1
|
Akdemir EY, Herrera R, Gurdikyan S, Hodgson LC, Yarlagadda S, Kaiser A, Press RH, Mittauer KE, Bassiri-Gharb N, Tolakanahalli R, Gutierrez AN, Mehta MP, Chuong MD, Kotecha R. Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy for Infradiaphragmatic Oligometastatic Disease: Disrupting the One-Size-Fits-All Paradigm. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00258-5. [PMID: 40154846 DOI: 10.1016/j.ijrobp.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
PURPOSE Although recent studies have demonstrated the benefits of stereotactic ablative radiotherapy (SABR) in the treatment of oligometastatic (OM) disease, toxicity remains a concern in the infradiaphragmatic region. This is largely because of challenges in soft tissue visualization, motion management, and the proximity of gastrointestinal organs at risk. Stereotactic magnetic resonance guided adaptive radiation therapy (SMART) may enhance the safety and efficacy of SABR in abdominopelvic targets. METHODS AND MATERIALS Patients with infradiaphragmatic OM disease, including up to 5 lesions treated with SMART between May 2018 and September 2023, were evaluated. Progression-free survival, overall survival, and local control (LC) were analyzed using Kaplan-Meier and Fine and Gray proportional subhazards models, whereas treatment-related toxicities were assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events v4.0 criteria. RESULTS One hundred eighty-three targets in 138 patients with primarily lung, colorectal, and noncolorectal gastrointestinal cancers were prescribed a median dose of 50 Gy in 5 fractions on a 0.35-T magnetic resonance-Linac. Overall, 62.8% of treated metastases were within 5 mm of a dose-limiting organs at risk, necessitating online adaptive planning in 670 of 875 (76.6%) delivered SABR fractions. The 1-year progression-free survival rate was 35.8% for the entire population and significantly differed between OM and oligoprogressive patients (42.4% vs 25.4%, P = .03). There was a trend toward lower LC in colorectal versus noncolorectal histology in the definitive dose group (biologically effective dose10 ≥ 75 Gy) with 2-year LC rates of 74.0% versus 86.0%, respectively, P = .08. Acute and late grade ≥3 toxicities were 0% and 2.2%, respectively. CONCLUSIONS SMART is feasible and effective for treating OM disease lesions in proximity to dose-limited organs at risk. Safe dose escalation is facilitated by online adaptive radiation therapy and is associated with long-term LC. Patient selection is key to identifying which patients with OM or oligoprogressive disease should be considered most appropriate for SMART.
Collapse
Affiliation(s)
- Eyub Y Akdemir
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Robert Herrera
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Selin Gurdikyan
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Lydia C Hodgson
- Department of Clinical Informatics, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Robert H Press
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nema Bassiri-Gharb
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.
| |
Collapse
|
2
|
Franzese C, Louie AV, Kotecha R, Zhang Z, Guckenberger M, Kim MS, Tree AC, Slotman BJ, Sahgal A, Scorsetti M. Stereotactic Body Radiation therapy for Liver Metastases: Systematic Review and Meta-Analysis With International Stereotactic Radiosurgery Society (ISRS) Practice Guidelines. Pract Radiat Oncol 2025; 15:e172-e188. [PMID: 39419281 DOI: 10.1016/j.prro.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Liver metastases are a significant clinical challenge in cancer management, often representing a stage of disease in which curative treatment is still possible. Stereotactic body radiation therapy (SBRT) has emerged as a promising modality for treating these metastases, offering a noninvasive approach with potential for high efficacy. This systematic review and meta-analysis provides a comprehensive analysis of the efficacy and safety of SBRT in treating liver metastases, and practice recommendations are provided. METHODS AND MATERIALS We performed a thorough literature review, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, and included 33 studies with a total of 3101 patients and 4437 liver metastases. RESULTS The review revealed pooled local control rates at 1, 2, and 3 years of 85%, 75%, and 68% respectively, while overall survival rates were 79%, 54%, and 37%. Grade 3 and 4 side effects occurred in only 3% of patients. The review of the studies highlighted the importance of factors such as primary tumor histology, lesion characteristics, and radiation dose in predicting treatment outcomes. CONCLUSIONS This review supports the growing body of evidence that SBRT is an efficacious and safe treatment option for liver metastases. It underscores the need for careful patient selection and personalized treatment planning to optimize outcomes.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Department of Radiotherapy and Radiosurgery, Milan, Italy.
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Zhenwei Zhang
- Technology Digital - Artificial Intelligence and Machine Learning, Baptist Health South Florida, Miami, Florida
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Alison C Tree
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, location VUMC, Amsterdam, Netherlands
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Science Centre, University of Toronto, Ontario, Canada
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Department of Radiotherapy and Radiosurgery, Milan, Italy
| |
Collapse
|
3
|
Renan A, Bruand M, Jolnerovski M, Diallo A, Demogeot N. Local control and recurrence patterns after stereotactic irradiation delivered in more than 4 fractions for hepatocellular carcinomas and liver metastases: a retrospective study. Radiat Oncol 2025; 20:19. [PMID: 39915761 PMCID: PMC11804025 DOI: 10.1186/s13014-025-02595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Stereotactic Body Radiation Therapy (SBRT) is a safe and effective treatment for liver metastases or hepatocellular carcinoma (HCC) with a dose-response relationship for local control (LC). Proximity to organs at risk (OAR) often requires dose de-escalation. This study evaluated LC and recurrence patterns in patients administered hepatic SBRT in more than 4 fractions due to dosimetric constraints. METHODS This retrospective study included 33 patients treated with SBRT (Cyberknife®) in more than 4 fractions for HCC or liver metastases, between January 2011 and December 2019. Patients were ineligible for treatment in 3 or 4 fractions due to OAR proximity. Recurrence patterns were analysed according to the volume shared between recurrence and initial target or treatment isodose volumes. RESULTS The primary dose ranged from 35 to 50 Gy delivered in 5 to 7 fractions for the treatment of HCC (39%) or liver metastases (61%) mainly secondary to colorectal cancer (40%). LC rate was 64%, with 12 patients showing recurrence volume overlap with the initial target volume or treatment isodose. In-field recurrence occurred in only 12.5% of patients with most relapses being out-of-field. No grade ≥ 3 events were reported. CONCLUSION Despite dose reductions to spare OAR, SBRT showed satisfactory LC with low toxicity. Out-of-field recurrence remains the most common pattern identified and likely related to underlying disease. Prospective data are necessary to determine whether preserving dose while reducing planning target volume (PTV) coverage could enhance LC. Trial registration All patients were retrospectively registered, and this study is registered at the Health Data Hub site (number HDH414).
Collapse
Affiliation(s)
- Alizée Renan
- Academic Department of Radiation Therapy and Brachytherapy, Lorraine Institute of Cancerology-Alexis-Vautrin, 6 avenue de Bourgogne-CS, 30 519, 54 511, Vandoeuvre-Lès-Nancy Cedex, France.
- Faculté de Médecine de Nancy, Université de Lorraine, Vandoeuvre-Lès-Nancy, France.
| | - Marie Bruand
- Academic Department of Radiation Therapy and Brachytherapy, Lorraine Institute of Cancerology-Alexis-Vautrin, 6 avenue de Bourgogne-CS, 30 519, 54 511, Vandoeuvre-Lès-Nancy Cedex, France
- Faculté de Médecine de Nancy, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Maria Jolnerovski
- Academic Department of Radiation Therapy and Brachytherapy, Lorraine Institute of Cancerology-Alexis-Vautrin, 6 avenue de Bourgogne-CS, 30 519, 54 511, Vandoeuvre-Lès-Nancy Cedex, France
| | - Aboubacar Diallo
- Methodology Biostatistics Unit, Institut de Cancérologie de Lorraine, Vandoeuvre-Les-Nancy, France
| | - Nicolas Demogeot
- Academic Department of Radiation Therapy and Brachytherapy, Lorraine Institute of Cancerology-Alexis-Vautrin, 6 avenue de Bourgogne-CS, 30 519, 54 511, Vandoeuvre-Lès-Nancy Cedex, France
| |
Collapse
|
4
|
Shan J, Yang P, Yen E, Zhou Q, Gu B, Xie X, Wang J, Niu T, Sun X. Cone-beam CT radiomics for early response assessment in liver stereotactic body radiation therapy: Results of a pilot study. Cancer Radiother 2025; 29:104586. [PMID: 40049062 DOI: 10.1016/j.canrad.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 04/01/2025]
Abstract
PURPOSE The objective of the study was to assess the correlation between radiomics features extracted from cone-beam CT with the treatment response of liver tumors treated with stereotactic body radiation. MATERIAL AND METHODS The planning CT and cone-beam CT were prospectively collected for 76 patients with liver cancer who received five fractions of stereotactic body radiation therapy. Pearson correlation test was used to identify interchangeable radiomics features between cone-beam- and planning CT from a total of 547 extracted radiomics features. Principal components analysis was used for cone-beam CT delta radiomics to characterize therapy-induced tumor change. The Mann-Whitney U-test was used to identify features with correlation to treatment response: local efficacy versus local non-efficacy; complete versus partial response in both raw and principal components analysis-based cone-beam CT radiomics features. The area under the receiver operating characteristic curve was used for assessing feature performance. RESULTS A total of 345 cone-beam CT radiomics features were interchangeable with planning CT. The mean value of LHH_GLSZM_LGZE showed an ascending trend in five fractions during the course of treatment. Among these features, PCA3_LHH_Histogram_Energy showed the best performance in predicting local efficacy, with an AUC of 0.879 (0.744-1.00, 95 % CI). For identifying complete response from partial response, CBCT2_LHL_GLSZM_GLV showed the best value, with the highest AUC of 0.884 (0.773-1.00, 95 % CI). CONCLUSION Radiomics features extracted from cone-beam CT images have the potential for assessing the response to treatment in advance and can serve as an early biomarker for liver tumor stereotactic body radiation therapy.
Collapse
Affiliation(s)
- Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pengfei Yang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Eric Yen
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinxuan Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Benxing Gu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianye Niu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Pezzulla D, Chiloiro G, Lima EM, Macchia G, Romano C, Reina S, Panza G, Cilla S, Morganti AG, Cellini F, Gambacorta MA, Deodato F. Stereotactic radiotherapy for liver oligometastases: a pooled analysis following the estro/eortc consensus recommendations. Clin Exp Metastasis 2024; 41:667-678. [PMID: 39017807 DOI: 10.1007/s10585-024-10301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
A large pooled analysis of liver oligometastases, classified accordingly to the ESTRO/EORTC recommendations, treated by stereotactic radiotherapy (SBRT) and Radiosurgery (SRS) was carried out. The clinical and dosimetric data of patients who underwent SBRT/SRS for liver metastases were analysed in terms of efficacy and toxicity profile. In particular, the Local Control (LC), the Distant Metastases Free Survival (DMFS), the Disease-Free Survival (DFS), the Overall Survival (OS), and the Next Systemic Therapy Free Survival (NEST-FS) rates were analysed. 113 patients (M/F: 49/64), accounting for a total of 150 hepatic lesions (March 2006-February 2023) in two Italian radiotherapy Institutions were evaluated. Median age was 67 years old (36-92) and 48 (42.5%) patients had at least one comorbidity. The majority of the lesions were induced (30.7%) or repeated oligoprogressive (12.7%) metastases. 98 lesions were treated with more than one daily fraction (mainly 50 Gy in 5 fractions), while 52 were radiosurgery treatments (mainly 32 Gy). The treatment response at 3-4 months was evaluable in 147 lesions: complete response was 32.0%, partial response 17.0%, and stable disease 32.0%. Actuarial LC, DMFS, DFS, OS, and NEST-FS at 1 year were 75.8%, 37.7%, 34.9%, 78.7%, and 59.4% respectively; while actuarial LC, DMFS, DFS, OS, and NEST-FS at 2 years were 52.1%, 24.9%, 21.9%, 51.3%, and 36.8%, respectively. The achievement of complete response, synchronous oligometastases, and no treatment interruptions correlated with a more favorable outcomes. As per the toxicity profile, we registered only two acute and one late toxicity cases higher than grade 2. Stereotactic treatment for liver metastases seems to be a safe and promising option in terms of local control. The best results in term of outcomes have been obtained in patients with complete response, synchronous oligometastases, favorable histology, and no treatment interruptions.
Collapse
Affiliation(s)
- D Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy
| | - G Chiloiro
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
| | - E M Lima
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
| | - G Macchia
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy.
| | - C Romano
- Medical Physics Unit, Responsible Research Hospital, Campobasso, Italy
| | - S Reina
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
| | - G Panza
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
| | - S Cilla
- Medical Physics Unit, Responsible Research Hospital, Campobasso, Italy
| | - A G Morganti
- Radiation Oncology, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, IRCCS Azienda Ospedaliero, Universitaria di Bologna - Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - F Cellini
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Milano, Italy
| | - M A Gambacorta
- UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, San Giovanni Rotondo, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Milano, Italy
| | - F Deodato
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Milano, Italy
| |
Collapse
|
6
|
Miller SR, Chang DT. Local-Regional Therapy for Oligometastatic Colorectal Cancer. Cancer J 2024; 30:272-279. [PMID: 39042779 DOI: 10.1097/ppo.0000000000000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
ABSTRACT Colorectal cancer is one of the most common malignancies in the United States as well as a leading cause of cancer-related death. Upward of 30% of patients ultimately develop metastatic disease, most commonly to the liver and lung. Untreated, patients have poor survival. Historically, patients with oligometastatic disease were treated with resection leading to long-term survival; however, there are many patients who are not surgical candidates. Innovations in thermal ablation, hepatic artery infusions, chemoembolization and radioembolization, and stereotactic ablative radiation have led to an expansion of patients eligible for local therapy. This review examines the evidence behind each modality for the most common locations of oligometastatic colorectal cancer.
