognition of AU-rich elements in their 3'UTR. Furthermore, ZFP-36 inhibits IFNβ-, but not TNFα- induced necroptosis. Overall, these results reveal the molecular mechanism through which IFNβ, a pro-inflammatory cytokine, induces the expression of ZFP-36, which in turn inhibits necroptosis and halts the maintenance of the inflammatory response.
Collapse
Affiliation(s)
- Sahil Yadav
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rayan El Hamra
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Avni Bhan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kate Hurley
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, United States of America
| | - Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
- University of Ottawa, Centre for Infection Immunity and Inflammation, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa, Centre for Infection Immunity and Inflammation, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Dou Z, Bonacci TR, Shou P, Landoni E, Woodcock MG, Sun C, Savoldo B, Herring LE, Emanuele MJ, Song F, Baldwin AS, Wan Y, Dotti G, Zhou X. 4-1BB-encoding CAR causes cell death via sequestration of the ubiquitin-modifying enzyme A20. Cell Mol Immunol 2024; 21:905-917. [PMID: 38937625 PMCID: PMC11291893 DOI: 10.1038/s41423-024-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
CD28 and 4-1BB costimulatory endodomains included in chimeric antigen receptor (CAR) molecules play a critical role in promoting sustained antitumor activity of CAR-T cells. However, the molecular events associated with the ectopic and constitutive display of either CD28 or 4-1BB in CAR-T cells have been only partially explored. In the current study, we demonstrated that 4-1BB incorporated within the CAR leads to cell cluster formation and cell death in the forms of both apoptosis and necroptosis in the absence of CAR tonic signaling. Mechanistic studies illustrate that 4-1BB sequesters A20 to the cell membrane in a TRAF-dependent manner causing A20 functional deficiency that in turn leads to NF-κB hyperactivity, cell aggregation via ICAM-1 overexpression, and cell death including necroptosis via RIPK1/RIPK3/MLKL pathway. Genetic modulations obtained by either overexpressing A20 or releasing A20 from 4-1BB by deleting the TRAF-binding motifs of 4-1BB rescue cell cluster formation and cell death and enhance the antitumor ability of 4-1BB-costimulated CAR-T cells.
Collapse
Affiliation(s)
- Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Peishun Shou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuang Sun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura E Herring
- Michael Hooker Proteomics Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Emanuele
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Yisong Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Feng K, Zhou S, Sheng Y, Lu K, Li C, Liu W, Kong H, Liu H, Mu Y, Zhang L, Zhang Q, Wang J. Disulfidptosis-Related LncRNA Signatures for Prognostic Prediction in Kidney Renal Clear Cell Carcinoma. Clin Genitourin Cancer 2024; 22:102095. [PMID: 38833825 DOI: 10.1016/j.clgc.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION BACKGROUND Disulfidptosis is a prevalent apoptotic mechanism, intrinsically linked to cancer prognosis. However, the specific involvement of disulfidptosis-related long non-coding RNA (DRLncRNAs) in Kidney renal clear cell carcinoma (KIRC) remains incompletely understood. This study aims to elucidate the potential prognostic significance of disulfidptosis-related LncRNAs in KIRC. MATERIALS AND METHODS Expression profiles and clinical data of KIRC patients were retrieved from the TCGA database to discern differentially expressed DRLncRNAs correlated with overall survival. Cox univariate analysis, Lasso Regression, and Cox multivariate analysis were used to construct a clinical prediction model. RESULTS Six signatures, namely FAM83C.AS1, AC136475.2, AC121338.2, AC026401.3, AC254562.3, and AC000050.2, were established to evaluate overall survival (OS) in the context of Kidney renal clear cell carcinoma (KIRC) in this study. Survival analysis and ROC curves demonstrated the strong predictive performance of the associated signature. The nomogram exhibited accurate prognostic predictions for overall patient survival, offering substantial clinical utility. Gene set enrichment analysis revealed that risk signals were enriched in various immune-related pathways. Furthermore, the risk features exhibited significant correlations with immune cells, immune function, immune cell infiltration, and immune checkpoints. CONCLUSION This study has unveiled, for the first time, six disulfdptosis-related LncRNA signatures, laying a solid foundation for enhanced and precise prognostic predictions in KIRC.
Collapse
Affiliation(s)
- Kunlun Feng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shanshan Zhou
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yawen Sheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chenghua Li
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenhui Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Kong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haoxiang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Jingwen Wang
- The second affiliated hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
22
|
Mannion J, Gifford V, Bellenie B, Fernando W, Ramos Garcia L, Wilson R, John SW, Udainiya S, Patin EC, Tiu C, Smith A, Goicoechea M, Craxton A, Moraes de Vasconcelos N, Guppy N, Cheung KMJ, Cundy NJ, Pierrat O, Brennan A, Roumeliotis TI, Benstead-Hume G, Alexander J, Muirhead G, Layzell S, Lyu W, Roulstone V, Allen M, Baldock H, Legrand A, Gabel F, Serrano-Aparicio N, Starling C, Guo H, Upton J, Gyrd-Hansen M, MacFarlane M, Seddon B, Raynaud F, Roxanis I, Harrington K, Haider S, Choudhary JS, Hoelder S, Tenev T, Meier P. A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity 2024; 57:1514-1532.e15. [PMID: 38788712 PMCID: PMC11236506 DOI: 10.1016/j.immuni.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.
