1
|
Yang L, Qiu Q, Wang J, Wen Y, Li H, Liang R, Feng Y, Wang F, Lin X, Tang M, Yang J, Pei H, Zhao P, Wang J, Xiang J, Miao J, Zheng L, Tan K, Wang Y, Hu Y, Chen L, Zhao W, Niu T. Preclinical and first-in-human of purinostat mesylate, a novel selective HDAC I/IIb inhibitor, in relapsed/refractory multiple myeloma and lymphoma. Signal Transduct Target Ther 2025; 10:201. [PMID: 40562746 DOI: 10.1038/s41392-025-02285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/15/2025] [Accepted: 05/28/2025] [Indexed: 06/28/2025] Open
Abstract
Simultaneously targeting key pathogenic drivers and remodeling of the tumor microenvironment represents a critical therapeutic strategy for relapsed or refractory (r/r) multiple myeloma (MM) and lymphoma. Purinostat mesylate (PM), a highly selective HDAC I/II binhibitor, exhibits excellent antitumor activity in MM and lymphoma cell lines and mouse models, outperforming the pan-HDAC inhibitor panobinostat or first-line/second-line multi-drug combinations. Different from panobinostat, bulk RNA-seq analysis revealed that PM suppressed essential tumor survival factors and triggered inflammation and interferon responses. The scRNA-seq of 5TMM models further indicated that PM enhanced antitumor immunity by boosting monocyte- and T cell-mediated immune responses. In a phase I trial (NCT05526313; N = 29) of PM at doses up to 15 mg/m², treatment-related Grade ≥3 adverse events predominantly comprised hematologic toxicities: thrombocytopenia (75.9%), neutropenia (55.2%), leukopenia (41.4%), and lymphopenia (31.0%), with no dose-limiting toxicities observed. PM monotherapy achieved a disease control rate of 72.7% (8/11) and an objective response rate (ORR) of 9.1% (1/11) in r/r MM. Notably, r/r lymphoma patients showed an ORR of 61.6% (11/18), particularly reaching 63.6% (7/11) with 6 complete responses in diffuse large B-cell lymphoma (DLBCL). Treatment responders exhibited enhanced immune activation, with elevated CD3+CD8+ T cells and increased cytokine levels, such as IFN-γ and CXCL10. Overall, PM is safe and moderately effective in MM, but highly effective in lymphoma. Additionally, PM combined with pomalidomide and dexamethasone showed strong synergistic activity in r/r MM treatment. These findings support further open-label, multicenter phase Ib/IIa trials of PM combination therapy with immunomodulators for r/r MM, as well as phase II monotherapy trials for r/r DLBCL and r/r T-cell lymphoma.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Qiu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - He Li
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liang
- Chengdu Zenitar Biomedical Technology Co. Ltd, Chengdu, China
| | - Yunyu Feng
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Wang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Lin
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minghai Tang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhong Yang
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Heying Pei
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Zhao
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Xiang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Miao
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zheng
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Tan
- Chengdu Zenitar Biomedical Technology Co. Ltd, Chengdu, China
| | - Yongsheng Wang
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Lijuan Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co. Ltd, Chengdu, China.
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Hedayat F, Faghfuri E. Harnessing histone deacetylase inhibitors for enhanced cancer immunotherapy. Eur J Pharmacol 2025; 997:177620. [PMID: 40239887 DOI: 10.1016/j.ejphar.2025.177620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Many cancers are capable of hindering the immune response against tumor cells, promoting their growth and spread; this has inspired research aimed at reversing these processes to reactivate the immune system, resulting in significant therapeutic advantages. One of the strategies being explored involves histone deacetylase (HDAC) inhibitors (HDACis), which represent a new category of targeted therapies that alter the immune system's reaction to cancer via epigenetic changes. Recently, six HDACis have been authorized for clinical applications. This review aims to provide a concise overview of how different classes of HDACis affect the immune system, based on both in vitro, in vivo, and clinical studies, and explore the latest advancements in combining new immunotherapies with these drugs. HDACis have been found to influence how various cancer treatments work by, for instance, enhancing access to exposed DNA through the relaxation of chromatin, disrupting DNA repair mechanisms, and boosting the expression of immune checkpoint receptors. Combining HDACis with immunotherapy could enhance antitumor effects and reduce drug resistance.
Collapse
Affiliation(s)
- Fatemeh Hedayat
- Department of Biology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Li C, Liu S, Gao J, Xu Y, Peng Q, Weng D, Wang D, Yang W, Yi P, Lin Z, Chen J. Epigenetic activation of PTEN by valproic acid inhibits PI3K/AKT signaling and Burkitt lymphoma cell growth. Gene 2025; 950:149369. [PMID: 40021103 DOI: 10.1016/j.gene.2025.149369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Histone deacetylase (HDAC) inhibitors show promise in treating Burkitt lymphoma (BL), although the precise mechanisms remain unclear. We investigated the effects of valproic acid (VPA), a specific HDAC inhibitor, on BL cell lines RAJI and CA46, focusing on the PTEN/PI3K/AKT pathway. Cell viability, cell cycle progression, and apoptosis were evaluated using the Cell Counting Kit-8 assay and the Annexin V-fluorescein isothiocyanate assay. Chromatin immunoprecipitation sequencing (ChIP-seq) assessed acetylation at the PTEN promoter, while gene expression and protein levels were measured via reverse transcription quantitative polymerase chain reaction and Western blotting, respectively. VPA treatment significantly reduced BL cell viability and induced apoptosis and cell cycle arrest in a dose-dependent manner. Compared to peripheral blood mononuclear cells, BL cells exhibited significantly higher HDAC mRNA and protein levels. ChIP-seq analysis revealed increased acetylation of the PTEN promoter following exposure to VPA. After treatment with 4 mM VPA, PTEN protein levels in BL cells increased significantly, while levels of HDAC, p-AKT, and p-p70S6K proteins decreased markedly. Furthermore, compared to VPA treatment alone, the combination of VPA and the PI3K inhibitor BEZ235 led to even greater PTEN protein expression, further decreased p-AKT and p-p70S6K protein levels, and further reduced cell viability in BL cells. VPA exerts its antitumor effects in BL cells by modulating the PTEN/PI3K/AKT pathway through the inhibition of HDAC1.
Collapse
Affiliation(s)
- Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Shengquan Liu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Jingjing Gao
- Department of Blood Transfusion, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Yahong Xu
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Qunyi Peng
- Department of Hematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Dan Weng
- Department of Clinical Medicine, Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Dan Wang
- Department of Clinical Medicine, Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Wanlin Yang
- Department of Clinical Medicine, Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Ping Yi
- Department of scientific research project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan 430000, China
| | - Zuopeng Lin
- Department of scientific research project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan 430000, China
| | - Jinting Chen
- Department of Clinical Laboratory, Quanzhou Central Blood Station, Quanzhou, Fujian 362000, PR China.
| |
Collapse
|
4
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
5
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
6
|
Jin Y, Qi X, Yu X, Cheng X, Chen B, Wu M, Zhang J, Yin H, Lu Y, Zhou Y, Pang A, Lin Y, Jiang L, Shi Q, Geng S, Zhou Y, Yao X, Li L, Duan H, Che J, Cao J, He Q, Dong X. Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function. Acta Pharm Sin B 2025; 15:1659-1679. [PMID: 40370550 PMCID: PMC12069251 DOI: 10.1016/j.apsb.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/18/2024] [Indexed: 05/16/2025] Open
Abstract
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
Collapse
Affiliation(s)
- Yuheng Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuxin Qi
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xirui Cheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Boya Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Mingfei Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihui Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Ao Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yushen Lin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Li Jiang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Qiuqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuangshuang Geng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Linjie Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiting Duan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Yao M, Yan W, Wang Y, Zhao Y, Xu X, Chen Y, Yu C, Li Y, Jiang H, Shen J, Cheng J, Xie C. IHCH9033, a novel class I HDAC inhibitor, synergizes with FLT3 inhibitor and rescues quizartinib resistance in FLT3-ITD AML via enhancing DNA damage response. Exp Hematol Oncol 2025; 14:15. [PMID: 39955584 PMCID: PMC11829435 DOI: 10.1186/s40164-025-00605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Despite initial success with FLT3 inhibitors (FLT3is), outcomes for FLT3-ITD acute myeloid leukemia (AML) patients remain unsatisfactory, underscoring the need for more effective treatment options. Epigenetic modifications, such as histone acetylation, contribute to AML's onset and persistence, advocating the potential for epigenetic therapies. However, the poor specificity of pan-histone deacetylase inhibitors (HDACis) leads to undesirable adverse effects, prompting the need for isoform-specific HDACis. This study aims to explore the antileukemic activities and mechanisms of IHCH9033, a novel class I HDACi, alone or combined with FLT3i in FLT3-ITD AML. METHODS The viability of AML cell lines and primary AML cells treated with HDACis alone or in combination with FLT3i was detected by MTT or CCK8 assay. Flow cytometry was utilized to examine cell apoptosis, cell cycle progression and ROS production. RNA sequencing analysis, RT-qPCR, western blotting, and co-immunoprecipitation assays were employed to elucidate the molecule mechanisms. The in vivo anti-leukemia efficacy was tested in xenografted mice models derived from FLT3-ITD cell lines and primary AML patients. RESULTS Here, we identified IHCH9033, a novel selective class I HDACi, which exhibited an increased antitumor effect in FLT3-ITD AML through effectively eliminating leukemia burden and overcoming resistance to FLT3i. Mechanically, IHCH9033 selectively inhibited DNA repair in FLT3-ITD AML cells, leading to the accumulation of DNA damage that eventually resulted in cell cycle arrest and apoptosis. Additionally, IHCH9033 induced HSP90 acetylation, FLT3 ubiquitination, and proteasomal degradation of FLT3, thereby inhibiting FLT3 downstream signaling. Notably, IHCH9033 maintained its potency in both FLT3i-resistant AML cell lines and primary-resistant patient samples, and exerted strong synergy with the FLT3i quizartinib, leading to tumor regression in FLT3-ITD/TKD AML xenografts. In patient-derived xenografts, the treatment with IHCH9033, both alone and in combination, led to nearly complete eradication of the AML burden, without significant adverse effects. CONCLUSIONS Our study shows that IHCH9033, a novel class I HDACi with a desirable pharmacological profile, is a promising drug candidate for FLT3-ITD AML, and suggests a strategy of combining class I HDACis and FLT3is in AML clinical trials to increase efficacy and overcome resistance, thus potentially providing a curative treatment option.
