1
|
Bayram H, Konyalilar N, Elci MA, Rajabi H, Aksoy GT, Mortazavi D, Kayalar Ö, Dikensoy Ö, Taborda-Barata L, Viegi G. Issue 4 - Impact of air pollution on COVID-19 mortality and morbidity: An epidemiological and mechanistic review. Pulmonology 2025; 31:2416829. [PMID: 38755091 DOI: 10.1016/j.pulmoe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Air pollution is a major global environment and health concern. Recent studies have suggested an association between air pollution and COVID-19 mortality and morbidity. In this context, a close association between increased levels of air pollutants such as particulate matter ≤2.5 to 10 µM, ozone and nitrogen dioxide and SARS-CoV-2 infection, hospital admissions and mortality due to COVID 19 has been reported. Air pollutants can make individuals more susceptible to SARS-CoV-2 infection by inducing the expression of proteins such as angiotensin converting enzyme (ACE)2 and transmembrane protease, serine 2 (TMPRSS2) that are required for viral entry into the host cell, while causing impairment in the host defence system by damaging the epithelial barrier, muco-ciliary clearance, inhibiting the antiviral response and causing immune dysregulation. The aim of this review is to report the epidemiological evidence on impact of air pollutants on COVID 19 in an up-to-date manner, as well as to provide insights on in vivo and in vitro mechanisms.
Collapse
Affiliation(s)
- Hasan Bayram
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Nur Konyalilar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | | | - Hadi Rajabi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - G Tuşe Aksoy
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Deniz Mortazavi
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Özgecan Kayalar
- Koç University Research Centre for Translational Medicine (KUTTAM), Zeytinburnu, Istanbul, Turkey
| | - Öner Dikensoy
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Turkey
| | - Luis Taborda-Barata
- UBIAir - Clinical and Experimental Lung Centre UBIMedical, University of Beira Interior, Covilhã, Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
2
|
Zhang J, Zeng F, Li Y, Mu C, Liu C, Wang L, Peng X, He L, Su Y, Li H, Wang A, Feng L, Gao D, Zhang Z, Xu G, Wang Y, Yue R, Si J, Zheng L, Zhang X, He F, Yi H, Tang Z, Li G, Ma K, Li Q. The characterization of technical design of a virus-like structure (VLS) nanodelivery system as vaccine candidate against SARS-CoV-2 variants. Hum Vaccin Immunother 2025; 21:2473183. [PMID: 40045463 PMCID: PMC11901403 DOI: 10.1080/21645515.2025.2473183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The constant mutation of SARS-CoV-2 has led to the continuous appearance of viral variants and their pandemics and has improved the development of vaccines with a broad spectrum of antigens to curb the spread of the virus. The work described here suggested a novel vaccine with a virus-like structure (VLS) composed of combined mRNA and protein that is capable of stimulating the immune system in a manner similar to that of viral infection. This VLS vaccine is characterized by its ability to specifically target dendritic cells and/or macrophages through S1 protein recognition of the DC-SIGN receptor in cells, which leads to direct mRNA delivery to these innate immune cells for activation of robust immunity with a broad spectrum of neutralizing antibodies and immune protective capacity against variants. Research on its composition characteristics and structural features has suggested its druggability. Compared with the current mRNA vaccine, the VLS vaccine was identified as having no cytotoxicity at its effective application dosage, while the results of safety observations in animals revealed fewer adverse reactions during immunization.
Collapse
MESH Headings
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Animals
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Neutralizing/immunology
- Humans
- Antibodies, Viral/immunology
- Mice
- Dendritic Cells/immunology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/genetics
- Lectins, C-Type/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- mRNA Vaccines
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Macrophages/immunology
- Mice, Inbred BALB C
- Female
- Cell Adhesion Molecules
Collapse
Affiliation(s)
- Jingjing Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Fengyuan Zeng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanmei Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Changyong Mu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Change Liu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiaowu Peng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Liping He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yanrui Su
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongbing Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - An Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lin Feng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Dongxiu Gao
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhixiao Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gang Xu
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Yixuan Wang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Rong Yue
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Junbo Si
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Lichun Zheng
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Xiong Zhang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Fuyun He
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Hongkun Yi
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Zhongshu Tang
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Gaocan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| | - Kaili Ma
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
- Shandong Weigao Litong Biological Products Co, Ltd, Weihai, China
| | - Qihan Li
- Weirui Biotechnology (Kunming) Co. Ltd, Ciba Biotechnology Innovation Center, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhu H, Liu X, He J, Lei J, Zhao J. High-affinity, broad-spectrum, "centipede-like" multi-branched drug conjugates, anchored to the S protein, for blocking coronavirus infection. Eur J Med Chem 2025; 289:117450. [PMID: 40022880 DOI: 10.1016/j.ejmech.2025.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Over the past two decades, various coronaviruses have posed a severe threat to human life and health, with the spike protein (S protein) being a critical protein for infecting host cells. Glycyrrhizic acid (GA), as a natural drug, can inhibit the infection of coronaviruses by binding to the receptor-binding domain (RBD) of the S protein. However, issues like poor water solubility and weak binding affinity with the S protein have hindered its further application. Therefore, drawing inspiration from the biological structure of centipedes, a ROS-responsive multi-branched drug conjugate (ODPAG) was constructed through a "polymer-drug linkage" strategy using dextran as the backbone and GA as the active "claw". ODPAG exhibited drug loading of 22.0 ± 0.2% (OD40kPAG) and 19.7 ± 0.1% (OD450kPAG), showing ROS responsiveness with a half-life 6.4 times that of GA (OD40kPAG) and 5.4 times longer (OD450kPAG). In in vitro antiviral experiments, ODPAG exhibited an enhanced binding affinity to the S protein, with IC50 values of 1.33 μM (OD40kPAG) and 0.89 μM (OD450kPAG) against SARS-CoV-2 pseudovirus, demonstrating exceptional antiviral efficacy. These results collectively indicate that ODPAG can block coronavirus infection by binding to the S protein, exhibiting significant potential in addressing the current challenges posed by the novel coronavirus. Additionally, the "polymer-drug conjugate" strategy employed in this process is efficient, cost-effective, and offers new insights for combating future emergent coronaviruses.
Collapse
Affiliation(s)
- Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xuan Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Jingyang Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, China Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Das Sarma J. Murine β-coronavirus spike protein: A major determinant of neuropathogenic properties. Virology 2025; 606:110499. [PMID: 40120171 DOI: 10.1016/j.virol.2025.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Coronaviruses have emerged as a significant challenge to human health. While earlier outbreaks of coronaviruses such as SARS-CoV and MERS-CoV posed serious threats, the recent SARS-CoV-2 pandemic has heightened interest in coronavirus research due to its pulmonary pathology, in addition to its neurological manifestations. In addition, the patients who have recovered from SARS-CoV-2 infection show long-term symptoms such as anosmia, brain fog and long COVID. A major hurdle in studying these viruses is the limited availability of specialized research facilities, emphasizing the need for prototype virus-based models to investigate the pathophysiology. The mouse hepatitis virus (MHV), a member of the β-coronavirus family, serves as an excellent model to unravel the mechanisms underlying virus-induced pathogenesis. This review highlights two decades of research efforts aimed at understanding the pathophysiological mechanism of coronavirus-induced diseases, focusing on the development of targeted recombinant strains to identify the minimal essential motif of the spike protein responsible for fusogenicity and neuropathogenicity. By synthesizing findings from these studies, the review identifies the most promising therapeutic targets against coronaviruses, paving the way for the development of pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Science, Indian Institute of Science Education and Research, Kolkata, India; Department of Ophthalmology, University of Pennsylvania, USA.
| |
Collapse
|
5
|
Pedrini M, Pozzi L, Sacchi F, Citarella A, Fasano V, Seneci P, Pieraccini S, Ruberto L, Peña HP, Garzino-Demo A, Vitiello A, Sernicola L, Borsetti A, Calistri A, Parolin C, Passarella D. Design, synthesis and in vitro validation of bivalent binders of SARS-CoV-2 spike protein: Obeticholic, betulinic and glycyrrhetinic acids as building blocks. Bioorg Med Chem 2025; 121:118124. [PMID: 39999646 DOI: 10.1016/j.bmc.2025.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, which caused over 6.7 million deaths worldwide. The Spike protein plays a crucial role in the infection process, mediating the binding of the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2), and its subsequent entry into target cells. Previous studies identified, through virtual screening, several natural products capable of binding to two distinct pockets of the Spike protein: triterpenoids binding to pocket 1 and bile acid derivatives binding to pocket 5. Building on these findings, our study advances the field by developing bivalent compounds 1-4 that through a spacer combine a triterpenoid (betulinic acid or glycyrrhetinic acid) with a semisynthetic bile acid derivative (obeticholic acid). These bivalent compounds are designed to simultaneously bind both pockets of the Spike protein, offering significant advantages over single molecules or the combination of the two natural products. In vitro cell assays using pseudotyped recombinant lentiviral particles with selected SARS-CoV-2 Spike proteins demonstrated that 1 and 2 exhibit enhanced activity in reducing viral entry into target cells compared to individual natural products, thus highlighting their potential as superior antiviral agents with reduced side effects.
Collapse
Affiliation(s)
- Martina Pedrini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Luca Pozzi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Francesca Sacchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| | - Valerio Fasano
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Stefano Pieraccini
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Lorenzo Ruberto
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Helena Perez Peña
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Leonardo Sernicola
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Roma, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, 00162 Roma, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
6
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
7
|
Kumar V, Meidinna HN, Kaul SC, Gupta D, Ishida Y, Terao K, Vrati S, Sundar D, Wadhwa R. Molecular insights to the anti-COVID-19 potential of α-, β- and γ-cyclodextrins. J Biomol Struct Dyn 2025; 43:2890-2900. [PMID: 38116950 DOI: 10.1080/07391102.2023.2294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 viral infection is regulated by the host cell receptors ACE2 and TMPRSS2, and therefore the effect of various natural and synthetic compounds on these receptors has recently been the subject of investigations. Cyclodextrins, naturally occurring polysaccharides derived from starch, are soluble in water and have a hydrophobic cavity at their center enabling them to accommodate small molecules and utilize them as carriers in the food, supplements, and pharmaceutical industries to improve the solubility, stability, and bioavailability of target compounds. In the current study, computational molecular simulations were used to investigate the ability of α-, β- and γ-Cyclodextrins on human cell surface receptors. Cell-based experimental approaches, including expression analyses at mRNA and protein levels and virus replication, were used to assess the effect on receptor expression and virus infection, respectively. We found that none of the three CDs could dock effectively to human cell surface receptor ACE2 and viral protease Mpro (essential for virus replication). On the other hand, α- and β-CD showed strong and stable interactions with TMPRSS2, and the expression of both ACE2 and TMPRSS2 was downregulated at the mRNA and protein levels in cyclodextrin (CD)-treated cells. A cell-based virus replication assay showed ∼20% inhibition by β- and γ-CD. Taken together, the study suggested that (i) downregulation of expression of host cell receptors may not be sufficient to inhibit virus infection (ii) activity of the receptors and virus protein Mpro may play a critical and clinically relevant role, and hence (iii) newly emerging anti-Covid-19 compounds warrant multimodal functional analyses.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | | | - Keiji Terao
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Japan
| | | | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
8
|
Meng Q, Jacob I, Wang C, Ma J, Suo L, Zhao W, Lawal A, Song Y, Wang G, Cooney RN. Pathogenesis and therapeutic effect of sitagliptin in experimental diabetic model of COVID-19. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167726. [PMID: 39971257 DOI: 10.1016/j.bbadis.2025.167726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
This study evaluates the pathogenesis of COVID-19 and the therapeutic efficacy of sitagliptin in diabetic and obese mice. Using a novel double-transgenic mouse model (db/db and K18-hACE2), the findings demonstrates that SARS-CoV-2 infection (Delta variant) causes severe multi-organ damage, glucose metabolism abnormalities, insulin resistance, and pancreatic islet cell damage in diabetic mice. Infected diabetic mice displayed higher mortality, inflammation (elevated TNF-α, IL-6, IL-1β), and fibrinolytic activity (PAI-1), alongside dysregulated diabetes-related hormones (GLP-1, leptin, ghrelin, resistin) compared to non-diabetic controls. Sitagliptin treatment reduced organ injury, hyperglycemia, inflammation, and fibrinolytic activity while improving insulin resistance and glucose metabolism. This was evidenced by decreased fasting blood glucose levels, improved insulin sensitivity, and elevated insulin and GLP-1 levels. These findings suggest sitagliptin is a promising therapeutic strategy to mitigate the severity of COVID-19 in experimental diabetes by modulating inflammation and improving metabolic syndrome. Further mechanistic investigations revealed that the level of hACE2 expression, along with the activation of NF-κB and IRS-1, play critical roles in the development of SARS-CoV-2-induced diabetes, the exacerbation of pre-existing diabetes, and the therapeutic efficacy of sitagliptin.
