1
|
Wang T, Du M, Chen Z. Sonosensitizers for Sonodynamic Therapy: Current Progress and Future Perspectives. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:727-734. [PMID: 39909788 DOI: 10.1016/j.ultrasmedbio.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment method that combines low-intensity ultrasound and sonosensitizers. Compared with photodynamic therapy, SDT has the advantages of deeper tissue penetration, higher accuracy and fewer adverse reactions. Sonosensitizers are essential for the efficacy of SDT. Sonosensitizers have the advantages of clear structure, easy monitoring, evaluation of drug metabolism and clinical transformation, etc. Notably, biochemical techniques can be used in the field of sonosensitizers and SDT to overcome inherent barriers and achieve sustainable innovation. This article first summarizes the molecular mechanism of SDT, focusing on organic sonosensitizers, inorganic nano-sonosensitizers and multi-functional drug delivery systems with targeting, penetration and imaging functions after a series of modifications. This review provides ideas and references for the design of sonosensitizers and SDT and promotes their future transformation into clinical applications.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Department of Medical Imaging, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
2
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Li M, Liu Q, Xie S, Weng D, He J, Yang X, Liu Y, You J, Liao J, Wang P, Lu X, Zhao J. Transformable Tumor Microenvironment-Responsive Oxygen Vacancy-Rich MnO 2@Hydroxyapatite Nanospheres for Highly Efficient Cancer Sonodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414162. [PMID: 39960349 PMCID: PMC11984894 DOI: 10.1002/advs.202414162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/31/2024] [Indexed: 04/12/2025]
Abstract
Despite the promise of sonodynamic therapy (SDT)-mediated immunotherapy, the anticancer efficacy of current sonosensitizers is greatly limited by the immunosuppressive tumor microenvironment (TME) and their inability to selectively respond to it. Herein, oxygen vacancy-rich MnO2@hydroxyapatite (Ca10(PO4)6(OH)2) core-shell nanospheres (denoted as Ov-MO@CPO) as an advanced TME-responsive sonosensitizer for sonodynamic immunotherapy is demonstrated. The Ov-MO@CPO maintains its structural integrity under neutral conditions but dissolves the pH-sensitive hydroxyapatite shell under acidic TME to release active oxygen vacancy-rich MnO2 core, which reinvigorates H2O2 consumption and hypoxia alleviation due to its catalase-like activity. Furthermore, the introduced oxygen vacancies optimize the electronic structure of Ov-MO@CPO, with active electronic states near the Fermi level and higher d-band center. It results in accelerated electron-hole pair separation and lower catalytic energy barriers to boost ultrasound (US)-initiated ROS production. These multimodal synergistic effects effectively reverse the immunosuppressive tumor microenvironment, inhibiting tumor growth and metastasis in 4T1 tumor-bearing mice. No evident toxic effects are observed in normal mouse tissues. Additionally, when combined with an immune checkpoint inhibitor, Ov-MO@CPO-mediated SDT further improves the effectiveness of immunotherapy. This work affords a new avenue for developing TME-dependent sonosensitizers for SDT-mediated immunotherapy.
Collapse
Affiliation(s)
- Minxing Li
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Qiyu Liu
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Songzuo Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Desheng Weng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinjun He
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Xinyi Yang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinqi You
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Jinghao Liao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| | - Peng Wang
- Department of Emergency MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xihong Lu
- The Key Lab of Low‐carbon Chem & Energy Conservation of Guangdong ProvinceSchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jingjing Zhao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer Medicine, Department of BiotherapySun Yat‐Sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
4
|
Lv L, Liu Y, Cao C, Li Y, Tang Z, Liu J. Composite bioreactor for synergistic Modulation of tumor microenvironment and endogenous Regulation of ROS generation to enhance chemodynamic therapy for lung cancer. J Colloid Interface Sci 2025; 683:918-929. [PMID: 39755016 DOI: 10.1016/j.jcis.2024.12.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The tumor microenvironment (TME) is characterized by several key features, including hypoxia, elevated levels of hydrogen peroxide (H2O2), high concentrations of glutathione (GSH), and an acidic pH. Recent research has increasingly focused on harnessing or targeting these characteristics for effective cancer therapy. In this study, we developed an innovative composite bio-reactor that integrates genetically engineered bacteria with upconversion nanoparticles (UCNPs) and nano-copper manganese materials for lung cancer treatment. The nano-copper manganese materials function as catalysts in Fenton-like reactions, facilitating the decomposition of hydrogen peroxide into harmful hydroxyl radicals and oxygen, which can effectively target tumors and reduce hypoxia. To circumvent the challenge of insufficient endogenous hydrogen peroxide during treatment, we employed UCNPs capable of converting near-infrared laser irradiation, known for its deep tissue penetration, into visible light. This conversion activates the genetically engineered bacteria to generate exogenous hydrogen peroxide directly within the tumor microenvironment, enabling prolonged therapeutic effects. Our findings suggest that this composite bio-reactor can achieve effective lung cancer therapy without the need for external hydrogen peroxide supplementation, representing a significant advancement in the design of targeted cancer treatments.
Collapse
Affiliation(s)
- Longhao Lv
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Yong Liu
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Oncology, XuZhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Chengsong Cao
- Department of Oncology, XuZhou Central Hospital, Xuzhou, Jiangsu 221000, China; Department of Oncology, Xuzhou Institute of Medical Sciences, Xuzhou, Jiangsu 221000, China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Zhengshuai Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 China.