Collapse
Affiliation(s)
- Mingyue Yao
- Lingang Laboratory, 2380 Hechuan Road, Shanghai, 201101, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaowei Xu
- Department of Hematology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai General Hospital, Shanghai, 200025, China
| | - Yujun Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Yu
- Lingang Laboratory, 2380 Hechuan Road, Shanghai, 201101, China
| | - Yingnian Li
- Lingang Laboratory, 2380 Hechuan Road, Shanghai, 201101, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jie Shen
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Chengying Xie
- Lingang Laboratory, 2380 Hechuan Road, Shanghai, 201101, China.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
8
|
Can C, Yang X, Jia H, Wu H, Guo X, Wei Y, Jia Z, Liu W, Zhang A, He N, Zhang H, Ma D. Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity. Mol Cancer 2025; 24:4. [PMID: 39762891 PMCID: PMC11702195 DOI: 10.1186/s12943-024-02203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment. METHODS Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896. The role of circ_0006896 in the progression of AML was assessed by in vitro and in vivo functional experiments. Flow cytometry, RT-qPCR and adoptive T cell-transfer immunotherapy were conducted to assess the function of exosomal circ_0006896 in CD8+ T cell dysfunction. RNA pull-down assay, mass spectrometry, immunofluorescence, co-immunoprecipitation and western blot were performed to identify and confirm the circ_0006896 interacting proteins. RESULTS CircRNA expression patterns in exosomes differ significantly between AML and controls compared to lncRNAs or mRNAs. A new crucial exosomal circRNA, circ_0006896, is upregulated in both AML cells and exosomes and correlates with the prognosis and relapse of AML. In vitro and in vivo studies suggest that circ_0006896 significantly promotes AML cell proliferation, reduces chemotherapy sensitivity, and more importantly, impairs the efficacy of adoptive T cell-transfer immunotherapy. Mechanistically, circ_0006896 physically interacts with the catalytic domain of histone deacetylase HDAC1, decreasing histone H3 acetylation, and impairing the transcription of genes involved in arachidonic acid metabolism, ultimately inhibiting lipid peroxidation and ferroptosis in AML cells. Exosomal circ_0006896 disrupts CD8+ T cell function by interacting with HDAC1, impairing LEF1 transcription and subsequently decreasing the expression of cytotoxic molecules IFN-γ and Granzyme B. CONCLUSIONS We demonstrate a self-driven progression mediated by exosomal circRNAs and CD8+ T cells, highlighting the potential of targeting circRNAs in AML immunotherapy.
Collapse
MESH Headings
- Histone Deacetylase 1/metabolism
- Histone Deacetylase 1/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Humans
- RNA, Circular/genetics
- Mice
- Exosomes/metabolism
- Animals
- Disease Progression
- Cell Proliferation
- Cell Line, Tumor
- Tumor Microenvironment/immunology
- Prognosis
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Biomarkers, Tumor
- Xenograft Model Antitumor Assays
- Female
- Male
- Disease Models, Animal
Collapse
Affiliation(s)
- Can Can
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Hexiao Jia
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hanyang Wu
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaodong Guo
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ziting Jia
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wancheng Liu
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Amin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Na He
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hailei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
9
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
10
|
Geng H, Zheng F, Sun W, Huang S, Wang Z, Yang K, Wang C, Tian C, Xu C, Zhai G, Zhao M, Hou S, Song A, Zhang Y, Zhao Q. Effect and mechanism of novel HDAC inhibitor ZDLT-1 in colorectal cancer by regulating apoptosis and inflammation. Int Immunopharmacol 2024; 143:113333. [PMID: 39383785 DOI: 10.1016/j.intimp.2024.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Histone deacetylase (HDAC) is a potential target for Colorectal Cancer (CRC) molecular target therapy, dehydroharmine derivative ZDLT-1 was designed to inhibit CRC cell proliferation by inhibiting HDAC target. This study aimed to explore the effect of ZDLT-1 could induce apoptosis in CRC in vitro and in vivo, and determine the mechanism of ZDLT-1. METHODS First, MTT assay, colony formation, wound healing, Transwell assay, Hoechst33342 staining and Annexin V-FITC/PI double staining assay were used to investigate the in vitro effect of ZDLT-1. Second, the toxicity and the anti-tumor effect of ZDLT-1 by subcutaneous tumorigenesis assay were used to determine the in vivo effect of ZDLT-1. In terms of mechanism, we evaluated the effect of ZDLT-1 on HDAC downstream proteins such as HIF-1α, NF-κB, Cleaved-Caspase-3/9, GSDMD and acetylated histone by immunofluorescence and Western blot assessments. RESULTS This study confirmed that ZDLT-1 had anti-tumor activity by inhibiting cell proliferation in vitro and solid tumor growth in vivo. Furthermore, ZDLT-1 can inhibit CRC cell invasion, migration and apoptosis in vitro. Moreover, ZDLT-1 can promote the expression of apoptosis proteins in HIF-1α/Caspase-3/Caspase-9 pathway and inhibit the expression of tumor-related immune proteins mainly in NF-κB/GSDMD/GSDME pathway. CONCLUSION ZDLT-1 as HDAC inhibitor could suppresses CRC cell growth in vivo and in vitro by triggering HIF-1α/Caspase-3/Caspase-9 pathway in promoting apoptosis, and triggering NF-κB/GSDMD/GSDME pathway in inhibiting tumor inflammation. Our results propose dehydroharmine derivative ZDLT-1 as a promising therapeutic small molecular agent for CRC.
Collapse
Affiliation(s)
- Hefeng Geng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Fangyuan Zheng
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Wentao Sun
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shuoqi Huang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China; Pharmacy Department, Tianjin Hospital, Tianjin, PR China.
| | - Zhiya Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Kaisi Yang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chengkang Wang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Caizhi Tian
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Chang Xu
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Guanchao Zhai
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Mingyi Zhao
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Shanbo Hou
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Aigang Song
- Luoxin Pharmaceuticals Group Stock Co., Ltd., Linyi, PR China.
| | - Yingshi Zhang
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| | - Qingchun Zhao
- Teaching Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, 100016 Shenyang City, Liaoning Province, PR China; Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang City, Liaoning Province, PR China.