Collapse
Affiliation(s)
- Sean R Miller
- From the Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | | |
Collapse
|
7
|
Xu D, Miao X, Liu H, Scholey JE, Yang W, Feng M, Ohliger M, Lin H, Lao Y, Yang Y, Sheng K. Paired conditional generative adversarial network for highly accelerated liver 4D MRI. Phys Med Biol 2024; 69:10.1088/1361-6560/ad5489. [PMID: 38838679 PMCID: PMC11212820 DOI: 10.1088/1361-6560/ad5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Purpose.4D MRI with high spatiotemporal resolution is desired for image-guided liver radiotherapy. Acquiring densely sampling k-space data is time-consuming. Accelerated acquisition with sparse samples is desirable but often causes degraded image quality or long reconstruction time. We propose the Reconstruct Paired Conditional Generative Adversarial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time while maintaining the reconstruction quality.Methods.Patients who underwent free-breathing liver 4D MRI were included in the study. Fully- and retrospectively under-sampled data at 3, 6 and 10 times (3×, 6× and 10×) were first reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. Three types of networks, ResNet9, UNet and reconstruction swin transformer (RST), were explored as generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D +t) as temporal slices (2D +t). A total of 48 patients with 12 332 temporal slices were split into training (37 patients with 10 721 slices) and test (11 patients with 1611 slices). Compressed sensing (CS) reconstruction with spatiotemporal sparsity constraint was used as a benchmark. Reconstructed image quality was further evaluated with a liver gross tumor volume (GTV) localization task using Mask-RCNN trained from a separate 3D static liver MRI dataset (70 patients; 103 GTV contours).Results.Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models. The inference time of Re-Con-GAN, UNet and CS are 0.15, 0.16, and 120 s. The GTV detection task showed that Re-Con-GAN and CS, compared to UNet, better improved the dice score (3× Re-Con-GAN 80.98%; 3× CS 80.74%; 3× UNet 79.88%) of unprocessed under-sampled images (3× 69.61%).Conclusion.A generative network with adversarial training is proposed with promising and efficient reconstruction results demonstrated on an in-house dataset. The rapid and qualitative reconstruction of 4D liver MR has the potential to facilitate online adaptive MR-guided radiotherapy for liver cancer.
Collapse
Affiliation(s)
- Di Xu
- Department of Radiation Oncology, University of California, San Francisco
| | | | - Hengjie Liu
- Department of Radiation Oncology, University of California, Los Angeles
| | - Jessica E. Scholey
- Department of Radiation Oncology, University of California, San Francisco
| | - Wensha Yang
- Department of Radiation Oncology, University of California, San Francisco
| | - Mary Feng
- Department of Radiation Oncology, University of California, San Francisco
| | - Michael Ohliger
- Department of Radiology and Biomedical Engineering, University of California, San Francisco
| | - Hui Lin
- Department of Radiation Oncology, University of California, San Francisco
| | - Yi Lao
- Department of Radiation Oncology, University of California, Los Angeles
| | - Yang Yang
- Department of Radiology and Biomedical Engineering, University of California, San Francisco
| | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco
| |
Collapse
|
8
|
Wang H, Zheng X, Sun J, Zhu X, Dong D, Du Y, Feng Z, Gong J, Wu H, Geng J, Li S, Song M, Zhang Y, Liu Z, Cai Y, Li Y, Wang W. 4D-MRI assisted stereotactic body radiation therapy for unresectable colorectal cancer liver metastases. Clin Transl Radiat Oncol 2024; 45:100714. [PMID: 38130885 PMCID: PMC10733695 DOI: 10.1016/j.ctro.2023.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 11/25/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
This study evaluated the feasibilities and outcomes following four-dimensional magnetic resonance imaging (4D-MRI) assisted stereotactic body radiation therapy (SBRT) for unresectable colorectal liver metastases (CRLMs). From March 2018 to January 2022, we identified 76 unresectable CRLMs patients with 123 lesions who received 4D-MRI guided SBRT in our institution. 4D-MRI simulation with or without abdominal compression was conducted for all patients. The prescription dose was 50-65 Gy in 5-12 fractions. The image quality of computed tomography (CT) and MRI were compared using the Clarity Score. Clinical outcomes and toxicity profiles were evaluated. 4D-MRI improved the image quality compared with CT images (mean Clarity Score: 1.67 vs 2.88, P < 0.001). The abdominal compression reduced motions in cranial-caudal direction (P = 0.03) with two phase T2 weighted images assessing tumor motion. The median follow-up time was 12.5 months. For 98 lesions assessed for best response, the complete response, partial response and stable disease rate were 57.1 %, 30.6 % and 12.2 %, respectively. The local control (LC) rate at 1 year was 97.3 %. 46.1 % of patients experienced grade 1-2 toxicities and only 2.6 % patients experienced grade 3 hematologic toxicities. The 4D-MRI technique allowed accurate target delineation and motion tracking in unresectable CRLMs patients. Favorable LC rate and mild toxicities were achieved. This study provided evidence for using 4D-MRI assisted SBRT as an alternative treatment in unresectable CRLMs.
Collapse
Affiliation(s)
| | | | | | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dezuo Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yi Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhongsu Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jian Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Shuai Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Maxiaowei Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yangzi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhiyan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
9
|
Yang P, Shan J, Ge X, Zhou Q, Ding M, Niu T, Du J. Prediction of SBRT response in liver cancer by combining original and delta cone-beam CT radiomics: a pilot study. Phys Eng Sci Med 2024; 47:295-307. [PMID: 38165634 DOI: 10.1007/s13246-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024]
Abstract
This study aims to explore the feasibility of utilizing a combination of original and delta cone-beam CT (CBCT) radiomics for predicting treatment response in liver tumors undergoing stereotactic body radiation therapy (SBRT). A total of 49 patients are included in this study, with 36 receiving 5-fraction SBRT, 3 receiving 4-fraction SBRT, and 10 receiving 3-fraction SBRT. The CBCT and planning CT images from liver cancer patients who underwent SBRT are collected to extract overall 547 radiomics features. The CBCT features which are reproducible and interchangeable with pCT are selected for modeling analysis. The delta features between fractions are calculated to depict tumor change. The patients with 4-fraction SBRT are only used for screening robust features. In patients receiving 5-fraction SBRT, the predictive ability of both original and delta CBCT features for two-level treatment response (local efficacy vs. local non-efficacy; complete response (CR) vs. partial response (PR)) is assessed by utilizing multivariable logistic regression with leave-one-out cross-validation. Additionally, univariate analysis is conducted to validate the capability of CBCT features in identifying local efficacy in patients receiving 3-fraction SBRT. In patients receiving 5-fraction SBRT, the combined models incorporating original and delta CBCT radiomics features demonstrate higher area under the curve (AUC) values compared to models using either original or delta features alone for both classification tasks. The AUC values for predicting local efficacy vs. local non-efficacy are 0.58 for original features, 0.82 for delta features, and 0.90 for combined features. For distinguishing PR from CR, the respective AUC values for original, delta and combined features are 0.79, 0.80, and 0.89. In patients receiving 3-fraction SBRT, eight valuable CBCT radiomics features are identified for predicting local efficacy. The combination of original and delta radiomics derived from fractionated CBCT images in liver cancer patients undergoing SBRT shows promise in providing comprehensive information for predicting treatment response.
Collapse
Affiliation(s)
- Pengfei Yang
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Ge
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qinxuan Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingchao Ding
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China
| | - Tianye Niu
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China.
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Jichen Du
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, 100049, China.
| |
Collapse
|
10
|
Bonù ML, Nicosia L, Turkaj A, Pastorello E, Vitali P, Frassine F, Toraci C, Spiazzi L, Lechiara M, Frittoli B, Grazioli L, Ghirardelli P, Costantino G, Barbera F, Borghetti P, Triggiani L, Portolani N, Buglione M, Dionisi F, Giacomelli I, Lancia A, Magrini SM, Tomasini D. High dose proton and photon-based radiation therapy for 213 liver lesions: a multi-institutional dosimetric comparison with a clinical perspective. LA RADIOLOGIA MEDICA 2024; 129:497-506. [PMID: 38345714 PMCID: PMC10942931 DOI: 10.1007/s11547-024-01788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/15/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND Stereotactic radiotherapy (SRT) and Proton therapy (PT) are both options in the management of liver lesions. Limited clinical-dosimetric comparison are available. Moreover, dose-constraint routinely used in liver PT and SRT considers only the liver spared, while optimization strategies to limit the liver damaged are poorly reported. METHODS Primary endpoint was to assess and compare liver sparing of four contemporary RT techniques. Secondary endpoints were freedom from local recurrence (FFLR), overall survival (OS), acute and late toxicity. We hypothesize that Focal Liver Reaction (FLR) is determined by a similar biologic dose. FLR was delineated on follow-up MRI. Mean C.I. was computed for all the schedules used. A so-called Fall-off Volume (FOV) was defined as the area of healthy liver (liver-PTV) receiving more than the isotoxic dose. Fall-off Volume Ratio (FOVR) was defined as ratio between FOV and PTV. RESULTS 213 lesions were identified. Mean best fitting isodose (isotoxic doses) for FLR were 18Gy, 21.5 Gy and 28.5 Gy for 3, 5 and 15 fractions. Among photons, an advantage in terms of healthy liver sparing was found for Vmat FFF with 5mm jaws (p = 0.013) and Cyberknife (p = 0.03). FOV and FOVR resulted lower for PT (p < 0.001). Three years FFLR resulted 83%. Classic Radiation induced liver disease (RILD, any grade) affected 2 patients. CONCLUSIONS Cyberknife and V-MAT FFF with 5mm jaws spare more liver than V-MAT FF with 10 mm jaws. PT spare more liver compared to photons. FOV and FOVR allows a quantitative analysis of healthy tissue sparing performance showing also the quality of plan in terms of dose fall-off.
Collapse
Affiliation(s)
- Marco Lorenzo Bonù
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy.
| | - Luca Nicosia
- Department of Radiation Oncology, Ospedale Sacro Cuore Don Calabria, Negrar, Italy
| | | | - Edoardo Pastorello
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paola Vitali
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Francesco Frassine
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Cristian Toraci
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Department of Medical Physics, Spedali Civili di Brescia, Brescia, Italy
| | - Marco Lechiara
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Frittoli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Luigi Grazioli
- Department of Radiology, Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Ghirardelli
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Gianluca Costantino
- Department of Radiation Oncology, Humanitas Gavazzeni Hospital, Bergamo, Italy
| | - Fernando Barbera
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Paolo Borghetti
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | - Michela Buglione
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | | | | | - Andrea Lancia
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| | - Davide Tomasini
- Department of Radiation Oncology, Istituto del Radio O. Alberti, University of Brescia and Spedali Civili Hospital, Piazzale Spedali Civili 1, 25121, Brescia, Italy
| |
Collapse
|
11
|
Chen I, Jeong J, Romesser PB, Hilal L, Cuaron J, Zinovoy M, Hajj C, Yang TJ, Tsai J, Yamada Y, Wu AJ, White C, Fiasconaro M, Segal NH, Kemeny NE, Zhang Z, Crane CH, Reyngold M. Radiation Therapy for Colorectal Liver Metastasis: The Effect of Radiation Therapy Dose and Chemotherapy on Local Control and Survival. Adv Radiat Oncol 2024; 9:101382. [PMID: 38370274 PMCID: PMC10870167 DOI: 10.1016/j.adro.2023.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 02/20/2024] Open
Abstract
Purpose Colorectal liver metastases (CLMs) represent a radioresistant histology. We aimed to investigate CLM radiation therapy (RT) outcomes and explore the association with treatment parameters. Methods and Materials This retrospective analysis of CLM treated with RT at Memorial Sloan Kettering Cancer Center used Kaplan-Meier analysis to estimate freedom from local progression (FFLP), hepatic progression-free, progression-free, and overall survival (OS). Cox proportional hazards regression was used to evaluate association with clinical factors. Dose-response relationship was further evaluated using a mechanistic tumor control probability (TCP) model. Results Ninety patients with 122 evaluable CLMs treated 2006 to 2019 with a variety of RT fractionation schemes with a median biologically effective dose (α/β = 10; BED10) of 97.9 Gy (range, 43.2-187.5 Gy) were included. Median lesion size was 3.5 cm (0.7-11.8 cm). Eighty-seven patients (97%) received prior systemic therapy, and 73 patients (81%) received prior liver-directed therapy. At a median follow-up of 26.4 months, rates of FFLP and OS were 62% (95% CI, 53%-72%) and 75% (66%-84%) at 1 year and 42% (95% CI, 32%-55%) and 44% (95% CI, 34%-57%) at 2 years, respectively. BED10 below 96 Gy and receipt of ≥3 lines of chemotherapy were associated with worse FFLP (hazard ratio [HR], 2.69; 95% CI, 1.54-4.68; P < .001 and HR, 2.67; 95% CI, 1.50-4.74; P < .001, respectively) and OS (HR, 2.35; 95% CI, 1.35-4.09; P = .002 and HR, 4.70; 95% CI, 2.37-9.31; P < .001) on univariate analyses, which remained significant or marginally significant on multivariate analyses. A mechanistic Tumor Control Probability (TCP) model showed a higher 2-Gy equivalent dose needed for local control in patients who had been exposed to ≥ 3 lines of chemotherapy versus 0 to 2 (250 ± 29 vs 185 ± 77 Gy for 70% TCP). Conclusions In a large single-institution series of heavily pretreated patients with CLM undergoing liver RT, low BED10 and multiple prior lines of systemic therapy were associated with lower local control and OS. These results support continued dose escalation efforts for patients with CLM.