| |
Collapse
|
5
|
Guo S, Chen M, Yang Y, Zhang Y, Zhuang Y, Dong Y, Tulupov A, Wang X, Cheng J, Bao J, Fan D. Highly efficient tumor oxygen supplementation MnO 2 nano-MOF encapsulated Sorafenib for multiple synergistic CDT/PDT/RT. Int J Pharm 2025; 672:125328. [PMID: 39956406 DOI: 10.1016/j.ijpharm.2025.125328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Tumor growth often creates hypoxic conditions within the tumor microenvironment, which can limit the effectiveness of therapies. To address this issue, a novel "all-in-one" nanoplatform called PCN-224(Hf)@Sorafenib@(PSM) has been developed. This nanoplatform utilizes PCN-224(Hf)-modified MnO2 and combines various therapeutic modalities-chemotherapy, chemodynamic therapy (CDT), photodynamic therapy (PDT), and radiotherapy (RT)-to enhance treatment efficacy. In the PSM nanoplatform, MnO2 decomposes H2O2 to produce oxygen (O2) and reacts with glutathione (GSH) to form Mn2+. This process catalyzes a Fenton-like reaction that generates hydroxyl radicals (·OH), facilitating CDT. When exposed to 635 nm light irradiation, the porphyrin ligand in PCN-224(Hf) produces singlet oxygen (1O2), while the Hf6 clusters contribute to the PDT effects. Furthermore, the nanoplatform enhances radiotherapy by harnessing high-energy radiation. Studies have demonstrated that PSM effectively kills solid tumors even in hypoxic conditions and significantly inhibits tumor growth. This innovative nanoplatform showcases high efficacy in multimodal synergistic tumor treatment, successfully integrating multiple therapeutic approaches to overcome the challenges posed by hypoxia.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Miaomiao Chen
- School of Pharmacy, Xinyang Agriculture and Forestry University, China
| | - Yuhao Yang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yuanyuan Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Yanbo Dong
- Faculty of Teacher Education, Pingdingshan University, Pingdingshan, Henan 467000, China; Institute of Psychology, The Herzen State Pedagogical University of Russia, Saint Petersburg, Russia
| | - Andrey Tulupov
- Laboratory of MRT Technologies, The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090 Novosibirsk, Russia
| | - Xiao Wang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
6
|
Damani M, Mhaske A, Dighe S, Sawarkar SP. Immunotherapy in Cervical Cancer: An Evolutionary Paradigm in Women's Reproductive Health. Crit Rev Ther Drug Carrier Syst 2025; 42:55-88. [PMID: 40084517 DOI: 10.1615/critrevtherdrugcarriersyst.2025044498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cervical cancer is the fourth most common cause of morbidity and mortality in women. The major causative factor for cervical cancer is primary prolonged infection with human papillomavirus, along with secondary factors such as immunodeficiency, smoking, low socioeconomic standards, poor hygiene, and overuse of oral contraceptives. A grave need exists to practice novel strategies to overcome existing drawbacks of conventional therapy such as chemotherapy, radiation therapy, and surgery. Cancer immunotherapy works by strengthening the immune system of the host to combat against the cancerous cells. Immunotherapy in cervical cancer treatment has demonstrated long-lasting effects; however, the response to such therapies was nominal due to its prominent limitations such as immunosuppressive behavior of the tumor. Presently plethora of nanoplatforms such as polymeric nanoparticles, micelles, liposomes, and dendrimers are being maneuvered with cancer immunotherapy. The amalgamation of nanotechnology and immunotherapy in the treatment of cervical cancer is conceivable due to the mutual association between the tumor microenvironment and immunosurveillance. Safety concerns of nanoplatforms with immunotherapeutics such as toxicity, inflammation, and unwanted accumulation in tissues could be surmounted by surface modification methods. This review highlights the benefits of the amalgamation of nanotechnology and immunotherapy to improve shortcomings applicable to the conventional delivery of cancer treatment. We also aim to outline the nanoimmunotherapy sophistications and future translational avenues in this rapidly flourishing cancer treatment modality.
Collapse
Affiliation(s)
- Mansi Damani
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India
| | - Akshada Mhaske
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sayali Dighe
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, V.L. Mehta Road, Vile Parle (West), Mumbai 400 056, India
| |
Collapse
|
7
|
Yue Z, Zhao Q, Wang S, Yao S, Wan X, Hu Q, Wen K, Zhao Y, Li L. Manganese Dioxide Coated Piezoelectric Nanosonosensitizer for Cancer Therapy with Tumor Microenvironment Remodeling and Multienzyme-Like Catalysis. SMALL METHODS 2024; 8:e2400018. [PMID: 38558511 DOI: 10.1002/smtd.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sonodynamic therapy (SDT) as an emerging method for cancer therapy has encountered difficulty in insufficient production of reactive oxygen species (ROS), especially in tumor microenvironment (TME) with elevated antioxidants and hypoxic conditions. In this work, the authors have fabricated heterostructured manganese dioxide (MnO2)-coated BaTiO3 nanoparticles (BTO@M NPs) as a piezoelectric sonosensitizer, which exhibits the capacity of remodeling TME and multienzyme-like catalysis for boosting SDT. Benefitting from the piezotronic effect, the formation of a p-n junction between MnO2 and piezoelectric BTO with a built-in electric field and band bending efficiently promotes the separation of charge carriers, facilitating the generation of superoxide anion (•O2 -) and hydroxyl radical (•OH) under ultrasound (US) stimulation. Moreover, BTO@M NPs can catalyze the overexpressed hydrogen peroxide (H2O2) in TME to produce oxygen for replenishing the gas source in SDT, and also deplete antioxidant glutathione (GSH), realizing TME remodeling. During this process, the reduced Mn(II) can convert H2O2 into •OH, further amplifying cellular oxidative damage. With these combination effects, the versatile BTO@M NPs exhibit prominent cytotoxicity and tumor growth inhibition against 4T1 breast cancer. This work provides a feasible strategy for constructing high-efficiency sonosensitizers for cancer SDT.
Collapse
Affiliation(s)
- Zhaoyang Yue
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Qinyu Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shaobo Wang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quanhong Hu
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yunchao Zhao
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Luo Y, He X, Du Q, Xu L, Xu J, Wang J, Zhang W, Zhong Y, Guo D, Liu Y, Chen X. Metal-based smart nanosystems in cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230134. [PMID: 39713201 PMCID: PMC11655314 DOI: 10.1002/exp.20230134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/12/2024] [Indexed: 12/24/2024]
Abstract
Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy. In this review, the state-of-the-art research progress in metal-related immunotherapy is comprehensively summarized. First, the mainstream mechanisms of MSNs-assisted immunotherapy will be delineated. The immunological effects of certain metals and categorization of MSNs with different characters and compositions are then provided, followed by the representative exemplar applications of MSNs in cancer treatment, and synergistic combination immunotherapy. Finally, we conclude this review with a summary of the remaining challenges associated with MSNs and provide the authors' perspective on their further advances.