Collapse
Affiliation(s)
- Qinghe Meng
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Ikechukwu Jacob
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Chunyan Wang
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Julia Ma
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Liye Suo
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | | | - Akinkunmi Lawal
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA
| | - Yuqi Song
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA; School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Guirong Wang
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA.
| | - Robert N Cooney
- Departments of Surgery and Pathology, Microbiology and Immunology, State University of New York (SUNY), Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
9
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2025; 82:70-85. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
10
|
Benlarbi M, Kenfack DD, Dionne K, Côté-Chenette M, Beaudoin-Bussières G, Bélanger É, Ding S, Goni OH, Ngoume YF, Tauzin A, Medjahed H, Ghedin E, Duerr R, Finzi A, Tongo M. Longitudinal humoral immunity against SARS-CoV-2 Spike following infection in individuals from Cameroon. Virology 2025; 605:110467. [PMID: 40037139 PMCID: PMC11937844 DOI: 10.1016/j.virol.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
In May 2023 the World Health Organization (WHO) declared the end of COVID-19 as a public health emergency. Seroprevalence studies performed in African countries, such as Cameroon, depicted a much higher COVID-19 burden than reported by the WHO. To better understand humoral responses kinetics following infection, we enrolled 333 participants from Yaoundé, Cameroon between March 2020 and January 2022. We measured the levels of antibodies targeting the SARS-CoV-2 receptor-binding-domain (RBD) and the Spike glycoproteins of Delta, Omicron BA.1 and BA.4/5 and the common cold coronavirus HCoV-OC43. We also evaluated plasma capacity to neutralize authentic SARS-CoV-2 virus and to mediate Antibody-Dependent Cellular Cytotoxicity (ADCC). Most individuals mounted a strong antibody response against SARS-CoV-2 Spike. Plasma neutralization waned faster than anti-Spike binding and ADCC. We observed differences in humoral responses by age and circulating variants. Altogether, we show a global overview of antibody dynamics and functionality against SARS-CoV-2 in Cameroon.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Dell-Dylan Kenfack
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Côté-Chenette
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Oumarou H Goni
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Yannick F Ngoume
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, New York, USA; Department of Medicine, NYU Grossman School of Medicine, New York, USA; Department of Microbiology, NYU Grossman School of Medicine, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada.
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon; HIV Pathogenesis Program, The Doris Duke Medical Research Institute, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
11
|
Lu W, Yang X, Wang B. Carbon monoxide potentiates the effect of corticosteroids in suppressing inflammatory responses in cell culture. Bioorg Med Chem 2025; 120:118092. [PMID: 39904198 DOI: 10.1016/j.bmc.2025.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Inflammation is a pathology implicated in a wide range of human diseases. Recent years have seen tremendous progress in developing new types of anti-inflammatory agents for the treatment of inflammation of various origins. However, each has its own strengths and weaknesses. The very fact that there needs to have multiple types of anti-inflammatory agents underlines the complexity of inflammatory diseases and conditions, their molecular origins, and their treatment. Such complexity dictates the need to search for new approaches with improved potency and efficacy as well as reduced side effects. For these reasons, we are interested in exploring the possibility of generating synergy between carbon monoxide (CO), an endogenously produced cytoprotective agent, and known anti-inflammatory agents. Herein, we report the potentiating actions of CO on the anti-inflammatory effects of cortisone and dexamethasone as demonstrated in their ability to suppress the expression of TNF-α and IL-6 induced by either LPS or the S protein of SARS-CoV-2. Such effects are reflected in the substantially increased potency as well efficacy, when the efficacy of the corticosteroid alone does not allow for complete suppression of the expression of these cytokines. Further, increased attenuation of p65 phosphorylation is at least part of the molecular mechanism for the observed potentiating effects. We hope our work will stimulate a high level of activity along the same direction, leading to anti-inflammatory strategies with improved potency and efficacy and reduced side effects.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Zhang L, Li F, Liu X, Liu XA, Lu D, Luo Q, Liu Q, Jiang G. Long-term effects of SARS-CoV-2 infection on metal homeostasis. J Trace Elem Med Biol 2025; 88:127625. [PMID: 40023939 DOI: 10.1016/j.jtemb.2025.127625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The outbreak of COVID-19 pandemic has caused substantial health loss worldwide, and the long-term sequelae of COVID, resulting from repeated coronavirus infection, have emerged as a new public health concern. We report the widespread presence of abnormal metallomic profiles in the sera of patients who have recovered from SARS-CoV-2 coronavirus infection, even after 6 months post-discharge from hospital. We measured the concentrations of Fe, Cu, Zn, Se, Cr, Mn, Ba, Ni, Pb, Ag, As, Cd, Co, and V in the sera of 25 recovered participants and 38 healthy controls in the cross-sectional study. Higher concentrations of Cu, Ag, As, Ba, Cd, Ni, Pb, Cr and V were observed in the recovered participants, whereas lower concentrations of Fe and Se were obtained in these participants. Except for Zn, Mn, and Co, all other elements showed significant differences (p < 0.05) between the two groups, with variations dependent on age and gender. Further correlation analysis between metallome and metabolome indicated that SARS-CoV-2 infection continues to disrupt metallic homeostasis and affect metabolic processes, such as lipid metabolism and cell respiration, as well as the functions of certain organs (e.g., liver, kidney, and heart), even after 6 months recovery. Our findings provide novel insights into the potential long-term effect of COVID-19 on the human body from a new perspective of metallomics.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xin-An Liu
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Kocharovskaya MV, Pichkur EB, Ivannikov AD, Kharlampieva DD, Grafskaia EN, Lyukmanova EN, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of Alpha B.1.1.7 SARS-CoV-2 S-protein in complex with Fab of neutralizing antibody REGN10987. Biochem Biophys Res Commun 2025; 755:151558. [PMID: 40043614 DOI: 10.1016/j.bbrc.2025.151558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
One of the approaches for treatment of COVID-19 is a use of neutralizing antibodies (nAbs). The study of the mechanisms by which nAbs recognize different strains of SARS-CoV-2 may facilitate the development of new drugs and vaccines against the coronavirus infection. In this work, we present the 3.1 Å resolution cryo-electron microscopy structure of a full-length trimeric spike-protein (S-protein) of the SARS-CoV-2 Alpha (B.1.1.7) variant in complex with the Fab of the REGN10987 nAb. In the complex, two receptor-binding domains (RBDs) of the S-protein were observed in the 'up' state, whereas third RBD was in the 'down' state. This distinguishes the obtained structure from the complex of Delta (B.1.617.2) S-protein with REGN10987-Fab, where only one RBD was in the 'up' state. Probably some of the substituted residues (K478T, A570D, and S982A) located at the interprotomer interfaces are responsible for the greater Alpha S-protein opening upon the REGN10987-Fab binding. The Fab identically binds to the RBD in the both 'up' and 'down' conformations. The RBD-Fab interaction interface was refined to a resolution of 3.6 Å. The antibody binds to the receptor-binding motif (RBM), which prevents the S-protein from the binding to its receptor, angiotensin-converting enzyme 2 (ACE-2). Comparison with the structures of the Wuhan (wild type) and Delta RBD variants in complex with REGN10987-Fab revealed that the N501Y and T478K/L452R mutations presented in the RBM of the Alpha and Delta variants, respectively, do not affect the mode of the RBD-Fab interaction.
Collapse
Affiliation(s)
- Milita V Kocharovskaya
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 123592, Moscow, Russia
| | - Evgeny B Pichkur
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - Artem D Ivannikov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 123592, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ekaterina N Lyukmanova
- Biological Department, Shenzhen MSU-BIT University, 518172 Shenzhen, China; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia; Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | - Mikhail P Kirpichnikov
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia; Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Zakhar O Shenkarev
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 123592, Moscow, Russia.
| |
Collapse
|
14
|
Zhuang S, Li H, Lin Y, Huang M, Zhang W, Zhang X, Lin Y, Zhang C. The Effect of COVID-19 Infection on Orofacial Pain: A Cross-sectional Study. Int Dent J 2025; 75:514-523. [PMID: 39098481 DOI: 10.1016/j.identj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND COVID-19 infection shows variant symptoms apart from respiratory symptoms, including the orofacial pain. We aim to research the morbidity, characteristics and potential risk factors of orofacial pain associated with COVID-19 pandemic in China from December 2022 to early 2023. METHODS A cross-sectional survey was conducted in Fujian Province, China. The demographic and characteristic data of the subjects were collected and analysed. RESULTS A total of 1526 subjects responded to the survey. The morbidity of orofacial pain increased significantly before and after COVID-19 infection. (42.26% vs. 46.52%, P < .001) A total of 217 (14.22%) subjects with orofacial pain before COVID-19 infection reported the phenomenon of "COVID-19 infection with orofacial pain" (CIOP). Univariate and multivariate logistic regression showed that male (OR = 1.761, P < .001) and other symptoms of COVID-19 (OR = 1.494, P < .001) may be the risk factors for the aggravation of CIOP, while the time of first infection (OR = 0.580, P = .004) and preference for drinking tea or coffee (OR = 0.610, P = .003) may be the protective factors for the aggravation of CIOP. While, the subjects who did not concern about the spread of COVID-19 in oral treatment (OR = 0.639, P = .001), female (OR = 0.749, P = .03), education level (OR = 1.687, P < .001) and income level (OR = 1.796, P < .001), higher PSS-10 score (OR = 1.076, P < .001), and more drugs taken for infection (OR = 1.330, P < .001) were more willing to seek medical treatment. CONCLUSION The morbidity of orofacial pain appears to have increased significantly due to the COVID-19 epidemic; a number of factors can influence the CIOP including gender, infection period, and beverage preference' psychological factors, gender, education and income level can also influence the intent to seek a dentist.
Collapse
Affiliation(s)
- Shiyang Zhuang
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hongyan Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, China
| | - Yiming Lin
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, China
| | - Mei Huang
- School of Health Management, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, China
| | - Xuehui Zhang
- School of Health Management, Fujian Medical University, Fuzhou, China.
| | - Yunzhi Lin
- Department of Stomatology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Stomatology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Chaofan Zhang
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Provincial Institute of Orthopedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, China.
| |
Collapse
|
15
|
Sarkar A, Ghosh TA, Bandyopadhyay B, Maiti S, Panja AS. Prediction of Prospective Mutational Landscape of SARS-CoV-2 Spike ssRNA and Evolutionary Basis of Its Host Interaction. Mol Biotechnol 2025; 67:1606-1618. [PMID: 38619800 DOI: 10.1007/s12033-024-01146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Booster doses are crucial against severe COVID-19, as rapid virus mutations and variant emergence prolong the pandemic crisis. The virus's quick evolution, short generation-time, and adaptive changes impact virulence and evolvability, helping predictions about variant of concerns' (VOCs') landscapes. Here, in this study, we used a new computational algorithm, to predict the mutational pattern in SARS-CoV-2 ssRNA, proteomics, structural identification, mutation stability, and functional correlation, as well as immune escape mechanisms. Interestingly, the sequence diversity of SARS Coronavirus-2 has demonstrated a predominance of G- > A and C- > U substitutions. The best validation statistics are explored here in seven homologous models of the expected mutant SARS-CoV-2 spike ssRNA and employed for hACE2 and IgG interactions. The interactome profile of SARS-CoV-2 spike with hACE2 and IgG revealed a strong correlation between phylogeny and divergence time. The systematic adaptation of SARS-CoV-2 spike ssRNA influences infectivity and immune escape. Data suggest higher propensity of Adenine rich sequence promotes MHC system avoidance, preferred by A-rich codons. Phylogenetic data revealed the evolution of SARS-CoV-2 lineages' epidemiology. Our findings may unveil processes governing the genesis of immune-resistant variants, prompting a critical reassessment of the coronavirus mutation rate and exploration of hypotheses beyond mechanical aspects.