Collapse
Affiliation(s)
- Ishita Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeho Jeong
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lara Hilal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa Zinovoy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T. Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jillian Tsai
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlie White
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan Fiasconaro
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil H. Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy E. Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Yokoi R, Tajima JY, Fukada M, Hayashi H, Kuno M, Asai R, Sato Y, Yasufuku I, Kiyama S, Tanaka Y, Murase K, Matsuhashi N. Optimizing Treatment Strategy for Oligometastases/Oligo-Recurrence of Colorectal Cancer. Cancers (Basel) 2023; 16:142. [PMID: 38201569 PMCID: PMC10777959 DOI: 10.3390/cancers16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer, and nearly half of CRC patients experience metastases. Oligometastatic CRC represents a distinct clinical state characterized by limited metastatic involvement, demonstrating a less aggressive nature and potentially improved survival with multidisciplinary treatment. However, the varied clinical scenarios giving rise to oligometastases necessitate a precise definition, considering primary tumor status and oncological factors, to optimize treatment strategies. This review delineates the concepts of oligometastatic CRC, encompassing oligo-recurrence, where the primary tumor is under control, resulting in a more favorable prognosis. A comprehensive examination of multidisciplinary treatment with local treatments and systemic therapy is provided. The overarching objective in managing oligometastatic CRC is the complete eradication of metastases, offering prospects of a cure. Essential to this management approach are local treatments, with surgical resection serving as the standard of care. Percutaneous ablation and stereotactic body radiotherapy present less invasive alternatives for lesions unsuitable for surgery, demonstrating efficacy in select cases. Perioperative systemic therapy, aiming to control micrometastatic disease and enhance local treatment effectiveness, has shown improvements in progression-free survival through clinical trials. However, the extension of overall survival remains variable. The review emphasizes the need for further prospective trials to establish a cohesive definition and an optimized treatment strategy for oligometastatic CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Gifu, Japan; (R.Y.); (K.M.)
| |
Collapse
|
13
|
Miller ED, Hitchcock KE, Romesser PB. Oligometastatic Colorectal Cancer: A Review of Definitions and Patient Selection for Local Therapies. J Gastrointest Cancer 2023; 54:1116-1127. [PMID: 36652155 PMCID: PMC10352468 DOI: 10.1007/s12029-022-00900-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE Nearly one-third of patients diagnosed with colorectal cancer (CRC) will ultimately develop metastatic disease. While a small percentage of patients can be considered for curative resection, more patients have limited disease that can be considered for local therapy. Challenges remain in defining oligometastatic CRC as well as developing treatment strategies guided by high level evidence. METHODS In this review, we present the challenges in defining oligometastatic CRC and summarize the current literature on treatment and outcomes of local therapy in patients with metastatic CRC. RESULTS For patients with liver- and/or lung-confined CRC metastases, surgical resection is the standard of care given the potential for long-term progression-free and overall survival. For patients with liver- or lung-confined disease not amenable to surgical resection, non-surgical local therapies, such as thermal ablation, hepatic arterial infusion pump (HAIP), or stereotactic body radiation therapy (SBRT), should be considered. For patients with more advanced disease, such as lymph node or bony metastases, the role of metastasis-directed therapy is controversial. Emerging data suggests that SBRT to ablate all metastases can improve progression-free and overall survival. CONCLUSION Multidisciplinary management is critical for patients with metastatic CRC due to the complexity of their cases and the nuanced patient, tumor, biological, and anatomical factors that must be weighed when considering local therapy. High-quality prospective randomized data in CRC are needed to further clarify the role of local ablative therapy in patients with unresectable oligometastatic CRC with ongoing studies including the RESOLUTE trial (ACTRN12621001198819) and the upcoming NCTN ERASur trial (NCT05673148).
Collapse
Affiliation(s)
- Eric D Miller
- Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, 460 W. 10Th Ave., Room A209, Columbus, OH, 43210, USA.
| | - Kathryn E Hitchcock
- Department of Radiation Oncology, University of Florida Health, Gainesville, FL, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
14
|
Hernando-Requejo O, Chen X, López M, Sánchez E, García J, García P, Alonso R, Montero A, Ciervide R, Álvarez B, Zucca D, García Aranda M, Valero J, Fernández Letón P, Rubio C. Real-world effectiveness and safety of stereotactic body radiotherapy for liver metastases with different respiratory motion management techniques. Strahlenther Onkol 2023; 199:1000-1010. [PMID: 37728734 DOI: 10.1007/s00066-023-02147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/13/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) has been firmly established as a treatment choice for patients with oligometastases, as it has demonstrated both safety and efficacy by consistently achieving high rates of local control. Moreover, it offers potential survival benefits for carefully selected patients in real-world clinical settings. METHODS Between January 2008 and May 2020, a total of 149 patients (with 414 liver metastases) received treatment. The Active Breathing Coordinator device was used for 68 patients, while respiratory gating was used for 65 and abdominal compression was used for 16 patients. The most common histological finding was colorectal adenocarcinoma, with 37.6% of patients having three or more metastases, and 18% having two metastases. The prescribed dose ranged from 36 to 60 Gy, delivered in 3-5 fractions. RESULTS Local control rates at 2 and 3 years were 76.1% and 61.2%, respectively, with no instances of local recurrence after 3 years. Factors negatively impacting local control included colorectal histology, lower prescribed dose, and the occurrence of new liver metastases. The median overall survival from SBRT was 32 months, with the presence of metastases outside the liver and the development of new liver metastases after SBRT affecting survival. The median disease-free survival was 10 months. No substantial differences in both local control and survival were observed between the respiratory motion control techniques employed. Treatment tolerance was excellent, with only one patient experiencing acute grade IV thrombocytopenia and two patients suffering from ≥ grade II chronic toxicity. CONCLUSION For radical management of single or multiple liver metastases, SBRT is an effective and well-tolerated treatment option. Regardless of the technology employed, experienced physicians can achieve similarly positive outcomes. However, additional studies are required to elucidate prognostic factors that can facilitate improved patient selection.
Collapse
Affiliation(s)
- O Hernando-Requejo
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain.
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain.
| | - X Chen
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - M López
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - E Sánchez
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J García
- Radiation Physics Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - P García
- Radiation Physics Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - R Alonso
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
| | - A Montero
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - R Ciervide
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - B Álvarez
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - D Zucca
- Radiation Physics Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - M García Aranda
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - J Valero
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - P Fernández Letón
- Radiation Physics Department, University Hospital HM Sanchinarro, Madrid, Spain
| | - C Rubio
- Radiation Oncology Department, University Hospital HM Puerta del Sur, Madrid, Spain
- Radiation Oncology Department, University Hospital HM Sanchinarro, Madrid, Spain
| |
Collapse
|
15
|
Mheid S, Allen S, Ng SSW, Hall WA, Sanford NN, Aguilera TA, Elamir AM, Bahij R, Intven MPW, Radhakrishna G, Mohamad I, De Leon J, Tan H, Lewis S, Gani C, Stanecu T, Dell’Acqua V, Hosni A. Local Control Following Stereotactic Body Radiation Therapy for Liver Oligometastases: Lessons from a Quarter Century. Curr Oncol 2023; 30:9230-9243. [PMID: 37887567 PMCID: PMC10605011 DOI: 10.3390/curroncol30100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
The utilization of stereotactic body radiation therapy for the treatment of liver metastasis has been widely studied and has demonstrated favorable local control outcomes. However, several predictive factors play a crucial role in the efficacy of stereotactic body radiation therapy, such as the number and size (volume) of metastatic liver lesions, the primary tumor site (histology), molecular biomarkers (e.g., KRAS and TP53 mutation), the use of systemic therapy prior to SBRT, the radiation dose, and the use of advanced technology and organ motion management during SBRT. These prognostic factors need to be considered when clinical trials are designed to evaluate the efficacy of SBRT for liver metastases.
Collapse
Affiliation(s)
- Sara Mheid
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| | - Stefan Allen
- Department of Radiation Oncology, Dalhousie University, Nova Scotia Health, Halifax, NS B3H 4R2, Canada;
| | - Sylvia S. W. Ng
- Department of Radiation Oncology, University of Toronto, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Nina N. Sanford
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Todd A. Aguilera
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Ahmed M. Elamir
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX 75235, USA; (N.N.S.); (T.A.A.); (A.M.E.)
| | - Rana Bahij
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark;
| | - Martijn P. W. Intven
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre, 3584 CX Utrecht, The Netherlands;
| | - Ganesh Radhakrishna
- Department of Radiotherapy, The Christie NHS Foundation Trust, Manchester M20 4BX, UK;
| | - Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan;
| | | | - Hendrick Tan
- Department of Radiation Oncology, Fiona Stanley Hospital, Perth, WA 6150, Australia;
- GenesisCare, Perth, WA 6150, Australia
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Manipal Comprehensive Cancer Care Centre, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Teo Stanecu
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| | - Veronica Dell’Acqua
- Medical Affairs and Clinical Research, Linac-Based RT, Elekta Milan, 20864 Lombardy, Italy;
| | - Ali Hosni
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; (S.M.); (T.S.)
| |
Collapse
|
16
|
Kaestner L, Streb L, Hetjens S, Buergy D, Sihono DS, Fleckenstein J, Kalisch I, Eckl M, Giordano FA, Lohr F, Stieler F, Boda-Heggemann J. Surface guidance compared with ultrasound-based monitoring and diaphragm position in cone-beam computed tomography during abdominal stereotactic radiotherapy in breath-hold. Phys Imaging Radiat Oncol 2023; 27:100455. [PMID: 37720462 PMCID: PMC10500027 DOI: 10.1016/j.phro.2023.100455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Background and purpose Spirometry induced deep-inspiration-breath-hold (DIBH) reduces intrafractional motion during upper abdominal stereotactic body radiotherapy (SBRT). The aim of this prospective study was to evaluate whether surface scanning (SGRT) is an adequate surrogate for monitoring residual internal motion during DIBH. Residual motion detected by SGRT was compared with experimental 4D-ultrasound (US) and an internal motion detection benchmark (diaphragm-dome-position in kV cone-beam computed tomography (CBCT) projections). Materials and methods Intrafractional monitoring was performed with SGRT and US in 460 DIBHs of 12 patients. Residual motion detected by all modalities (SGRT (anterior-posterior (AP)), US (AP, craniocaudal (CC)) and CBCT (CC)) was analyzed. Agreement analysis included Wilcoxon signed rank test, Maloney and Rastogi's test, Pearson's correlation coefficient (PCC) and interclass correlation coefficient (ICC). Results Interquartile range was 0.7 mm (US(AP)), 0.8 mm (US(CC)), 0.9 mm (SGRT) and 0.8 mm (CBCT). SGRT(AP) vs. CBCT(CC) and US(CC) vs. CBCT(CC) showed comparable agreement (PCCs 0.53 and 0.52, ICCs 0.51 and 0.49) with slightly higher precision of CBCT(CC). Most agreement was observed for SGRT(AP) vs. US(AP) with largest PCC (0.61) and ICC (0.60), least agreement for SGRT(AP) vs. US(CC) with smallest PCC (0.44) and ICC (0.42). Conclusions Residual motion detected during spirometry induced DIBH is small. SGRT alone is no sufficient surrogate for residual internal motion in all patients as some high velocity motion could not be detected. Observed patient-specific residual errors may require individualized PTV-margins.