Collapse
Affiliation(s)
- Ying Luo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaojing He
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Lian Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Jie Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Junrui Wang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenli Zhang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yixin Zhong
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Dajing Guo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yun Liu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
9
|
Feng Y, Tang Q, Wang B, Yang Q, Zhang Y, Lei L, Li S. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J Nanobiotechnology 2024; 22:737. [PMID: 39605063 PMCID: PMC11603847 DOI: 10.1186/s12951-024-03005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
The tumor microenvironment (TME) is a complex system characterized by low oxygen, low pH, high pressure, and numerous growth factors and protein hydrolases that regulate a wide range of biological behaviors in the tumor and have a profound impact on cancer progression. Immunotherapy is an innovative approach to cancer treatment that activates the immune system, resulting in the spontaneous killing of tumor cells. However, the therapeutic efficacy of these clinically approved cancer immunotherapies (e.g., immune checkpoint blocker (ICB) therapies and chimeric antigen receptor (CAR) T-cell therapies) is far from satisfactory due to the presence of immunosuppressive TMEs created in part by tumor hypoxia, acidity, high levels of reactive oxygen species (ROS), and a dense extracellular matrix (ECM). With continuous advances in materials science and drug-delivery technologies, biomaterials hold considerable potential for targeting the TME. This article reviews the advances in biomaterial-based targeting of the TME to advance our current understanding on the role of biomaterials in enhancing tumor immunity. In addition, the strategies for remodeling the TME offer enticing advantages; however, the represent a double-edged sword. In the process of reshaping the TME, the risk of tumor growth, infiltration, and distant metastasis may increase.
Collapse
Affiliation(s)
- Yekai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Geraldes CFGC. Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics. Molecules 2024; 29:5591. [PMID: 39683750 PMCID: PMC11643175 DOI: 10.3390/molecules29235591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Manganese-based MRI contrast agents have recently attracted much attention as an alternative to Gd-based compounds. Various nanostructures have been proposed for potential applications in in vivo diagnostics and theranostics. This review is focused on the discussion of different types of Mn oxide-based nanoparticles (MnxOy NPs) obtained at the +2, +3 and +4 oxidation states for MRI, multimodal imaging or theranostic applications. These NPs show favorable magnetic properties, good biocompatibility, and an improved toxicity profile relative to Gd(III)-based nanosystems, showing that the Mn paramagnetic ions offer advantages for the next generation of nanoscale MRI and theranostic contrast agents. Their potential for enhancing relaxivity and MRI contrast effects is illustrated through discussion of selected examples published in the past decade.
Collapse
Affiliation(s)
- Carlos F. G. C. Geraldes
- Department of Life Sciences and Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal; ; Tel.: +351-967661211
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
11
|
Yang X, Zhang Q, Li D, Hu L, Wang Y, Yan X, Li Y, Wang Y, Zhang F, Shen J. A Multifunctional Nanodrug Increases the Therapeutic Sensitivity of Lenvatinib to Hepatocellular Carcinoma by Inhibiting the Stemness of Hepatic Cancer Stem Cells. Adv Healthc Mater 2024:e2401398. [PMID: 39359011 DOI: 10.1002/adhm.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Indexed: 10/04/2024]
Abstract
Drug resistance resulting from diverse mechanisms including the presence of cancer stem cells (CSCs) is the main obstacle for improving therapeutic efficacy of lenvatinib in hepatocellular carcinoma (HCC). Herein, a nanomedicine (siCD24-Len-MnO@PLAP) is developed by incorporating manganese oxide (MnO), lenvatinib (Len), and siRNA against CD24 (siCD24) into micelles composed of methoxypolyethylene glycol (mPEG), poly-L-lysine (PLLys), and polyasparagyl(N-(2-Aminoethyl)piperidine) (PAsp(PIP)) triblock copolymer. The nanomedicine can respond to the tumor microenvironment (TME) to release lenvatinib, and produce Mn2+ and O2, accompanied by changes in nanoparticle charge, which facilitates cellular endocytosis of siCD24-loaded nanoparticles. The released siCD24 and lenvatinib synergistically reduces CD24 expression, resulting in a more pronounced inhibition of stemness of CSCs. In the mouse models of HCC using Huh7-derived CSCs and Hepa1-6-derived CSCs, the nanomedicine shows remarkable anti-cancer effect by enhancing the therapeutic effects of lenvatinib against HCC via reducing the expression level of CD24 and decreasing the expression of hypoxia inducible factor-1α (HIF-1α). Moreover, in situ production of paramagnetic Mn2+ from the nanomedicine serves as an excellent contrast agent for magnetic resonance imaging (MRI) to monitor the therapeutic process. This study demonstrates that this multifunctional MRI-visible siCD24- and lenvatinib-loaded nanodrug holds great potential in enhancing therapeutic sensitivity for HCC lenvatinib therapy.
Collapse
Affiliation(s)
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Dongye Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lanxin Hu
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyu Yan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunhua Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, No.855 Xingye Road East, Guangzhou, Guangdong, 510632, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
12
|
Zhu Z, Qiao P, Liu M, Sun F, Geng M, Yao H. Blocking the utilization of carbon sources via two pathways to induce tumor starvation for cancer treatment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102764. [PMID: 38885751 DOI: 10.1016/j.nano.2024.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Glucose oxidase (GOx) is often used to starvation therapy. However, only consuming glucose cannot completely block the energy metabolism of tumor cells. Lactate can support tumor cell survival in the absence of glucose. Here, we constructed a nanoplatform (Met@HMnO2-GOx/HA) that can deplete glucose while inhibiting the compensatory use of lactate by cells to enhance the effect of tumor starvation therapy. GOx can catalyze glucose into gluconic acid and H2O2, and then HMnO2 catalyzes H2O2 into O2 to compensate for the oxygen consumed by GOx, allowing the reaction to proceed sustainably. Furthermore, metformin (Met) can inhibit the conversion of lactate to pyruvate in a redox-dependent manner and reduce the utilization of lactate by tumor cells. Met@HMnO2-GOx/HA nanoparticles maximize the efficacy of tumor starvation therapy by simultaneously inhibiting cellular utilization of two carbon sources. Therefore, this platform is expected to provide new strategies for tumor treatment.