Collapse
Affiliation(s)
- Jonathan Mannion
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Valentina Gifford
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Benjamin Bellenie
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Winnie Fernando
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Sidonie Wicky John
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Savita Udainiya
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Emmanuel C Patin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Crescens Tiu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Angel Smith
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Maria Goicoechea
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | | | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kwai-Ming J Cheung
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Nicholas J Cundy
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Olivier Pierrat
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Alfie Brennan
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Graeme Benstead-Hume
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Gareth Muirhead
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Wenxin Lyu
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Mark Allen
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Holly Baldock
- Biological Services Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Arnaud Legrand
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Florian Gabel
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | | | - Chris Starling
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - Jason Upton
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Marion MacFarlane
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Cambridge CB2 1QR, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, UK
| | - Florence Raynaud
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Swen Hoelder
- Centre for Cancer Drug Discovery at the Institute of Cancer Research, London SM2 5NG, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
23
|
Du J, Wang Z. Regulation of RIPK1 Phosphorylation: Implications for Inflammation, Cell Death, and Therapeutic Interventions. Biomedicines 2024; 12:1525. [PMID: 39062098 PMCID: PMC11275223 DOI: 10.3390/biomedicines12071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) plays a crucial role in controlling inflammation and cell death. Its function is tightly controlled through post-translational modifications, enabling its dynamic switch between promoting cell survival and triggering cell death. Phosphorylation of RIPK1 at various sites serves as a critical mechanism for regulating its activity, exerting either activating or inhibitory effects. Perturbations in RIPK1 phosphorylation status have profound implications for the development of severe inflammatory diseases in humans. This review explores the intricate regulation of RIPK1 phosphorylation and dephosphorylation and highlights the potential of targeting RIPK1 phosphorylation as a promising therapeutic strategy for mitigating human diseases.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Clinical Immunology, Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA
| |
Collapse
|
24
|
Sun ALA, Gillies JD, Shen Y, Deng H, Xue F, Ma Y, Song L. A phase I randomized study to evaluate safety, pharmacokinetics, and pharmacodynamics of SIR2446M, a selective RIPK1 inhibitor, in healthy participants. Clin Transl Sci 2024; 17:e13857. [PMID: 38949195 PMCID: PMC11215690 DOI: 10.1111/cts.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Activation of receptor-interacting protein kinase 1 (RIPK1), a broadly expressed serine/threonine protein kinase, by pro-inflammatory cytokines and pathogens can result in apoptosis, necroptosis, or inflammation. RIPK1 inhibition has been shown to reduce inflammation and cell damage in preclinical studies and may have therapeutic potential for degenerative and inflammatory diseases. SIR2446 is a potent and selective novel small molecule RIPK1 kinase inhibitor. This phase I, randomized, double-blind, placebo-controlled study in Australia (ACTRN12621001621808) evaluated the safety (primary objective), pharmacokinetics, and pharmacodynamics of single (3-600 mg) and multiple (5-400 mg for 10 days) ascending oral doses of SIR2446M (SIR2446 magnesium salt form) in healthy adults from Nov 24, 2021, until May 01, 2023. All treatment-emergent adverse events (TEAEs) were mild/moderate. The most reported TEAEs were vascular access site pain, headache, and rash morbilliform. SIR2446M plasma half-lives ranged from 11 to 19 h and there were no major deviations from dose proportionality for maximum concentration and area under the curve across doses. Renal excretion of unchanged SIR2446 was minimal. No marked accumulation was observed (mean accumulation ratio, 1.2-1.6) after multiple daily doses. A high-fat meal mildly reduced the exposure but was not considered clinically significant. SIR2446M had a rapid and sustained inhibitory effect on the activity of RIPK1, with an overall 90% target engagement at repeated doses ranging from 30 to 400 mg in peripheral blood mononuclear cells ex vivo stimulated to undergo necroptosis. The favorable safety, pharmacokinetic, and pharmacodynamic profile of SIR2446M in healthy participants supports its further clinical development in patients with degenerative and inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Yang Shen
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Huajun Deng
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Fenchao Xue
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Yongfen Ma
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Linan Song
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| |
Collapse
|
25
|
Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C, Rajasekhar P, Zhu L, Hempel A, Lin A, Rickard JA, Hall C, Gangatirkar P, Yip RK, Cawthorne W, Jacobsen AV, Horne CR, Martin KR, Ioannidis LJ, Hansen DS, Day J, Wicks IP, Law C, Ritchie ME, Bowden R, Hildebrand JM, O'Reilly LA, Silke J, Giulino-Roth L, Tsui E, Rogers KL, Hawkins ED, Christensen B, Murphy JM, Samson AL. An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med 2024; 16:1717-1749. [PMID: 38750308 PMCID: PMC11250867 DOI: 10.1038/s44321-024-00074-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.
Collapse
Affiliation(s)
- Shene Chiou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Aysha H Al-Ani
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Yi Pan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Isabella Y Kong
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marilou Barrios
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Callum Sargeant
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Leah Zhu
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Anne Hempel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ann Lin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James A Rickard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Austin Hospital, Heidelberg, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Raymond Kh Yip
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa J Ioannidis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Diana S Hansen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Day
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Charity Law
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Lisa Giulino-Roth
- Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, USA
| | - Ellen Tsui
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
| | - Britt Christensen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- University of Melbourne, Parkville, Australia
- Royal Melbourne Hospital, Parkville, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- University of Melbourne, Parkville, Australia.
| |
Collapse
|
26
|
Kelepouras K, Saggau J, Varanda AB, Zrilic M, Kiefer C, Rakhsh-Khorshid H, Lisewski I, Uranga-Murillo I, Arias M, Pardo J, Tonnus W, Linkermann A, Annibaldi A, Walczak H, Liccardi G. The importance of murine phospho-MLKL-S345 in situ detection for necroptosis assessment in vivo. Cell Death Differ 2024; 31:897-909. [PMID: 38783091 PMCID: PMC11239901 DOI: 10.1038/s41418-024-01313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.
Collapse
Grants
- Wellcome Trust
- G.L. is funded by the Center for Biochemistry, Univeristy of Cologne - 956400, Köln Fortune, CANcer TARgeting (CANTAR) project NW21-062A, two collaborative research center grants: SFB1399-413326622 Project C06, SFB1530-455784452 Project A03 both funded by the Deutsche Forschungsgemeinschaft (DFG)) and associated to the collaborative SFB1403 also funded by the DFG
- H.W. is funded by the Alexander von Humboldt Foundation, a Wellcome Trust Investigator Award (214342/Z/18/Z), a Medical Research Council Grant (MR/S00811X/1), a Cancer Research UK Programme Grant (A27323) and three collaborative research center grants (SFB1399, Project C06, SFB1530-455784452, Project A03 and SFB1403–414786233) funded by the Deutsche Forschungsgemeinschaft (DFG) and CANcer TARgeting (CANTAR) funded by Netzwerke 2021.