| |
Collapse
|
11
|
Hu H, Wang Q, Zhang Y, Yang S, Shen A, Yan J, Zhao D, Hu B. Effects of a novel HDAC6-selective inhibitor's radiosensitization on cancer cells. Mol Biol Rep 2024; 51:1151. [PMID: 39537948 DOI: 10.1007/s11033-024-10084-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The radiation sensitivity of tumor cells is a critical determinant of their therapeutic response to radiotherapy. Histone deacetylase 6 (HDAC6), beyond its known role in modulating tubulin acetylation and influencing cell motility, is also involved in the DNA damage response, potentially enhancing tumor cell radiosensitivity. Targeted HDAC6 inhibitors have shown substantial promise in preclinical studies aimed at increasing radiosensitivity and inhibiting cellular migration. METHODS A new HDAC inhibitor, named OXHA, was designed by substituting the phenyl cap of SAHA with an N,5-diphenyloxazole-2-carboxamide group. The inhibitory activity of OXHA was evaluated via in vitro enzymatic assays. Its effects on tumor cell migration and radiosensitization potential were assessed using scratch wound healing assays, micronucleus formation, and clonogenic survival assays. RESULT Enzymatic assays confirmed OXHA's selective inhibition of HDAC6. Compared to SAHA, OXHA significantly increased α-tubulin acetylation while minimally impacting histone H3 acetylation, indicating a high selectivity for HDAC6. In combination with X-ray irradiation, OXHA markedly impaired wound healing in A549 and HepG2 cells, enhanced micronucleus formation, and reduced clonogenic survival across multiple tumor lines. CONCLUSION OXHA exhibits potent and selective HDAC6 inhibition, effectively impeding tumor cell migration and enhancing radiosensitivity across multiple cell lines. These findings suggest that OXHA has strong potential as a therapeutic strategy to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Huixiao Hu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qi Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuni Zhang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shuhua Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Aihua Shen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Junfang Yan
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Denggao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China.
| | - Burong Hu
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
12
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J, Zhu Z. Autoimmune disease: a view of epigenetics and therapeutic targeting. Front Immunol 2024; 15:1482728. [PMID: 39606248 PMCID: PMC11599216 DOI: 10.3389/fimmu.2024.1482728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Autoimmune diseases comprise a large group of conditions characterized by a complex pathogenesis and significant heterogeneity in their clinical manifestations. Advances in sequencing technology have revealed that in addition to genetic susceptibility, various epigenetic mechanisms including DNA methylation and histone modification play critical roles in disease development. The emerging field of epigenetics has provided new perspectives on the pathogenesis and development of autoimmune diseases. Aberrant epigenetic modifications can be used as biomarkers for disease diagnosis and prognosis. Exploration of human epigenetic profiles revealed that patients with autoimmune diseases exhibit markedly altered DNA methylation profiles compared with healthy individuals. Targeted cutting-edge epigenetic therapies are emerging. For example, DNA methylation inhibitors can rectify methylation dysregulation and relieve patients. Histone deacetylase inhibitors such as vorinostat can affect chromatin accessibility and further regulate gene expression, and have been used in treating hematological malignancies. Epigenetic therapies have opened new avenues for the precise treatment of autoimmune diseases and offer new opportunities for improved therapeutic outcomes. Our review can aid in comprehensively elucidation of the mechanisms of autoimmune diseases and development of new targeted therapies that ultimately benefit patients with these conditions.
Collapse
Affiliation(s)
- Siqi Mu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Wanrong Wang
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qiuyu Liu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Naiyu Ke
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feiyang Sun
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| |
Collapse
|
13
|
Wang LY, He LH, Xu LJ, Li SB. Short-chain fatty acids: bridges between diet, gut microbiota, and health. J Gastroenterol Hepatol 2024; 39:1728-1736. [PMID: 38780349 DOI: 10.1111/jgh.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
In recent years, gut microbiota has become a hot topic in the fields of medicine and life sciences. Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota produced by microbial fermentation of dietary fiber, play a vital role in healthy and ill hosts. SCFAs regulate the process of metabolism, immune, and inflammation and have therapeutic effects on gastrointestinal and neurological disorders, as well as antitumor properties. This review summarized the production, distribution, and molecular mechanism of SCFAs, as well as their mechanisms of action in healthy and ill hosts. In addition, we also emphasized the negative effects of SCFAs, aiming to provide the public with a more comprehensive understanding of SCFAs.
Collapse
Affiliation(s)
- Ling-Yun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Hong He
- College of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li-Jun Xu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Bo Li
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, Zhoushan, China
| |
Collapse
|
14
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
15
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
16
|
Rodriguez-Carlos A, Raúl A, Jacobo-Delgado YM, Serrano CJ, Santos-Mena A, De Jesus-Gonzalez LA, Boix E, Rivas-Santiago B. Drug repositioning identifies histone deacetylase inhibitors that promote innate immunity in non-tuberculous mycobacterial infection. Can J Microbiol 2024; 70:252-261. [PMID: 38855942 DOI: 10.1139/cjm-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1β, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1β, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.
Collapse
Affiliation(s)
- Adrián Rodriguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Anguita Raúl
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | - Carmen Judith Serrano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Alan Santos-Mena
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
17
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
18
|
Lou SY, Zheng FL, Tang YM, Zheng YN, Lu J, An H, Zhang EJ, Cui SL, Zhao HJ. TYM-3-98, a novel selective inhibitor of PI3Kδ, demonstrates promising preclinical antitumor activity in B-cell lymphomas. Life Sci 2024; 347:122662. [PMID: 38670450 DOI: 10.1016/j.lfs.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
AIMS PI3Kδ is expressed predominately in leukocytes and is commonly found to be aberrantly activated in human B-cell lymphomas. Although PI3Kδ has been intensively targeted for discovering anti-lymphoma drugs, the application of currently approved PI3Kδ inhibitors has been limited due to unwanted systemic toxicities, thus warranting the development of novel PI3Kδ inhibitors with new scaffolds. MAIN METHODS We designed TYM-3-98, an indazole derivative, and evaluated its selectivity for all four PI3K isoforms, as well as its efficacy against various B-cell lymphomas both in vitro and in vivo. KEY FINDINGS We identified TYM-3-98 as a highly selective PI3Kδ inhibitor over other PI3K isoforms at both molecular and cellular levels. It showed superior antiproliferative activity in several B-lymphoma cell lines compared with the approved first-generation PI3Kδ inhibitor idelalisib. TYM-3-98 demonstrated a concentration-dependent PI3K/AKT/mTOR signaling blockage followed by apoptosis induction. In vivo, TYM-3-98 showed good pharmaceutical properties and remarkably reduced tumor growth in a human lymphoma xenograft model and a mouse lymphoma model. SIGNIFICANCE Our findings establish TYM-3-98 as a promising PI3Kδ inhibitor for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Si-Yue Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China
| | - Fan-Li Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Mei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Nan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Hai An
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China
| | - En-Jun Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China
| | - Sun-Liang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hua-Jun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311403, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Binwen Rd, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
19
|
Kiesslich T, Mayr C, Bekric D, Neureiter D. New insights into possible HDAC inhibitor resistance in DLBCL - Comment on 'defining cellular responses to HDAC-selective inhibitors reveals that efficient targeting of HDAC3 is required to elicit cytotoxicity and overcome naïve resistance to pan-HDACi in diffuse large B cell lymphoma' by Havas et al. Transl Oncol 2024; 44:101820. [PMID: 38641373 PMCID: PMC11391033 DOI: 10.1016/j.tranon.2023.101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 04/21/2024] Open
Affiliation(s)
- Tobias Kiesslich
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria.
| | - Christian Mayr
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria.
| | - Dino Bekric
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria; Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
20
|
Zhu M, Han Y, Gu T, Wang R, Si X, Kong D, Zhao P, Wang X, Li J, Zhai X, Yu Z, Lu H, Li J, Huang H, Qian P. Class I HDAC inhibitors enhance antitumor efficacy and persistence of CAR-T cells by activation of the Wnt pathway. Cell Rep 2024; 43:114065. [PMID: 38578828 DOI: 10.1016/j.celrep.2024.114065] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/β-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.
Collapse
Affiliation(s)
- Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Tianning Gu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiaohui Si
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Delin Kong
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Zhao
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xiujian Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Xingyuan Zhai
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - Jingyi Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China; Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University & Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, China.