Collapse
Affiliation(s)
- Zhihui Zhu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Pan Qiao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Meilin Geng
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Hanchun Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
14
|
Bai C, Liu J, Bai L, Yao D, Li X, Zhang H, Guo D. Design of a nanozyme-based magnetic nanoplatform to enhance photodynamic therapy and immunotherapy. J Pharm Anal 2024; 14:100928. [PMID: 39345942 PMCID: PMC11437765 DOI: 10.1016/j.jpha.2023.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 10/01/2024] Open
Abstract
The tumor microenvironment, particularly the hypoxic property and glutathione (GSH) overexpression, substantially inhibits the efficacy of cancer therapy. In this article, we present the design of a magnetic nanoplatform (MNPT) comprised of a photosensitizer (Ce6) and an iron oxide (Fe3O4)/manganese oxide (MnO2) composite nanozyme. Reactive oxygen species (ROS), such as singlet oxygen (1O2) radicals produced by light irradiation and hydroxyl radicals (·OH) produced by catalysis, are therapeutic species. These therapeutic substances stimulate cell apoptosis by increasing oxidative stress. This apoptosis then triggers the immunological response, which combines photodynamic therapy and T-cell-mediated immunotherapy to treat cancer. Furthermore, MNPT can be utilized as a contrast agent in magnetic resonance and fluorescence dual-modality imaging to give real-time tracking and feedback on treatment.
Collapse
Affiliation(s)
- Chen Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jiajing Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Luyao Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dapeng Yao
- Department of Radiology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, 221004, China
| | - Xiaofeng Li
- Department of Radiology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, 221004, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
15
|
Wen S, Zhang W, Yang J, Zhou Z, Xiang Q, Dong H. Ternary Bi 2WO 6/TiO 2-Pt Heterojunction Sonosensitizers for Boosting Sonodynamic Therapy. ACS NANO 2024; 18:23672-23683. [PMID: 39137964 DOI: 10.1021/acsnano.4c08236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Engineering Z-scheme heterojunctions represents a promising strategy for optimizing the separation and migration of charge carriers in semiconductor sonosensitizers for enhanced reactive oxygen species (ROS) generation. Nevertheless, establishing a continuous and directional pathway for ultrasonic-induced charge flow in Z-scheme heterojunctions remains a significant challenge. In this study, we present a ternary Bi2WO6/TiO2-Pt heterojunction sonosensitizer achieved through the precise growth of Pt nanocrystals on a directionally assembled Bi2WO6/TiO2 Z-scheme structure. The construction of the Bi2WO6/TiO2-Pt heterojunction involves directional growth of Bi2WO6 in situ on the highly exposed (001) crystal facet of TiO2 nanosheets, followed by the precise deposition of nano Pt on the edge (101) crystal facet. The Z-scheme Bi2WO6/TiO2 in the ternary heterojunction ensures effective electron separation, while the Schottky TiO2-Pt interface establishes a well-defined charge flow path and robust redox capabilities. Moreover, nano Pt confers the Bi2WO6/TiO2-Pt heterojunction with excellent peroxidase-mimic and catalase-mimic activities, facilitating interactions with endogenous H2O2 to produce the hydroxyl radicals and O2. It effectively alleviates tumor hypoxia and enhances ROS production. This results in significantly higher efficiency in sonodynamically induced ROS generation compared to pure TiO2 or binary Bi2WO6/TiO2 heterojunctions, as confirmed by DFT theoretical calculation and experiments with both in vitro and in vivo anticancer performance. This study offers valuable insights for designing high-performance Z-scheme sonosensitizer systems.
Collapse
Affiliation(s)
- Shengwu Wen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Weiyun Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jinlong Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zijia Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
16
|
Han J, Ma H, Ai S, Wan D. Mn-ZIF nanozymes kill tumors by generating hydroxyl radical as well as reversing the tumor microenvironment. Front Pharmacol 2024; 15:1441818. [PMID: 39193348 PMCID: PMC11347784 DOI: 10.3389/fphar.2024.1441818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Tumor tissues are well known for their unique high hydrogen peroxide (H2O2) microenvironment. How to exploit this tumor microenvironment for tumor cell killing is a question. In this study, a Mn-doped metal-organic framework (Mn-ZIF) was constructed. It possesses good peroxidase (POD) activity, which can oxidize tumor-localized H2O2 into hydroxyl radicals (·OH), that possesses the ability to directly kill tumor cells. More surprisingly, in vivo experiments the researchers not only observed the tumor-killing effect of Mn-ZIF, but also found it changes in macrophage phenotype in the tumor region. There was an increase in macrophage polarization towards the M1 subtype. This suggests that the tumor-killing effect of Mn-ZIF not only comes from its POD activity, but also regulates the immune microenvironment in the tumor region. In conclusion, the preparation of Mn-ZIF provides a new way for comprehensive tumor therapy.
Collapse
Affiliation(s)
- Jiyu Han
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China
| | - Hairong Ma
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daqian Wan
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China
| |
Collapse
|
17
|
Ma L, Wang X, Wu Y, Zhang Y, Yuan X, Mao J, Li Q, Gong S. Controlled release of manganese and magnesium ions by microsphere-encapsulated hydrogel enhances cancer immunotherapy. J Control Release 2024; 372:682-698. [PMID: 38950681 DOI: 10.1016/j.jconrel.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Despite the considerable potential of immune checkpoint blockade (ICB) therapy in treating various cancer types, it faces several challenges, of which the constrained objective response rate and relatively short duration of response observed in patients with cancer are the most important. This study introduces an injectable temperature-sensitive hydrogel, Pluronic F-127 (PF-127)@MnCl2/ alginate microspheres (ALG-MS)@MgCl2, that enhances the therapeutic efficacy of programmed cell death-ligand 1 (PD-L1) in cancer cells. The hydrogel material used in this study facilitated the rapid release of a significant amount of manganese ions (Mn2+) and the gradual and sustained release of magnesium ions (Mg2+) within the tumor microenvironment. This staged release profile promotes an immune microenvironment conducive to the cytotoxicity of CD8+ T cells and natural killer cells, thereby enhancing the efficacy of ICB therapy. Furthermore, the PF-127@MnCl2/ALG-MS@MgCl2 composite hydrogel exhibits the ability to convert drug-resistant tumor ("cold tumor") with a low PD-L1 response to a "hot tumor" with a high PD-L1 response. In summary, the PF-127@MnCl2/ALG-MS@MgCl2 hydrogel manipulates the immune microenvironment through the precise discharge of Mg2+ and Mn2+, thus, augmenting the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, PR China.