Collapse
Affiliation(s)
- Lena Kaestner
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lara Streb
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Svetlana Hetjens
- University Medical Center Mannheim, Department of Medical Statistics and Biomathematics, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Daniel Buergy
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Dwi S.K. Sihono
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
| | - Jens Fleckenstein
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Iris Kalisch
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Miriam Eckl
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank A. Giordano
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Frank Lohr
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Struttura Complessa di Radioterapia, Dipartimento di Oncologia, Az. Ospedaliero-Universitaria di Modena, Largo del Pozzo 71, 41122 Modena, Italy
| | - Florian Stieler
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Judit Boda-Heggemann
- University Medical Center Mannheim, Department of Radiation Oncology, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
17
|
Weykamp F, Hoegen P, Regnery S, Katsigiannopulos E, Renkamp CK, Lang K, König L, Sandrini E, Meixner E, Rippke C, Buchele C, Liermann J, Debus J, Klüter S, Hörner-Rieber J. Long-Term Clinical Results of MR-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers (Basel) 2023; 15:2786. [PMID: 37345123 DOI: 10.3390/cancers15102786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Background: Magnetic-resonance (MR)-guided stereotactic body radiotherapy (SBRT) allows for ablative, non-invasive treatment of liver metastases. However, long-term clinical outcome data are missing. (2) Methods: Patients received MR-guided SBRT with a MRIdian Linac between January 2019 and October 2021 and were part of an ongoing prospective observational registry. Local hepatic control (LHC), distant hepatic control (DHC), progression free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Meier method. Toxicity was documented according to CTCAE (v.5.0). (3) Results: Forty patients were treated for a total of 54 liver metastases (56% with online plan adaptation). Median prescribed dose was 50 Gy in five fractions equal to a biologically effective dose (BED) (alpha/beta = 10 Gy) of 100 Gy. At 1 and 2 years, LHC was 98% and 75%, DHC was 34% and 15%, PFS was 21% and 5% and OS was 83% and 57%. Two-year LHC was higher in case of BED > 100 Gy (100% vs. 57%; log-rank p = 0.04). Acute grade 1 and 2 toxicity (mostly nausea) occurred in 26% and 7% of the patients, with no grade ≥ 3 event. (4) Conclusions: To our knowledge, this is the largest cohort of MR-guided liver SBRT. Long-term local control was promising and underscores the aim of achieving >100 Gy BED. Nonetheless, distant tumor control remains challenging.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Side, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Shi J, Sun Z, Gao Z, Huang D, Hong H, Gu J. Radioimmunotherapy in colorectal cancer treatment: present and future. Front Immunol 2023; 14:1105180. [PMID: 37234164 PMCID: PMC10206275 DOI: 10.3389/fimmu.2023.1105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a deadly form of cancer worldwide. Patients with locally advanced rectal cancer and metastatic CRC have a poor long-term prognosis, and rational and effective treatment remains a major challenge. Common treatments include multi-modal combinations of surgery, radiotherapy, and chemotherapy; however, recurrence and metastasis rates remain high. The combination of radiotherapy and immunotherapy (radioimmunotherapy [RIT]) may offer new solutions to this problem, but its prospects remain uncertain. This review aimed to summarize the current applications of radiotherapy and immunotherapy, elaborate on the underlying mechanisms, and systematically review the preliminary results of RIT-related clinical trials for CRC. Studies have identified several key predictors of RIT efficacy. Summarily, rational RIT regimens can improve the outcomes of some patients with CRC, but current study designs have limitations. Further studies on RIT should focus on including larger sample sizes and optimizing the combination therapy regimen based on underlying influencing factors.
Collapse
Affiliation(s)
- Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
| |
Collapse
|
19
|
Carconi C, Cerreti M, Roberto M, Arrivi G, D'Ambrosio G, De Felice F, Di Civita MA, Iafrate F, Lucatelli P, Magliocca FM, Picchetto A, Picone V, Catalano C, Cortesi E, Tombolini V, Mazzuca F, Tomao S. The Management of Oligometastatic Disease in Colorectal Cancer: Present Strategies and Future Perspectives. Crit Rev Oncol Hematol 2023; 186:103990. [PMID: 37061075 DOI: 10.1016/j.critrevonc.2023.103990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Oligometastatic disease has been described as an intermediate clinical state between localized cancer and systemically metastasized disease. Recent clinical studies have shown prolonged survival when aggressive locoregional approaches are added to systemic therapies in patients with oligometastases. The aim of this review is to outline the newest options to treat oligometastatic colorectal cancer (CRC), also considering its molecular patterns. We present an overview of the available local treatment strategies, including surgical procedures, stereotactic body radiation therapy (SBRT), thermal ablation, as well as trans-arterial chemoembolization (TACE) and selective internal radiotherapy (SIRT). Moreover, since imaging methods provide crucial information for the early diagnosis and management of oligometastatic CRC, we discuss the role of modern radiologic techniques in selecting patients that are amenable to potentially curative locoregional treatments.
Collapse
Affiliation(s)
- Catia Carconi
- Sant'Andrea University Hospital, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Micaela Cerreti
- Sant'Andrea University Hospital, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy
| | - Michela Roberto
- UOC Oncologia A, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy.
| | - Giulia Arrivi
- Oncology Unit, Sant' Andrea University Hospital, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo D'Ambrosio
- Department of General Surgery, Surgical Specialties and Organ Transplantation, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Mattia Alberto Di Civita
- UOC Oncologia A, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Franco Iafrate
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional radiology Unit, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Fabio Massimo Magliocca
- Vascular and Interventional radiology Unit, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Picchetto
- Emergency Department, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Picone
- UOC Oncologia B, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Catalano
- Vascular and Interventional radiology Unit, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Enrico Cortesi
- UOC Oncologia B, Department of radiological, Oncological and Anathomo-patological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Sant' Andrea University Hospital, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Oncology Unit, Sant' Andrea University Hospital, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Tan XR, Li J, Chen HW, Luo W, Jiang N, Wang ZB, Wang S. Successful multidisciplinary therapy for a patient with liver metastasis from ascending colon adenocarcinoma: A case report and review of literature. World J Clin Cases 2023; 11:1498-1505. [PMID: 36926405 PMCID: PMC10011996 DOI: 10.12998/wjcc.v11.i7.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/07/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Liver metastasis is the most common form of distant metastasis in colorectal cancer, and the only possible curative treatment for patients with colorectal liver metastases (CRLM) is hepatectomy. However, approximately 25% of patients with CRLM have indications for liver resection at the initial diagnosis. Strategies aimed at downstaging large or multifocal tumors to enable curative resection are appealing.
CASE SUMMARY A 42-year-old man was diagnosed with ascending colon cancer and liver metastases. Due to the huge lesion size and compression of the right portal vein, the liver metastases were initially diagnosed as unresectable lesions. The patient was treated with preoperative transcatheter arterial chemoembolization (TACE) consisting of 5-fluorouracil/Leucovorin/oxaliplatin/Endostar®. After four courses, radical right-sided colectomy and ileum transverse colon anastomosis were performed. Postoperatively, the pathological analysis revealed moderately differentiated adenocarcinoma with necrosis and negative margins. Thereafter, S7/S8 partial hepatectomy was performed after two courses of neoadjuvant chemotherapy. Pathological examination of the resected specimen revealed a pathologically complete response (pCR). Intrahepatic recurrence was detected more than two months after the operation, and the patient was then treated with TACE consisting of irinotecan/Leucovorin/fluorouracil therapy plus Endostar®. Subsequently, the patient was treated with a γ-knife to enhance local control. Notably, a pCR was reached, and the patient's overall survival time was > 9 years.
CONCLUSION Multidisciplinary treatment can promote the conversion of initially unresectable colorectal liver metastasis and facilitate complete pathological remission of liver lesions.
Collapse
Affiliation(s)
- Xiao-Rong Tan
- Oncological Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, School/Hospital of Stomatology Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Juan Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hua-Wei Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Luo
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Jiang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zheng-Bo Wang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shuai Wang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
21
|
McDermott RL, Dunne EM, Zhao Y, Bergman A, Liu MC, Schellenberg D, Ma RM. Stereotactic Ablative Radiation Therapy for Colorectal Liver Metastases. Clin Colorectal Cancer 2023; 22:120-128. [PMID: 36526537 DOI: 10.1016/j.clcc.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Stereotactic Ablative Radiation Therapy (SABR) is a therapeutic option for patients with inoperable oligometastatic colorectal carcinoma (CRC). Given the scarcity of prospective data on outcomes of SABR for metastatic CRC, this study aims to review SABR outcomes and determine predictive factors of local control (LC) and survival in patients with liver metastases from CRC. MATERIALS AND METHODS A retrospective review of SABR for CRC liver metastases between 2011 and 2019 was undertaken. Endpoints included LC, overall survival (OS), progression-free survival (PFS) and time to restarting systemic therapy. Univariate (UVA) and multivariable analyses (MVA) were performed to identify predictive factors. RESULTS Forty-eight patients were identified. The total number of tumors treated was 58. Median follow-up was 26.6 months. LC at 1, 2 and 3 years was 92.7%, 80.0%, and 61.2% respectively. Median time to local failure was 40.0 months (95% CI 31.8-76.1 months). Median OS was 31.9 months (95% CI 20.6-40.0 months). OS at 1, 2, and 3 years was 79.2%, 61.7%, and 44.9% respectively. Thirty-three patients (69%) restarted systemic therapy after completion of SABR. Median time to restarting chemotherapy was 11.0 months (95% CI 7.1-17.6 months). Systemic therapy free survival at 1, 2, and 3 years was 45.7%, 29.6%, and 22.6% respectively. On MVA, inferior LC was influenced by GTV volume ≥40 cm3 (HR: 3.805, 95% CI 1.376-10.521, P = .01) and PTV D100% BED <100 Gy10 (HR 2.971, 95% CI 1.110-7.953; P = .03). Inferior OS was associated with PTV volume ≥200 cm3 (HR 5.679, 95% CI 2.339-13.755; P < .001). CONCLUSION SABR is an effective therapeutic option for selected patients with CRC liver metastases providing acceptable LC within the first 2 years. In many cases, it provides meaningful chemotherapy-free intervals. Higher biological effective doses are required to enhance LC.
Collapse
Affiliation(s)
- Ronan L McDermott
- Department of Radiation Oncology, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada.
| | - Emma M Dunne
- Department of Radiation Oncology, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada
| | - Yizhou Zhao
- Department of Radiation Oncology, British Columbia Cancer Agency - Surrey Centre, Surrey, British Columbia, Canada
| | - Alanah Bergman
- Department of Medical Physics, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada
| | - Mitchell Cc Liu
- Department of Radiation Oncology, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, British Columbia Cancer Agency - Surrey Centre, Surrey, British Columbia, Canada
| | - Roy Mk Ma
- Department of Radiation Oncology, British Columbia Cancer Agency - Vancouver Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Uder L, Nachbar M, Butzer S, Boldt J, Baumeister S, Bitzer M, Königsrainer A, Seufferlein T, Hoffmann R, Gatidis S, Nikolaou K, Zips D, Thorwarth D, Gani C, Boeke S. Local control and patient reported outcomes after online MR guided stereotactic body radiotherapy of liver metastases. Front Oncol 2023; 12:1095633. [PMID: 36727060 PMCID: PMC9885175 DOI: 10.3389/fonc.2022.1095633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Stereotactic body radiotherapy (SBRT) is used to treat liver metastases with the intention of ablation. High local control rates were shown. Magnetic resonance imaging guided radiotherapy (MRgRT) provides the opportunity of a marker-less liver SBRT treatment due to the high soft tissue contrast. We report herein on one of the largest cohorts of patients treated with online MRgRT of liver metastases focusing on oncological outcome, toxicity, patient reported outcome measures (PROMs), quality of life. Material and methods Patients treated for liver metastases with online MR-guided SBRT at a 1,5 T MR-Linac (Unity, Elekta, Crawley, UK) between March 2019 and December 2021 were included in this prospective study. UK SABR guidelines were used for organs at risk constraints. Oncological endpoints such as survival parameters (overall survival, progression-free survival) and local control as well as patient reported acceptance and quality of life data (EORTC QLQ-C30 questionnaire) were assessed. For toxicity scoring the Common Toxicity Criteria Version 5 were used. Results A total of 51 patients with 74 metastases were treated with a median of five fractions. The median applied BED GTV D98 was 84,1 Gy. Median follow-up was 15 months. Local control of the irradiated liver metastasis after 12 months was 89,6%, local control of the liver was 40,3%. Overall survival (OS) after 12 months was 85.1%. Progression free survival (PFS) after 12 months was 22,4%. Local control of the irradiated liver lesion was 100% after three years when a BED ≥100 Gy was reached. The number of treated lesions did not impact local control neither of the treated or of the hepatic control. Patient acceptance of online MRgSBRT was high. There were no acute grade ≥ 3 toxicities. Quality of life data showed no significant difference comparing baseline and follow-up data. Conclusion Online MR guided radiotherapy is a noninvasive, well-tolerated and effective treatment for liver metastases. Further prospective trials with the goal to define patients who actually benefit most from an online adaptive workflow are currently ongoing.