Collapse
Affiliation(s)
- Aniket Sarkar
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Trijit Arka Ghosh
- Department of Computer Application, Burdwan Institute of Management and Computer Science, The University of Burdwan, Dewandighi, Burdwan, West Bengal, 713102, India
| | - Bidyut Bandyopadhyay
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Smarajit Maiti
- Department of Medical Laboratory Technology, Haldia Institute of Health Sciences, ICARE Complex, Haldia, West Bengal, 721657, India
| | - Anindya Sundar Panja
- Post Graduate Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
16
|
Tang X, Lu L, Li X, Huang P. Bridging Cancer and COVID-19: The Complex Interplay of ACE2 and TMPRSS2. Cancer Med 2025; 14:e70829. [PMID: 40145441 PMCID: PMC11947763 DOI: 10.1002/cam4.70829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic presents heightened risks for cancer patients, who are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe outcomes due to immunosuppression from both the malignancy and anticancer therapies. This review investigates the dual roles of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in SARS-CoV-2 infection among cancer patients. ACE2, the vital entry receptor for SARS-CoV-2, is overexpressed in certain tumors such as colon adenocarcinoma, renal carcinomas, pancreatic adenocarcinoma, and lung adenocarcinoma, potentially increasing viral susceptibility. Paradoxically, ACE2 also exhibits tumor-suppressive properties by inhibiting angiogenesis and modulating the tumor microenvironment, leading to improved patient prognoses in some cancers like breast cancer. TMPRSS2, essential for viral entry, shows decreased expression in several tumors but acts as a prognostic biomarker in prostate and lung cancers. This review illustrates the complexity of therapeutically targeting ACE2 and TMPRSS2 due to their contrasting roles in cancer progression and viral entry. We analyze the expression levels of ACE2 and TMPRSS2 in relation to immune cell infiltration and patient outcomes, and propose personalized therapeutic strategies. Furthermore, we underscore the necessity for multidisciplinary approaches, integrating antiviral treatments with cancer therapies and tailoring interventions based on individual molecular profiles. This approach to personalized medicine seeks to enhance treatment results and better manage cancer patients who have contracted SARS-CoV-2.
Collapse
Affiliation(s)
- Xuerui Tang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Liuzhi Lu
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaoping Li
- Clinical LaboratoryTongxiang First People's HospitalZhejiangChina
| | - Panpan Huang
- School of Basic MedicineGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
17
|
Wang R, Zhou P, Xu W, Li D, Xue S, Guo Z, Li J, Jin L, Zuo C, Chen H, Li R, Li X, Lou J. An Auger electron-loaded theranostic biosensor triggered by the ACE2-mediated virus/host endocytosis. Talanta 2025; 285:127288. [PMID: 39632316 DOI: 10.1016/j.talanta.2024.127288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Accurate diagnosis and effective antiviral strategies are critical to combat acute infection and to avoid damage to the host. Due to their restricted radiation range and energy, Auger electron emitters have shown potential as a RNA-destructing radionuclide therapy in oncology and infection. Focusing on the process of angiotensin-converting enzyme 2 (ACE2)-mediated endocytosis, Technetium-99m-labeled DX600 (99mTc-DX600) was synthesized as an Auger electron vector to specifically bind to surface-expressed ACE2 proteins on 293T-hACE2 cells (293T cells stably expressing human ACE2), and Technetium-99m-loaded microvesicles (99mTc-MVs) served as an antiviral tracer and effector in pseudovirus infection. The whole-body ACE2 expression evaluation was non-invasive, meanwhile, the enhanced green fluorescent protein expression of pseudoviruses was substantially inhibited as a result of the 99mTc-DX600 loading of microvesicles, though the mitochondrial and DNA stabilities of the host cells were not affected. Furthermore, the in vivo distribution of 99mTc-DX600 in humanized ACE2 mice was demonstrated to be both ACE2-specific and long-lasting, and an antiviral effect was fully exhibited with two cycles of intravenous injection at a dosage of 37 MBq. Taking advantage of the ACE2-mediated interaction and natural trigger mechanism of virus-induced endocytosis, 99mTc-MV represents a theranostic biosensor of Auger electrons that can expose viral RNA to lethal amounts of radiation, with the host cells receiving no detrimental radiation.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Pan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Wen Xu
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Danni Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Shuai Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| | - Zhongqiu Guo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Jie Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Hui Chen
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China.
| | - Rou Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai 200433, China; Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Jingjing Lou
- Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
18
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
19
|
Laazaazia O, Ouladlahsen A, Aqillouch S, Altawalah H, Bouddahab O, Noureddine R, Pineau P, Lkhider M, Ezzikouri S. Association of TNFRSF13B Gene Polymorphisms With SARS-CoV-2 Infection, Severity, and Humoral Immune Response in a Moroccan Population. Int J Immunogenet 2025; 52:75-87. [PMID: 40025551 DOI: 10.1111/iji.12709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND AIMS Genetic factors, including polymorphisms in the TNFRSF13B gene, which regulates humoral immunity, can influence susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aims to investigate the association between two polymorphisms, rs12603708 and rs3751987, and SARS-CoV-2 susceptibility, disease severity, and humoral immune responses in a Moroccan population. MATERIALS AND METHODS A total of 303 unvaccinated COVID-19 patients (151 severe cases and 152 asymptomatic/moderate cases) and 150 individuals from a SARS-CoV-2-negative group were included in the analysis. Genotyping was performed using TaqMan SNP assays. SARS-CoV-2 antibodies targeting the nucleocapsid protein and IgG antibodies specific to the receptor-binding domain (RBD) were quantified using chemiluminescence microparticles immunoassay. Complete blood counts and C-reactive protein levels were evaluated using an automated platform. RESULTS Our analysis revealed that the A/A genotype of rs12603708 significantly increased the risk of SARS-CoV-2 infection in both codominant (p = 0.0055; OR = 3.74; adjusted p value = 0.022) and recessive (p = 0.0049; OR = 3.17; adjusted p value = 0.022) models, as well as the risk of severe disease (p = 0.014; OR = 3.43; adjusted p value = 0.049). For rs3751987, the G/G genotype was linked to higher susceptibility to infection (p = 0.0011; OR = 2.91; adjusted p value = 0.008), while the G/A genotype appeared protective (p = 0.0007; OR = 0.45; adjusted p value = 0.008). No association was found between rs3751987 and disease severity. Analysis of IgG anti-N and anti-RBD levels revealed no significant associations with either polymorphism (p > 0.05). CONCLUSION These findings highlight the role of TNFRSF13B polymorphisms in SARS-CoV-2 susceptibility and severity, while their impact on humoral immune responses appears limited.
Collapse
Affiliation(s)
- Oumaima Laazaazia
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Virology, Microbiology, Quality and Biotechnology/Ecotoxicology and Biodiversity, Hassan II University, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Ahd Ouladlahsen
- Service des maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Safaa Aqillouch
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Shuwaikh, Kuwait
| | - Oumaima Bouddahab
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rachid Noureddine
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Institut Pasteur, Université Paris Cité, Unité « Organisation Nucléaire et Oncogenèse», INSERM U993, Paris, France
| | - Mustapha Lkhider
- Laboratory of Virology, Microbiology, Quality and Biotechnology/Ecotoxicology and Biodiversity, Hassan II University, Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
20
|
Noettger S, Zech F, Nchioua R, Pastorio C, Jung C, Jacob T, Stenger S, Kirchhoff F. Role of N-linked glycosylation sites in human ACE2 in SARS-CoV-2 and hCoV-NL63 infection. J Virol 2025:e0220224. [PMID: 40152594 DOI: 10.1128/jvi.02202-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a transmembrane protein known for its physiological role in the renin-angiotensin system that also serves as a receptor for entry of SARS-CoV-1, SARS-CoV-2, and the seasonal human coronavirus NL63 (hCoV-NL63). ACE2 contains seven N-linked glycosylation sites. Molecular simulation and binding analyses suggest that some of them are involved in the interaction with the Spike (S) proteins of hCoVs, but their relevance in S-mediated fusion and viral entry is poorly investigated. To address this, we determined the impact of all seven N-linked glycosylation sites in ACE2 on S-mediated SARS-CoV-2 and hCoV-NL63 infection as well as cell-to-cell fusion. We found that all mutant ACE2 proteins are expressed and localized at the cell surface, albeit ACE2 lacks all glycans at decreased levels. On average, changes in T92I, N322A, and N690A, as well as combined mutation of all N-linked glycosylation sites increased endocytic VSVpp infection mediated by early HU-1 as well as Omicron BA.2, BA.5, and XBB.1.5 SARS-CoV-2 S proteins. In comparison, only the lack of glycan at N322 in ACE2 enhanced syncytia formation and only in the case of HU-1 and XBB.1.5 S proteins. Changes in N90A, T92I, and N322A increased infection by the early SARS-CoV-2 HU-1 strain about twofold to threefold but had lesser effects on infection by genuine Omicron variants. Despite reduced cell surface expression of ACE2, elimination of all N-linked glycosylation sites usually enhanced SARS-CoV-2 infection via the endocytic pathway while having little effect on entry at the cell surface in the presence of TMPRSS2. Our results provide insights into the role of N-linked glycans in the ability of human ACE2 (hACE2) to serve as receptors for coronavirus infection. IMPORTANCE Several human coronaviruses use angiotensin-converting enzyme 2 (ACE2) as a primary receptor for infection of human cells. ACE2 is glycosylated at seven distinct positions, and the role of glycans for the entry of SARS-CoV-2 and hCoV-NL63 into their target cells is incompletely understood. Here, we examined the impact of individual and combined mutations in hACE2 glycosylation sites on Spike-mediated VSV-pseudoparticle and genuine SARS-CoV-2 and hCoV-NL63 infection and cell-to-cell fusion. Our results provide new information on the role of glycans in hACE2 for infection by highly pathogenic and seasonal coronaviruses.
Collapse
Affiliation(s)
- Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, Ulm, Germany
- Electrochemical Energy Storage, Helmholtz-Institute-Ulm, Ulm, Germany
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany
- Electrochemical Energy Storage, Helmholtz-Institute-Ulm, Ulm, Germany
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
He R, Zhang J, Tian Y, Yan J, Huang J, Sun T, Xie Y, Pu W, Wu T. Integrating multiplex PCR in fever clinics for acute respiratory pathogen-specific diagnosis. Clin Chim Acta 2025; 572:120245. [PMID: 40157701 DOI: 10.1016/j.cca.2025.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
The epidemiological patterns of respiratory tract infections (RTIs) have experienced substantial changes due to the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a particular focus on acute respiratory infections (ARIs). Challenges in early diagnosis, inadequate triage strategies, and the inappropriate use of antimicrobials or antivirals have compounded the difficulties in accurately diagnosing and managing ARIs in the post-pandemic context. This study aimed to investigate the efficacy of fever clinics equipped with nucleic acid testing capabilities in the precise triage of ARIs. In a cohort of 604 individuals presenting with symptoms of ARIs, we utilized real-time reverse transcription polymerase chain reaction (RT-PCR) technology available in the fever clinic to perform nucleic acid testing for SARS-CoV-2, influenza A virus (Flu A), influenza B virus (Flu B), respiratory syncytial virus, adenovirus, human rhinovirus, and Mycoplasma pneumoniae. Subsequently, statistical methods were employed to analyze the distribution and types of ARIs associated with these pathogens. In fever clinics, most patients presenting with respiratory pathogen infections were diagnosed with non-SARS-CoV-2 respiratory pathogens, with a higher incidence noted among pediatric patients compared to adults. In contrast, SARS-CoV-2 primarily affected the adult population and was linked to more severe clinical outcomes. Consequently, the swift triage of patients exhibiting ARI symptoms in a fever clinic equipped with nucleic acid testing enables the rapid identification and precise treatment of pathogens. This approach alleviates patient discomfort and enhances the efficiency of healthcare resource utilization.