- AA is funded by the Center for Molecular Medine Cologne (CMMC) Junior Research Group program, Deutsche Forschungsgemeinschaft (DFG) (project number AN1717/1-1), the Jürgen Manchot Stiftung foundation, the collaborative research center SFB1530 (Project A5, ID: 455784452)
- JP is funded by FEDER (Fondo Europeo de Desarrollo Regional), Gobierno de Aragón (Group B29_23R), CIBERINFEC (CB21/13/00087), Ministerio de Ciencia, Innovación y Universidades (MCNU)/Agencia Estatal de Investigación (PID2020-113963RBI00)
- MA is funded by a Postdoctoral Juan de la Cierva Contract.
- Work in the Linkermann Lab was funded by the German Research Foundation SFB-TRR205, SFB-TRR 127, SPP2306, and a Heisenberg-Professorship to A.L., project number 324141047, and the international research training group (IRTG) 2251. It was further supported by the BMBF (FERROPath consortium), the TU Dresden / Kings College London transcampus initiative and the DFG-Sachbeihilfe LI 2107/10-1.
Collapse
Affiliation(s)
- Konstantinos Kelepouras
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Julia Saggau
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Ana Beatriz Varanda
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Matea Zrilic
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Christine Kiefer
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hassan Rakhsh-Khorshid
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Ina Lisewski
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Iratxe Uranga-Murillo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maykel Arias
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julian Pardo
- Department of Microbiology, Radiology, Paediatry and Public Heath, Faculty of Medicine, University of Zaragoza/IIS, Aragon, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alessandro Annibaldi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Henning Walczak
- Cell Death, Inflammation and Immunity Laboratory, CECAD Cluster of Excellence, University of Cologne, 50931, Cologne, Germany
- Cell Death, Inflammation and Immunity Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, WC1E 6BT, London, UK
| | - Gianmaria Liccardi
- Genome Instability, Inflammation and Cell Death Laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
27
|
Zheng LY, Duan Y, He PY, Wu MY, Wei ST, Du XH, Yao RQ, Yao YM. Dysregulated dendritic cells in sepsis: functional impairment and regulated cell death. Cell Mol Biol Lett 2024; 29:81. [PMID: 38816685 PMCID: PMC11140885 DOI: 10.1186/s11658-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.
Collapse
Affiliation(s)
- Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Peng-Yi He
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng-Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shu-Ting Wei
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao-Hui Du
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of General Surgery, The First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
28
|
He P, Ai T, Qiao M, Yang ZH, Han J. Phosphorylation of caspase-8 by RSKs via organ-constrained effects controls the sensitivity to TNF-induced death. Cell Death Discov 2024; 10:255. [PMID: 38789425 PMCID: PMC11126741 DOI: 10.1038/s41420-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Caspase-8 (Casp8) serves as an initiator of apoptosis or a suppressor of necroptosis in context-dependent manner. Members of the p90 RSK family can phosphorylate caspase-8 at threonine-265 (T265), which can inactivate caspase-8 for bypassing caspase-8-mediated blockade of necroptosis and can also decrease caspase-8 level by promoting its degradation. Mutating T265 in caspase-8 to alanine (A) in mice blocked TNF-induced necroptotic cecum damage but resulted in unexpectedly massive injury in the small intestine. Here, we show RSK1, RSK2, and RSK3 redundantly function in caspase-8 phosphorylation, and the duodenum is the most severely affected part of the small intestine when T265 phosphorylation of caspase-8 was prevented. Eliminating caspase-8 phosphorylation resulted in a duodenum-specific increase in basal caspase-8 protein level, which shall be responsible for the increased sensitivity to TNF-induced damage. Apoptosis of intestinal epithelial cells (IECs) was predominant in the duodenum of TNF-treated Rsk1-/-Rsk2-/-Rsk3-/- and Casp8T265A/T265A mice, though necroptosis was also observed. The heightened duodenal injury amplified systemic inflammatory responses, as evidenced by the contribution of hematopoietic cells to the sensitization of TNF-induced animal death. Further analysis revealed that hematopoietic and non-hematopoietic cells contributed differentially to cytokine production in response to the increased cell death. Collectively, RSKs emerges as a previously overlooked regulator that, via tissue/organ-constrained inactivating caspase-8 and/or downregulating caspase-8 protein level, controls the sensitivity to TNF-induced organ injury and animal death.
Collapse
Affiliation(s)
- Peng He
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhang-Hua Yang
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Jiahuai Han
- Research Unit of Cellular Stress of CAMS, Xiang'an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
29
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
30
|
Shen L, Yang Z, Gao C, Li L, Wang Y, Cai Y, Feng Z. Receptor-interacting protein kinase-3 (RIPK3): a new biomarker for necrotising enterocolitis in preterm infants. Pediatr Surg Int 2024; 40:115. [PMID: 38696138 PMCID: PMC11065923 DOI: 10.1007/s00383-024-05697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate the role of receptor-interacting protein kinase-3 (RIPK3) in the diagnosis, estimation of disease severity, and prognosis of premature infants with necrotising enterocolitis (NEC). METHODS RIPK3, lactic acid (LA), and C-reactive protein (CRP) levels were measured in the peripheral blood of 108 premature infants between 2019 and 2023, including 24 with stage II NEC, 18 with stage III NEC and 66 controls. Diagnostic values of the indicators for NEC were evaluated via receiver operating characteristic (ROC) curve analysis. RESULTS Plasma RIPK3 and LA levels upon NEC suspicion in neonates with stage III NEC were 32.37 ± 16.20 ng/mL. The ROC curve for the combination of RIPK3, LA, CRP for NEC diagnosis were 0.925. The time to full enteral feeding (FEFt) after recovery from NEC was different between two expression groups of plasma RIPK3 (RIPK3 < 20.06 ng/mL and RIPK3 ≥ 20.06 ng/mL). CONCLUSION Plasma RIPK3 can be used as a promising marker for the diagnosis and estimation of disease severity of premature infants with NEC and for the guidance on proper feeding strategies after recovery from NEC.