Collapse
Affiliation(s)
- Laura Uder
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,*Correspondence: Laura Uder,
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina Baumeister
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital Medical Center, Ulm, Germany
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Weykamp F, Katsigiannopulos E, Piskorski L, Regnery S, Hoegen P, Ristau J, Renkamp CK, Liermann J, Forster T, Lang K, König L, Rippke C, Buchele C, Debus J, Klüter S, Hörner-Rieber J. Dosimetric Benefit of Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Metastases. Cancers (Basel) 2022; 14:cancers14246041. [PMID: 36551527 PMCID: PMC9775484 DOI: 10.3390/cancers14246041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: To assess dosimetry benefits of stereotactic magnetic resonance (MR)-guided online adaptive radiotherapy (SMART) of liver metastases. (2) Methods: This is a subgroup analysis of an ongoing prospective registry including patients with liver metastases. Patients were treated at the MRIdian Linac between February 2020 and April 2022. The baseline plan was recalculated based on the updated anatomy of the day to generate the predicted plan. This predicted plan could then be re-optimized to create an adapted plan. (3) Results: Twenty-three patients received 30 SMART treatment series of in total 36 liver metastases. Most common primary tumors were colorectal- and pancreatic carcinoma (26.1% respectively). Most frequent fractionation scheme (46.6%) was 50 Gy in five fractions. The adapted plan was significantly superior compared to the predicted plan in regard to planning-target-volume (PTV) coverage, PTV overdosing, and organs-at-risk (OAR) dose constraints violations (91.5 vs. 38.0%, 6 vs. 19% and 0.6 vs. 10.0%; each p < 0.001). Plan adaptation significantly increased median BEDD95 by 3.2 Gy (p < 0.001). Mean total duration of SMART was 72.4 min. (4) Conclusions: SMART offers individualized ablative irradiation of liver metastases tailored to the daily anatomy with significant superior tumor coverage and improved sparing of OAR.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Lars Piskorski
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - C. Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Predicting the benefit of stereotactic body radiotherapy of colorectal cancer metastases. Clin Transl Radiat Oncol 2022; 36:91-98. [PMID: 35942398 PMCID: PMC9356237 DOI: 10.1016/j.ctro.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Predicting the benefit from Stereotactic body radiotherapy (SBRT) of colorectal cancer metastases. CLInical Categorical Algorithm (CLICAL©) – a predictive algorithm applied to SBRT. The benefit from SBRT varies among patients with metastatic colorectal cancer. CLICAL© may be used as a screening tool for SBRT referrals. Aim Methods Results Conclusion
Collapse
|
25
|
Active breathing control guided stereotactic body ablative radiotherapy for management of liver metastases from colorectal cancer. Acta Gastroenterol Belg 2022; 85:469-475. [DOI: 10.51821/85.3.10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Liver metastases may occur during the course of several cancer types and may be associated with significant morbidity and mortality. There is paucity of data regarding the utility of Active Breathing Control (ABC) guided Stereotactic Ablative Body Radiotherapy (SABR) for management of Liver Metastases from Colorectal Cancer (LMCC). Our aim is to investigate the role of ABC guided SABR for management of liver metastases
Patients and methods: 42 liver metastases of 29 patients treated with ABC guided SABR between February 2015 and October 2018 were retrospectively assessed for local control (LC), overall survival (OS), and toxicity outcomes. Primary endpoint was LC. Secondary endpoints were OS and treatment toxicity.
Results: At a median follow up duration of 16 months (range: 9-74 months), median OS was 20 months and 3 patients were still alive at last follow up. 1-year OS was 83% and 2-year OS was 28%. LC rates were 92% and 61% at 1 and 2 years, respectively. Comparative analysis of Biological Effective Dose (BED) values revealed that higher BED10 values were associated with higher LC rates (p=0.007). While LC rates for BED10 ≥ 100 Gray (Gy) were 94% and 86% at 1 and 2 years, corresponding LC rates for BED10 < 100 Gy were 89% and 36%, respectively with statistical significance (p=0.007). Assessment of acute and late toxicity outcomes revealed that most common toxicity was fatigue, however, no patients had ≥ grade 3 toxicity.
Conclusion: ABC guided SABR is an effective and safe treatment modality for LMCC management.
Collapse
|
26
|
Jethwa KR, Jin Z, Hallemeier CL. A Critical Review of the Role of Local Therapy for Oligometastatic Gastrointestinal Cancer. Int J Radiat Oncol Biol Phys 2022; 114:780-791. [DOI: 10.1016/j.ijrobp.2022.06.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
27
|
Vogl TJ, Zitsch M, Albrecht M, D'Angelo T, Basten L, Gruber-Rouh T, Nour-Eldin NEA, Naguib NNN. Long-term outcomes following percutaneous microwave ablation for colorectal cancer liver metastases. Int J Hyperthermia 2022; 39:788-795. [PMID: 35658772 DOI: 10.1080/02656736.2022.2077991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To evaluate the overall survival (OS), local progression-free survival (PFS) and prognostic factors of patients with colorectal cancer liver metastases (CRLM) undergoing microwave ablation (MWA). METHOD A total of 132 patients were retrospectively enrolled who had been treated between 2010 and 2018. For the evaluation of survival rates, all patients were divided according to their indications (curative n = 57 and debulking (patients with additional non-target extrahepatic metastases) n = 75). In total, 257 ablations were evaluated for prognostic factors: number of liver metastases, primary tumor origin (PTO), diameter and volume of metastases, duration and energy of ablation. RESULTS The OS was 32.1 months with 93.2% of patients free from recurrence at 28.3 months (median follow-up time). The one- year and three-year OS were 82.72% and 41.66%, respectively. The OS and recurrence-free survival of the curative group were statistically significantly higher than the debulking group (p < .001). Statistically significant prognostic factors for OS included the location of the primary tumor (p < .038) and the number of metastases (all p < .017). Metastasis diameter and volume and ablation duration and energy had no significant correlation with survival (p > .05). CONCLUSIONS Satisfactory OS and local tumor PFS can be achieved in patients with CRLM using MWA with the number of metastases and the location of the primary tumor influencing the outcome of patients. The metastasis's size and the duration and energy used for ablation were not of significant prognostic value.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Maximilian Zitsch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tommaso D'Angelo
- Department of Biomedical Sciences and Morphological and Funktional Imaging, University Hospital Messina, Messina, Italy
| | - Lajos Basten
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Nour-Eldin A Nour-Eldin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.,Radiology Department, Faculty of Medicine, Cairo University Kasr Alainy, Cairo, Egypt
| | - Nagy N N Naguib
- Radiology Department, AMEOS Klinikum Halberstadt GmbH, Halberstadt, Germany.,Radiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
28
|
Mohamad I, Barry A, Dawson L, Hosni A. Stereotactic body radiation therapy for colorectal liver metastases. Int J Hyperthermia 2022; 39:611-619. [DOI: 10.1080/02656736.2021.1923836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Issa Mohamad
- Department of Radiation Oncology, King Hussein Cancer Center, Amman, Jordan
| | - Aisling Barry
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Laura Dawson
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Ali Hosni
- The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Menichelli C, Casamassima F, Aristei C, Ingrosso G, Borghesi S, Arcidiacono F, Lancellotta V, Franzese C, Arcangeli S. Stereotactic radiotherapy for liver oligometastases. Rep Pract Oncol Radiother 2022; 27:32-39. [PMID: 35402041 PMCID: PMC8989451 DOI: 10.5603/rpor.a2021.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Abstract
The liver is the first metastatic site in 15–25% of colorectal cancer patients and one of the first metastatic sites for lung and breast cancer patients. A computed tomography (CT ) scan with contrast medium is a standard procedure for assessing liver lesions but magnetic resonance imaging (MRI) characterizes small lesions better thanks to its high soft-tissue contrast. Positron emission tomography with computed tomography (PET-CT ) plays a complementary role in the diagnosis of liver metastases. Triphasic (arterial, venous and time-delayed) acquisition of contrast-medium CT images is the first step in treatment planning. Since the liver exhibits a relatively wide mobility due to respiratory movements and bowel filling, appropriate techniques are needed for target identification and motion management. Contouring requires precise recognition of target lesion edges. Information from contrast MRI and/or PET-CT is crucial as they best visualize metastatic disease in the parenchyma. Even though different fractionation schedules were reported, doses and fractionation schedules for liver stereotactic radiotherapy (SRT ) have not yet been established. The best local control rates were obtained with BED10 values over 100 Gy. Local control rates from most retrospective studies, which were limited by short follow-ups and included different primary tumors with intrinsic heterogeneity, ranged from 60% to 90% at 1 and 2 years. The most common SRT-related toxicities are increases in liver enzymes, hyperbilirubinemia and hypoalbuminemia. Overall, late toxicity is mild even in long-term follow-ups.
Collapse
Affiliation(s)
| | | | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Valentina Lancellotta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Roma, Italy
| | - Ciro Franzese
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Milan, Italy
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan Bicocca, Milan, Italy
| |
Collapse
|
30
|
Microwave Ablation, Radiofrequency Ablation, Irreversible Electroporation, and Stereotactic Ablative Body Radiotherapy for Intermediate Size (3-5 cm) Unresectable Colorectal Liver Metastases: a Systematic Review and Meta-analysis. Curr Oncol Rep 2022; 24:793-808. [PMID: 35298796 PMCID: PMC9054902 DOI: 10.1007/s11912-022-01248-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Purpose of Review Based on good local control rates and an excellent safety profile, guidelines consider thermal ablation the gold standard to eliminate small unresectable colorectal liver metastases (CRLM). However, efficacy decreases exponentially with increasing tumour size. The preferred treatment for intermediate-size unresectable CRLM remains uncertain. This systematic review and meta-analysis compare safety and efficacy of local ablative treatments for unresectable intermediate-size CRLM (3–5 cm). Recent Findings We systematically searched for publications reporting treatment outcomes of unresectable intermediate-size CRLM treated with thermal ablation, irreversible electroporation (IRE) or stereotactic ablative body-radiotherapy (SABR). No comparative studies or randomized trials were found. Literature to assess effectiveness was limited and there was substantial heterogeneity in outcomes and study populations. Per-patient local control ranged 22–90% for all techniques; 22–89% (8 series) for thermal ablation, 44% (1 series) for IRE, and 67–90% (1 series) for SABR depending on radiation dose. Summary Focal ablative therapy is safe and can induce long-term disease control, even for intermediate-size CRLM. Although SABR and tumuor-bracketing techniques such as IRE are suggested to be less susceptible to size, evidence to support any claims of superiority of one technique over the other is unsubstantiated by the available evidence. Future prospective comparative studies should address local-tumour-progression-free-survival, local control rate, overall survival, adverse events, and quality-of-life.
Collapse
|
31
|
Technical feasibility and clinical evaluation of 4D-MRI guided liver SBRT on the MR-linac. Radiother Oncol 2022; 167:285-291. [PMID: 35033603 DOI: 10.1016/j.radonc.2022.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE Image-guided stereotactic body radiation therapy (SBRT) is an important local treatment for liver metastases. MRI-guidance enables direct tumor visualization, eliminating fiducial marker implantation. The purpose of this study was to test technical feasibility of our 4D-MRI guided liver SBRT workflow. Additionally, intra-fraction target motion and consequent target-coverage were studied. MATERIALS&METHODS Patients with liver metastases were included in this sub-study of the prospective UMBRELLA clinical trial. Patients received mid-position (midP) SBRT. The daily adapt-to-position workflow included localization, verification and intra-fraction tumor midP monitoring using 4D-MRI. Technical feasibility was established based on persistence of the treatment protocol, treatment time ≤1 hour, no geographical miss and no unexpected acute toxicity grade >3. All 4D-MRIs were registered to the planning midP-CT and tumor midP and amplitude were calculated. Additionally, delivered target dose was accumulated incorporating the 4D-MRI intra-fraction tumor motion and evaluated with Monte-Carlo error simulations. RESULTS 20 patients with liver metastases were included and treated with 4D-MRI guided SBRT. Feasibility criteria were met in all-but-one patient. No grade ≥3 acute toxicity was observed. Group mean (M), systematic and random midP-drifts were 2.4mm, 2.6mm and 3.1mm in CC-direction. 4D-MRI tumor CC-amplitudes were reduced compared to the simulation 4D-CT (M=-1.9mm) and decreased during treatment (M=-1.4mm). Dose accumulation showed adquate target-coverage on a population level. CONCLUSION We successfully demonstrated technical feasibility of 4D-MRI guided SBRT in a cohort of 20 patients with liver metastases. However, substantial midposition drifts occurred which stress the need for intra-fraction motion management strategies to further increase the precision of treatment delivery.
Collapse
|
32
|
Abstract
We present the update of the recommendations of the French society of oncological radiotherapy on hepatic tumours. Recent technological progress led to develop the concept of focused liver radiation therapy. We must distinguish primary and secondary tumours, as the indications are restricted and must be discussed as an alternative to surgical or medical treatments. The tumour volume, its liver location close to the organs at risk determine the irradiation technique (repositioning method, total dose delivered, dose fractionation regimens). Tumour (and liver) breathing related motions should be taken into account. Strict dosimetric criteria must be observed with particular attention to the dose-volume histograms of non-tumoral liver as well as of the hollow organs, particularly in case of hypofractionated high dose radiotherapy "under stereotaxic conditions". Stereotactic body radiotherapy is being evaluated and is often preferred to radiofrequency for primary or secondary tumours (usually less than 5cm). An adaptation can be proposed, with a conformal fractionated irradiation protocol with or without intensity modulation, for hepatocellular carcinomas larger than 5cm.
Collapse
Affiliation(s)
- E Rio
- Service de radiothérapie, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Saint-Herblain, France.
| | - F Mornex
- Département de radiothérapie-oncologie, centre hospitalier Lyon Sud, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France; EMR 3738, université Claude-Bernard Lyon 1, 165, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - P Maingon
- Service d'oncologie radiothérapie, groupe hospitalier La Pitié Salpêtrière, Sorbonne université, AP-HP, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - D Peiffert
- Service de radiothérapie, institut de cancérologie de Lorraine Alexis-Vautrin, 6, avenue de Bourgogne, 54511 Vandœuvre-lès-Nancy, France
| | - L Parent
- Département d'ingénierie et de physique médicale, institut Claudius-Regaud (ICR), institut universitaire du cancer de Toulouse-Oncopole (IUCT-O), 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex 9, France
| |
Collapse
|
33
|
The Role of Ablative Radiotherapy to Liver Oligometastases from Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Purpose of Review
This review describes recent data supporting locoregional ablative radiation in the treatment of oligometastatic colorectal cancer liver metastases.