Collapse
Affiliation(s)
- Ruifen He
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Jianwen Zhang
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Yuan Tian
- Public Health Center, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Junxia Yan
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Jinjuan Huang
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Tingting Sun
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Yuxin Xie
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Wenjia Pu
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China
| | - Tao Wu
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan 750001, China.
| |
Collapse
|
22
|
Pathak T, Pal S, Banerjee I. Cathepsins in cellular entry of human pathogenic viruses. J Virol 2025:e0164224. [PMID: 40135892 DOI: 10.1128/jvi.01642-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
In the life cycle of a virus, host cell entry represents the first step that a virus needs to undertake to gain access to the cell interior for replication. Once a virus attaches itself to its target cell receptor, it activates endogenous cellular responses and exploits host cell factors for its internalization, fusion, and genome release. Among the host factors that critically contribute to the viral entry processes are cathepsins, which are the most abundant endo/lysosomal proteases with diverse physiological functions. This review summarizes previous findings on how different cathepsins contribute to the host cell entry of human pathogenic viruses, focusing on their specific roles in the entry processes of both enveloped and non-enveloped RNA viruses. A comprehensive knowledge of the functions of different cathepsins in viral entry will provide valuable insights into the molecular mechanisms underlying viral infections and can be useful in the development of new antiviral strategies.
Collapse
Affiliation(s)
- Tejal Pathak
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Sampurna Pal
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| |
Collapse
|
23
|
Kousar R, Akhtar T, Lin CJ, Lebedev T, Li YC, Yang CC, Wang WJ, Chen HF, Su WC, Biswas PK, Saqib NU, Belay SA, Chang TC, Guo DW, Li Q, Patrick B, Usama M, Wu CS, Ma WL, Sher YP, Huang CC, Hung MC, Li XG. Anti-SARS-CoV-2 and anticancer properties of triptolide and its derived carbonized nanomaterials. Cancer Lett 2025; 619:217677. [PMID: 40147583 DOI: 10.1016/j.canlet.2025.217677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The COVID-19 pandemic remains an ongoing global health threat, yet effective treatments are still lacking. This has led to a high demand for complementary/alternative medicine, such as Chinese herbal medicines for curbing the COVID-19 pandemic. Given the dual anticancer and antiviral activities of many herbal drugs, they may hold a multifaceted potential to tackle both cancer and SARS-CoV-2. Triptolide is the major bioactive compound isolated from Tripterygium wilfordii Hook F (TwHF), a traditional Chinese medicinal herb recognized for its beneficial pharmacological properties in many diseases, including cancer and viral infection. However, its application in the clinic has been greatly limited due to its toxicity and poor water solubility. Here, from a screen of a natural compound library of Chinese Pharmacopoeia, we identified triptolide as a top candidate to inhibit cell entry of SARS-CoV-2. We demonstrated that triptolide robustly blocked viral entry at nanomolar concentrations in cellular models, with broad range activity against emerging Omicron variants of SARS-CoV-2. Mechanistically, triptolide disrupted the interaction of SARS-CoV-2 spike protein with its receptor ACE2. Furthermore, we synthesized water-soluble, triptolide-derived carbon quantum dots. Compared to triptolide, these highly biocompatible nanomaterials exhibited prominent antiviral capabilities against Omicron variants of SARS-CoV-2 with less cytotoxicity. Finally, we showed that triptolide-derived carbonized materials excelled in their anticancer properties compared to triptolide and Minnelide, a water-soluble analog of triptolide. Together, our results provide a rationale for the potential development of triptolide-carbonized derivatives as a promising antiviral candidate for the current pandemic and future outbreaks, as well as anticancer agents.
Collapse
Affiliation(s)
- Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Tahira Akhtar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Yi-Chuan Li
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Chih-Chao Yang
- Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Cell Biology, China Medical University, Taichung, 406040, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Pulak Kumar Biswas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Najm Us Saqib
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Sefealem Assefa Belay
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, 406040, Taiwan
| | - Tzu-Chi Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan
| | - Da-Wei Guo
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung, 413305, Taiwan
| | - Qiangdu Li
- Department of Psychiatry, The Third Municipal Hospital of Weihai, Shandong Province, China
| | - Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Muhammad Usama
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 406040, Taiwan
| | - Chen-Shiou Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, 406040, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
24
|
Wang C, Cheng Z, Miao J, Xue X, Dong Y, Zhao L, Guo H, Wang J, Wang Z, Lu S, Fang G, Peng Y, Zhai Y, Zhang Z, Gao D, Wang Z, Wang P, Zhang L, Dunmall LSC, Wang J, Tang W, Li X, Ding Z, Zhao X, Li L, Lemoine NR, Wang Z, Tonge D, Tan W, Dong J, Wang Y. Genomic-transcriptomic analysis identifies the Syrian hamster as a superior animal model for human diseases. BMC Genomics 2025; 26:286. [PMID: 40122829 PMCID: PMC11931762 DOI: 10.1186/s12864-025-11393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND The Syrian hamster (Mesocricetus auratus) has shown promise as a human diseases model, recapitulating features of different human diseases including COVID-19. However, the landscape of its genome and transcriptome has not been systematically dissected, restricting its potential applications. RESULTS Here we provide a complete analysis of the genome and transcriptome of the Syrian hamster and found that its lineage diverged from that of the Chinese hamster (Cricetulus griseus) around 29.4 million years ago. 21,387 protein-coding genes were identified, with 90.03% of the 2.56G base pair sequence being anchored to 22 chromosomes. Further comparison of the transcriptomes from 15 tissues of the Syrian hamster revealed that the Syrian hamster shares a pattern of alternative splicing modes more similar to humans, compared to rats and mice. An integrated genomic-transcriptomic analysis revealed that the Syrian hamster also has genetic and biological advantages as a superior animal model for cardiovascular diseases. Strikingly, several genes involved in SARS-COV-2 infection, including ACE2, present a higher homology with humans compared to other rodents and show the same function as their human counterparts. CONCLUSION The detailed molecular characterisation of the Syrian hamster in the present study opens a wealth of fundamental resources from this small rodent for future research into human disease pathology and treatment.
Collapse
Affiliation(s)
- Chuchu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenguo Cheng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jinxin Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450000, People's Republic of China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter Pylori and Digestive Tract Microecology, The Fifth Affiliated Hospital of Zhengzhou University; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yunshu Dong
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Li Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Haoran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jianyao Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhizhong Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangshuang Lu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangming Fang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Peng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yafei Zhai
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dongling Gao
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jun Wang
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Wenxue Tang
- Centre for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaowei Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zhongren Ding
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaoyan Zhao
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ling Li
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| | - Daniel Tonge
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, People's Republic of China
| | - Jianzeng Dong
- Department of Cardiology, Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Department of of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chao Yang District, Beijing, 100029, People's Republic of China.
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
25
|
Brügger M, Machahua C, Zumkehr T, Cismaru C, Jandrasits D, Trüeb B, Ezzat S, Oliveira Esteves BI, Dorn P, Marti TM, Zimmer G, Thiel V, Funke-Chambour M, Alves MP. Aging shapes infection profiles of influenza A virus and SARS-CoV-2 in human precision-cut lung slices. Respir Res 2025; 26:112. [PMID: 40128814 PMCID: PMC11934781 DOI: 10.1186/s12931-025-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) outbreak revealed the susceptibility of elderly patients to respiratory virus infections, showing cell senescence or subclinical persistent inflammatory profiles and favoring the development of severe pneumonia. METHODS In our study, we evaluated the potential influence of lung aging on the efficiency of replication of influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as determining the pro-inflammatory and antiviral responses of the distal lung tissue. RESULTS Using precision-cut lung slices (PCLS) from donors of different ages, we found that pandemic H1N1 and avian H5N1 IAV replicated in the lung parenchyma with high efficacy. In contrast to these IAV strains, SARS-CoV-2 Early isolate and Delta variant of concern (VOC) replicated less efficiently in PCLS. Interestingly, both viruses showed reduced replication in PCLS from older compared to younger donors, suggesting that aged lung tissue represents a suboptimal environment for viral replication. Regardless of the age-dependent viral loads, PCLS responded to H5N1 IAV infection by an induction of IL-6 and IP10/CXCL10, both at the mRNA and protein levels, and to H1N1 IAV infection by induction of IP10/CXCL10 mRNA. Finally, while SARS-CoV-2 and H1N1 IAV infection were not causing detectable cell death, H5N1 IAV infection led to more cytotoxicity and induced significant early interferon responses. CONCLUSIONS In summary, our findings suggest that aged lung tissue might not favor viral dissemination, pointing to a determinant role of dysregulated immune mechanisms in the development of severe disease.
Collapse
Affiliation(s)
- Melanie Brügger
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Trix Zumkehr
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Christiana Cismaru
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology, Freie Universitaet Berlin, Berlin, Germany
| | - Damian Jandrasits
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Bettina Trüeb
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sara Ezzat
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marco P Alves
- Institute of Virology and Immunology, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
He Y, Zheng Q, Zhifang Z, Xiaofeng N, Shenggen W, Xue M, Zheng C, Liu Z. When COVID-19 meets diabetes: A bibliometric analysis. Diabetes Res Clin Pract 2025; 223:112118. [PMID: 40132732 DOI: 10.1016/j.diabres.2025.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Coronavirus disease 2019 (COVID-19) survivors are concerned about the likelihood of developing further diseases. This study examines the global trends in scientific research on diabetes associated with COVID-19 from several perspectives. Bibliometric analyses are used to undertake a scientific review of the literature. The Web of Science Core Collection (WoSCC) database was used to acquire bibliographic information on diabetes related to COVID-19 from Jan 2020 to Dec. 2023. The visual map was built via advanced CiteSpace 6.2.R6. 7,348 papers were found. Khunti Kamlesh and Rizzo-Manfredi are the most well-known high-yield authors in this area, and the top ten authors collaborate extensively. Most of these papers came from universities. Harvard Medical School has the most publications, followed by Wuhan University and Huazhong University of Science and Technology. China and the United States are the countries with the most publications. Angiotensin-converting enzymes, chronic disease, intensive care unit, viral infection, and gestational diabetes mellitus were scored 0-11, 2, 3, and 4, respectively. Zhou et al.'s work on this topic, which appeared in the prominent medical journal The Lancet, was cited 1,366 times, highlighting its importance. "clinical characteristics," "diabetes mellitus," "metabolic syndrome," and "angiotensin-converting enzyme" were used as keywords for reference co-citation and clustering data identify. Over the last four years, related investigations have focused primarily on observing clinical aspects. This report is important for developing treatment strategies, directing future research, and guiding clinical practice.