Collapse
Affiliation(s)
- Lirong Shen
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zuming Yang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Chuchu Gao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Lili Li
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yu Wang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yan Cai
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zongtai Feng
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
31
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
32
|
Yang L, Du M, Liu K, Wang P, Zhu J, Li F, Wang Z, Huang K, Liang M. Pimpinellin ameliorates macrophage inflammation by promoting RNF146-mediated PARP1 ubiquitination. Phytother Res 2024; 38:1783-1798. [PMID: 38323338 DOI: 10.1002/ptr.8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
Macrophage inflammation plays a central role during the development and progression of sepsis, while the regulation of macrophages by parthanatos has been recently identified as a novel strategy for anti-inflammatory therapies. This study was designed to investigate the therapeutic potential and mechanism of pimpinellin against LPS-induced sepsis. PARP1 and PAR activation were detected by western blot or immunohistochemistry. Cell death was assessed by flow cytometry and western blot. Cell metabolism was measured with a Seahorse XFe24 extracellular flux analyzer. C57, PARP1 knockout, and PARP1 conditional knock-in mice were used in a model of sepsis caused by LPS to assess the effect of pimpinellin. Here, we found that pimpinellin can specifically inhibit LPS-induced macrophage PARP1 and PAR activation. In vitro studies showed that pimpinellin could inhibit the expression of inflammatory cytokines and signal pathway activation in macrophages by inhibiting overexpression of PARP1. In addition, pimpinellin increased the survival rate of LPS-treated mice, thereby preventing LPS-induced sepsis. Further research confirmed that LPS-induced sepsis in PARP1 overexpressing mice was attenuated by pimpinellin, and PARP1 knockdown abolished the protective effect of pimpinellin against LPS-induced sepsis. Further study found that pimpinellin can promote ubiquitin-mediated degradation of PARP1 through RNF146. This is the first study to demonstrate that pimpinellin inhibits excessive inflammatory responses by promoting the ubiquitin-mediated degradation of PARP1.
Collapse
Affiliation(s)
- Liuye Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyuan Liu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingbo Zhu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengcen Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of science and technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Preedy MK, White MRH, Tergaonkar V. Cellular heterogeneity in TNF/TNFR1 signalling: live cell imaging of cell fate decisions in single cells. Cell Death Dis 2024; 15:202. [PMID: 38467621 PMCID: PMC10928192 DOI: 10.1038/s41419-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Cellular responses to TNF are inherently heterogeneous within an isogenic cell population and across different cell types. TNF promotes cell survival by activating pro-inflammatory NF-κB and MAPK signalling pathways but may also trigger apoptosis and necroptosis. Following TNF stimulation, the fate of individual cells is governed by the balance of pro-survival and pro-apoptotic signalling pathways. To elucidate the molecular mechanisms driving heterogenous responses to TNF, quantifying TNF/TNFR1 signalling at the single-cell level is crucial. Fluorescence live-cell imaging techniques offer real-time, dynamic insights into molecular processes in single cells, allowing for detection of rapid and transient changes, as well as identification of subpopulations, that are likely to be missed with traditional endpoint assays. Whilst fluorescence live-cell imaging has been employed extensively to investigate TNF-induced inflammation and TNF-induced cell death, it has been underutilised in studying the role of TNF/TNFR1 signalling pathway crosstalk in guiding cell-fate decisions in single cells. Here, we outline the various opportunities for pathway crosstalk during TNF/TNFR1 signalling and how these interactions may govern heterogenous responses to TNF. We also advocate for the use of live-cell imaging techniques to elucidate the molecular processes driving cell-to-cell variability in single cells. Understanding and overcoming cellular heterogeneity in response to TNF and modulators of the TNF/TNFR1 signalling pathway could lead to the development of targeted therapies for various diseases associated with aberrant TNF/TNFR1 signalling, such as rheumatoid arthritis, metabolic syndrome, and cancer.
Collapse
Affiliation(s)
- Marcus K Preedy
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK
| | - Michael R H White
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, D3308, Dover Street, Manchester, M13 9PT, England, UK.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 8 Medical Drive, MD7, Singapore, 117596, Singapore.
| |
Collapse
|
34
|
Hou S, Zhang J, Jiang X, Yang Y, Shan B, Zhang M, Liu C, Yuan J, Xu D. PARP5A and RNF146 phase separation restrains RIPK1-dependent necroptosis. Mol Cell 2024; 84:938-954.e8. [PMID: 38272024 DOI: 10.1016/j.molcel.2023.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.
Collapse
Affiliation(s)
- Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215031, China
| | - Xiaoyan Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Clot PF, Farenc C, Suratt BT, Krahnke T, Tardat A, Florian P, Pomponio R, Patel N, Wiekowski M, Lin Y, Terrier B, Staudinger H. Immunomodulatory and clinical effects of receptor-interacting protein kinase 1 (RIPK1) inhibitor eclitasertib (SAR443122) in patients with severe COVID-19: a phase 1b, randomized, double-blinded, placebo-controlled study. Respir Res 2024; 25:107. [PMID: 38419035 PMCID: PMC10903152 DOI: 10.1186/s12931-024-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Targeting receptor-interacting serine/threonine protein kinase 1 could mitigate the devastating sequelae of the hyperinflammatory state observed in severe cases of COVID-19. This study explored the immunomodulatory and clinical effects of the receptor-interacting serine/threonine protein kinase 1 inhibitor SAR443122 (eclitasertib) in patients with severe COVID-19. METHODS In this Phase 1b, double-blinded, placebo-controlled study (NCT04469621) a total of 82 patients were screened, of whom 68 patients were eligible and randomized (2:1) to receive eclitasertib 600 mg (300 mg twice daily) or placebo up to 14 days. Primary outcome was relative change in C-reactive protein from baseline to Day 7. Time to clinical improvement using 7-point ordinal scale, ventilator/respiratory failure-free days, change in SpO2/FiO2 ratio, and biomarkers of severe COVID-19 were explored. RESULTS Geometric mean ratio (point estimate [90% confidence interval]) of the relative change from baseline in C-reactive protein with eclitasertib vs. placebo on Day 7 was 0.85 (0.49-1.45; p = 0.30). Median time to 50% decrease in C-reactive protein from baseline was 3 days vs. 5 days (p = 0.056) with eclitasertib vs. placebo. Median time to ≥ 2-point improvement on 7-point clinical symptoms scale was 8 days vs. 10 days with eclitasertib vs. placebo (p = 0.38). Mean ventilator/respiratory failure-free days, change in baseline-adjusted SpO2/FiO2 ratio, and clinical biomarkers showed consistent numerical improvements with eclitasertib vs. placebo. The most frequently reported treatment-emergent adverse events were gastrointestinal disorders and condition aggravated/worsened COVID-19 pneumonia. CONCLUSIONS Eclitasertib was well tolerated with consistent trends toward more rapid resolution of inflammatory biomarkers and clinical improvement in severe COVID-19 patients than placebo. CLINICALTRIALS GOV IDENTIFIER NCT04469621, first posted on clinicaltrials.gov on July 14, 2020.