| |
Collapse
|
21
|
Al-Khazaleh AK, Chang D, Münch GW, Bhuyan DJ. The Gut Connection: Exploring the Possibility of Implementing Gut Microbial Metabolites in Lymphoma Treatment. Cancers (Basel) 2024; 16:1464. [PMID: 38672546 PMCID: PMC11048693 DOI: 10.3390/cancers16081464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Recent research has implicated the gut microbiota in the development of lymphoma. Dysbiosis of the gut microbial community can disrupt the production of gut microbial metabolites, thereby impacting host physiology and potentially contributing to lymphoma. Dysbiosis-driven release of gut microbial metabolites such as lipopolysaccharides can promote chronic inflammation, potentially elevating the risk of lymphoma. In contrast, gut microbial metabolites, such as short-chain fatty acids, have shown promise in preclinical studies by promoting regulatory T-cell function, suppressing inflammation, and potentially preventing lymphoma. Another metabolite, urolithin A, exhibited immunomodulatory and antiproliferative properties against lymphoma cell lines in vitro. While research on the role of gut microbial metabolites in lymphoma is limited, this article emphasizes the need to comprehend their significance, including therapeutic applications, molecular mechanisms of action, and interactions with standard chemotherapies. The article also suggests promising directions for future research in this emerging field of connection between lymphoma and gut microbiome.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Gerald W. Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
22
|
Zhang Y, Chen Z, Liu Y, Han L, Jiang W, Wang Q, Shi J, Lu L, Li J, Zhang M, Huang Y, Yang Y, Hou X, Zhang L, Li J, Fang W, Chen G. Chidamide plus envafolimab as subsequent treatment in advanced non-small cell lung cancer patients resistant to anti-PD-1 therapy: A multicohort, open-label, phase II trial with biomarker analysis. Cancer Med 2024; 13:e7175. [PMID: 38597130 PMCID: PMC11004905 DOI: 10.1002/cam4.7175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Combination of chidamide and anti-PD-L1 inhibitor produce synergistic anti-tumor effect in advanced NSCLC patients resistant to anti-PD-1 treatment. However, the effect of chidamide plus envafolimab has not been reported. AIMS This study aimed to evaluate the efficacy of chidamide plus envafolimab in advanced NSCLC patients resistant toanti-PD-1 treatment. MATERIALS AND METHODS Eligible advanced NSCLC patients after resistant to anti-PD-1 therapy received chidamide and envafolimab. The primary endpoint was objective response rate (ORR). The secondary end points included disease control rate (DCR), progression-free survival (PFS), and safety. The expression of histone deacetylase 2 (HDAC2), PD-L1, and blood TMB (bTMB) was also analyzed. RESULTS After a median follow-up of 8.1 (range: 7.6-9.2) months, only two patients achieved partial response. The ORR was 6.7% (2/30), DCR was 50% (15/30), and median PFS (mPFS) was 3.5 (95% confidence interval: 1.9-5.5) months. Biomarker analysis revealed that patients with high-level HDAC2 expression had numerically superior ORR (4.3% vs. 0), DCR (52.2% vs. 0) and mPFS (3.7 vs. 1.4m). Patients with negative PD-L1 had numerically superior DCR (52.2% vs. 33.3%) and mPFS (3.7m vs. 1.8m), so were those with low-level bTMB (DCR: 59.1% vs. 16.7%, mPFS: 3.8 vs.1.9m). Overall safety was controllable. DISCUSSION High HDAC2patients showed better ORR, DCR, and PFS. In addition, patient with negative PD-L1 and low-level bTMB had better DCR and PFS. This may be related to the epigenetic function of chidamide. However, the sample size was not big enough, so it is necessary to increase sample size to confirm the conclusion. CONCLUSION Combination of chidamide and envafolimab showed efficacy signals in certain NSCLC patients. But further identification of beneficial population is necessary for precision treatment.
Collapse
Affiliation(s)
- Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zihong Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yu Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Liang Han
- Department of OncologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Wei Jiang
- Department of Respiratory OncologyGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Qiming Wang
- Department of Internal Medicine, Henan Cancer HospitalAffiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jianhua Shi
- Department of OncologyLinyi Cancer HospitalLinyiShandongChina
| | - Liqin Lu
- Department of Medical OncologyThe People's Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Jianying Li
- Department of OncologyNantong Tumor HospitalNantongJiangsuChina
| | - Mingjun Zhang
- Department of OncologyThe Second Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xue Hou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
23
|
Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, Li YH, Wang FH, Hu XH, Zhang YQ, Qiu MZ, Liu LL, Wang ZX, Ren C, Wang DS, Zhang DS, Wang ZQ, Liao WT, Tian L, Zhao Q, Xu RH. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med 2024; 30:1035-1043. [PMID: 38438735 DOI: 10.1038/s41591-024-02813-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Min Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wei-Jia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ying-Nan Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Run-Jie Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Long Guan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan-Qiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Lu-Lu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Ting Liao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qi Zhao
- Bioinformatics Platform, Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| |
Collapse
|
24
|
Gui J, Yang L, Liu J, Li Y, Zou M, Sun C, Huang L, Zhu X, Huang K. Identifying the prognosis implication, immunotherapy response prediction value, and potential targeted compound inhibitors of integrin subunit α3 (ITGA3) in human cancers. Heliyon 2024; 10:e24236. [PMID: 38293430 PMCID: PMC10825359 DOI: 10.1016/j.heliyon.2024.e24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which could promote progression, metastasis, and invasion in some cancers. Still, its function in the tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, which may be related to ITGA3 genomic alterations and methylation modification. In addition, ITGA3 was significantly correlated with the poor or better prognosis of cancer patients, immune-related pathways in hallmark, immune infiltration, and immune checkpoints, revealing a biological function of ITGA3 in the tumor progression, tumor microenvironment, and tumor immunity. We also found that ITGA3 could predict the response to tumor immunotherapy based on cytokine-treated samples and immunotherapy cohorts. ITGA3 may participate in shaping and regulating the tumor microenvironment to affect the tumor immune response, which was a promising immunotherapy response predictive biomarker and potential therapeutic target to work synergistically with cancer immunotherapy to boost the response and efficacy. Finally, potential targeted compound inhibitors and sensitive drugs were screened using databases ConnectivityMap (CMap) and CellMiner, and AutoDock Tools was used for molecular docking.
Collapse
Affiliation(s)
- Jiawei Gui
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Lufei Yang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Junzhe Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Yishuang Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mi Zou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Chengpeng Sun
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Le Huang
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xingen Zhu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| |
Collapse
|
25
|
Li Y, Yang C, Xie L, Shi F, Tang M, Luo X, Liu N, Hu X, Zhu Y, Bode AM, Gao Q, Zhou J, Fan J, Li X, Cao Y. CYLD induces high oxidative stress and DNA damage through class I HDACs to promote radiosensitivity in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:95. [PMID: 38287022 PMCID: PMC10824711 DOI: 10.1038/s41419-024-06419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Abnormal expression of Cylindromatosis (CYLD), a tumor suppressor molecule, plays an important role in tumor development and treatment. In this work, we found that CYLD binds to class I histone deacetylases (HDAC1 and HDAC2) through its N-terminal domain and inhibits HDAC1 activity. RNA sequencing showed that CYLD-HDAC axis regulates cellular antioxidant response via Nrf2 and its target genes. Then we revealed a mechanism that class I HDACs mediate redox abnormalities in CYLD low-expressing tumors. HDACs are central players in the DNA damage signaling. We further confirmed that CYLD regulates radiation-induced DNA damage and repair response through inhibiting class I HDACs. Furthermore, CYLD mediates nasopharyngeal carcinoma cell radiosensitivity through class I HDACs. Thus, we identified the function of the CYLD-HDAC axis in radiotherapy and blocking HDACs by Chidamide can increase the sensitivity of cancer cells and tumors to radiation therapy both in vitro and in vivo. In addition, ChIP and luciferase reporter assays revealed that CYLD could be transcriptionally regulated by zinc finger protein 202 (ZNF202). Our findings offer novel insight into the function of CYLD in tumor and uncover important roles for CYLD-HDAC axis in radiosensitivity, which provide new molecular target and therapeutic strategy for tumor radiotherapy.
Collapse
Affiliation(s)
- Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chenxing Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Children's Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yongwei Zhu
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Xuejun Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China.
- Department of Radiology, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, 410078, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, 410078, China.
| |
Collapse
|
26
|
Ghosh A, Himaja A, Biswas S, Kulkarni O, Ghosh B. Advances in the Delivery and Development of Epigenetic Therapeutics for the Treatment of Cancer. Mol Pharm 2023; 20:5981-6009. [PMID: 37899551 DOI: 10.1021/acs.molpharmaceut.3c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Gene expression at the transcriptional level is altered by epigenetic modifications such as DNA methylation, histone methylation, and acetylation, which can upregulate, downregulate, or entirely silence genes. Pathological dysregulation of epigenetic processes can result in the development of cancer, neurological problems, metabolic disorders, and cardiovascular diseases. It is of promising therapeutic interest to find medications that target these epigenetic alterations. Despite the enormous amount of work that has been done in this area, very few molecules have been approved for clinical purposes. This article provides a comprehensive review of recent advances in epigenetic therapeutics for cancer, with a specific focus on emerging delivery and development strategies. Various delivery systems, including pro-drugs, conjugated molecules, nanoparticles (NPs), and liposomes, as well as remedial strategies such as combination therapies, and epigenetic editing, are being investigated to improve the efficacy and specificity of epigenetic drugs (epi-drugs). Furthermore, the challenges associated with available epi-drugs and the limitations of their translation into clinics have been discussed. Target selection, isoform selectivity, physiochemical properties of synthesized molecules, drug screening, and scalability of epi-drugs from preclinical to clinical fields are the major shortcomings that are addressed. This Review discusses novel strategies for the identification of new biomarkers, exploration of the medicinal chemistry of epigenetic modifiers, optimization of the dosage regimen, and design of proper clinical trials that will lead to better utilization of epigenetic modifiers over conventional therapies. The integration of these approaches holds great potential for improving the efficacy and precision of epigenetic treatments, ultimately benefiting cancer patients.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Onkar Kulkarni
- Pharmacology Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science- Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
27
|
Deng Y, Cheng Q, He J. HDAC inhibitors: Promising agents for leukemia treatment. Biochem Biophys Res Commun 2023; 680:61-72. [PMID: 37722346 DOI: 10.1016/j.bbrc.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The essential role of epigenetic modification in the pathogenesis of a series of cancers have gradually been recognized. Histone deacetylase (HDACs), as well-known epigenetic modulators, are responsible for DNA repair, cell proliferation, differentiation, apoptosis and angiogenesis. Studies have shown that aberrant expression of HDACs is found in many cancer types. Thus, inhibition of HDACs has provided a promising therapeutic approach alternative for these patients. Since HDAC inhibitor (HDACi) vorinostat was first approved by the Food and Drug Administration (FDA) for treating cutaneous T-cell lymphoma (CTCL) in 2006, the combination of HDAC inhibitors with other molecules such as chemotherapeutic drugs has drawn much attention in current cancer treatment, especially in hematological malignancies therapy. Up to now, there have been more than twenty HDAC inhibitors investigated in clinic trials with five approvals being achieved. Indeed, Histone deacetylase inhibitors promote or enhance several different anticancer mechanisms and therefore are in evidence as potential antileukemia agents. In this review, we will focus on possible mechanisms by how HDAC inhibitors exert therapeutic benefit and their clinical utility in leukemia.