Collapse
Affiliation(s)
- Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhang Zhifang
- Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | | | - Wu Shenggen
- Fujian Center for Disease Control and Prevention, Fuzhou 350012, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Zhijun Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
27
|
Beaudoin-Bussières G, Tauzin A, Dionne K, El Ferri O, Benlarbi M, Bourassa C, Medjahed H, Bazin R, Côté M, Finzi A. Multiple exposures to SARS-CoV-2 Spike enhance cross-reactive antibody-dependent cellular cytotoxicity against SARS-CoV-1. Virology 2025; 607:110512. [PMID: 40147380 DOI: 10.1016/j.virol.2025.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Vaccination or infection by SARS-CoV-2 elicits a protective immune response against severe outcomes. It has been reported that SARS-CoV-2 infection or vaccination elicits cross-reactive antibodies against other betacoronaviruses. While plasma neutralizing capacity was studied in great detail, their Fc-effector functions remain understudied. Here, we analyzed Spike recognition, neutralization and antibody-dependent cellular cytotoxicity (ADCC) against D614G, a recent Omicron subvariant of SARS-CoV-2 (JN.1) and SARS-CoV-1. Plasma from individuals before their first dose of mRNA vaccine, and following their second, third and sixth doses were analyzed. Despite poor neutralization activity observed after the second and third vaccine doses, ADCC was readily detected. By the sixth dose, individuals could neutralize and mediate ADCC against JN.1 and SARS-CoV-1. Since previous reports have shown that Fc-effector functions were associated with survival from acute infection, these results suggest that ADCC could help in combating future SARS-CoV-2 variants as well as closely related coronaviruses.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | | | | | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC, G1V 5C3, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC, H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, H2X 0A9, Canada.
| |
Collapse
|
28
|
Anraku Y, Kita S, Onodera T, Sato A, Tadokoro T, Ito S, Adachi Y, Kotaki R, Suzuki T, Sasaki J, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Kobayashi S, Kazuki Y, Oshimura M, Nomura T, Sasaki M, Orba Y, Suzuki T, Sawa H, Hashiguchi T, Fukuhara H, Takahashi Y, Maenaka K. Structural and virological identification of neutralizing antibody footprint provides insights into therapeutic antibody design against SARS-CoV-2 variants. Commun Biol 2025; 8:483. [PMID: 40121330 PMCID: PMC11929858 DOI: 10.1038/s42003-025-07827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Medical treatments using potent neutralizing SARS-CoV-2 antibodies have achieved remarkable improvements in clinical symptoms, changing the situation for the severity of COVID-19 patients. We previously reported an antibody, NT-108 with potent neutralizing activity. However, the structural and functional basis for the neutralizing activity of NT-108 has not yet been understood. Here, we demonstrated the therapeutic effects of NT-108 in a hamster model and its protective effects at low doses. Furthermore, we determined the cryo-EM structure of NT-108 in complex with SARS-CoV-2 spike. The single-chain Fv construction of NT-108 improved the cryo-EM maps because of the prevention of preferred orientations induced by Fab orientation. The footprints of NT-108 illuminated how escape mutations such as E484K evade from class 2 antibody recognition without ACE2 affinity attenuation. The functional and structural basis for the potent neutralizing activity of NT-108 provides insights into the rational design of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souta Kobayashi
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
29
|
Anderson M, Lopez J, Wyr M, Ramirez PW. Defining diverse spike-receptor interactions involved in SARS-CoV-2 entry: Mechanisms and therapeutic opportunities. Virology 2025; 607:110507. [PMID: 40157321 DOI: 10.1016/j.virol.2025.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike glycoprotein binds to angiotensin converting enzyme 2 (ACE2) on host cells to facilitate viral entry. However, the presence of SARS-CoV-2 in nearly all human organs - including those with little or no ACE2 expression - suggests the involvement of alternative receptors. Recent studies have identified several cellular proteins and molecules that influence SARS-CoV-2 entry through ACE2-dependent, ACE2-independent, or inhibitory mechanisms. In this review, we explore how these alternative receptors were identified, their expression patterns and roles in viral entry, and their impact on SARS-CoV-2 infection. Additionally, we discuss therapeutic strategies aimed at disrupting these virus-receptor interactions to mitigate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Julian Lopez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
30
|
Zhang L, Li D, Li X, Zong L, Bian H, Lu J. CutIn: a ready-to-use construct for rapid generation of urgently needed transgenic cell lines in emerging infection research. Funct Integr Genomics 2025; 25:67. [PMID: 40111512 DOI: 10.1007/s10142-025-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Site-directed exogenous gene knock-in for stable cell line generation remains a multi-step procedure that heavily relies on expertise. Therefore, there is a need for a competent and easily manageable method, particularly when there is an urgent demand for cell lines, especially for emerging infection research. We present here a universal construct called CutIn that expresses the Cas9 protein and dual sgRNAs targeting a host cell genome locus and the ampicillin resistance (AmpR) gene of a cotransfected donor plasmid commercially available. This construct specifically induces double-strand breaks (DSBs) in cotransfected plasmids and host cell genomes, thereby facilitating whole plasmid integration through nonhomologous end joining (NHEJ) repair mechanisms. As pilot tests, adeno-associated virus integration site 1 (AAVS1) or hypoxanthine phosphoribosyl transferase (HPRT) locus was selected as host genome target, commonly used human cell lines 293T, HeLa and HCT116 were employed. CutIn was subjected for reporter plasmid knock-in in all three cell lines, either AAVS1 and AmpR or HPRT and AmpR loci were efficiently targeted. Fluorescent protein, human angiotensin-converting enzyme 2 (ACE2) and dengue virus (DENV) infection reporter transgenic cells were rapidly obtained via CutIn-mediated whole expression vector integration. This method is designed to be user-friendly and shows potential for supporting the investigation of emerging/re-emerging infectious diseases. Further validation in diverse research contexts will be necessary to fully assess its applicability and effectiveness.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Dandan Li
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Xiaowei Li
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Liang Zong
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Haibo Bian
- Department of Respiratory and Critical Care Medicine, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China.
| | - Junnan Lu
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China.
| |
Collapse
|
31
|
Azcarate D, Olasagasti Arsuaga F, Granizo Rodriguez E, Arana-Arri E, España PP, Intxausti M, Sancho C, García de Vicuña Meléndez A, Ibarrondo O, M de Pancorbo M. Human-genetic variants associated with susceptibility to SARS-CoV-2 infection. Gene 2025; 953:149423. [PMID: 40120867 DOI: 10.1016/j.gene.2025.149423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
SARS-CoV-2, the third major coronavirus of the 21st century, causing COVID-19 disease, profoundly impacts public health and workforces worldwide. Identifying individuals at heightened risk of SARS-CoV-2 infection is crucial for targeted interventions and preparedness. This study investigated 35 SNVs within viral infection-associated genes in SARS-CoV-2 patients and uninfected controls from the Basque Country (March 2020-July 2021). Its primary aim was to uncover genetic markers indicative of SARS-CoV-2 susceptibility and explore genetic predispositions to infection. Association analyses revealed previously unreported associations between SNVs and susceptibility. Haplotype analyses uncovered novel links between haplotypes and susceptibility, surpassing individual SNV associations. Descriptive modelling identified key susceptibility factors, with rs11246068-CC (IFITM3), rs5742933-GG (ORMDL1), rs35337543-CG (IFIH1), and GGGCT (rs2070788, rs2298659, rs17854725, rs12329760, rs3787950) variation in TMPRSS2 emerging as main infection-susceptibility indicators for a COVID-19 pandemic situation. These findings underscore the importance of integrated SNV and haplotype analyses in delineating susceptibility to SARS-CoV-2 and informing proactive prevention strategies. The genetic markers profiled in this study offer valuable insights for future pandemic preparedness.
Collapse
Affiliation(s)
- Daniel Azcarate
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain
| | - Felix Olasagasti Arsuaga
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Biochemistry and molecular biology department, Faculty of Pharmacy (UPV/EHU), 01006 Vitoria-Gasteiz, Alava (Basque Country), Spain.
| | - Eva Granizo Rodriguez
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain
| | - Eunate Arana-Arri
- Clinical Epidemiology Unit, Cruces University Hospital, 48903 Barakaldo, Biscay (Basque Country), Spain
| | - Pedro Pablo España
- Pulmonology Service, Galdakao-Usansolo University Hospital, 48960 Galdakao, Biscay (Basque Country), Spain
| | - Maider Intxausti
- Pulmonology Service, Alava University Hospital - Txagorritxu, 01009 Vitoria-Gasteiz, Álava (Basque Country), Spain
| | - Cristina Sancho
- Department of Pneumology, Basurto University Hospital, 48013 Bilbao, Biscay (Basque Country), Spain
| | | | - Oliver Ibarrondo
- Consultant in Statistics and Health Economics Research, Debagoiena AP-OSI Research Unit, 20500 Arrasate, Gipuzkoa (Basque Country), Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group (BIOMICS and Microfluidics cluster), Zoology and animal cellular biology department, Faculty of Science and Technology (UPV/EHU), 48940 Leioa, Biscay (Basque Country), Spain.
| |
Collapse
|
32
|
Park YJ, Liu C, Lee J, Brown JT, Ma CB, Liu P, Gen R, Xiong Q, Zepeda SK, Stewart C, Addetia A, Craig CJ, Tortorici MA, Alshukairi AN, Starr TN, Yan H, Veesler D. Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses. Cell 2025; 188:1711-1728.e21. [PMID: 39922192 DOI: 10.1016/j.cell.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
DPP4 was considered a canonical receptor for merbecoviruses until the recent discovery of African bat-borne MERS-related coronaviruses using ACE2. The extent and diversity of ACE2 utilization among merbecoviruses and their receptor species tropism remain unknown. Here, we reveal that HKU5 enters host cells utilizing Pipistrellus abramus (P.abr) and several non-bat mammalian ACE2s through a binding mode distinct from that of any other known ACE2-using coronaviruses. We defined the molecular determinants of receptor species tropism and identified a single amino acid mutation enabling HKU5 to utilize human ACE2, providing proof of principle for machine-learning-assisted outbreak preparedness. We show that MERS-CoV and HKU5 have markedly distinct antigenicity and identified several HKU5 inhibitors, including two clinical compounds. Our findings profoundly alter our understanding of coronavirus evolution, as several merbecovirus clades independently evolved ACE2 utilization, and pave the way for developing countermeasures against viruses poised for human emergence.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Risako Gen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Caroline J Craig
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
33
|
Deepthi V, Sasikumar A, Mohanakumar KP, Rajamma U. Computationally designed multi-epitope vaccine construct targeting the SARS-CoV-2 spike protein elicits robust immune responses in silico. Sci Rep 2025; 15:9562. [PMID: 40108271 PMCID: PMC11923050 DOI: 10.1038/s41598-025-92956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Our research is driven by the need to design an advanced multi-epitope vaccine construct (MEVC) using the S-protein of SARS-CoV-2 to combat the emergence of new variants. Through rigorous computational screening, we have identified linear and discontinuous B-cell epitopes, CD8 + and CD4 + T-cell epitopes, ensuring extensive MEVC coverage across 90.03% of the global population. The MEVC, featuring four CD4 + and four CD8 + T-cell epitopes connected linearly with two adjuvant proteins on both ends, has been carefully designed to elicit robust immune response. Our in-silico analysis has confirmed the construct's antigenicity, non-allergenicity, and non-toxicity with optimized codon sequences for enhanced expression in E. coli K12. Furthermore, molecular docking and dynamics analyses have demonstrated its strong binding affinity with TLR-3 and TLR 4, and in-silico immune simulation yielded promising results on heightened B-cell and T-cell-mediated immunity. However, wet lab experiments are essential to validate computational findings to revolutionize the development of vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Varughese Deepthi
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Aswathy Sasikumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Kochupurackal P Mohanakumar
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
- Virus Research and Diagnostic Centre, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India
| | - Usha Rajamma
- Centre for Development and Aging Research, Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board P.O, Kottayam, 686009, Kerala, India.
| |
Collapse
|
34
|
Ma CB, Liu C, Park YJ, Tang J, Chen J, Xiong Q, Lee J, Stewart C, Asarnow D, Brown J, Tortorici MA, Yang X, Sun YH, Chen YM, Yu X, Si JY, Liu P, Tong F, Huang ML, Li J, Shi ZL, Deng Z, Veesler D, Yan H. Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses. Cell 2025; 188:1693-1710.e18. [PMID: 39922191 DOI: 10.1016/j.cell.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is shared by various coronaviruses with distinct receptor-binding domain (RBD) architectures, yet our understanding of these convergent acquisition events remains elusive. Here, we report that two bat MERS-related coronaviruses (MERSr-CoVs) infecting Pipistrellus nathusii (P.nat)-MOW15-22 and PnNL2018B-use ACE2 as their receptor, with narrow ortholog specificity. Cryoelectron microscopy structures of the MOW15-22/PnNL2018B RBD-ACE2 complexes unveil an unexpected and entirely distinct binding mode, mapping >45 Å away from that of any other known ACE2-using coronaviruses. Functional profiling of ACE2 orthologs from 105 mammalian species led to the identification of host tropism determinants, including an ACE2 N432-glycosylation restricting viral recognition, and the design of a soluble P.nat ACE2 mutant with potent viral neutralizing activity. Our findings reveal convergent acquisition of ACE2 usage for merbecoviruses found in European bats, underscoring the extraordinary diversity of ACE2 recognition modes among coronaviruses and the promiscuity of this receptor.