Collapse
Affiliation(s)
- Pierre-Francois Clot
- Translational Medicine and Early Development (TMED)/Clinical Pharmacology (TMCP) and Neuro and Neuro-Immunology, 371 Rue du Professeur Blayac, Sanofi, Montpellier, 34080, France.
| | - Christine Farenc
- TMED Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France
| | - Benjamin T Suratt
- Early Clinical Development Immunology and Inflammation, Sanofi, Cambridge, MA, United States of America
| | | | - Agnes Tardat
- Early Development Operations, Sanofi, Montpellier, France
| | - Peter Florian
- Type 1/17 Immunology and Arthritis, Sanofi Deutschland GmbH, Frankfurt, Germany
- Head of Fibrotic Disease Research, Boehringer Ingelheim Vetmedica GmbH, Global AH Research, Ingelheim, Germany
| | - Robert Pomponio
- TMED Biomarkers and Clinical Bioanalysis, Sanofi, Framingham, MA, United States of America
| | - Naimish Patel
- Global Development in Immunology and Inflammation, Sanofi, Cambridge, MA, United States of America
| | - Maria Wiekowski
- Immunology and Inflammation Development Franchise, Sanofi, Bridgewater, NJ, United States of America
| | - Yong Lin
- , Sanofi, Bridgewater, NJ, United States of America
| | | | - Heribert Staudinger
- Immunology and Inflammation Development Franchise, Sanofi, Bridgewater, NJ, United States of America
| |
Collapse
|
36
|
Xin Y, Dai P, Shao H, Zhuang C, Li J. Discovery of novel biaryl benzoxazepinones as dual-mode receptor-interacting protein kinase-1 (RIPK1) inhibitors. Bioorg Med Chem 2024; 100:117611. [PMID: 38309200 DOI: 10.1016/j.bmc.2024.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.
Collapse
Affiliation(s)
- YuFeng Xin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengcheng Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jiao Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| |
Collapse
|
37
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
38
|
Gao X, Teng T, Liu Y, Ai T, Zhao R, Fu Y, Zhang P, Han J, Zhang Y. Anthrax lethal toxin and tumor necrosis factor-α synergize on intestinal epithelia to induce mouse death. Protein Cell 2024; 15:135-148. [PMID: 37855658 PMCID: PMC10833652 DOI: 10.1093/procel/pwad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Bacillus anthracis lethal toxin (LT) is a determinant of lethal anthrax. Its function in myeloid cells is required for bacterial dissemination, and LT itself can directly trigger dysfunction of the cardiovascular system. The interplay between LT and the host responses is important in the pathogenesis, but our knowledge on this interplay remains limited. Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine induced by bacterial infections. Since LT accumulates and cytokines, predominantly TNF, amass during B. anthracis infection, co-treatment of TNF + LT in mice was used to mimic in vivo conditions for LT to function in inflamed hosts. Bone marrow transplantation and genetically engineered mice showed unexpectedly that the death of intestinal epithelial cells (IECs) rather than that of hematopoietic cells led to LT + TNF-induced lethality. Inhibition of p38α mitogen-activated protein kinase (MAPK) signaling by LT in IECs promoted TNF-induced apoptosis and necroptosis of IECs, leading to intestinal damage and mouse death. Consistently, p38α inhibition by LT enhanced TNF-mediated cell death in human colon epithelial HT-29 cells. As intestinal damage is one of the leading causes of lethality in anthrax patients, the IEC damage caused by LT + TNF would most likely be a mechanism underneath this clinical manifestation and could be a target for interventions.
Collapse
Affiliation(s)
- Xinhe Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Teng Teng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yifei Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rui Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yilong Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
39
|
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Webster JD, Guo H, Dixit VM. Caspase cleavage of RIPK3 after Asp 333 is dispensable for mouse embryogenesis. Cell Death Differ 2024; 31:254-262. [PMID: 38191748 PMCID: PMC10850060 DOI: 10.1038/s41418-023-01255-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
The proteolytic activity of caspase-8 suppresses lethal RIPK1-, RIPK3- and MLKL-dependent necroptosis during mouse embryogenesis. Caspase-8 is reported to cleave RIPK3 in addition to the RIPK3-interacting kinase RIPK1, but whether cleavage of RIPK3 is crucial for necroptosis suppression is unclear. Here we show that caspase-8-driven cleavage of endogenous mouse RIPK3 after Asp333 is dependent on downstream caspase-3. Consistent with RIPK3 cleavage being a consequence of apoptosis rather than a critical brake on necroptosis, Ripk3D333A/D333A knock-in mice lacking the Asp333 cleavage site are viable and develop normally. Moreover, in contrast to mice lacking caspase-8 in their intestinal epithelial cells, Ripk3D333A/D333A mice do not exhibit increased sensitivity to high dose tumor necrosis factor (TNF). Ripk3D333A/D333A macrophages died at the same rate as wild-type (WT) macrophages in response to TNF plus cycloheximide, TNF plus emricasan, or infection with murine cytomegalovirus (MCMV) lacking M36 and M45 to inhibit caspase-8 and RIPK3 activation, respectively. We conclude that caspase cleavage of RIPK3 is dispensable for mouse development, and that cleavage of caspase-8 substrates, including RIPK1, is sufficient to prevent necroptosis.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Allie Maltzman
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongyan Guo
- Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, 71103, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
40
|
Zhang L, Li Y, Tian C, Yang R, Wang Y, Xu H, Zhu Q, Chen S, Li L, Yang S. From Hit to Lead: Structure-Based Optimization of Novel Selective Inhibitors of Receptor-Interacting Protein Kinase 1 (RIPK1) for the Treatment of Inflammatory Diseases. J Med Chem 2024; 67:754-773. [PMID: 38159286 DOI: 10.1021/acs.jmedchem.3c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of cellular necroptosis, which is considered as an important therapeutic target for necroptosis-related indications. Herein, we report the structural optimization and structure-activity relationship investigations of a series of eutectic 5-substituted-indole-3-carboxamide derivatives. The prioritized compound 10b exhibited low nanomolar IC50 values against RIPK1 and showed good kinase selectivity. Based on its eutectic structure, 10b occupied both the allosteric and ATP binding pockets of RIPK1, making it a potent dual-mode inhibitor of RIPK1. In vitro, 10b had a potent protective effect against necroptosis in cells. Compound 10b also provided robust protection in a TNFα-induced systemic inflammatory response syndrome (SIRS) model and imiquimod (IMQ)-induced psoriasis model. It also showed good pharmacokinetic properties and low toxicity. Overall, 10b is a promising lead compound for drug discovery targeting RIPK1 and warrants further study.