| |
Collapse
|
18
|
Liang X, Chen W, Wang C, Jiang K, Zhu J, Lu R, Lin Z, Cao Z, Zheng J. A mesoporous theranostic platform for ultrasound and photoacoustic dual imaging-guided photothermal and enhanced starvation therapy for cancer. Acta Biomater 2024; 183:264-277. [PMID: 38815685 DOI: 10.1016/j.actbio.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Tumor starvation therapy utilizing glucose oxidase (GOx), has gained traction due to its non-invasive and bio-safe attributes. However, its effectiveness is often hampered by severe hypoxia in the tumor microenvironment (TME), limiting GOx's catalytic activity. To address this issue, a multifunctional nanosystem based on mesoporous polydopamine nanoparticles (MPDA NPs) was developled to alleviate TME hypoxia. This nanosystem integrated GOx modification and oxygenated perfluoropentane (PFP) encapsulation to address hypoxia-related challenges in the TME. Under NIR laser irradiation, the MPDA NPs exhibit significant photothermal conversion efficacy, activating targeted tumor photothermal therapy (PTT), while also serving as proficient photoacoustic (PA) imaging agents. The ensuing temperature rise facilitates oxygen (O2) release and induces liquid-gas conversion of PFP, generating microbubbles for enhanced ultrasound (US) imaging signals. The supplied oxygen alleviates local hypoxia, thereby enhancing GOx-mediated endogenous glucose consumption for tumor starvation. Overall, the integration of ultrasound/photoacoustic dual imaging-guided PTT and starvation therapy within MPDA-GOx@PFP@O2 nanoparticles (MGPO NPs) presents a promising platform for enhancing the efficacay of tumor treatment by overcoming the complexities of the TME. STATEMENT OF SIGNIFICANCE: A multifunctional MPDA-based theranostic nanoagent was developed for US/PAI imaging-guided PTT and starvation therapy against tumor hypoxia by direct O2 delivery. The incorporation of oxygenated perfluoropentane (PFP) within the mesoporous structure of MGPO not only enables efficient US imaging but also helps in alleviating tumor hypoxia. Moreover, the strong near-infrared (NIR) absorption of MGPO NPs promote the generation of PFP microbubbles and release of oxygen, thereby enhancing US imaging and GOx-mediated starvation therapy. Such a multifunctional nanosystem leverages synergistic effects to enhance therapeutic efficacy while incorporating US/PA imaging for precise visualization of the tumor.
Collapse
Affiliation(s)
- Xiaotong Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Wenbo Chen
- Ultrasound Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Chunan Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Kai Jiang
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China
| | - Jinjin Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China
| | - Zhousheng Lin
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China.
| | - Jian Zheng
- Ultrasound Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
19
|
Xing Z, Li L, Liao T, Wang J, Guo Y, Xu Z, Yu W, Kuang Y, Li C. A multifunctional cascade enzyme system for enhanced starvation/chemodynamic combination therapy against hypoxic tumors. J Colloid Interface Sci 2024; 666:244-258. [PMID: 38598997 DOI: 10.1016/j.jcis.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.
Collapse
Affiliation(s)
- Zihan Xing
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Linwei Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinyu Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhao Guo
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ziqiang Xu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wenqian Yu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Ying Kuang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
20
|
Liu W, Song X, Jiang Q, Guo W, Liu J, Chu X, Lei Z. Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1064. [PMID: 38998669 PMCID: PMC11243522 DOI: 10.3390/nano14131064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Semiconductor nanomaterials have emerged as a significant factor in the advancement of tumor immunotherapy. This review discusses the potential of transition metal oxide (TMO) nanomaterials in the realm of anti-tumor immune modulation. These binary inorganic semiconductor compounds possess high electron mobility, extended ductility, and strong stability. Apart from being primary thermistor materials, they also serve as potent agents in enhancing the anti-tumor immunity cycle. The diverse metal oxidation states of TMOs result in a range of electronic properties, from metallicity to wide-bandgap insulating behavior. Notably, titanium oxide, manganese oxide, iron oxide, zinc oxide, and copper oxide have garnered interest due to their presence in tumor tissues and potential therapeutic implications. These nanoparticles (NPs) kickstart the tumor immunity cycle by inducing immunogenic cell death (ICD), prompting the release of ICD and tumor-associated antigens (TAAs) and working in conjunction with various therapies to trigger dendritic cell (DC) maturation, T cell response, and infiltration. Furthermore, they can alter the tumor microenvironment (TME) by reprogramming immunosuppressive tumor-associated macrophages into an inflammatory state, thereby impeding tumor growth. This review aims to bring attention to the research community regarding the diversity and significance of TMOs in the tumor immunity cycle, while also underscoring the potential and challenges associated with using TMOs in tumor immunotherapy.
Collapse
Affiliation(s)
- Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
| | - Xueru Song
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Qiong Jiang
- Department of Gastroenterology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China;
| | - Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China; (W.L.); (X.S.)
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (W.G.); (J.L.)
| |
Collapse
|
21
|
Zheng H, An G, Yang X, Huang L, Wang N, Zhu Y. Iron-Based Metal-Organic Frameworks as Multiple Cascade Synergistic Therapeutic Effect Nano-Drug Delivery Systems for Effective Tumor Elimination. Pharmaceuticals (Basel) 2024; 17:812. [PMID: 38931479 PMCID: PMC11206809 DOI: 10.3390/ph17060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.
Collapse
Affiliation(s)
- Heming Zheng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Guanghui An
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Xiaohui Yang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lei Huang
- School of Stomatology, Minzhu Clinic of Stomatology Hospital Affiliated to Guangxi Medical University, Nanning 530007, China;
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (H.Z.); (G.A.); (Y.Z.)