Collapse
Affiliation(s)
- Cheng-Bao Ma
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chen Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jingjing Tang
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Chen
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qing Xiong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Xiao Yang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jun-Yu Si
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Peng Liu
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Fei Tong
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Jing Li
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Zheng-Li Shi
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, China.
| | - Zengqin Deng
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Hubei Jiangxia Laboratory, Wuhan 430207, China.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Huan Yan
- State Key Laboratory of Virology and Biosafety, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, Hubei, China.
| |
Collapse
|
35
|
Verma S, Verma S, Siddiqi Z, Raza ST, Faruqui T, Ansari AI, Abbas M, Mahdi F. Association of VDR and TMPRSS2 gene polymorphisms with COVID-19 severity: a computational and clinical study. Mol Biol Rep 2025; 52:327. [PMID: 40106000 DOI: 10.1007/s11033-025-10417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND COVID-19 manifestations range from asymptomatic to severe, and are influenced by host genetic factors. This study examined the association between vitamin D receptor (VDR) polymorphisms (TaqI and FokI) and transmembrane serine protease 2 (TMPRSS2) gene polymorphisms (rs12329760) and COVID-19 severity. METHODS AND RESULTS 242 COVID-19 patients underwent genotyping using PCR-RFLP. Statistical analysis were conducted using SPSS v.21 and SHesis software, and validated by Sanger sequencing. The association of the VDR TaqI, FokI, and TMPRSS2 rs12329760 polymorphisms with COVID-19 severity was investigated. Computational analysis of TMPRSS2 was used to determine the pathogenicity and structural effects of these SNPs. For VDR TaqI, the 'TC' genotype showed higher prevalence in severe cases (50.5%) compared to mild cases (41.4%); however, no statistically significant association was observed [OR: 1.545 (0.893-2.675), p > 0.05]. Similar patterns were noted for the 'CC' genotype and 'C' allele, without statistical significance. For VDR FokI, the 'Ff' genotype showed higher prevalence in severe cases (25.8%) compared to mild cases (20.0%) [OR: 0.766 (0.199-2.951), p = 0.69], with no significant association. In haplotype analysis, elevated frequencies of 'Tf' and 'ft' haplotypes were observed in severe cases, but without statistical significance. For TMPRSS2 rs12329760, the 'CT' genotype showed a marginally higher prevalence in severe cases (50.5%) than in mild cases (49.7%) [OR: 0.805 (0.276-2.345), p > 0.05], without significant association. Computational analysis indicated that the variant does not demonstrate pathogenic effects but may influence protein stability. CONCLUSION This study revealed no statistically significant association between VDR (TaqI and FokI) and TMPRSS2 (rs12329760) polymorphisms and COVID-19 severity. Large-scale investigations and functional analysis are required to delineate the impact of these genetic variations on COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
- Shrikant Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Sushma Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Zeba Siddiqi
- Department of Medicine, Eras Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Syed Tasleem Raza
- Department of Biochemistry, Eras Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Tabrez Faruqui
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Asma Imran Ansari
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohammad Abbas
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India.
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, 226003, India.
| | - Farzana Mahdi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
36
|
Wang X, Dong M, Wu X, Schnepf D, Thiel J, Sun W, Wolfrum C, Li S, Jin W, Staeheli P, Ye L. Single-cell transcriptomics reveals a compartmentalized antiviral interferon response in the nasal epithelium of mice. J Virol 2025; 99:e0141324. [PMID: 39902863 PMCID: PMC11915831 DOI: 10.1128/jvi.01413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Type III interferons (IFNs) primarily act on epithelial cells and protect against virus infection of the mucosa, whereas type I IFNs act more systemically. To date, it has been unknown which epithelial subtypes in the upper airways, the primary site for initial infection for most respiratory viruses, primarily rely on type III IFN or type I IFNs for antiviral protection. To address this question, we performed a single-cell transcriptomics analysis of the epithelial IFN-mediated response focusing on the upper airways of mice. This work identified nine distinct cell types derived from the olfactory epithelium and thirteen distinct cell types from the respiratory epithelium. Interestingly, type I IFNs induced a stronger antiviral transcriptional response than type III IFN in respiratory epithelial cells, whereas in olfactory epithelial cells, including sustentacular (SUS) and Bowman's gland cells (BGC), type III IFN was more dominant compared to type I IFN. SUS and BGC, which provide structural support and maintain the integrity of olfactory sensory neurons, were highly susceptible to infection with a mouse-adapted variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 MA20) but were protected against infection if the animals were prophylactically treated with type III IFN. These findings demonstrate a high degree of cell type heterogeneity in terms of interferon-mediated antiviral responses and reveal a potent role for type III IFNs in protecting the olfactory epithelium.IMPORTANCESARS-CoV-2 infects SUS and BGC in the olfactory epithelium, causing an impairment of structural support and integrity of olfactory sensory neurons that can result in severe olfactory dysfunctions. We observed an unexpected compartmentalization of the IFN-mediated transcriptional response within the airway epithelium, and we found that olfactory epithelial cells preferentially respond to type III IFN, which resulted in robust antiviral protection of SUS and BGC. Given the proximity of the olfactory epithelium to the central nervous system, we hypothesize that evolution favored a type III IFN-biased antiviral immune response in this tissue to limit inflammatory responses in the brain. Cell type-specific antiviral responses in the upper airways, triggered by the different types of IFNs, should be investigated in more detail and carefully taken into consideration during the development of IFN-based antivirals for clinical use.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Key Laboratory of Gene Regulation, Department of Systems Biology School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Meng Dong
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Xinchao Wu
- Shenzhen Key Laboratory of Gene Regulation, Department of Systems Biology School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Sisi Li
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| | - Wenfei Jin
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
37
|
Herrero R, Fantin R, Loría V, Aparicio A, Prevots DR, Zúñiga M, Wong R, Morera M, Butt J, Binder M, Abdelnour A, Calderón A, Castro R, Cortes B, Ocampo R, Vanegas JC, Gail MH, Pfeiffer RM, Flock J, Remans K, Eberhardt L, Rastgou S, Magalhaes V, Porras C, Hildesheim A, Waterboer T. Time course and determinants of the antibody response to SARS-CoV-2 in Costa Rica: the RESPIRA study. BMC Infect Dis 2025; 25:376. [PMID: 40102764 PMCID: PMC11917050 DOI: 10.1186/s12879-025-10742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Antibodies to SARS-CoV-2 are essential for protection or reduction in severity of subsequent disease. We studied antibody responses to spike protein receptor-binding domain (S1-RBD) and nucleocapsid (N) in a population-based sample of COVID-19 cases in Costa Rica. METHODS As part of the RESPIRA study, we selected an age-stratified random sample of PCR-confirmed COVID-19 cases diagnosed from March 2020 to July 2021. Antibodies were determined with multiplex serology in 794 unvaccinated subjects diagnosed 3 days to 17 months before recruitment to investigate immune response to natural infection. In addition, neutralizing antibodies were determined in 136 randomly selected participants. We estimated antibody positivity and GMTs by time since diagnosis and explored determinants using multivariate regression. RESULTS Most participants tested 15-29 days after PCR diagnosis were seropositive for N (90%) and S1-RBD antibodies (96%) and had the highest GMTs for both antibodies. Only 42% of subjects tested one year after infection were seropositive for N antibodies, compared to 97% for S1-RBD. GMTs for neutralizing antibodies peaked 15-89 days after infection and declined but remained positive for 95% of subjects thereafter. In multivariate models, antibodies were significantly higher among men and increased with age and severity of the clinical presentation. The correlation of multiplex and neutralizing antibodies was high (0.72 [95% CI = 0.63-0.79]) and stronger among women. CONCLUSIONS A robust immune response against N and S1-RBD is elicited by COVID-19 a few days after infection. While S1-RBD antibodies are present after > 1 year, N antibodies decline significantly. Antibody levels are higher in men and increase with age and severity of disease. The different immune response patterns by sex warrant further investigation. TRIAL REGISTRATION RESPIRA Study ClinicalTrials.gov ID: NCT04537338 (3 September 2020).
Collapse
Affiliation(s)
- Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica.
| | - Romain Fantin
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Viviana Loría
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Amada Aparicio
- Caja Costarricense del Seguro Social, San José, Costa Rica
| | - D Rebecca Prevots
- Epidemiology and Population Studies Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Michael Zúñiga
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Roy Wong
- Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Melvin Morera
- Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Marco Binder
- Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Bernal Cortes
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Rebeca Ocampo
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Juan Carlos Vanegas
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Mitchell H Gail
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia Flock
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lukas Eberhardt
- Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Soheil Rastgou
- Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Vladimir Magalhaes
- Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Allan Hildesheim
- Agencia Costarricense de Investigaciones Biomédicas-Fundación INCIENSA (ACIB-FUNIN), San José, Costa Rica
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
38
|
Ma R, Zhang X, Li R, Dong X, Wang W, Jiang Q, Xiao X, Shi Y, Chen L, Zheng T, Xiang Z, Ren L, Zhou Z, Lei X, Wang J. PLSCR1 suppresses SARS-CoV-2 infection by downregulating cell surface ACE2. J Virol 2025; 99:e0208524. [PMID: 39945535 PMCID: PMC11915802 DOI: 10.1128/jvi.02085-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Type I interferons exert their antiviral effects against SARS-CoV-2 by inducing the expression of interferon-stimulated genes (ISGs), including but not limited to LY6E, CH25H, IFITM2/3, and IFIH1. However, the antiviral effect and underlying mechanisms of action of most ISGs in SARS-CoV-2 infection are not yet fully understood. By screening 109 ISG-knockout cell lines, we identify that phospholipid scramblase 1 (PLSCR1), an interferon-inducible protein, acts as a crucial restriction factor against SARS-CoV-2 infection. Cells lacking PLSCR1 are highly susceptible to SARS-CoV-2 infection. Conversely, overexpression of PLSCR1 inhibits SARS-CoV-2 infection. Depletion of PLSCR1 enhances cellular entry of both pseudotyped and authentic SARS-CoV-2. Mechanistically, PLSCR1 inhibits SARS-CoV-2 entry by specifically downregulating plasma membrane expression of ACE2, the virus's receptor, without affecting the overall levels of ACE2 within the cell. As such, we unraveled previously unappreciated mechanisms by which PLSCR1 exerts its restrictive effect on SARS-CoV-2. These data provide new insights into the interplay between host innate antiviral immunity and SARS-CoV-2 and shed light on novel antiviral therapeutics. IMPORTANCE Phospholipid scramblase 1 (PLSCR1) has been identified as a critical host restriction factor against SARS-CoV-2 infection. In this study, we demonstrated that PLSCR1 inhibited SARS-CoV-2 entry by downregulating the plasma membrane expression of ACE2, the primary receptor for viral entry. Our findings elucidate a novel host-pathogen interaction that not only deepens our understanding of the innate immune response to SARS-CoV-2 but offers potential strategies for therapeutic interventions against COVID-19.