Collapse
Affiliation(s)
- Liting Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueshan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Chenyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haixing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiucheng Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shasha Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
41
|
Mei X, Zhang Y, Wang S, Wang H, Chen R, Ma K, Yang Y, Jiang P, Feng Z, Zhang C, Zhang Z. Necroptosis in Pneumonia: Therapeutic Strategies and Future Perspectives. Viruses 2024; 16:94. [PMID: 38257794 PMCID: PMC10818625 DOI: 10.3390/v16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pneumonia remains a major global health challenge, necessitating the development of effective therapeutic approaches. Recently, necroptosis, a regulated form of cell death, has garnered attention in the fields of pharmacology and immunology for its role in the pathogenesis of pneumonia. Characterized by cell death and inflammatory responses, necroptosis is a key mechanism contributing to tissue damage and immune dysregulation in various diseases, including pneumonia. This review comprehensively analyzes the role of necroptosis in pneumonia and explores potential pharmacological interventions targeting this cell death pathway. Moreover, we highlight the intricate interplay between necroptosis and immune responses in pneumonia, revealing a bidirectional relationship between necrotic cell death and inflammatory signaling. Importantly, we assess current therapeutic strategies modulating necroptosis, encompassing synthetic inhibitors, natural products, and other drugs targeting key components of the programmed necrosis pathway. The article also discusses challenges and future directions in targeting programmed necrosis for pneumonia treatment, proposing novel therapeutic strategies that combine antibiotics with necroptosis inhibitors. This review underscores the importance of understanding necroptosis in pneumonia and highlights the potential of pharmacological interventions to mitigate tissue damage and restore immune homeostasis in this devastating respiratory infection.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Shu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Hui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Ke Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
42
|
Iba T, Helms J, Levi M, Levy JH. Thromboinflammation in acute injury: infections, heatstroke, and trauma. J Thromb Haemost 2024; 22:7-22. [PMID: 37541590 DOI: 10.1016/j.jtha.2023.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
Tissue microcirculation is essential for the maintenance of organ homeostasis. Following acute infections, activation of coagulation and inflammation, which are critical interconnected responses, lead to thromboinflammation and microthrombosis, thereby contributing to multiorgan dysfunction. Sepsis is the most common underlying disease and has been extensively studied. However, the COVID-19 pandemic further illustrated the pathomechanisms of diseases in which thromboinflammation plays a critical role. During thromboinflammation, injury to monocytes, neutrophils, platelets, and endothelial cells, along with coagulation and complement activation, was further characterized. Thrombin is pivotal in orchestrating thrombosis and inflammation and has long been considered a potential therapeutic target in sepsis. Although thromboprophylaxis for venous thromboembolism with heparins is part of standard management for COVID-19, it also potentially attenuates organ dysfunction due to thrombotic sequela. In contrast, the effectiveness of anticoagulation with heparin, antithrombin, or thrombomodulin to reduce mortality has not conclusively been proven in sepsis. Nonetheless, thromboinflammation has also been reported as an important pathophysiologic mechanism in other critical illnesses, including heatstroke, trauma, and ischemia/reperfusion injury, and may provide a potential therapeutic target for future clinical studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA), Strasbourg University Hospital, Medical Intensive Care Unit - NHC; INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, The Netherlands; Department of Medicine, University College London Hospitals NHS Foundation Trust (UCLH), Cardio-metabolic Programme-National Institute for Health and Care Research UCLH/UCL Biomedical Research Centres, London, United Kingdom
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
43
|
Guerrero-Mauvecin J, Fontecha-Barriuso M, López-Diaz AM, Ortiz A, Sanz AB. RIPK3 and kidney disease. Nefrologia 2024; 44:10-22. [PMID: 37150671 DOI: 10.1016/j.nefroe.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 05/09/2023] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3) is an intracellular kinase at the crossroads of cell death and inflammation. RIPK3 contains a RIP homotypic interaction motif (RHIM) domain which allows interactions with other RHIM-containing proteins and a kinase domain that allows phosphorylation of target proteins. RIPK3 may be activated through interaction with RHIM-containing proteins such as RIPK1, TRIF and DAI (ZBP1, DLM-1) or through RHIM-independent mechanisms in an alkaline intracellular pH. RIPK3 mediates necroptosis and promotes inflammation, independently of necroptosis, through either activation of NFκB or the inflammasome. There is in vivo preclinical evidence of the contribution of RIPK3 to both acute kidney injury (AKI) and chronic kidney disease (CKD) and to the AKI-to-CKD transition derived from RIPK3 deficient mice or the use of small molecule RIPK3 inhibitors. In these studies, RIPK3 targeting decreased inflammation but kidney injury improved only in some contexts. Clinical translation of these findings has been delayed by the potential of some small molecule inhibitors of RIPK3 kinase activity to trigger apoptotic cell death by inducing conformational changes of the protein. A better understanding of the conformational changes in RIPK3 that trigger apoptosis, dual RIPK3/RIPK1 inhibitors or repurposing of multiple kinase inhibitors such as dabrafenib may facilitate clinical development of the RIPK3 inhibition concept for diverse inflammatory diseases, including kidney diseases.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | | | - Ana M López-Diaz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; RICORS2040, 28040 Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain; RICORS2040, 28040 Madrid, Spain.