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
22
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Gao Y, Liu S, Huang Y, Li F, Zhang Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front Immunol 2024; 15:1379365. [PMID: 38915413 PMCID: PMC11194341 DOI: 10.3389/fimmu.2024.1379365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Yaoxin Gao
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Huang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
25
|
Qian C, Zhao G, Huo M, Su M, Hu X, Liu Q, Wang L. Tumor microenvironment-regulated drug delivery system combined with sonodynamic therapy for the synergistic treatment of breast cancer. RSC Adv 2024; 14:17612-17626. [PMID: 38828276 PMCID: PMC11141688 DOI: 10.1039/d4ra00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Co-loading of sonosensitizers and chemotherapeutic drugs into nanocarriers can improve the biocompatibilities, stabilities, and targeting of drugs and reduce the adverse reactions of drugs, providing a robust platform to orchestrate the synergistic interplay between chemotherapy and sonodynamic therapy (SDT) in cancer treatment. In this regard, biodegradable manganese dioxide (MnO2) has attracted widespread attention because of its unique properties in the tumor microenvironment (TME). Accordingly, herein, MnO2 nanoshells with hollow mesoporous structures (H-MnO2) were etched to co-load hematoporphyrin monomethyl ether (HMME) and doxorubicin (DOX), and DOX/HMME-HMnO2@bovine serum albumin (BSA) obtained after simple BSA modification of DOX/HMME-HMnO2 exhibited excellent hydrophilicity and dispersibility. H-MnO2 rapidly degraded in the weakly acidic TME, releasing loaded HMME and DOX, and catalysed the decomposition of H2O2 abundantly present in TME, producing oxygen (O2) in situ, significantly increasing O2 concentration and downregulating the hypoxia-inducible factor 1α (HIF-1α). After irradiation of the tumor area with low-frequency ultrasound, the drug delivery efficiency of DOX/HMME-HMnO2@BSA substantially increased, and the excited HMME generated a large amount of reactive oxygen species (ROS), which caused irreversible damage to tumor cells. Moreover, the cell death rate exceeded 60% after synergistic SDT-chemotherapy. Therefore, the pH-responsive nanoshells designed in this study can realize drug accumulation in tumor regions by responding to TME and augment SDT-chemotherapy potency for breast cancer treatment by improving hypoxia in tumors. Thus, this study provides theoretical support for the development of multifunctional nanocarriers and scientific evidence for further exploration of safer and more efficient breast cancer treatments.
Collapse
Affiliation(s)
- Chao Qian
- Shandong Provincial Hospital, Shandong University Jinan 250000 China
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Guoliang Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University Jinan 250014 China
| | - Mengping Huo
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Meixia Su
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Xuexue Hu
- School of Clinical Medicine, Shandong First Medical University Jinan 250117 China
| | - Qiang Liu
- Shandong Provincial Hospital, Shandong University Jinan 250000 China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Lei Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| |
Collapse
|
26
|
Chen X, Zheng Y, Zhang Q, Chen Q, Chen Z, Wu D. Dual-targeted delivery of temozolomide by multi-responsive nanoplatform via tumor microenvironment modulation for overcoming drug resistance to treat glioblastoma. J Nanobiotechnology 2024; 22:264. [PMID: 38760771 PMCID: PMC11100207 DOI: 10.1186/s12951-024-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
27
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
28
|
Wang C, Zhong L, Xu J, Zhuang Q, Gong F, Chen X, Tao H, Hu C, Huang F, Yang N, Li J, Zhao Q, Sun X, Huo Y, Chen Q, Zhao Y, Peng R, Liu Z. Oncolytic mineralized bacteria as potent locally administered immunotherapeutics. Nat Biomed Eng 2024; 8:561-578. [PMID: 38514774 DOI: 10.1038/s41551-024-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/17/2024] [Indexed: 03/23/2024]
Abstract
Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic mineralized bacteria as potent and safe antitumour immunotherapeutics.
Collapse
Affiliation(s)
- Chenya Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Liping Zhong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Jiachen Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Xiaojing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Huiquan Tao
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Cong Hu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Fuquan Huang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Junyan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Qi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China
| | - Xinjun Sun
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Yu Huo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
- InnoBM Pharmaceuticals Co. Ltd., Suzhou, China.
| |
Collapse
|
29
|
Sun X, Qin X, Liang G, Chang X, Zhu H, Zhang J, Zhang D, Sun Y, Feng S. Manganese dioxide nanoparticles provoke inflammatory damage in BV2 microglial cells via increasing reactive oxygen species to activate the p38 MAPK pathway. Toxicol Ind Health 2024; 40:244-253. [PMID: 38518383 DOI: 10.1177/07482337241242508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 μg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 μM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1β and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1β and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.
Collapse
Affiliation(s)
- Xingchang Sun
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| | - Xin Qin
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Gaofeng Liang
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Huike Zhu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Jiahao Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Dan Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sanwei Feng
- Institute of Occupational Diseases, Lanzhou Petrochemical General Hospital, Lanzhou, China
| |
Collapse
|
30
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
31
|
Chen Y, Bei J, Chen M, Cai W, Zhou Z, Cai M, Huang W, Lin L, Guo Y, Liu M, Huang X, Xiao Z, Xu Z, Zhu K. Intratumoral Lactate Depletion Based on Injectable Nanoparticles-Hydrogel Composite System Synergizes with Immunotherapy against Postablative Hepatocellular Carcinoma Recurrence. Adv Healthc Mater 2024; 13:e2303031. [PMID: 37848188 DOI: 10.1002/adhm.202303031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Thermal ablation is a crucial therapeutic modality for hepatocellular carcinoma (HCC), but its efficacy is often hindered by the high recurrence rate attributed to insufficient ablation. Furthermore, the residual tumors following insufficient ablation exhibit a more pronounced immunosuppressive state, which accelerates the disease progression and leads to immune checkpoint blockade (ICB) resistance. Herein, evidence is presented that heightened intratumoral lactate accumulation, stemming from the augmented glycolytic activity of postablative residual HCC cells, may serve as a crucial driving force in exacerbating the immunosuppressive state of the tumor microenvironment (TME). To address this, an injectable nanoparticles-hydrogel composite system (LOX-MnO2 @Gel) is designed that gradually releases lactate oxidase (LOX)-loaded hollow mesoporous MnO2 nanoparticles at the tumor site to continuously deplete intratumoral lactate via a cascade catalytic reaction. Using subcutaneous and orthotopic HCC tumor-bearing mouse models, it is confirmed that LOX-MnO2 @Gel-mediated local lactate depletion can transform the immunosuppressive postablative TME into an immunocompetent one and synergizes with ICB therapy to significantly inhibit residual HCC growth and lung metastasis, thereby prolonging the survival of mice postablation. The work proposes an appealing strategy for synergistically combining antitumor metabolic therapy with immunotherapy to combat postablative HCC recurrence.