Collapse
Affiliation(s)
- Yun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Cheng
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing He
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Long ZJ, Wang JD, Qiu SX, Zhang Y, Wu SJ, Lei XX, Huang ZW, Chen JJ, Yang YL, Zhang XZ, Liu Q. Dietary γ-mangostin triggers immunogenic cell death and activates cGAS signaling in acute myeloid leukemia. Pharmacol Res 2023; 197:106973. [PMID: 37898441 DOI: 10.1016/j.phrs.2023.106973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Immunogenic cell death (ICD), one of cell-death types through release of damage-associated molecular patterns from dying tumor cells, activates tumor-specific immune response and elicits anti-tumor immunity by traditional radiotherapy and chemotherapy. However, whether natural products could induce ICD in leukemia is not elucidated. Here, we report dietary γ-mangostin eradicates murine primary leukemic cells and prolongs the survival of leukemic mice. As well, it restrains primary leukemic cells and CD34+ leukemic progenitor cells from leukemia patients. Strikingly, γ-mangostin attenuates leukemic cells by inducing ICD as characterized by expression of HSP90B1, ANXA1 and IL1B. Additionally, γ-mangostin accelerates cytoplasmic chromatin fragments generation, promoting DNA damage response, and enhances cGAS activation, leading to up-regulation of chemokines. Meanwhile, it induces HDAC4 degradation and acetylated histone H3 accumulation, which promotes chemokines transcription. Ultimately, CD8+ T cell is activated and recruited by γ-mangostin-induced chemokines in the microenvironment. Our study identifies γ-mangostin triggers ICD and activates cGAS signaling through DNA damage response and epigenetic modification. Therefore, dietary γ-mangostin would act as a potential agent to provoke anti-tumor immunity in the prevention and treatment of leukemia.
Collapse
Affiliation(s)
- Zi-Jie Long
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| | - Jun-Dan Wang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Sheng-Xiang Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, China
| | - Yi Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Si-Jin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, China
| | - Xin-Xing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China
| | - Ze-Wei Huang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Jia-Jie Chen
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China
| | - Yong-Liang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China.
| | - Quentin Liu
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, China; Institute of Hematology, Sun Yat-sen University, China; Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, China.
| |
Collapse
|
29
|
Van den Ackerveken P, Lobbens A, Pamart D, Kotronoulas A, Rommelaere G, Eccleston M, Herzog M. Epigenetic profiles of elevated cell free circulating H3.1 nucleosomes as potential biomarkers for non-Hodgkin lymphoma. Sci Rep 2023; 13:16335. [PMID: 37770512 PMCID: PMC10539380 DOI: 10.1038/s41598-023-43520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
During cell death, nucleosomes, the basic structural unit of chromatin, are released into the blood stream and elevated levels have been found in the plasma of patients with solid cancers. In this study, we demonstrate an increase in cell free circulating H3.1-nucleosomes levels in plasma samples from patients with hematological malignancy, non-Hodgkin lymphoma (NHL), relative to healthy donors. As histone post-translational modifications (PTMs) of circulating nucleosomes are described as potential biomarkers of various solid cancers, we investigated the epigenetic profile of nucleosomes from NHL patients following nucleosome enrichment (Nu.Q® capture) combined with mass spectrometry. Eight histones PTMs, including the acetylation of histone H3 at lysine 9, 14 and 18 as well as the methylation state of histone H3 at lysine 9, 27 and 36, were identified at a higher level in the plasma of NHL patients compared to healthy donors. These results were confirmed in a larger clinical cohort by immunoassay. Subsequently, the temporal profile of these histone PTMs in NHL patients undergoing treatment course highlighted the potential use of these new biomarkers to monitor treatment response and/or disease progression. Our results substantiate that levels of H3.1-nucleosomes are particularly elevated in NHL patients and may be a useful diagnostic tool. Moreover, our work emphasizes the crucial roles of the epigenetic marks present on circulating nucleosomes to detect and monitor tumor progression and/or treatment response of non-Hodgkin Lymphoma.
Collapse
Affiliation(s)
| | - Alison Lobbens
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Dorian Pamart
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Aristotelis Kotronoulas
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Guillaume Rommelaere
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Mark Eccleston
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium.
| |
Collapse
|
30
|
Ridwansyah H, Wijaya I, Bashari MH, Sundawa Kartamihardja AH, Suryawathy Hernowo B. The role of chidamide in the treatment of B-cell non-Hodgkin lymphoma: An updated systematic review. BIOMOLECULES & BIOMEDICINE 2023; 23:727-739. [PMID: 37004241 PMCID: PMC10494852 DOI: 10.17305/bb.2023.8791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) is a lymphoid malignancy derived from B-cells that remains difficult to treat. Moreover, relapses and refractory cases are common. Abnormalities in epigenetic mechanisms, such as imbalanced histone acetylation affecting certain genes, contribute to relapses and refractory cases. Chidamide (tucidinostat) is a novel histone deacetylase inhibitor that can reverse this epigenetic imbalance and has been approved for the treatment of T-cell malignancies. However, the use of chidamide for B-NHL remains limited, and the lack of relevant literature exacerbates this limitation. We conducted this review to summarize the anticancer activity of chidamide against B-NHL and its clinical applications to overcome drug resistance. This systematic review was conducted according to the PRISMA 2020 guidelines, using some keyword combinations from MEDLINE and EBSCO. The inclusion and exclusion criteria were also defined. Of the 131 records retrieved from databases, 16 were included in the review. Nine articles revealed that chidamide limited tumor progression by modifying the tumor microenvironment, stopping the cell cycle, inducing apoptosis and autophagy, and enhancing complement-dependent and antibody-dependent cell-mediated cytotoxicities.According to seven other studies, administering chidamide in combination with another existing therapeutic regimen may benefit not only patients with relapsed/refractory B-NHL, but also those with newly diagnosed B-NHL. Chidamide plays many important roles in limiting B-NHL progression through epigenetic modifications. Thus, combining chidamide with other anticancer drugs may be more beneficial for patients with newly diagnosed and relapsed/refractory B-NHL.
Collapse
Affiliation(s)
- Hastono Ridwansyah
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedicine, Faculty of Medicine, President University, Bekasi, Indonesia
| | - Indra Wijaya
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
31
|
Ho T, Coleman C, Shah P, Yazbeck V. Advances in Hodgkin's lymphoma pharmacotherapy: a focus on histone deacetylase inhibitors. Expert Opin Pharmacother 2023; 24:1427-1438. [PMID: 37249399 DOI: 10.1080/14656566.2023.2219392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Classical Hodgkin lymphomas (cHL) usually have excellent cure rates. Yet, for patients with refractory or relapsed cHL, prognosis deteriorates as the disease becomes resistant to subsequent lines of therapies: autologous stem cell transplantation, brentuximab vedotin, and checkpoint inhibitors. Immune escape and drug resistance are hallmarks of Hodgkin Reed Sternberg cell survival, prompting the need for additional therapeutic strategies. Histone modification-based combination is an effective clinical strategy. AREAS COVERED In this review, we discuss the different histone deacetylase (HDAC) inhibitor molecules that have been developed and studied in cancer therapy with a focus on cHL. We review their preclinical and clinical activities both as single agents and in combination studies. Literature search was conducted in PubMed, Google Scholar, and ClinicalTrials.gov databases, using search terms 'Hodgkin lymphoma,' 'histone deacetylase inhibitor', and variations on such (e.g. 'HDAC' and individual drug names) in combination using operators 'AND,' 'OR,' and 'NOT' according to Boolean logic. EXPERT OPINION HDAC inhibitors alone will not be sufficient for the treatment of R/RcHL, but given their disease control capacity, synergistic interaction with currently approved drugs, and ability to overcome drug resistance, particularly PD-1 inhibitors, we believe that HDACinhibitors will eventually become incorporated into the treatment armamentarium of cHL.