| |
Collapse
|
44
|
Zaky DA, Abdallah DM, El-Abhar HS. Intranasal Exendin-4 modifies necroptosis-mediated innate immune response to combat septic encephalopathy in rats: Role of mTORC1 in immunogenic and tolerogenic cell demise. Eur J Pharmacol 2023; 961:176191. [PMID: 37967645 DOI: 10.1016/j.ejphar.2023.176191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Septic encephalopathy (SE) is a critical mental status associated with potential long-term cognitive deficits and higher mortality rates in ICU patients. The shortfall in comprehending its pathophysiology limits effective treatment options, however, GLP-1 agonists opened an entry point for future neurodegenerative disease management. This work aims to explore the mTORC1 prospective role in the pathogenesis of SE using rapamycin (RAPA) and investigate the involvement of this complex in exendin-4 (EX4) neurotherapeutic potential using cecal ligation and puncturing (CLP)-induced SE model, focusing on necroptosis as a novel intervention besides necrosis and apoptosis. EX4 was administered intranasally alone or preceded by RAPA, which was also solely given to male Sprague-Dawley rats subjected to CLP. First, opposite to the SE effect, RAPA inhibited mTORC1 and blunted TNF-α-induced necroptosis and Drp1, a mitochondrial fission marker. However, RAPA worsened the SE effect on endotoxemia, functional/cortical structures, and apoptotic/necrotic cell deaths. Second, EX4 increased mTORC1 assembly in the cerebral cortex and reduced sepsis-induced endotoxemia and behavioral/cerebral histopathology deficits in an mTOR-dependent manner. EX4 also reduced the inflammatory marker TNF-α and necroptosis as indicated by RIPK-1/RIPK-3/MLKL dephosphorylation and deactivated PGAM/Drp1 axis. Besides, EX4 turned off the apoptotic cue, caspase-3&8/cytochrome-C. However, RAPA pre-administration nullified the EX4 effect on apoptosis and HMGB1-induced necrosis. In conclusion, our research declares that targeting mTORC1 could be a promising approach for managing SE. Additionally, we highlight that the novel neuroprotective effect of EX4 in ameliorating SE is achieved by reducing necroptosis and utilizing the anti-apoptotic and anti-necrotic properties of mTORC1.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Future University in Egypt, Cairo, P.O. Box 11835, Egypt
| |
Collapse
|
45
|
Fang JJ, Yao HZ, Zhuang C, Chen FE. Insight from Linker Investigations: Discovery of a Novel Phenylbenzothiazole Necroptosis Inhibitor Targeting Receptor-Interacting Protein Kinase 1 (RIPK1) from a Phenoxybenzothiazole Compound with Dual RIPK1/3 Targeting Activity. J Med Chem 2023; 66:15288-15308. [PMID: 37917221 DOI: 10.1021/acs.jmedchem.3c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Necroptosis, a regulated cell death form, is a critical contributor in various inflammatory diseases. We previously identified a phenoxybenzothiazole SZM-610 as a RIPK1 and RIPK3 necroptosis inhibitor. We conducted extensive studies to investigate different chemical components' effects on antinecroptosis activity and RIPK1/3 activity. This study focused on replacing the linker in phenoxybenzothiazoles to assess its impact. Remarkably, compound 10, bearing a novel 3,2'-phenylbenzothiazole scaffold, exhibited fourfold more potent nanomolar activity than SZM-610. Unlike SZM-610, this compound inhibited RIPK1 (Kd = 17 nM) and eliminated RIPK3 inhibition at 5000 nM. Various linkages confirmed the 3,2'-phenylbenzothiazole superior potency. Moreover, this compound specifically inhibited necroptosis by inhibiting RIPK1, RIPK3, and MLKL phosphorylation. In a TNF-induced inflammatory model, it dose-dependently (1.25-5 mg/kg) protected mice from hypothermia and death, surpassing SZM-610's effectiveness. These findings highlight 3,2'-phenylbenzothiazole as a promising lead structure for developing drugs targeting necroptosis-related diseases.
Collapse
Affiliation(s)
- Jing-Jie Fang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hou-Zong Yao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
46
|
Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol 2023; 14:1277161. [PMID: 38035100 PMCID: PMC10682474 DOI: 10.3389/fimmu.2023.1277161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute diffuse inflammatory lung injury characterized by the damage of alveolar epithelial cells and pulmonary capillary endothelial cells. It is mainly manifested by non-cardiogenic pulmonary edema, resulting from intrapulmonary and extrapulmonary risk factors. ARDS is often accompanied by immune system disturbance, both locally in the lungs and systemically. As a common heterogeneous disease in critical care medicine, researchers are often faced with the failure of clinical trials. Latent class analysis had been used to compensate for poor outcomes and found that targeted treatment after subgrouping contribute to ARDS therapy. The subphenotype of ARDS caused by sepsis has garnered attention due to its refractory nature and detrimental consequences. Sepsis stands as the most predominant extrapulmonary cause of ARDS, accounting for approximately 32% of ARDS cases. Studies indicate that sepsis-induced ARDS tends to be more severe than ARDS caused by other factors, leading to poorer prognosis and higher mortality rate. This comprehensive review delves into the immunological mechanisms of sepsis-ARDS, the heterogeneity of ARDS and existing research on targeted treatments, aiming to providing mechanism understanding and exploring ideas for accurate treatment of ARDS or sepsis-ARDS.