Recent Findings
Stereotactic body radiotherapy (SBRT) demonstrates high rates of local control in colorectal cancer liver metastases when a biologically equivalent dose of > 100 Gy is delivered. Future innovations to improve the efficacy of SBRT include MRI-guided radiotherapy (MRgRT) to enhance target accuracy, systemic immune activation to treat extrahepatic disease, and genomic customization. Selective internal radiotherapy (SIRT) with y-90 is an intra-arterial therapy that delivers high doses to liver metastases internally which has shown to increase liver disease control in phase 3 trials. Advancements in transarterial radioembolization (TARE) dosimetry could improve local control and decrease toxicity.
Summary
SBRT and SIRT are both promising options in treating unresectable metastatic colorectal cancer liver metastases. Identification of oligometastatic patients who receive long-term disease control from either therapy is essential. Future advancements focusing on improving radiation design and customization could further improve efficacy and toxicity.
Collapse
|
34
|
Yu J, Kim DH, Lee J, Shin YM, Kim JH, Yoon SM, Jung J, Kim JC, Yu CS, Lim SB, Park IJ, Kim TW, Hong YS, Kim SY, Kim JE, Park JH, Kim SY. Radiofrequency Ablation versus Stereotactic Body Radiation Therapy in the Treatment of Colorectal Cancer Liver Metastases. Cancer Res Treat 2021; 54:850-859. [PMID: 34645129 PMCID: PMC9296936 DOI: 10.4143/crt.2021.674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This study aimed to compare the treatment outcomes of radiofrequency ablation (RFA) and stereotactic body radiation therapy (SBRT) for colorectal cancer liver metastases (CRLM) and to determine the favorable treatment modality according to tumor characteristics. Materials and Methods We retrospectively analyzed the records of 222 colorectal cancer patients with 330 CRLM who underwent RFA (268 tumors in 178 patients) or SBRT (62 tumors in 44 patients) between 2007 and 2014. Kaplan-Meier method and Cox models were used by adjusting with inverse probability of treatment weighting (IPTW). Results The median follow-up duration was 30.5 months. The median tumor size was significantly smaller in the RFA group than in the SBRT group (1.5 cm vs 2.3 cm, p < 0.001). In IPTW-adjusted analysis, difference in treatment modality was not associated with significant differences in 1-year and 3-year recurrence-free survival (35% vs. 43%, 22% vs. 23%; p=0.198), overall survival (96% vs. 91%, 58% vs. 56%; p=0.508), and freedom from local progression (FFLP; 90% vs. 72%, 78% vs. 60%; p=0.106). Significant interaction effect between the treatment modality and tumor size was observed for FFLP (p=0.001). In IPTW-adjusted subgroup analysis of patients with tumor size > 2 cm, the SBRT group had a higher FFLP compared with the RFA group (hazard ratio, 0.153; p < 0.001). Conclusion SBRT and RFA showed similar local control in the treatment of patients with CRLM. Tumor size was an independent prognostic factor for local control and SBRT may be preferred for larger tumors.
Collapse
Affiliation(s)
- Jesang Yu
- Department of Radiation Oncology, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Dong Hwan Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jungbok Lee
- Department of Clinical Epidemiology & Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Moon Shin
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Hoon Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Min Yoon
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jinhong Jung
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Cheon Kim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Sik Yu
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seok-Byung Lim
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Hong Park
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Coffman AR, Sufficool DC, Kang JI, Hsueh CT, Swenson S, McGee PQ, Nagaraj G, Patyal B, Reeves ME, Slater JD, Yang GY. Proton stereotactic body radiation therapy for liver metastases-results of 5-year experience for 81 hepatic lesions. J Gastrointest Oncol 2021; 12:1753-1760. [PMID: 34532125 DOI: 10.21037/jgo-20-424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background To report on our institutional experience using Proton stereotactic body radiation therapy (SBRT) for patients with liver metastases. Methods All patients with liver metastases treated with Proton SBRT between September 2012 and December 2017 were retrospectively analyzed. Local control (LC) and overall survival (OS) were estimated using the Kaplan-Meier method calculated from the time of completion of Proton SBRT. LC was defined according to Response Evaluation Criteria in Solid Tumors (RECIST) guidelines (version 1.1). Toxicity was graded according to Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Results Forty-six patients with 81 lesions were treated with Proton SBRT. The median age was 65.5 years old (range, 33-86 years) and the median follow up was 15 months (range, 1-54 months). The median size of the gross tumor volume (GTV) was 2.5 cm (range, 0.7-8.9 cm). Two or more lesions were treated in 56.5% of patients, with one patient receiving treatment to a total of five lesions. There were 37 lesions treated with a biologically effective dose (BED) ≤60, 9 lesions with a BED of 61-80, 22 lesions with a BED of 81-100, and 13 lesions with a BED >100. The 1-year and 2-year LC for all lesions was 92.5% (95% CI, 82.7% to 96.8%). The grade 1 and grade 2 toxicity rates were 37% and 6.5%, respectively. There were no grade 3 or higher toxicities and no cases of radiation-induced liver disease (RILD). Conclusions Proton SBRT for the treatment of liver metastases has promising LC rates with the ability to safely treat multiple liver metastases. Accrual continues for our phase II trial treating liver metastases with Proton SBRT to 60 GyE (Gray equivalent) in 3 fractions.
Collapse
Affiliation(s)
- Alex R Coffman
- Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Daniel C Sufficool
- Department of Radiation Oncology, Kettering Health Network, Kettering, OH, USA
| | - Joseph I Kang
- Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Chung-Tsen Hsueh
- Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Sasha Swenson
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Patrick Q McGee
- Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gayathri Nagaraj
- Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Baldev Patyal
- Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Mark E Reeves
- Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Jerry D Slater
- Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Y Yang
- Department of Radiation Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| |
Collapse
|
36
|
Franceschini D, Teriaca MA, Dominici L, Franzese C, Scorsetti M. Knowing When to Use Stereotactic Ablative Radiation Therapy in Oligometastatic Cancer. Cancer Manag Res 2021; 13:7009-7031. [PMID: 34522143 PMCID: PMC8434826 DOI: 10.2147/cmar.s294116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
Oligometastatic patients are a heterogeneous and yet not well-defined population. The actual definition identifies as oligometastatic, patients with 1-5 metastases in 1-3 different organs. However, only a proportion of these patients are "true" oligometastatic and therefore derive some kinds of benefit from local ablative approaches like stereotactic ablative radiation therapy (SABR). Since SABR is an easily accessible, effective and well-tolerated treatment, it is widely employed in the oligometastatic scenarios, without a particular focus on selection criteria. However, it should be crucial to identify predictive and prognostic features that could be clinically implemented. Therefore, we conducted this narrative review of the available literature to summarize all clinical, radiomic, genetic and epigenetic features found to be predictive of overall survival, progression-free survival or local control of oligometastatic patients treated with SABR.
Collapse
Affiliation(s)
- Davide Franceschini
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Maria Ausilia Teriaca
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luca Dominici
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ciro Franzese
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
37
|
Nieuwenhuizen S, Dijkstra M, Puijk RS, Timmer FEF, Nota IM, Opperman J, van den Bemd B, Geboers B, Ruarus AH, Schouten EAC, de Vries JJJ, Scheffer HJ, van Geel AM, van Waesberghe JHTM, Swijnenburg RJ, Versteeg KS, Lissenberg-Witte BI, van den Tol MP, Haasbeek CJA, Meijerink MR. Thermal Ablation versus Stereotactic Ablative Body Radiotherapy to Treat Unresectable Colorectal Liver Metastases: A Comparative Analysis from the Prospective Amsterdam CORE Registry. Cancers (Basel) 2021; 13:4303. [PMID: 34503113 PMCID: PMC8428373 DOI: 10.3390/cancers13174303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Thermal ablation and stereotactic ablative radiotherapy (SABR) are techniques to eradicate colorectal liver metastases (CRLM). This study compares the safety, efficacy and long-term oncological outcomes of these treatment methods. All prospectively registered patients (AmCORE registry) treated with thermal ablation or SABR alone for unresectable CRLM between 2007 and 2020 were analyzed using multivariate Cox-proportional hazard regression. In total 199 patients were included for analysis: 144 (400 CRLM) thermal ablation; 55 (69 CRLM) SABR. SABR patients were characterized by older age (p = 0.006), extrahepatic disease at diagnosis (p = 0.004) and larger tumors (p < 0.001). Thermal ablation patients were more likely to have synchronous disease, higher clinical risk scores (p = 0.030) and higher numbers of CRLMs treated (p < 0.001). Mortality was zero and morbidity low in both groups: no serious adverse events were recorded following SABR (n = 0/55) and nine (n = 9/144 [6.3%]; all CTCAE grade 3) after thermal ablation. SABR was associated with an inferior overall survival (OS) (median OS 53.0 months vs. 27.4 months; HR = 1.29, 95% CI 1.12-1.49; p = 0.003), local tumor progression-free survival (LTPFS) per-tumor (HR = 1.24, 95% CI 1.01-1.52; p = 0.044) and local control per-patient (HR = 1.57, 95% CI 1.20-2.04; p = 0.001) and per-tumor (HR = 1.89, 95% CI 1.44-2.49; p < 0.001). In this study thermal ablation was superior to SABR with regard to OS, LTPFS and local control, albeit at the cost of a limited risk of serious adverse events. Further studies are required to assess whether the worse outcomes following SABR were the effect of true differences in ablative treatment or a result of residual confounding.
Collapse
Affiliation(s)
- Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Robbert S. Puijk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Florentine E. F. Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Irene M. Nota
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Jip Opperman
- Department of Radiology and Nuclear Medicine, Noordwest Ziekenhuisgroep, 1815 JD Alkmaar, The Netherlands; (J.O.); (A.M.v.G.)
| | - Bente van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Alette H. Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Evelien A. C. Schouten
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Jan J. J. de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Hester J. Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Anne M. van Geel
- Department of Radiology and Nuclear Medicine, Noordwest Ziekenhuisgroep, 1815 JD Alkmaar, The Netherlands; (J.O.); (A.M.v.G.)
| | - Jan Hein T. M. van Waesberghe
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands;
| | - Kathelijn S. Versteeg
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (K.S.V.); (M.P.v.d.T.)
| | - Birgit I. Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands;
| | - M. Petrousjka van den Tol
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (K.S.V.); (M.P.v.d.T.)
| | - Cornelis J. A. Haasbeek
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands;
| | - Martijn R. Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Cancer Center Amsterdam, VU University, 1081 HV Amsterdam, The Netherlands; (M.D.); (R.S.P.); (F.E.F.T.); (I.M.N.); (B.v.d.B.); (B.G.); (A.H.R.); (E.A.C.S.); (J.J.J.d.V.); (H.J.S.); (J.H.T.M.v.W.); (M.R.M.)
| |
Collapse
|
38
|
Zhang YN, Lu X, Lu ZG, Fu LP, Zhao J, Xiang ZL. Evaluation of Hybrid PET/MRI for Gross Tumor Volume (GTV) Delineation in Colorectal Cancer Liver Metastases Radiotherapy. Cancer Manag Res 2021; 13:5383-5389. [PMID: 34262346 PMCID: PMC8275048 DOI: 10.2147/cmar.s316969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Hybrid PET/MRI has been increasingly incorporated into the practice of radiation oncologists since it contains both anatomical and biological data and may bring about personalized radiation plans for each patient. The objective of this study was to evaluate the feasibility of GTV delineation from hybrid PET/MRI compared with that from current-practice MRI during radiotherapy planning in patients with colorectal liver metastases. Patients and Methods Twenty-four patients (thirty lesions) with colorectal liver metastases were prospectively enrolled in this study. Three physicians delineated the target volume with the most popular delineating methods-the visual method. First of all, differences among the three observers were assessed. The difference and correlation of GTV values obtained by MRI, PET, and hybrid PET/MRI were subjected to statistical analysis afterwards. Finally, the dice similarity coefficient (DSC) was calculated to assess the spatial overlap. Based on the value of DSC, we also evaluate the correlation between DSC and tumor size. GTV-MRI was set as a reference. Results There was no significant difference among observers in GTV-MRI (F=0.118, p=0.889), GTV-PET (F=0.070, p=0.933) and GTV-PET/MRI (F=0.40, p=0.961). 83.33% of GTV-PET/MRI and 63.33% of GTV-PET were larger than the reference GTV-MRI. Statistical analysis revealed that GTV-PET/MRI (p<0.001) and GTV-PET (p<0.05) diverged statistically significantly from GTV-MRI. GTV-PET (r=0.992, p<0.001) and GTV-PET/MRI (r=0.997, p<0.001) were significantly related to GTV-MRI. The average DSC value between GTV-MRI and GTV-PET was 0.51 (range 0-0.90) and that between GTV-MRI and GTV-PET/MRI was 0.72 (range 0.42-0.90). There was a positive correlation between the DSC and GTV-MRI (r=0.851, p<0.05). Conclusion With the database used, there is good agreement among observers. Hybrid PET/MRI in colorectal liver metastases radiotherapy may affect the GTV delineation. Moreover, the overlap degree between GTV-MRI and GTV-PET/MRI is higher and increases with volume.