Collapse
Affiliation(s)
- Thuy Ho
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Cara Coleman
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Palak Shah
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Victor Yazbeck
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Noll A, Myers C, Biery MC, Meechan M, Tahiri S, Rajendran A, Berens ME, Paine D, Byron S, Zhang J, Winter C, Pakiam F, Leary SES, Cole BL, Jackson ER, Dun MD, Foster JB, Evans MK, Pattwell SS, Olson JM, Vitanza NA. Therapeutic HDAC inhibition in hypermutant diffuse intrinsic pontine glioma. Neoplasia 2023; 43:100921. [PMID: 37603953 PMCID: PMC10465940 DOI: 10.1016/j.neo.2023.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.
Collapse
Affiliation(s)
- Alyssa Noll
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Carrie Myers
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Matthew C Biery
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Meechan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sophie Tahiri
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Molecular Mechanisms of Disease Graduate Program, University of Washington, Seattle, WA, USA
| | - Asmitha Rajendran
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Biomedical Informatics and Medical Education Graduate Program, University of Washington, Seattle, WA, USA
| | - Michael E Berens
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Danyelle Paine
- Cancer & Cell Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Sara Byron
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Jiaming Zhang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Conrad Winter
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philidelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Myron K Evans
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Siobhan S Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
33
|
Tran S, Plant-Fox AS, Chi SN, Narendran A. Current advances in immunotherapy for atypical teratoid rhabdoid tumor (ATRT). Neurooncol Pract 2023; 10:322-334. [PMID: 37457224 PMCID: PMC10346396 DOI: 10.1093/nop/npad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are rare and aggressive embryonal tumors of central nervous system that typically affect children younger than 3 years of age. Given the generally poor outcomes of patients with ATRT and the significant toxicities associated with conventional multi-modal therapies, there is an urgent need for more novel approaches to treat ATRT, one such approach being immunotherapy. The recent rise of large-scale, multicenter interdisciplinary studies has delineated several molecular and genetic characteristics unique to ATRT. This review aims to describe currently available data on the tumor immune microenvironment of ATRT and its specific subtypes and to summarize the emerging clinical and preclinical results of immunotherapy-based approaches. It will also highlight the evolving knowledge of epigenetics on immunomodulation in this epigenetically influenced tumor, which may help guide the development of effective immunotherapeutic approaches in the future.
Collapse
Affiliation(s)
- Son Tran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashley S Plant-Fox
- Division of Hematology, Stem Cell Transplant, and Neuro-Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan N Chi
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Aru Narendran
- Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Zhou D, Cao S, Xie H. Research on Predicting the Occurrence of Hepatocellular Carcinoma Based on Notch Signal-Related Genes Using Machine Learning Algorithms. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:760-770. [PMID: 37051625 PMCID: PMC10441146 DOI: 10.5152/tjg.2023.22357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 04/14/2023]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma, a highly malignant tumor, is difficult to diagnose, treat, and predict the prognosis. Notch signaling pathway can affect hepatocellular carcinoma. We aimed to predict the occurrence of hepatocellular carcinoma based on Notch signal-related genes using machine learning algorithms. MATERIALS AND METHODS We downloaded hepatocellular carcinoma data from the Cancer Genome Atlas and Gene Expression Omnibus databases and used machine learning methods to screen the hub Notch signal-related genes. Machine learning classification was used to construct a prediction model for the classification and diagnosis of hepatocellular carcinoma cancer. Bioinformatics methods were applied to explore the expression of these hub genes in the hepatocellular carcinoma tumor immune microenvironment. RESULTS We identified 4 hub genes, namely, LAMA4, POLA2, RAD51, and TYMS, which were used as the final variables, and found that AdaBoostClassifie was the best algorithm for the classification and diagnosis model of hepatocellular carcinoma. The area under curve, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score of this model in the training set were 0.976, 0.881, 0.877, 0.977, 0.996, 0.500, and 0.932; respectively. The area under curves were 0.934, 0.863, 0.881, 0.886, 0.981, 0.489, and 0.926. The area under curve in the external validation set was 0.934. Immune cell infiltration was related to the expression of 4 hub genes. Patients in the low-risk group of hepatocellular carcinoma were more likely to have an immune escape. CONCLUSION The Notch signaling pathway was closely related to the occurrence and development of hepatocellular carcinoma. The hepatocellular carcinoma classification and diagnosis model established based on this had a high degree of reliability and stability.
Collapse
Affiliation(s)
- Dingzhong Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, P. R. China
- Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, Chenzhou, P. R. China
| | - Sujuan Cao
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, P. R. China
| | - Hui Xie
- Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, Chenzhou, P. R. China
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, P. R. China
| |
Collapse
|
35
|
Shen C, Li M, Duan Y, Jiang X, Hou X, Xue F, Zhang Y, Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front Immunol 2023; 14:1170207. [PMID: 37304265 PMCID: PMC10250615 DOI: 10.3389/fimmu.2023.1170207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common liver malignancy with a poor prognosis and increasing incidence, remains a serious health problem worldwide. Immunotherapy has been described as one of the ideal ways to treat HCC and is transforming patient management. However, the occurrence of immunotherapy resistance still prevents some patients from benefiting from current immunotherapies. Recent studies have shown that histone deacetylase inhibitors (HDACis) can enhance the efficacy of immunotherapy in a variety of tumors, including HCC. In this review, we present current knowledge and recent advances in immunotherapy-based and HDACi-based therapies for HCC. We highlight the fundamental dynamics of synergies between immunotherapies and HDACis, further detailing current efforts to translate this knowledge into clinical benefits. In addition, we explored the possibility of nano-based drug delivery system (NDDS) as a novel strategy to enhance HCC treatment.
Collapse
Affiliation(s)
- Chen Shen
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Li
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujuan Duan
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jiang
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fulai Xue
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Lu H, Liang J, He X, Ye H, Ruan C, Shao H, Zhang R, Li Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int J Mol Sci 2023; 24:ijms24119182. [PMID: 37298135 DOI: 10.3390/ijms24119182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to evaluate the association between Ferredoxin 1 (FDX1) expression and the prognostic survival of tumor patients and predict the efficacy of immunotherapy response to antitumor drug sensitivity. FDX1 plays an oncogenic role in thirty-three types of tumors, based on TCGA and GEO databases, and further experimental validation in vitro was provided through multiple cell lines. FDX1 was expressed highly in multiple types of cancer and differently linked to the survival prognosis of tumorous patients. A high phosphorylation level was correlated with the FDX1 site of S177 in lung cancer. FDX1 exhibited a significant association with infiltrated cancer-associated fibroblasts and CD8+ T cells. Moreover, FDX1 demonstrated correlations with immune and molecular subtypes, as well as functional enrichments in GO/KEGG pathways. Additionally, FDX1 displayed relationships with the tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and RNA and DNA synthesis (RNAss/DNAss) within the tumor microenvironment. Notably, FDX1 exhibited a strong connection with immune checkpoint genes in the co-expression network. The validity of these findings was further confirmed through Western blotting, RT-qPCR, and flow cytometry experiments conducted on WM115 and A375 tumor cells. Elevated FDX1 expression has been linked to the enhanced effectiveness of PD-L1 blockade immunotherapy in melanoma, as observed in the GSE22155 and GSE172320 cohorts. Autodocking simulations have suggested that FDX1 may influence drug resistance by affecting the binding sites of antitumor drugs. Collectively, these findings propose that FDX1 could serve as a novel and valuable biomarker and represent an immunotherapeutic target for augmenting immune responses in various human cancers when used in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Huijiao Lu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue He
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huabin Ye
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
37
|
Jiang Y, Han L, Yang J, Yang M, Zhang J, Xue M, Zhu Y, Xiong C, Shi M, Zhao S, Shen B, Xu Z, Jiang L, Chen H. Identification of a novel immune checkpoint molecule V-set immunoglobulin domain-containing 4 that leads to impaired immunity infiltration in pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03438-y. [PMID: 37097516 PMCID: PMC10361881 DOI: 10.1007/s00262-023-03438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Medical Department Health Services Section, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shiwei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
38
|
Sun N, Yang K, Yan W, Yao M, Yu C, Duan W, Gu X, Guo D, Jiang H, Xie C, Cheng J. Design and Synthesis of Triazole-Containing HDAC Inhibitors That Induce Antitumor Effects and Immune Response. J Med Chem 2023; 66:4802-4826. [PMID: 36934335 DOI: 10.1021/acs.jmedchem.2c01985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Histone deacetylase (HDAC) is an epigenetic antitumor drug target, but most existing HDAC inhibitors show limited antitumor activity and their use is often accompanied by serious adverse effects. To overcome these problems, we designed and synthesized a series of triazole-containing compounds as novel HDAC inhibitors. Among them, compound 19h exhibited potent and selective inhibition of HDAC1, with good antiproliferative activity in vitro and an excellent pharmacokinetic profile. Compound 19h significantly inhibited the growth of human tumor xenografts in nude mice and murine tumor growth in immune-competent mice bearing MC38 colon cancer. In the MC38 model, 19h increased the ratio of splenic CD4+ T effector cells and promoted complete tumor regression in 5/6 animals when combined with the mPD-1 antibody. These results suggested that selective class I HDAC inhibitors exert direct tumor growth inhibition and indirect immune cell-mediated antitumor effects and are synergistic with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Chengcheng Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
39
|
Nan Y, Zhang X, Wang S, Xu C, Wang Y, Han L, Luan J, Hu X, Chen W, Cao Z, Zhu Z, Zeng X, Fan J, Ye L, Shi X, Ju D. Targeting CD47 enhanced the antitumor immunity of PD-L1 blockade in B-cell lymphoma. Immunotherapy 2023; 15:175-187. [PMID: 36727256 DOI: 10.2217/imt-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Only a subset of B-cell lymphoma (BCL) patients can benefit from immune checkpoint inhibitors targeting PD-1/PD-L1. Materials & methods: In the A20 model, SIRPα-Fc and anti-PD-L1 were employed to target CD47 and PD-L1 simultaneously. Flow cytometry, immunofluorescence and quantitative polymerase chain reaction were used to unravel the potential mechanisms. Results: Simultaneously targeting CD47 and PD-L1 activated CD8+ T cells with an increased release of effector molecules. Furthermore, infiltration of F4/80+iNOS+ M1 macrophages was enhanced by the dual therapy. Conclusion: Anti-CD47 therapy could sensitize BCL tumors to anti-PD-L1 therapy in a CD8+ T-cell- and M1-macrophage-dependent manner by promoting cytotoxic lymphocyte infiltration, which may provide a potential strategy for BCL treatment by simultaneously targeting CD47 and PD-L1.