Collapse
Affiliation(s)
- Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Jiaxin Bei
- Key Laboratory of Surveillance of Adverse Reactions Related to CAR T Cell Therapy, Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, 510062, China
| | - Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Weiguo Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Zhimei Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Xinkun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Zhili Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510310, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, China
| |
Collapse
|
32
|
Wang Z, Ge Y, Liu J, Shi P, Xue R, Hao B, Wang Y. Integrating a Biomineralized Nanocluster for H 2S-Sensitized ROS Bomb against Breast Cancer. NANO LETTERS 2024; 24:2661-2670. [PMID: 38345313 DOI: 10.1021/acs.nanolett.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.
Collapse
Affiliation(s)
- Zixin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Ge
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Peiyunfeng Shi
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiyang Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Hao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Zhang N, Zhou J, Li S, Cai W, Ru B, Hu J, Liu W, Liu X, Tong X, Zheng X. Advances in Nanoplatforms for Immunotherapy Applications Targeting the Tumor Microenvironment. Mol Pharm 2024; 21:410-426. [PMID: 38170627 DOI: 10.1021/acs.molpharmaceut.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer immunotherapy is a treatment method that activates or enhances the autoimmune response of the body to fight tumor growth and metastasis, has fewer toxic side effects and a longer-lasting efficacy than radiotherapy and chemotherapy, and has become an important means for the clinical treatment of cancer. However, clinical results from immunotherapy have shown that most patients lack responsiveness to immunotherapy and cannot benefit from this treatment strategy. The tumor microenvironment (TME) plays a critical role in the response to immunotherapy. The TME typically prevents effective lymphocyte activation, reducing their infiltration, and inhibiting the infiltration of effector T cells. According to the characteristic differences between the TME and normal tissues, various nanoplatforms with TME targeting and regulation properties have been developed for more precise regulation of the TME and have the ability to codeliver a variety of active pharmaceutical ingredients, thereby reducing systemic toxicity and improving the therapeutic effect of antitumor. In addition, the precise structural design of the nanoplatform can integrate specific functional motifs, such as surface-targeted ligands, degradable backbones, and TME stimulus-responsive components, into nanomedicines, thereby reshaping the tumor microenvironment, improving the body's immunosuppressive state, and enhancing the permeability of drugs in tumor tissues, in order to achieve controlled and stimulus-triggered release of load cargo. In this review, the physiological characteristics of the TME and the latest research regarding the application of TME-regulated nanoplatforms in improving antitumor immunotherapy will be described. Furthermore, the existing problems and further applications perspectives of TME-regulated platforms for cancer immunotherapy will also be discussed.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Junyu Zhou
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shun Li
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wenjun Cai
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Bin Ru
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiaqi Hu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Wenlong Liu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xuanxi Liu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiangmin Tong
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaoyan Zheng
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China
| |
Collapse
|
34
|
Xu W, Yang M, Zhang W, Jia W, Zhang H, Zhang Y. Tumor microenvironment responsive nano-platform for overcoming sorafenib resistance of hepatocellular carcinoma. Mater Today Bio 2024; 24:100902. [PMID: 38188646 PMCID: PMC10767498 DOI: 10.1016/j.mtbio.2023.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor, which seriously jeopardizes human health. The 5-year relative survival rate of HCC is only about 18%. Sorafenib, a small molecule multi-targeted tyrosine kinase inhibitor (MTKI), has been classified as the first-line treatment scheme for HCC and has significantly extended the median survival time for patients with advanced HCC. Nevertheless, the emergence of sorafenib resistance has substantially hampered its further clinical application. Herein, the nano-platform based on phototherapy and small molecular targeted therapy (SMTT) was devised to overcome the sorafenib resistance and reduce the adverse effects. Hollow mesoporous manganese dioxide (H-MnO2) was prepared by hard template method, and the prepared H-MnO2 was used to load sorafenib and Chlorin e6 (Ce6). Subsequently, the nanoparticle (NPs) were modified with dopamine to optimize biocompatibility. The final prepared NPs (MCS NPs) exhibit regular spherical shape with a hydrated particle size of approximately 97.02 nm. MCS NPs can not only possess tumor microenvironment (TME) stimuli-responsive drug release performance but also can enhance the efficacy of photodynamic therapy and reverse sorafenib resistance by alleviating tumor hypoxia. Under the action of phototherapy (Ce6) combined with molecular targeted therapy (sorafenib), MCS NPs manifest a satisfactory antitumor effect for sorafenib-sensitive or sorafenib-resistant HCC cells, and retain the antiangiogenic properties of sorafenib. In the nude mouse subcutaneous tumor model constructed with sorafenib-resistant cells, MCS NPs demonstrated superior tumor imaging ability and excellent biocompatibility. The tumor inhibition rate of the MCS NPs group without laser irradiation was 53.4 %, while the MCS NPs group with laser irradiation was as high as 100 %. The novel smart TME-responsive nano-platform shows great potential for overcoming sorafenib resistance and realizes multimodality imaging and therapy of HCC.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Wenning Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| |
Collapse
|
35
|
Nie W, Jiang A, Ou X, Zhou J, Li Z, Liang C, Huang LL, Wu G, Xie HY. Metal-polyphenol "prison" attenuated bacterial outer membrane vesicle for chemodynamics promoted in situ tumor vaccines. Biomaterials 2024; 304:122396. [PMID: 38043464 DOI: 10.1016/j.biomaterials.2023.122396] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
As natural adjuvants, the bacterial outer membrane vesicles (OMV) hold great potential in cancer vaccines. However, the inherent immunotoxicity of OMV and the rarity of tumor-specific antigens seriously hamper the clinical translation of OMV-based cancer vaccines. Herein, metal-phenolic networks (MPNs) are used to attenuate the toxicity of OMV, meanwhile, provide tumor antigens via the chemodynamic effect induced immunogenic cell death (ICD). Specifically, MPNs are assembled on the OMV surface through the coordination reaction between ferric ions and tannic acid. The iron-based "prison" is locally collapsed in the tumor microenvironment (TME) with both low pH and high ATP features, and thus the systemic toxicity of OMV is significantly attenuated. The released ferric ions in TME promote the ICD of cancer cells through Fenton reaction and then the generation of abundant tumor antigens, which can be used to fabricate in-situ vaccines by converging with OMV. Together with the immunomodulatory effect of OMV, potent tumor repression on a bilateral tumor model is achieved with good biosafety.