Collapse
Affiliation(s)
- Ruiyi Ma
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xinyi Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ruonan Li
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Qi Jiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Yujin Shi
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Lan Chen
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Tian Zheng
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, and Christophe Merieux Laboratory National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Monteiro AHA, Freitas KM, Montuori-Andrade ACM, de Lima EBS, Carvalho AFS, Cardoso C, Lara ES, Oliveira LC, Zaidan I, da Santos FRS, Resende F, Souza-Costa LP, Queiroz-Junior CM, Chaves IDM, Nóbrega NRC, Rabelo MBO, Rocha MP, Campana PRV, Pádua RM, Ferreira RS, Barreto LV, Kronenberger T, Maltarollo VG, de Godoy MO, Oliva G, Guido RVC, Teixeira MM, Costa VV, Sousa LP, Braga FC. Ouratein D, a Biflavanone From Ouratea spectabilis, Alleviates Betacoronavirus Infection by Mitigating Inflammation, Lung Damage and Viral Replication. Phytother Res 2025. [PMID: 40099709 DOI: 10.1002/ptr.8462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
Severe coronavirus outbreaks, including SARS, MERS, and COVID-19, have underscored the urgent need for effective antiviral therapies. This study evaluated the antiviral activity of biflavanones isolated from Ouratea spectabilis-specifically ouratein (Our-) A, B, C, and D-against murine hepatitis virus (MHV-3) and human SARS-CoV-2. Cells infected with MHV-3 or SARS-CoV-2 were treated with ourateins, and viral replication was assessed using plaque assays. Mice infected with MHV-3 were treated with Our-D either orally or intraperitoneally. Key assessments included leukocyte counts, cytokine and chemokine levels, histological analysis, and survival rates. The mechanism of action was explored through in silico and in vitro studies focused on the binding and inhibition of the main protease (Mpro). Our-D significantly inhibited the replication of both viruses, with a selective index of 2.5 for MHV-3 and 14.9 for SARS-CoV-2. In vivo, Our-D reduced leukocyte infiltration in the lungs, decreased CCL2 levels, increased IL-10, and lowered plasma IL-6 and CXCL1 levels. Additionally, Our-D mitigated lung damage, partially restored betacoronavirus-induced lymphopenia, and reduced viral loads in the lungs, heart, and spleen, ultimately improving survival in mice. In silico studies revealed that Our-A and Our-C had strong binding affinity for Mpro, and both significantly inhibited Mpro activity in vitro, unlike Our-D. Our-D protected mice from coronavirus infection by modulating the inflammatory response and reducing viral loads, with minimal effect on Mpro inhibition, suggesting alternative mechanisms for its antiviral activity.
Collapse
Affiliation(s)
- Adelson Héric A Monteiro
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M Freitas
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara M Montuori-Andrade
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erick Bryan Sousa de Lima
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Felipe S Carvalho
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cardoso
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edvaldo S Lara
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Camilo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Rocha Silva da Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Pedro Souza-Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Natália R C Nóbrega
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Beatriz O Rabelo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina P Rocha
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Priscilla R V Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza V Barreto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thales Kronenberger
- Partner-Site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinícius G Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Glaucius Oliva
- Institute of Physics, Universidade de São Paulo, São Carlos, Brazil
| | - Rafael V C Guido
- Institute of Physics, Universidade de São Paulo, São Carlos, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernão C Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
40
|
Liu F, Shang C, Zhang C, Jiang X, Lin Y, Wu F, Li J, Han L, Shan J, Xiao Z, Zhou W. Cnidii fructus and Sophorae Flavescentis Radix polysaccharides inhibit SARS-CoV-2 entry by interfering with Spike protein-mediated membrane fusion. Int J Biol Macromol 2025; 307:142233. [PMID: 40107561 DOI: 10.1016/j.ijbiomac.2025.142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Polysaccharides derived from Traditional Chinese Medicine (TCM) show potential as therapeutic agents in the treatment of viral infections. In this study, seventeen polysaccharides extracted from TCM were screened for their inhibitory effects on SARS-CoV-2 pseudovirus (PsV) infection in ACE2-overexpressing HEK293T cells. The results revealed that Cnidii fructus polysaccharides (CFPs) and Sophorae Flavescentis Radix polysaccharides (SFPs) significantly inhibited PsV entry. Then, the effects of CFPs and SFPs on the authentic SARS-CoV-2 virus were studied. We found that CFPs and SFPs significantly inhibited cellular damage and virus invasion induced by both the Original SARS-CoV-2 strain and the Omicron variant in Vero E6 cells, without causing obvious cytotoxicity. In vivo studies demonstrated that CFPs and SFPs significantly protect mice against SARS-CoV-2 virus-induced mortality, along with reductions in viral load and lung injury. Time of addition (TOA) experiments indicated that CFPs and SFPs exert inhibitory effects during the pseudoviral pre-attachment and cell entry stages, with no substantial impacts after the PsV has entered the cells. Further mechanism studies showed that CFPs and SFPs inhibited syncytial formation primarily by suppressing the host cell surface membrane fusion process mediated by the Spike protein, without significantly affecting the endosome-mediated viral entry.
Collapse
Affiliation(s)
- Feng Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Xuyong Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yanling Lin
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Fushan Wu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Lu Han
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Junjie Shan
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
41
|
Shyong O, Alfakhri N, Bates SV, Carroll RW, Gallagher K, Huang L, Madhavan V, Murphy SA, Okrzesik SA, Yager PH, Yonker LM, Lok J. Multisystem Inflammatory Syndrome in Children: A Comprehensive Review Over the Past Five Years. J Intensive Care Med 2025:8850666251320558. [PMID: 40096057 DOI: 10.1177/08850666251320558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Multisystem Inflammatory Syndrome in Children: A Comprehensive Review over the Past Five Years This review explores many facets of Multisystem Inflammatory Syndrome in Children (MIS-C) over the previous 5 years. In the time since the COVID 19 pandemic gripped our medical systems, we can now explore the data that has been collected from the previous years. The literature has allowed us to better understand the impact of COVID 19 and the post illness occurrence of a severe systemic inflammatory disease on our youngest patient populations. This paper will outline the pathophysiology of MIS-C, the treatments utilized, short and long-term patient outcomes including epidemiological factors.
Collapse
Affiliation(s)
- Olivia Shyong
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nora Alfakhri
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara V Bates
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Newborn Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan W Carroll
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Krista Gallagher
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lena Huang
- Touro University Nevada, College of Osteopathic Medicine, Henderson, NV, USA
| | - Vandana Madhavan
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Pediatric Infectious Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah A Murphy
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvia A Okrzesik
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - Phoebe H Yager
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Pediatric Pulmonary Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Josephine Lok
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Gutzler C, Höhne K, Bani D, Kayser G, Fähndrich S, Ambros M, Hug MJ, Rieg S, Falcone V, Müller-Quernheim J, Zissel G, Frye BC. Vasoactive Intestinal Peptide (VIP) in COVID-19 Therapy-Shedding of ACE2 and TMPRSS2 via ADAM10. Int J Mol Sci 2025; 26:2666. [PMID: 40141308 PMCID: PMC11942504 DOI: 10.3390/ijms26062666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Patients infected with SARS-CoV-2 may develop mild respiratory symptoms but also Acute Respiratory Distress Syndrome (ARDS). Additionally, severe systemic inflammation contributes to morbidity and mortality. The SARS-CoV-2 virus enters the cell by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, followed by cleavage by transmembrane serine protease 2 (TMPRSS2). Vasoactive intestinal peptide (VIP) is known for its immune-modulating effects by suppressing the release of pro-inflammatory cytokines and enhancing regulatory T-cells. Furthermore, it has been tested in SARS-CoV-2-related clinical trials. We set out to investigate its role in the setting of SARS-CoV-2 infection in vitro. Epithelial cells (CaCo-2) were stimulated with SARS-CoV-2 spike protein, treated with native VIP and analyzed to investigate the mRNA and surface expression of ACE2 and TMPRSS2, the enzyme activity of TMPRSS2 and the infection rate by a SARS-CoV-2 pseudovirus. VIP downregulated ACE2 and TMPRSS2 mRNA and surface expression. Beyond these direct effects, VIP mediates the shedding of surface-expressed ACE2 and TMPRSS2 via upregulation of a sheddase protease (ADAM10). Functionally, these dual mechanisms of VIP-mediated downregulation of proteins involved in SARS-CoV-2 cell entry resulted in a reduced infection rate by the SARS-CoV-2 pseudovirus. These data imply that VIP hampers viral entry mechanisms based on SARS-CoV-2 and the linkage to ADAM10 may stimulate research in other indications beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Charlotte Gutzler
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kerstin Höhne
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Gian Kayser
- Institute of Pathology Naehrig Mattern Kayser, Boetzinger Strasse 60, 79111 Freiburg, Germany
| | - Sebastian Fähndrich
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Michael Ambros
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Martin J. Hug
- Pharmacy, Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Siegbert Rieg
- Department of Internal Medicine II, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Valeria Falcone
- Institute of Virology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Joachim Müller-Quernheim
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Gernot Zissel
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| | - Björn C. Frye
- Department for Pneumology, University Medical Center, Faculty of Medicine–University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
43
|
Patni B, Bhattacharyya M, Pokhriyal A, Pandey D. Remedying SARS-CoV-2 through nature: a review highlighting the potentiality of herbs, trees, mushrooms, and endophytic microorganisms in controlling Coronavirus. PLANTA 2025; 261:89. [PMID: 40089556 DOI: 10.1007/s00425-025-04647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
MAIN CONCLUSION Medicinal plants, mushrooms, and endophytes offer a rich source of secondary metabolites (SMs), including flavonoids, alkaloids, tannins, and terpenoids, with proven antiviral properties against SARS-CoV-2. Plant-associated microorganisms that colonize in living tissues of different parts of a plant possess the ability to produce SMs of immense therapeutic value and this biological interaction between plants and microbes can be exploited to develop antiviral drugs against SARS-CoV-2. The unprecedented lethality of the SARS-CoV-2 virus during the recent global pandemic has prompted extensive research into new treatment options and preventive strategies for COVID-19. Phytochemicals, particularly those derived from medicinal plants, microbes, and mushrooms, show promising results in combating the virus when combined with synthetic components. These natural compounds include terpenes, phenolics, flavonoids, and alkaloids that possess antiviral properties. Medicinal plants and their endophytic microbes, and mushrooms, offer a rich source of secondary metabolites (SMs) with potential antiviral effects against SARS-CoV-2. Given the urgency of addressing the swift spread of the new coronavirus strain, exploring and understanding these SMs could lead to the development of innovative and potent antiviral drugs. This review provides a comprehensive overview of plant-, microbial- and mushroom-derived SMs, their classification, and their applications in treating diseases caused by the coronavirus family, offering insights into the potential future production of natural medicines.
Collapse
Affiliation(s)
- Babita Patni
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India.
| | - Malini Bhattacharyya
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Anshika Pokhriyal
- Department of Medicinal and Aromatic Plant, High Altitude Plant Physiology Research Centre, Hemvati Nandan Bahuguna Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Devendra Pandey
- Lovely Professional University, Phagwara, Punjab, 147001, India
| |
Collapse
|
44
|
Zhao P, Zhang C, Che Y, Zhang L, Lin H, Su Z, Kang Q, Zhang Z, Peng X, Wang T. Identification of anti-SARS-CoV-2 compounds from Qingwen Zhike prescription and exploration of their underlying mechanism by UPLC-Q-Exactive Orbitrap MS, high-throughput screening assays and transmission electron microscopy. J Pharm Biomed Anal 2025; 255:116649. [PMID: 39755021 DOI: 10.1016/j.jpba.2024.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Qingwen Zhike prescription (QWZK), a traditional Chinese medicine (TCM) hospital prescription developed in response to the corona virus disease 2019 (COVID-19) pandemic, has demonstrated efficacy in clinical practice. Nevertheless, its specific antiviral components and mechanisms of action remain unclear. This study screened the antiviral compounds against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Qingwen Zhike prescription and explored the underlying mechanism through chemical composition analysis, serum and lung exposure profiles analysis, high-throughput screening, and transmission electron microscopy (TEM) observation. Utilizing the UPLC-Q-Exactive Orbitrap MS system, a total of 279 components were identified from Qingwen Zhike. Among these, 49 components were detected in the serum and lungs of dosed rat, with 26 components distributed abundantly in the lungs. Subsequently, a SARS-CoV-2 pseudovirus-based assay and a main protease (Mpro) enzymatic assay were used to screen for viral entry inhibitors and Mpro inhibitors. The results showed that two alkaloids (ephedrine and pseudoephedrine) and five polymethoxy-flavonoids (3,5,6,7,8,3',4'-heptamethoxyflavone, nobiletin, isosinensetin, tangeretin, and sinensetin) exhibited potent inhibitory effects on viral invasion. Further observation by TEM indicated that these two alkaloids could dissolve the viral envelope, while these five polymethoxy-flavonoids could cause leakage of virus contents, deformation of viral envelope or decomposition of the virus. Collectively, these seven compounds may serve as key antiviral components of QWZK.