Collapse
Affiliation(s)
- Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shaofei Wang
- Department of Cellular & Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yichen Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zeguo Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Li Ye
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
40
|
Walker RR, Rentia Z, Chiappinelli KB. Epigenetically programmed resistance to chemo- and immuno-therapies. Adv Cancer Res 2023; 158:41-71. [PMID: 36990538 PMCID: PMC10184181 DOI: 10.1016/bs.acr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Resistance to cancer treatments remains a major barrier in developing cancer cures. While promising combination chemotherapy treatments and novel immunotherapies have improved patient outcomes, resistance to these treatments remains poorly understood. New insights into the dysregulation of the epigenome show how it promotes tumor growth and resistance to therapy. By altering control of gene expression, tumor cells can evade immune cell recognition, ignore apoptotic cues, and reverse DNA damage induced by chemotherapies. In this chapter, we summarize the data on epigenetic remodeling during cancer progression and treatment that enable cancer cell survival and describe how these epigenetic changes are being targeted clinically to overcome resistance.
Collapse
Affiliation(s)
- Reddick R Walker
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Zainab Rentia
- The George Washington University Cancer Center (GWCC), Washington, DC, United States
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center (GWCC), Washington, DC, United States; Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
41
|
Yang FF, Hu T, Liu JQ, Yu XQ, Ma LY. Histone deacetylases (HDACs) as the promising immunotherapeutic targets for hematologic cancer treatment. Eur J Med Chem 2023; 245:114920. [PMID: 36399875 DOI: 10.1016/j.ejmech.2022.114920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Bone marrow transplantation is regarded as the most effective immunotherapy for hematologic cancer, but it generally faces difficulties in matching. Aberrant expression of histone deacetylases (HDACs) is closely related to the occurrence and development of hematological cancer. Recent studies suggested that HDACs might play a critical role in initiating anti-cancer immune response or enhancing anti-cancer immunotherapy. Besides, combining HDAC inhibition and immunotherapy could prevent immunotherapy resistance in some degree and reach an extended treatment window. This review summarized the relationship between HDACs and immune and described the current understanding of HDACs in immunotherapy for hematologic cancer.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xiao-Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
42
|
Zhang J, Gu Y, Chen B. Drug-Resistance Mechanism and New Targeted Drugs and Treatments of Relapse and Refractory DLBCL. Cancer Manag Res 2023; 15:245-255. [PMID: 36873252 PMCID: PMC9976586 DOI: 10.2147/cmar.s400013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive non-Hodgkin's lymphoma (NHL). 30 ~ 40% of DLBCL patients were resistant to the standard R-CHOP regimen or recurrence after remission. It is currently believed that drug resistance is the main cause of the recurrence and refractory of DLBCL (R/R DLBCL). With the increased understanding of DLBCL biology, tumor microenvironment and epigenetics, some new therapies and drugs like molecular and signal pathway target therapy, chimeric antigen receptor (CAR) T-cell therapy, immune checkpoint inhibitors, antibody drug-conjugate and tafasitamab have been used for R/R DLBCL. This article will review the drug resistance mechanism and novel targeted drugs and therapies of DLBCL.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yan Gu
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
43
|
Gao C, Zhang L, Xu Y, Ma X, Chen P, Chen ZS, Wei L. I13 overrides resistance mediated by the T315I mutation in chronic myeloid leukemia by direct BCR-ABL inhibition. Front Pharmacol 2023; 14:1183052. [PMID: 37124196 PMCID: PMC10130674 DOI: 10.3389/fphar.2023.1183052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a BCR-ABL fusion gene. Imatinib has significantly improved the treatment of CML as a first-generation tyrosine kinase inhibitor (TKIs). The T315I mutant form of BCR-ABL is the most common mutation that confers resistance to imatinib or the second-generation TKIs, resulting in poor clinical prognosis. In this work, we assessed the effect of a potent histone deacetylase (HDAC) inhibitor, I13, on the differentiation blockade in CML cells harboring T315I-mutated and wild-type BCR-ABL by MTT assay, flow cytometery, cell colony formation assay, mRNA Sequencing, Quantitative real-time PCR and Western blotting analysis. We found that I13 possessed highly potent activity against T315I-mutated BCR-ABL mutant-expressing cells and wild-type BCR-ABL-expressing cells. I13 induced cell differentiation and significantly suppressed the proliferation of these CML cells via the cell cycle G0/G1-phase accumulation. Moreover, it was revealed that I13 triggered the differentiation of BaF3-T315I cells, which was attributed to the block of the chronic myeloid leukemia signaling pathway via the depletion of BCR-ABL that was mediated by the inhibition of HDAC activity presented by the acetylation of histones H3 and H4. Taken together, I13 efficiently depleted BCR-ABL in CML cells expressing the BCR-ABL-T315I mutation, which blocked its function, serving as a scaffold protein that modulated the chronic myeloid leukemia signaling pathway mediating cell differentiation. The present findings demonstrate that I13 is a BCR-ABL modulator for the development of CML therapy that can override resistance caused by T315I-mutated BCR-ABL.