Collapse
Affiliation(s)
- Yan-Nan Zhang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xin Lu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhen-Guo Lu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Li-Ping Fu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Dai Y, Zhang Y, He W, Peng C, Qiu J, Zheng N, Li H, Liu W, Zheng Y, Li B, Yuan Y, Zou R. Long-term outcome for colorectal liver metastases: combining hepatectomy with intraoperative ultrasound guided open microwave ablation versus hepatectomy alone. Int J Hyperthermia 2021; 38:372-381. [PMID: 33657952 DOI: 10.1080/02656736.2021.1892835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To compare the long-term outcome of combining hepatectomy with intraoperative ultrasound (IOUS)-guided open microwave ablation (MWA) versus hepatectomy alone in patients with colorectal cancer liver metastases (CRLM). METHOD A retrospective analysis of patients with CRLM who underwent hepatectomy alone (HT group; 380 patients) or hepatectomy combined with IOUS-guided open MWA (HT + MWA group; 57 patients) from April 2002 to September 2018 was conducted at our center. A propensity score-matched (PSM) analysis was used to reduce data bias between the two groups. RESULTS The overall survival (OS) and disease-free survival (DFS) were not significantly different between the two groups after matching. Although intrahepatic recurrence was more frequent in the HT + MWA group in both the whole and matched cohort, the two groups exhibited similar rates of extrahepatic recurrence as well as concomitant intra- and extrahepatic recurrence. A higher number of CRLM (>3), larger maximum-size and absence of response to induction chemotherapy were independent risk factors for OS. CONCLUSION The oncological outcomes of hepatectomy combined with intraoperative open ablation was not significantly different to hepatectomy alone and should be considered as a safe and fair option for patients with difficultly resectable CRLM.
Collapse
Affiliation(s)
- Yunzhu Dai
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yuanping Zhang
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wei He
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chuan Peng
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiliang Qiu
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Nan Zheng
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Huifang Li
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wenwu Liu
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yun Zheng
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Binkui Li
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yunfei Yuan
- Department of Hepatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ruhai Zou
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
40
|
Weykamp F, Hoegen P, Klüter S, Spindeldreier CK, König L, Seidensaal K, Regnery S, Liermann J, Rippke C, Koerber SA, Buchele C, Debus J, Hörner-Rieber J. Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Liver Tumors: Initial Clinical Experience and Patient-Reported Outcomes. Front Oncol 2021; 11:610637. [PMID: 34178616 PMCID: PMC8219972 DOI: 10.3389/fonc.2021.610637] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE/OBJECTIVE Stereotactic body radiation therapy (SBRT) has emerged as a valid treatment alternative for non-resectable liver metastases or hepatocellular carcinomas (HCC). Magnetic resonance (MR) guided SBRT has a high potential of further improving treatment quality, allowing for higher, tumoricidal irradiation doses whilst simultaneously sparing organs at risk. However, data on treatment outcome and patient acceptance is still limited. MATERIAL/METHODS We performed a subgroup analysis of an ongoing prospective observational study comprising patients with liver metastases or HCC. Patients were treated with ablative MR-guided SBRT at the MRIdian Linac in the Department of Radiation Oncology at Heidelberg University Hospital between January 2019 and February 2020. Local control (LC) and overall survival (OS) analysis was performed using the Kaplan-Meier method. An in-house designed patient-reported outcome questionnaire was used to measure patients' experience with the MR-Linac treatment. Toxicity was evaluated using the Common Terminology Criteria for Adverse Events (CTCAE v. 5.0). RESULTS Twenty patients (with n = 18 metastases; n = 2 HCC) received MR-guided SBRT for in total 26 malignant liver lesions. Median biologically effective dose (BED at α/β = 10) was 105.0 Gy (range: 67.2-112.5 Gy) and median planning target volume was 57.20 ml (range: 17.4-445.0 ml). Median treatment time was 39.0 min (range: 26.0-67.0 min). At 1-year, LC was 88.1% and OS was 84.0%. Grade I° gastrointestinal toxicity °occurred in 30.0% and grade II° in 5.0% of the patients with no grade III° or higher toxicity. Overall treatment experience was rated positively, with items scoring MR-Linac staff's performance and items concerning the breath hold process being among the top positively rated elements. Worst scored items were treatment duration, positioning and low temperature. CONCLUSION MR-guided SBRT of liver tumors is a well-tolerated and well-accepted treatment modality. Initial results are promising with excellent local control and only mildest toxicity. However, prospective studies are warranted to truly assess the potential of MR-guided liver SBRT and to identify which patients profit most from this new versatile technology.
Collapse
Affiliation(s)
- Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - C. Katharina Spindeldreier
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan A. Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
van Dams R, Wu TC, Kishan AU, Raldow AC, Chu FI, Hernandez J, Cao M, Lamb JM, Mikaeilian A, Low DA, Steinberg ML, Lee P. Ablative Radiotherapy for Liver Tumors Using Stereotactic MRI-Guidance: A Prospective Phase I Trial. Radiother Oncol 2021; 170:14-20. [PMID: 34107296 DOI: 10.1016/j.radonc.2021.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE To prospectively determine the feasibility, safety, and efficacy of stereotactic body radiation therapy (SBRT) to primary and secondary liver tumors with MR-guided radiation therapy (MRgRT). MATERIALS AND METHODS Treatment plans with a conventional CT-guided linear accelerator and a MRI-guided tri-60Co teletherapy unit (MR-Co) were generated and compared for patients undergoing liver-directed SBRT from 2015 to 2017. If dosimetric parameters were met on MR-Co, patients were treated with MRgRT. The highest priority constraint was >1000 cc or >800 cc of normal liver receiving <15 Gy for single- or multiple-lesion treatments, respectively. Treatment was delivered every other day. RESULTS Of 23 patients screened, 20 patients (8 primary, 12 secondary) and 25 liver tumors underwent MR-guided SBRT to a median dose of 54 Gy (range 11.5-60) in a median of 3 fractions (range 1-5). With a median follow up of 18.9 months, the 1- and 2-year estimate of local control were 94.7% and 79.6%, respectively. A difference in local control between single and multiple lesions or BED ≥100Gy10 and BED <100Gy10, respectively, was observed. The 2-year estimate of overall survival (OS) was 50.7% with a median OS of 29 months. There were no acute grade ≥3 toxicities and one late grade 3/4 toxicity from a single patient whose plan exceeded an unrecognized dose constraint at the time. CONCLUSION MR-guided SBRT is a viable and safe option in the delivery of ultrahypofractionated ablative radiation treatment to primary and secondary liver tumors resulting in high rates of local control and very favorable toxicity profiles.
Collapse
Affiliation(s)
- Ritchell van Dams
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Trudy C Wu
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Fang-I Chu
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Jackie Hernandez
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - James M Lamb
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Argin Mikaeilian
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel A Low
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA
| | - Percy Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
42
|
van de Lindt TN, Fast MF, van den Wollenberg W, Kaas J, Betgen A, Nowee ME, Jansen EP, Schneider C, van der Heide UA, Sonke JJ. Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac. Phys Med Biol 2021; 66. [PMID: 33887708 DOI: 10.1088/1361-6560/abfada] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Purpose. Accurate tumor localization for image-guided liver stereotactic body radiation therapy (SBRT) is challenging due to respiratory motion and poor tumor visibility on conventional x-ray based images. Novel integrated MRI and radiotherapy systems enable direct in-room tumor visualization, potentially increasing treatment accuracy. As these systems currently do not provide a 4D image-guided radiotherapy strategy, we developed a 4D-MRI guided liver SBRT workflow and validated all steps for implementation on the Unity MR-linac.Materials and Methods. The proposed workflow consists of five steps: (1) acquisition of a daily 4D-MRI scan, (2) 4D-MRI to mid-position planning-CT rigid tumor registration, (3) calculation of daily tumor midP misalignment, (4) plan adaptation using adapt-to-position (ATP) with segment-weights optimization and (5) adapted plan delivery. The workflow was first validated in a motion phantom, performing regular motion at different baselines (±5 to ±10 mm) and patient-derived respiratory signals with varying degrees of irregularity. 4D-MRI derived respiratory signals and 4D-MRI to planning CT registrations were compared to the phantom input, and gamma and dose-area-histogram analyses were performed on the delivered dose distributions on film. Additionally, 4D-MRI to CT registration performance was evaluated in patient images using the full-circle method (transitivity analysis). Plan adaption was further analyzedin-silicoby creating adapted treatment plans for 15 patients with oligometastatic liver disease.Results. Phantom trajectories could be reliably extracted from 4D-MRI scans and 4D-MRI to CT registration showed submillimeter accuracy. The DAH-analysis demonstrated excellent coverage of the dose evaluation structures GTV and GTVTD. The median daily rigid 4D-MRI to midP-CT registration precision in patient images was <2 mm. The ATP strategy restored the target dose without increased exposure to the OARs and plan quality was independent from 3D shift distance in the range of 1-26 mm.Conclusions. The proposed 4D-MRI guided strategy showed excellent performance in all workflow tests in preparation of the clinical introduction on the Unity MR-linac.
Collapse
Affiliation(s)
- Tessa N van de Lindt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martin F Fast
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jochem Kaas
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anja Betgen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marlies E Nowee
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Edwin Pm Jansen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christoph Schneider
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Ugurluer G, Mustafayev TZ, Gungor G, Atalar B, Abacioglu U, Sengoz M, Agaoglu F, Demir G, Ozyar E. Stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic patients: initial clinical experience. Radiat Oncol J 2021; 39:33-40. [PMID: 33794572 PMCID: PMC8024184 DOI: 10.3857/roj.2020.00976] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose We aimed to present our initial clinical experience on the implementation of a stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic disease. Materials and Methods Twenty-one patients (24 lesions) with liver metastasis treated with SMART were included in this retrospective study. Step-and-shoot intensity-modulated radiotherapy technique was used with daily plan adaptation. During delivery, real-time imaging was used by acquiring planar magnetic resonance images in sagittal plane for monitoring and gating. Acute and late toxicities were recorded both during treatment and follow-up visits. Results The median follow-up time was 11.6 months (range, 2.2 to 24.6 months). The median delivered total dose was 50 Gy (range, 40 to 60 Gy); with a median fraction number of 5 (range, 3 to 8 fractions) and the median fraction dose was 10 Gy (range, 7.5 to 18 Gy). Ninety-three fractions (83.7%) among 111 fractions were re-optimized. No patients were lost to follow-up and all patients were alive except one at the time of analysis. All of the patients had either complete (80.9%) or partial (19.1%) response at irradiated sites. Estimated 1-year overall survival was 93.3%. Intrahepatic and extrahepatic progression-free survival was 89.7% and 73.5% at 1 year, respectively. There was no grade 3 or higher acute or late toxicities experienced during the treatment and follow-up course. Conclusion SMART represents a new, noninvasive and effective alternative to current ablative radiotherapy methods for treatment of liver metastases in oligometastatic disease with the advantages of better visualization of soft tissue, real-time tumor tracking and potentially reduced toxicity to organs at risk.
Collapse
Affiliation(s)
- Gamze Ugurluer
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Gorkem Gungor
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Ufuk Abacioglu
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Meric Sengoz
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Fulya Agaoglu
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Gokhan Demir
- Department of Medical Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
44
|
Feasibility and Early Clinical Experience of Online Adaptive MR-Guided Radiotherapy of Liver Tumors. Cancers (Basel) 2021; 13:cancers13071523. [PMID: 33810244 PMCID: PMC8037065 DOI: 10.3390/cancers13071523] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the feasibility and early results of online adaptive MR-guided radiotherapy (oMRgRT) of liver tumors. METHODS We retrospectively examined consecutive patients with primary or secondary liver lesions treated at our institution using a 0.35T hybrid MR-Linac (Viewray Inc., Mountain View, CA, USA). Online-adaptive treatment planning was used to account for interfractional anatomical changes, and real-time intrafractional motion management using online 2D cine MRI was performed using a respiratory gating approach. Treatment response and toxicity were assessed during follow-up. RESULTS Eleven patients and a total of 15 lesions were evaluated. Histologies included cholangiocarcinomas and metastases of neuroendocrine tumors, colorectal carcinomas, sarcomas and a gastrointestinal stroma tumor. The median BED10 of the PTV prescription doses was 84.4 Gy (range 59.5-112.5 Gy) applied in 3-5 fractions and the mean GTV BED10 was in median 147.9 Gy (range 71.7-200.5 Gy). Online plan adaptation was performed in 98% of fractions. The median overall treatment duration was 53 min. The treatment was feasible and successfully completed in all patients. After a median follow-up of five months, no local failure occurred and no ≥ grade two toxicity was observed. OMRgRT resulted in better PTV coverage and fewer OAR constraint violations. CONCLUSION Early results of MR-linac based oMRgRT for the primary and secondary liver tumors are promising. The treatment was feasible in all cases and well tolerated with minimal toxicity. The technique should be compared to conventional SBRT in further studies to assess the advantages of the technique.