Collapse
Affiliation(s)
- Ping Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cai Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Che
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianli Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyi Peng
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
45
|
Chen Y, Chen C. The effect of inflammatory proteins on COVID-19 is mediated by blood metabolites: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41852. [PMID: 40101060 PMCID: PMC11922457 DOI: 10.1097/md.0000000000041852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Several studies have suggested that inflammatory proteins may be associated with Coronavirus disease 2019 (COVID-19). However, the specific causal relationship between the 2 and whether blood metabolites act as mediators remains unclear. Therefore, the purpose of the present study is to investigate the causal relationship between inflammatory proteins and COVID-19 and to identify and quantify the role of blood metabolites as potential mediators. Two-sample Mendelian randomization (MR) and 2-step mediated MR analyses were used to investigate the causal relationships between 91 inflammatory proteins, 486 blood metabolites and COVID-19. A random-effects inverse variance weighted (IVW) approach was used as the primary analytical method, supplemented by weighted medians, MR-Egger and MR multivariate residual sums, and outliers to test MR hypotheses. Our results showed that 2 inflammatory proteins (interleukin-10 and interleukin-18) were positively associated with COVID-19 risk, while 1 inflammatory protein (PD-L1) was negatively associated. Further validation was performed using sensitivity analysis. The results of mediated MR showed that Betaine was a mediator of PD-L1 to COVID-19 with a mediation ratio of 15.92%. Our study suggests a genetic causality between specific inflammatory proteins and COVID-19, highlights the potential mediating role of the blood metabolite betaine, and contributes to a deeper understanding of the mechanism of action of severe COVID-19.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Clinical Laboratory, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chang Chen
- Medical Department, Nanchong Guoning Mental Health Hospital, Nanchong, Sichuan, China
| |
Collapse
|
46
|
Gupta P, Khadake RM, Singh ON, Mirgane HA, Gupta D, Bhosale SV, Vrati S, Surjit M, Rode AB. Targeting Two-Tetrad RNA G-Quadruplex in the SARS-CoV-2 RNA Genome Using Tetraphenylethene Derivatives for Antiviral Therapy. ACS Infect Dis 2025; 11:784-795. [PMID: 40017008 DOI: 10.1021/acsinfecdis.5c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Targeting the specific RNA conformations that are crucial for SARS-CoV-2 replication is a viable antiviral approach. The SARS-CoV-2 genome contains GG repeats capable of forming unstable two-tetrad G-quadruplex (GQ) structures, which exist as a mix of conformations, including hairpin (Hp), intra-, and intermolecular GQs. RGQ-1, originating from the nucleocapsid gene's ORF, adopts a dynamic equilibrium of conformations, including intramolecular hairpin and G-quadruplex (Hp-GQ) structures, as confirmed by CD analysis. In this study, tetraphenylethene (TPE) derivatives were developed to target the Hp-GQ conformational equilibrium of RGQ-1. EMSA, fluorescence spectroscopy, and ITC assays confirmed that two TPE derivatives, TPE-MePy and TPE-Allyl Py, bind to RGQ-1. CD thermal melting experiments indicate that RGQ-1 is stabilized by 8.56 and 12.54 °C in the presence of TPE-MePy and TPE-Allyl Py, respectively. Additionally, luciferase assays demonstrated that TPE derivatives suppressed luciferase activity by 2.2-fold and 3.6-fold, respectively, shifting the HpGQ equilibrium toward the GQ conformation, as suggested by CD spectroscopy. Treatment of SARS-CoV-2-infected A549 cells with TPE derivatives reduced the levels of viral RNA, spikes, and nucleocapsid proteins. To explore their antiviral mechanism, preinfection and postinfection treatments were tested, revealing that the TPE derivatives specifically suppressed the postentry stages of viral replication without affecting viral entry. These findings highlight the therapeutic potential of TPE derivatives in inhibiting key gene expressions critical for SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Payal Gupta
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Rushikesh M Khadake
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Oinam Ningthemmani Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka 585367, India
| | - Dharmender Gupta
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka 585367, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Milan Surjit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
47
|
Myburgh L, Karsjens H, Blanas A, de Ligt A, van Loon K, Huijbers EJM, van Beijnum JR, Engbersen DJM, Rekiki A, Mignon C, Vratskikh O, Griffioen AW. Targeting the early life stages of SARS-CoV-2 using a multi-peptide conjugate vaccine. Vaccine 2025; 54:126989. [PMID: 40088511 DOI: 10.1016/j.vaccine.2025.126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
The spike glycoprotein is a key factor in the infection cycle of SARS-CoV-2, as it mediates both receptor recognition and membrane fusion by the virus. Therefore, in this study, we aimed to design a multi-peptide conjugate vaccine against SARS-CoV-2, targeting the early stages of the virus's life cycle. We used iBoost technology, which is designed to induce immune responses against low- or non-immunogenic epitopes. We selected six peptide sequences, each representing a key domain of the spike protein (i.e., receptor binding domain (RBM), subdomain 1 (SD1), subdomain 2 (SD2), S1/S2, fusion peptide and the S2' sequences (FP + S2'), heptad repeat 1 (HR1)). Immunization studies in mice displayed targeted humoral and cellular immune responses against specific peptides of the spike protein simultaneously, while inducing cross-protection against the Delta and Omicron coronavirus variants. Moreover, vaccinated hamsters challenged with SARS-CoV-2 elicited high antibody levels against key peptides, induced early neutralizing antibody responses and resulted in less weight loss compared to controls. This highlights the potential for improving viral control and disease outcomes when utilizing this strategy. Therefore, by using iBoost technology in conjunction with our peptide design strategy, we were able to successfully target non-immunodominant regions in the spike protein while activating both arms of the adaptive immune system.
Collapse
Affiliation(s)
- Lauren Myburgh
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Haiko Karsjens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Athanasios Blanas
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aafke de Ligt
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands
| | | | | | | | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; CimCure BV, Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Lacasse É, Dubuc I, Gudimard L, Andrade ACDSP, Gravel A, Greffard K, Chamberland A, Oger C, Galano JM, Durand T, Philipe É, Blanchet MR, Bilodeau JF, Flamand L. Delayed viral clearance and altered inflammatory responses affect severity of SARS-CoV-2 infection in aged mice. Immun Ageing 2025; 22:11. [PMID: 40075368 PMCID: PMC11899864 DOI: 10.1186/s12979-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Epidemiological investigations consistently demonstrate an overrepresentation of the elderly in COVID-19 hospitalizations and fatalities, making the advanced age as a major predictor of disease severity. Despite this, a comprehensive understanding of the cellular and molecular mechanisms explaining how old age represents a major risk factor remain elusive. To investigate this, we compared SARS-CoV-2 infection outcomes in young adults (2 months) and geriatric (15-22 months) mice. Both groups of K18-ACE2 mice were intranasally infected with 500 TCID50 of SARS-CoV-2 Delta variant with analyses performed on days 3, 5, and 7 post-infection (DPI). Analyses included pulmonary cytokines, lung RNA-seq, viral loads, lipidomic profiles, and histological assessments, with a concurrent evaluation of the percentage of mice reaching humane endpoints. The findings unveiled notable differences, with aged mice exhibiting impaired viral clearance, reduced survival, and failure to recover weight loss due to infection. RNA-seq data suggested greater lung damage and reduced respiratory function in infected aged mice. Additionally, elderly-infected mice exhibited a deficient antiviral response characterized by reduced Th1-associated mediators (IFNγ, CCL2, CCL3, CXCL9) and diminished number of macrophages, NK cells, and T cells. Furthermore, mass-spectrometry analysis of the lung lipidome indicated altered expression of several lipids with immunomodulatory and pro-resolution effects in aged mice such as Resolvin, HOTrEs, and NeuroP, but also DiHOMEs-related ARDS. These findings indicate that aging affects antiviral immunity, leading to prolonged infection, greater lung damage, and poorer clinical outcomes. This underscores the potential efficacy of immunomodulatory treatments for elderly subjects experiencing symptoms of severe COVID-19.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Ana Claudia Dos S P Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | | | - Camille Oger
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Éric Philipe
- Département de Chirurgie, Faculté de Médecine, Université, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
- Centre de Recherche de L'Institut de Cardiologie de Québec, Université, Québec, QC, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada.
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
49
|
Aligolighasemabadi F, Bakinowska E, Kiełbowski K, Sadeghdoust M, Coombs KM, Mehrbod P, Ghavami S. Autophagy and Respiratory Viruses: Mechanisms, Viral Exploitation, and Therapeutic Insights. Cells 2025; 14:418. [PMID: 40136667 PMCID: PMC11941543 DOI: 10.3390/cells14060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Respiratory viruses, such as influenza virus, rhinovirus, coronavirus, and respiratory syncytial virus (RSV), continue to impose a heavy global health burden. Despite existing vaccination programs, these infections remain leading causes of morbidity and mortality, especially among vulnerable populations like children, older adults, and immunocompromised individuals. However, the current therapeutic options for respiratory viral infections are often limited to supportive care, underscoring the need for novel treatment strategies. Autophagy, particularly macroautophagy, has emerged as a fundamental cellular process in the host response to respiratory viral infections. This process not only supports cellular homeostasis by degrading damaged organelles and pathogens but also enables xenophagy, which selectively targets viral particles for degradation and enhances cellular defense. However, viruses have evolved mechanisms to manipulate the autophagy pathways, using them to evade immune detection and promote viral replication. This review examines the dual role of autophagy in viral manipulation and host defense, focusing on the complex interplay between respiratory viruses and autophagy-related pathways. By elucidating these mechanisms, we aim to highlight the therapeutic potential of targeting autophagy to enhance antiviral responses, offering promising directions for the development of effective treatments against respiratory viral infections.
Collapse
Affiliation(s)
- Farnaz Aligolighasemabadi
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Estera Bakinowska
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada; (E.B.); (K.K.)
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Saeid Ghavami
- Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Phillip Dr., St. John’s, NL A1B 3V6, Canada; (F.A.); (M.S.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Akademia Śląska, Ul Rolna 43, 40-555 Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
50
|
Ma Y, Wang J, Cui F, Tang L, Khalid S, Tian Y, Xie J. Independent and combined effects of long-term air pollution exposure and genetic predisposition on COVID-19 severity: A population-based cohort study. Proc Natl Acad Sci U S A 2025; 122:e2421513122. [PMID: 40030018 PMCID: PMC11912415 DOI: 10.1073/pnas.2421513122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
The relationships between air pollution, genetic susceptibility, and COVID-19-related outcomes, as well as the potential interplays between air pollution and genetic susceptibility, remain largely unexplored. The Cox proportional hazards model was used to assess associations between long-term exposure to air pollutants and the risk of COVID-19 outcomes (infection, hospitalization, and death) in a COVID-19-naive cohort (n = 458,396). Additionally, associations between air pollutants and the risk of COVID-19 severity (hospitalization and death) were evaluated in a COVID-19 infection cohort (n = 110,216). Furthermore, this study investigated the role of host genetic susceptibility in the relationships between exposure to air pollutants and the development of COVID-19-related outcomes. Long-term exposure to air pollutants was significantly associated with an increased risk of COVID-19-related outcomes in the COVID-19 naive cohort. Similarly, in COVID-19 infection cohort, hazard ratios (HRs) for COVID-19 hospital admission were 1.23 (1.19, 1.27) for PM2.5 and 1.22 (1.17, 1.26) for PM10, whereas HRs for COVID-19 death were 1.28 (1.18, 1.39) for PM2.5 and 1.25 (1.16, 1.36) for PM10. Notably, significant interactions were found between PM2.5/PM10 and genetic susceptibility in COVID-19 death. In COVID-19 infection cohort, participants with both high genetic risk and high air pollutants exposure had 1.86- to 1.97-fold and 1.91- to 2.14-fold higher risk of COVID-19 hospitalization and death compared to those with both low genetic risk and low air pollutants exposure. Exposure to air pollution is significantly associated with an increased burden of severe COVID-19, and air pollution-gene interactions may play a crucial role in the development of COVID-19-related outcomes.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sara Khalid
- Botnar Research Centre, Nuffield Orthopaedic Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junqin Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, United Kingdom
| |
Collapse
|