Collapse
Affiliation(s)
- Congying Gao
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yun Xu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiangyu Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Peilei Chen
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Zhe-Sheng Chen, ; Liuya Wei,
| |
Collapse
|
44
|
Zhao L, Liang Q, He Y, Liu M, Tong R, Jiang Z, Wang W, Shi J. HDAC/JAK dual target inhibitors of cancer-related targets: The success of nonclearable linked pharmacophore mode. Bioorg Chem 2022; 129:106181. [DOI: 10.1016/j.bioorg.2022.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
45
|
Dang F, Wei W. Targeting the acetylation signaling pathway in cancer therapy. Semin Cancer Biol 2022; 85:209-218. [PMID: 33705871 PMCID: PMC8423867 DOI: 10.1016/j.semcancer.2021.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Acetylation represents one of the major post-translational protein modifications, which introduces an acetyl functional group into amino acids such as the lysine residue to yield an acetate ester bond, neutralizing its positive charge. Regulation of protein functions by acetylation occurs in multiple ways, such as affecting protein stability, activity, localization, and interaction with other proteins or DNA. It has been well documented that the recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery can modulate histone acetylation status, which is directly involved in the dynamic regulation of genes controlling cell proliferation and division. Dysregulation of gene expression is involved in tumorigenesis and aberrant activation of histone deacetylases has been reported in several types of cancer. Moreover, there is growing body of evidence showing that acetylation is widely involved in non-histone proteins to impact their roles in various cellular processes including tumorigenesis. As such, small molecular compounds inhibiting HAT or HDAC enzymatic activities have been developed and investigated for therapeutic purpose. Here we review the recent progress in our understanding of protein acetylation and discuss the therapeutic potential of targeting the acetylation signaling pathway in cancer.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Zuo H, Tao J, Wang M, Xie X, Sun M. A novel immunochemotherapy based on immunogenicity-activated and immunosuppression-reversed biomimetic nanoparticles. RSC Adv 2022; 12:28104-28112. [PMID: 36320259 PMCID: PMC9527569 DOI: 10.1039/d2ra04326b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023] Open
Abstract
Studies show that infiltrated myeloid-derived suppressor cells (MDSCs) are vital in the immunosuppressive tumor microenvironment and account for lymphoma refractoriness and recurrence. Here, we developed a biomimetic nanoplatform (PM-PLGA-DOX/GEM) in which platelet membranes (PM) wrap PLGA nanoparticles co-loaded with doxorubicin (DOX) and gemcitabine (GEM). PM-PLGA-DOX/GEM would accumulate in tumor tissues because of the enhanced permeation and retention (EPR) effect and the tumor cell-induced platelet aggregation (TCIPA) effect. GEM could eliminate the MDSCs in tumor tissues, thereby reversing the immunosuppressive tumor microenvironment. Furthermore, DOX could invoke the immunogenic cell death (ICD) of lymphoma cells. Consequently, numerous T cells were recruited and activated to improve the therapeutic effects. This study will offer a potential platform for clinical treatment of lymphoma and other solid tumors.
Collapse
Affiliation(s)
- Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Junxian Tao
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Manli Wang
- Graduate School of Dalian Medical UniversityDalianLiaoning116044P. R. China
| | - Xiaoyan Xie
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Mei Sun
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| |
Collapse
|
47
|
Han Y, Sun J, Yang Y, Liu Y, Lou J, Pan H, Yao J, Han W. TMP195 Exerts Antitumor Effects on Colorectal Cancer by Promoting M1 Macrophages Polarization. Int J Biol Sci 2022; 18:5653-5666. [PMID: 36263186 PMCID: PMC9576521 DOI: 10.7150/ijbs.73264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Studies have shown that epigenetic enzymes such as histone deacetylase (HDAC) are closely related to cancers and that several HDAC inhibitors exert antitumor effects. Studies have further suggested that class IIa HDAC inhibitors are related to immune functions, including immune responses and the expression of chemokines and complement pathway components. TMP195, a selective class IIa HDAC inhibitor, has been reported to be effective against breast cancer. However, the role and mechanism of TMP195 in colorectal cancer remain unknown. In this study, we found that TMP195 significantly reduced the tumor burden in two mouse models of colitis-associated colorectal cancer (CAC) and subcutaneous tumor. Mechanistically, TMP195 decreased the proportion of total macrophages but increased the proportion of M1 macrophages by promoting polarization, resulting in the increased release of inflammatory cytokines. TMP195 had no direct effect on the proliferation of colorectal cancer cells, and its antitumor effect on the colorectal cancer disappeared when macrophages were partly depleted by clodronate liposomes. In addition, TMP195 enhanced the efficacy of PD-1 blockade. The present study revealed that the combination of TMP195 and PD-1 blockade may provide a therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiachun Sun
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yanyan Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunlong Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,✉ Corresponding authors: Weidong Han. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Junlin Yao. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Hongming Pan. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926,
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,✉ Corresponding authors: Weidong Han. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Junlin Yao. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Hongming Pan. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926,
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,✉ Corresponding authors: Weidong Han. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Junlin Yao. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926, ; Hongming Pan. Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang, China, 310016. Phone: +86-571-86006926,
| |
Collapse
|
48
|
Huang S, Zheng X, Zhang X, Jin Z, Liu S, Fu L, Niu Y. Exercise improves high-fat diet-induced metabolic disorder by promoting HDAC5 degradation through the ubiquitin-proteasome system in skeletal muscle. Appl Physiol Nutr Metab 2022; 47:1062-1074. [PMID: 35998371 DOI: 10.1139/apnm-2022-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylase 4/5 are essential for regulating metabolic gene expression, AMPKα2 regulates HDAC4/5 activity and the expression of MuRF1 during exercise. In this study, we used wild type and AMPKα2-/- mice to explore the potential regulatory relationship between AMPKα2 and HDAC4/5 expression during exercise. Firstly, we fed C57BL/6J mice with high-fat diet for eight-week to assess the effects of high-fat diet on skeletal muscle metabolism and HDAC4/5 expression. We then performed a six-week treadmill exercise on both wild type and AMPKα2-/- mice. After exercise, the expressions of HDAC4/5 were examined in both gastrocnemius and soleus. The citrate synthase activity and proteins involved in skeletal muscle oxidative process were assessed. To determine the relationship of HDAC4/5 and skeletal muscle oxidative capacity, citrate synthase activity was assessed after silencing HDAC4/5. Moreover, HDAC5 ubiquitination and the association of MuRF1 to HDAC5 were also investigated. Our results showed that six-week exercise increased the skeletal muscle oxidative capacity and decreased HDAC4/5 expression only in soleus. HDAC5 silencing increased C2C12 cells oxidative capacity. Proteasome inhibition by MG132 abolished exercise-induced HDAC5 degradation mediated by MuRF1-ubiquitin-proteasome system. However, the UPS did not dominantly account for exercise-induced HDAC4 degradation. Exercise up-regulated MuRF1-HDAC5 association in wild type mice but not in AMPKα2-/- mice. Our results revealed that six-week exercise increased the skeletal muscle oxidative capacity and promoted HDAC5 degradation in soleus through the UPS, MuRF1 mediated HDAC5 ubiquitination. Although AMPKα2 played partial role in regulating MuRF1 expression and HDAC5 ubiquitination, exercise-induced HDAC5 degradation did not fully depend on AMPKα2.
Collapse
Affiliation(s)
- Song Huang
- Tianjin Medical University, Department of Rehabilitation, Tianjin, Tianjin, China;
| | - Xinyue Zheng
- Tianjin Medical University, Department of Rehabilitation, Tianjin, Tianjin, China;
| | - Xinyu Zhang
- Tianjin Medical University, Physiology and Pathophysiology, Tianjin, Tianjin, China;
| | - Zhe Jin
- Tianjin Yaohua binhai, School of Yaohua binhai, Tianjin, China;
| | - Sujuan Liu
- Tianjin Medical University, Tianjin, Tianjin, China;
| | - Li Fu
- Tianjin Medical University, Physiology, Tianjin, China;
| | - Yanmei Niu
- Tianjin Medical University, Tianjin, Tianjin, China;
| |
Collapse
|
49
|
Luo C, Yu T, Young KH, Yu L. HDAC inhibitor chidamide synergizes with venetoclax to inhibit the growth of diffuse large B-cell lymphoma via down-regulation of MYC, BCL2, and TP53 expression. J Zhejiang Univ Sci B 2022; 23:666-681. [PMID: 35953760 DOI: 10.1631/jzus.b2200016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin's lymphoma. A total of 10%‒15% of DLBCL cases are associated with myelocytomatosis viral oncogene homolog(MYC) and/or B-cell lymphoma-2 (BCL2) translocation or amplification. BCL2 inhibitors have potent anti-tumor effects in DLBCL; however, resistance can be acquired through up-regulation of alternative anti-apoptotic proteins. The histone deacetylase (HDAC) inhibitor chidamide can induce BIM expression, leading to apoptosis of lymphoma cells with good efficacy in refractory recurrent DLBCL. In this study, the synergistic mechanism of chidamide and venetoclax in DLBCL was determined through in vitro and in vivo models. We found that combination therapy significantly reduced the protein levels of MYC, TP53, and BCL2 in activated apoptotic-related pathways in DLBCL cells by increasing BIM levels and inducing cell apoptosis. Moreover, combination therapy regulated expression of multiple transcriptomes in DLBCL cells, involving apoptosis, cell cycle, phosphorylation, and other biological processes, and significantly inhibited tumor growth in DLBCL-bearing xenograft mice. Taken together, these findings verify the in vivo therapeutic potential of chidamide and venetoclax combination therapy in DLBCL, warranting pre-clinical trials for patients with DLBCL.
Collapse
Affiliation(s)
- Cancan Luo
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China
| | - Tiantian Yu
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China
| | - Ken H Young
- Department of Hematopathology, Duke University School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Li Yu
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China. .,Jiangxi Province Key Laboratory of Hematology, Nanchang 330006, China.
| |
Collapse
|
50
|
Design, Synthesis, and biological evaluation of HDAC6 inhibitors based on Cap modification strategy. Bioorg Chem 2022; 125:105874. [DOI: 10.1016/j.bioorg.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
|