Collapse
|
45
|
Grozman V, Onjukka E, Wersäll P, Lax I, Tsakonas G, Nyren S, Lewensohn R, Lindberg K. Extending hypofractionated stereotactic body radiotherapy to tumours larger than 70cc - effects and side effects. Acta Oncol 2021; 60:305-311. [PMID: 33448899 DOI: 10.1080/0284186x.2020.1866776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiotherapy (SBRT) for tumours ≥5 cm is poorly studied and its utility and feasibility is uncertain. We here report the Karolinska experience of SBRT in this setting. MATERIAL AND METHODS All patients had a gross tumour volume (GTV) ≥70 cc, a prescribed physical dose of at least 40 Gy and received treatment between 1995-2012. RESULTS We included 164 patients with 175 tumours located in the thorax (n = 86), the liver (n = 27) and the abdomen (n = 62) and treated with a median prescribed dose (BEDα/β 10Gy) of 80 Gy (71.4-113). One- and 2- year local control rates were 82% and 61%. In multivariate analyses, minimum dose to the GTV and histological subtype were associated with local control. Renal cell carcinoma (RCC) histology showed the most favourable local control - 94% at 2 years for all histologies. Thirty-seven patients experienced grade 3-5 toxicity most likely related to SBRT. Seven of the ten patients with grade 5 toxicity, had a centrally located tumour in the thorax. CONCLUSION SBRT of tumours >5 cm in diameter may be an option for peripherally located lung and abdominal tumours. Histological origin and tumour location should be considered before treatment.
Collapse
Affiliation(s)
- Vitali Grozman
- Section of Thoracic Radiology, Department of Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eva Onjukka
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Wersäll
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ingmar Lax
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Georgios Tsakonas
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Head, Neck, Lung and Skin tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Sven Nyren
- Section of Thoracic Radiology, Department of Imaging and Physiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Head, Neck, Lung and Skin tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lindberg
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Section of Head, Neck, Lung and Skin tumours, Department of Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Uhlig J, Lukovic J, Dawson LA, Patel RA, Cavnar MJ, Kim HS. Locoregional Therapies for Colorectal Cancer Liver Metastases: Options Beyond Resection. Am Soc Clin Oncol Educ Book 2021; 41:133-146. [PMID: 34010047 DOI: 10.1200/edbk_320519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colorectal cancer was the third most common malignancy worldwide in 2018, and most patients present with or develop distant metastases. Colorectal liver metastases are most commonly observed because of the vascular drainage of the colon and superior rectum. Current guidelines recommend surgical resection as first-line treatment; however, 80% to 90% of patients with colorectal liver metastases are ineligible for primary resection. For patients with unresectable disease, a multidisciplinary treatment approach is favored, incorporating systemic therapy and a toolbox of local ablative therapies. These treatments either aim at cytoreduction to enable a conversion to surgical resectability or control of disease progression and spread. Each of these treatments carries unique outcomes and risk profiles, thereby contributing to an individualized treatment strategy for patients with colorectal liver metastases. This review summarizes evidence on hepatic artery infusion, stereotactic body radiation therapy, thermal ablation, transarterial chemoembolization with drug-eluding beads, and transarterial radioembolization for treatment of colorectal liver metastases. Results of large-scale prospective and retrospective studies and international guidelines are discussed to provide detailed background on the current and prospective use of local ablative techniques in management of colorectal liver metastases.
Collapse
Affiliation(s)
- Johannes Uhlig
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
- Department of Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Jelena Lukovic
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Dawson
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reema A Patel
- Department of Internal Medicine, Division of Medical Oncology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY
| | - Michael J Cavnar
- Department of Surgery, Division of Surgical Oncology, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY
| | - Hyun S Kim
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
47
|
Méndez Romero A, Schillemans W, van Os R, Koppe F, Haasbeek CJ, Hendriksen EM, Muller K, Ceha HM, Braam PM, Reerink O, Intven MPM, Joye I, Jansen EPM, Westerveld H, Koedijk MS, Heijmen BJM, Buijsen J. The Dutch-Belgian Registry of Stereotactic Body Radiation Therapy for Liver Metastases: Clinical Outcomes of 515 Patients and 668 Metastases. Int J Radiat Oncol Biol Phys 2021; 109:1377-1386. [PMID: 33451857 DOI: 10.1016/j.ijrobp.2020.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Although various studies have reported that stereotactic body radiation therapy (SBRT) for liver metastases has high local control rates and relatively low toxicity, most series included a small number of patients. We aimed to validate these outcomes in a large multi-institution patient cohort treated in accordance with a common protocol. METHODS AND MATERIALS A shared web-based registry of patients with liver metastases treated with SBRT was developed by 13 centers (12 in the Netherlands and 1 in Belgium). All the centers had previously agreed on the items to be collected, the fractionation schemes, and the organs-at-risk constraints to be applied. Follow-up was performed at the discretion of the centers. Patient, tumor, and treatment characteristics were entered in the registry. Only liver metastases treated individually as independent targets and with at least 1 radiologic follow-up examination were considered for local control analysis. Toxicity of grade 3 or greater was scored according to the Common Terminology Criteria of Adverse Events (v4.03). RESULTS Between January 1, 2013, and July 31, 2019, a total of 515 patients were entered in the web-based registry. The median age was 71 years. In total, 668 liver metastases were registered, and 447 were included for local control analysis. The most common primary tumor origin was colorectal cancer (80.3%), followed by lung cancer (8.9%) and breast cancer (4%). The most-used fractionation scheme was 3x18-20 Gy (36.0%), followed by 8x7.5 Gy (31.8%), 5x11-12 Gy (25.5%), and 12x5 Gy (6.7%). The median follow-up time was 1.1 years for local control and 2.3 years for survival. Actuarial 1-year local control was 87%; 1-year overall survival was 84%. Toxicity of grade 3 or greater was found in 3.9% of the patients. CONCLUSIONS This multi-institutional study confirms the high rates of local control and limited toxicity in a large patient cohort. Stereotactic body radiation therapy should be considered a valuable part of the multidisciplinary approach to treating liver metastases.
Collapse
Affiliation(s)
- Alejandra Méndez Romero
- Department of Radiation Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Wilco Schillemans
- Department of Radiation Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rob van Os
- Department of Radiation Oncology, Amsterdam University Medical Centers (location AMC), Amsterdam, Netherlands
| | | | - Cornelis J Haasbeek
- Department of Radiation Oncology, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Ellen M Hendriksen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, Netherlands
| | | | - Heleen M Ceha
- Department of Radiation Oncology, Haaglanden Medical Center Antoniushove, Leidschendam, Netherlands
| | - Pètra M Braam
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Onne Reerink
- Department of Radiation Oncology, Isala Kliniek, Zwolle, Netherlands
| | - Martijn P M Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ines Joye
- Iridium Cancer Network, Antwerp, Belgium
| | - Edwin P M Jansen
- Division of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Henrike Westerveld
- Department of Radiation Oncology, Amsterdam University Medical Centers (location AMC), Amsterdam, Netherlands
| | - Merel S Koedijk
- Department of Radiation Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| |
Collapse
|
48
|
Yadav P, Kuczmarska-Haas A, Musunuru HB, Witt J, Blitzer G, Mahler P, Bassetti MF. Evaluating dose constraints for radiation induced liver damage following magnetic resonance image guided Stereotactic Body radiotherapy. Phys Imaging Radiat Oncol 2021; 17:91-94. [PMID: 33898785 PMCID: PMC8058022 DOI: 10.1016/j.phro.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
This study reports dose corresponding to visible radiation induced liver damage following Stereotactic Body Radiation Therapy (SBRT) for liver metastasis, and the optimal time for follow up scans using post radiation imaging. Diagnostic magnetic resonance scans of nine patients treated with liver SBRT using a 0.35 T MRI-guided radiotherapy system were analyzed. The dice coefficients between the region of visible liver damage and the delivered dose were calculated. A median dose of 35 Gy correlated most closely with the visible radiation induced liver damage. We compared scans over two to nine months and observed maximal dice coefficients at two to five months post radiation. We have presented a new method for developing treatment planning guidelines for liver SBRT.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, United States
| | | | - Hima Bindu Musunuru
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jacob Witt
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, United States
| | - Grace Blitzer
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, United States
| | - Peter Mahler
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, United States
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, United States
| |
Collapse
|
49
|
Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, Duckworth A, Heister P, Praseedom R, Jah A, Balakrishnan A, Harper S, Liau S, Kosmoliaptsis V, Huguet E. Colorectal liver metastases: Current management and future perspectives. World J Clin Oncol 2020; 11:761-808. [PMID: 33200074 PMCID: PMC7643190 DOI: 10.5306/wjco.v11.i10.761] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is the commonest site of metastatic disease for patients with colorectal cancer, with at least 25% developing colorectal liver metastases (CRLM) during the course of their illness. The management of CRLM has evolved into a complex field requiring input from experienced members of a multi-disciplinary team involving radiology (cross sectional, nuclear medicine and interventional), Oncology, Liver surgery, Colorectal surgery, and Histopathology. Patient management is based on assessment of sophisticated clinical, radiological and biomarker information. Despite incomplete evidence in this very heterogeneous patient group, maximising resection of CRLM using all available techniques remains a key objective and provides the best chance of long-term survival and cure. To this end, liver resection is maximised by the use of downsizing chemotherapy, optimisation of liver remnant by portal vein embolization, associating liver partition and portal vein ligation for staged hepatectomy, and combining resection with ablation, in the context of improvements in the functional assessment of the future remnant liver. Liver resection may safely be carried out laparoscopically or open, and synchronously with, or before, colorectal surgery in selected patients. For unresectable patients, treatment options including systemic chemotherapy, targeted biological agents, intra-arterial infusion or bead delivered chemotherapy, tumour ablation, stereotactic radiotherapy, and selective internal radiotherapy contribute to improve survival and may convert initially unresectable patients to operability. Currently evolving areas include biomarker characterisation of tumours, the development of novel systemic agents targeting specific oncogenic pathways, and the potential re-emergence of radical surgical options such as liver transplantation.
Collapse
Affiliation(s)
- Jack Martin
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Angelica Petrillo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania "L. Vanvitelli", Napoli 80131, Italy, & Medical Oncology Unit, Ospedale del Mare, 80147 Napoli Italy
| | - Elizabeth C Smyth
- Department of Oncology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Nadeem Shaida
- Department of Radiology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB22 0QQ, United Kingdom
| | - Samir Khwaja
- Department of Radiology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB22 0QQ, United Kingdom
| | - HK Cheow
- Department of Nuclear Medicine, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Adam Duckworth
- Department of Pathology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Paula Heister
- Department of Pathology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Raaj Praseedom
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Asif Jah
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Anita Balakrishnan
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Siong Liau
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
50
|
Kibe Y, Takeda A, Tsurugai Y, Eriguchi T. Local control by salvage stereotactic body radiotherapy for recurrent/residual hepatocellular carcinoma after other local therapies. Acta Oncol 2020; 59:888-894. [PMID: 32216593 DOI: 10.1080/0284186x.2020.1741679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: To clarify local control by salvage stereotactic body radiotherapy (SBRT) for recurrent/residual hepatocellular carcinoma (HCC) compared with initial definitive SBRT for local treatment-naïve HCC.Material and methods: We retrospectively investigated HCC patients that received SBRT between July 2005 and December 2017. We classified HCC tumors as the initial definitive SBRT group (Arm-1; initial definitive SBRT, Arm-2; initial definitive planned SBRT following transarterial chemoembolization (TACE)) and salvage SBRT group (Arm-3; salvage SBRT for recurrent/residual tumors after TACE, Arm-4; salvage SBRT for recurrent/residual tumors after radiofrequency ablation (RFA), Arm-5; salvage SBRT for recurrent/residual other than Arm-3 or Arm-4). Local control was evaluated by mRECIST.Results: We reviewed 389 HCC tumors of 323 patients treated by 35-40 Gy/5 fr. The median follow-up time for local recurrence of tumors was 34.8 months (range, 6.5-99.2). The cumulative local recurrence rates at 3 years of Arm-1-5 were 1.4% (95% CI, 0.3-4.4%), 5.0% (95% CI, 1.6-11.5%), 12.4% (95% CI, 5.7-21.9%), 14.8% (95% CI, 3.3-34.3%) and 7.3% (95% CI, 1.9-18.0%), respectively. The cumulative local recurrence rates at 3 years of initial definitive treatment and salvage treatment groups were 2.8% (95% CI, 1.1-5.6%) and 11.1% (95% CI, 6.3-17.3%), respectively (p=.004). On multivariate analysis, salvage treatment and the tumor diameter were significant risk factors of local recurrence (p = .02, p < .001 respectively). Estimated overall survival at 3 years for all patients in initial definitive treatment and salvage treatment groups were 71.5% (95% CI, 63.4-78.1%) and 66.1% (95% CI, 56.4-74.2%), respectively (p = .20). No treatment-related death caused by SBRT was observed.Conclusions: This analysis showed local control of salvage SBRT for recurrent/residual HCC was significantly worse than that of initial definitive SBRT for local treatment-naïve HCC. However, local control of salvage SBRT was relatively good, and salvage SBRT is one of the favorable treatment options for recurrent/residual HCC.
Collapse
Affiliation(s)
- Yuichi Kibe
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan
| | | | - Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura, Japan
- Department of Radiation Oncology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| |
Collapse
|