Collapse
Affiliation(s)
- Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiying Sheng
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiwei Luo
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
47
|
Wu L, Zhao H, Zhang M, Sun Q, Chang E, Li X, Ouyang W, Le Y, Ma D. Regulated cell death and inflammasome activation in gut injury following traumatic surgery in vitro and in vivo: implication for postoperative death due to multiorgan dysfunction. Cell Death Discov 2023; 9:409. [PMID: 37935670 PMCID: PMC10630406 DOI: 10.1038/s41420-023-01647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Postoperative multi-organ dysfunction (MOD) is associated with significant mortality and morbidity. Necroptosis has been implicated in different types of solid organ injury; however, the mechanisms linking necroptosis to inflammation require further elucidation. The present study examines the involvement of necroptosis and NLR family pyrin domain containing 3 (NLRP3) inflammasome in small intestine injury following traumatic surgery. Kidney transplantation in rats and renal ischaemia-reperfusion (I/R) in mice were used as traumatic and laparotomic surgery models to study necroptosis and inflammasome activation in the small intestinal post-surgery; additional groups also received receptor-interacting protein kinase 1 (RIPK1) inhibitor necrostatin-1s (Nec-1s). To investigate whether necroptosis regulates inflammasome activity in vitro, necroptosis was induced in human colonic epithelial cancer cells (Caco-2) by a combination of tumour necrosis factor-alpha (TNFα), SMAC mimetic LCL-161 and pan-caspase inhibitor Q-VD-Oph (together, TLQ), and necroptosis was blocked by Nec-1s or mixed lineage kinase-domain like (MLKL) inhibitor necrosulfonamide (NSA). Renal transplantation and renal ischaemia-reperfusion (I/R) upregulated the expression of necroptosis mediators (RIPK1; RIPK3; phosphorylated-MLKL) and inflammasome components (P2X purinoceptor subfamily 7, P2X7R; NLRP3; caspase-1) in the small intestines at 24 h, and Nec-1s suppressed the expression of inflammasome components. TLQ treatment induced NLRP3 inflammasome, promoted cleavage of caspase-1 and interleukin-1 beta (IL-1β), and stimulated extracellular ATP release from Caco-2 cells, and MLKL inhibitor NSA prevented TLQ-induced inflammasome activity and ATP release from Caco-2 cells. Our work suggested that necroptosis and inflammasome interactively promote remote postoperative small intestinal injury, at least in part, through ATP purinergic signalling. Necroptosis-inflammasome axis may be considered as novel therapeutic target for tackling postoperative MOD in the critical care settings.
Collapse
Affiliation(s)
- Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Mengxu Zhang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Xinyi Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, PR China.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
48
|
Kim N, Park CJ, Kim Y, Ryu S, Cho H, Nam Y, Han M, Shin JS, Sim T. Identification of Pyrido[3,4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem 2023; 259:115635. [PMID: 37494773 DOI: 10.1016/j.ejmech.2023.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan-Jung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
49
|
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death. Nat Rev Mol Cell Biol 2023; 24:835-852. [PMID: 37568036 DOI: 10.1038/s41580-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Cell death and inflammation are closely linked arms of the innate immune response to combat infection and tissue malfunction. Recent advancements in our understanding of the intricate signals originating from dying cells have revealed that cell death serves as more than just an end point. It facilitates the exchange of information between the dying cell and cells of the tissue microenvironment, particularly immune cells, alerting and recruiting them to the site of disturbance. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is emerging as a critical stress sentinel that functions as a molecular switch, governing cellular survival, inflammatory responses and immunogenic cell death signalling. Its tight regulation involves multiple layers of post-translational modifications. In this Review, we discuss the molecular mechanisms that regulate RIPK1 to maintain homeostasis and cellular survival in healthy cells, yet drive cell death in a context-dependent manner. We address how RIPK1 mutations or aberrant regulation is associated with inflammatory and autoimmune disorders and cancer. Moreover, we tease apart what is known about catalytic and non-catalytic roles of RIPK1 and discuss the successes and pitfalls of current strategies that aim to target RIPK1 in the clinic.
Collapse
Affiliation(s)
- Jarama Clucas
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| |
Collapse
|
50
|
Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Cell Res 2023; 33:851-866. [PMID: 37580406 PMCID: PMC10624691 DOI: 10.1038/s41422-023-00859-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Ultra-stable fibrous structure is a hallmark of amyloids. In contrast to canonical disease-related amyloids, emerging research indicates that a significant number of cellular amyloids, termed 'functional amyloids', contribute to signal transduction as temporal signaling hubs in humans. However, it is unclear how these functional amyloids are effectively disassembled to terminate signal transduction. RHIM motif-containing amyloids, the largest functional amyloid family discovered thus far, play an important role in mediating necroptosis signal transduction in mammalian cells. Here, we identify heat shock protein family A member 8 (HSPA8) as a new type of enzyme - which we name as 'amyloidase' - that directly disassembles RHIM-amyloids to inhibit necroptosis signaling in cells and mice. Different from its role in chaperone-mediated autophagy where it selects substrates containing a KFERQ-like motif, HSPA8 specifically recognizes RHIM-containing proteins through a hydrophobic hexapeptide motif N(X1)φ(X3). The SBD domain of HSPA8 interacts with RHIM-containing proteins, preventing proximate RHIM monomers from stacking into functional fibrils; furthermore, with the NBD domain supplying energy via ATP hydrolysis, HSPA8 breaks down pre-formed RHIM-amyloids into non-functional monomers. Notably, HSPA8's amyloidase activity in disassembling functional RHIM-amyloids does not require its co-chaperone system. Using this amyloidase activity, HSPA8 reverses the initiator RHIM-amyloids (formed by RIP1, ZBP1, and TRIF) to prevent necroptosis initiation, and reverses RIP3-amyloid to prevent necroptosis execution, thus eliminating multi-level RHIM-amyloids to effectively prevent spontaneous necroptosis activation. The discovery that HSPA8 acts as an amyloidase dismantling functional amyloids provides a fundamental understanding of the reversibility nature of functional amyloids, a property distinguishing them from disease-related amyloids that are unbreakable in vivo.
Collapse
Affiliation(s)
- Erpeng Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenlu Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shijie Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xialian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiheng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kelong Jia
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiasong Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Limin Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Qin
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huayi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|