Collapse
Affiliation(s)
- Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Anqi Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Zijin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Guanghao Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
36
|
Lei L, Dai W, Man J, Hu H, Jin Q, Zhang B, Tang Z. Lonidamine liposomes to enhance photodynamic and photothermal therapy of hepatocellular carcinoma by inhibiting glycolysis. J Nanobiotechnology 2023; 21:482. [PMID: 38102658 PMCID: PMC10724989 DOI: 10.1186/s12951-023-02260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has great promise in the treatment of cancer. However, there are many obstacles that can restrict the therapeutic efficacy of phototherapy. The hypoxic tumor microenvironment can restrict the production of reactive oxygen species (ROS) in PDT. As for PTT, the thermotolerance of cancer cells may lead to ineffective PTT. In this study, IR780 and glycolysis inhibitor lonidamine (LND)-encapsulated liposomes are prepared for photodynamic and photothermal therapy of hepatocellular carcinoma. IR780 can be used as a photosensitizer and photothermal agent for simultaneous PDT and PTT after being irradiated with 808 nm laser. LND can reduce the oxygen consumption of cancer cells by inhibiting glycolysis, which will relieve tumor hypoxia and produce more ROS for PDT. On the other hand, energy supply can be blocked by LND-induced glycolysis inhibition, which will inhibit the production of heat shock proteins (HSPs), reduce the thermotolerance of tumor cells, and finally enhance the therapeutic efficacy of PTT. The enhanced PTT is studied by measuring intracellular HSPs, ATP level, and mitochondrial membrane potential. The antitumor effect of IR780 and LND co-loaded liposomes is extensively investigated by in vitro and in vivo experiments. This research provides an innovative strategy to simultaneously enhance the therapeutic efficacy of PDT and PTT by inhibiting glycolysis, which is promising for future creative approaches to cancer phototherapy.
Collapse
Affiliation(s)
- Lei Lei
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaping Man
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, 322000, China.
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Pan X, Lu Y, Fan S, Tang H, Tan H, Cao C, Cheng Y, Liu Y. Gold Nanocage-Based Multifunctional Nanosensitizers for Programmed Photothermal /Radiation/Chemical Coordinated Therapy Guided by FL/MR/PA Multimodal Imaging. Int J Nanomedicine 2023; 18:7237-7255. [PMID: 38076731 PMCID: PMC10710274 DOI: 10.2147/ijn.s436931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Background Radiotherapy is one of the main clinical methods for the treatment of malignant tumors at present. However, its application is limited by the radiation resistance of some tumor cells and the irradiation damage to the surrounding normal tissues, and the limitation of radiotherapy dose also affects the therapeutic effect. Therefore, developing diagnostic and therapeutic agents with imaging and radiosensitizing functions is urgently needed to improve the accuracy and efficacy of radiotherapy. Materials and Strategy Herein, we synthesized multifunctional nanotheranostic FRNPs nanoparticles based on gold nanocages (GNCs) and MnO2 for magnetic resonance (MR)/photoacoustic (PA) imaging and combined photothermal, radiosensitive and chemical therapy. A programmed therapy strategy based on FRNPs is proposed. First, photothermal therapy is applied to ablate large tumors and increase the sensitivity of the tumor tissue to radiotherapy, then X-ray radiation is performed to further reduce the tumor size, and finally chemotherapeutic agents are used to eliminate smaller residual tumors and distant metastases. Results As revealed by fluorescence, MR and PA imaging, FRNPs achieved efficient aggregation and retention at tumor sites of mice after intravenous injection. In vivo studies have shown that the programmed treatment of FRNPs-injected nude mice which were exposed to X-ray after 808 laser irradiation achieved the greatest inhibition of tumor growth compared with other treatment groups. Moreover, no obvious systemic toxicity was observed in all groups of mice, indicating the good biocompatibility of FRNPs and the safety of the treatment scheme. Conclusion To sum up, our work not only showed a new radiosensitizer, but also provided a promising theranostic strategy for cancer treatment.
Collapse
Affiliation(s)
- Xinni Pan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi Lu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Shanshan Fan
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hao Tang
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Cheng Cao
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanlei Liu
- Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
38
|
Li P, Chen Z, Xia F, Wang N, Zhao J, Hu X, Zhu M, Yu S, Ling D, Li F. Leveraging Coupling Effect-Enhanced Surface Plasmon Resonance of Ruthenium Nanocrystal-Decorated Mesoporous Silica Nanoparticles for Boosted Photothermal Immunotherapy. Adv Healthc Mater 2023; 12:e2302111. [PMID: 37699592 DOI: 10.1002/adhm.202302111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Photothermal immunotherapy (PTI) has emerged as a promising approach for cancer treatment, while its efficacy is often hindered by the immunosuppressive tumor microenvironment (TME). Here, this work presents a multifunctional platform for tumor PTI based on ruthenium nanocrystal-decorated mesoporous silica nanoparticles (RuNC-MSN). By precisely regulating the distance between RuNC on MSN, this work achieves a remarkable enhancement in surface plasmon resonance of RuNC, leading to a significant improvement in the photothermal efficiency of RuNC-MSN. Furthermore, the inherent catalase-like activity of RuNC-MSN enables effective modulation of the immunosuppressive TME, thereby facilitating an enhanced immune response triggered by the photothermal effect-mediated immunogenic cell death (ICD). As a result, RuNC-MSN exhibits superior PTI performance, resulting in pronounced inhibition of primary tumor and metastasis. This study highlights the rational design of PTI agents with coupling effect-enhanced surface plasmon resonance, enabling simultaneous induction of ICD and regulation of the immunosuppressive TME, thereby significantly boosting PTI efficacy.
Collapse
Affiliation(s)
- Pin Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| |
Collapse
|
39
|
Xie M, Gao R, Li K, Kuang S, Wang X, Wen X, Lin X, Wan Y, Han C. O 2-Generating Fluorescent Carbon Dot-Decorated MnO 2 Nanosheets for "Off/On" MR/Fluorescence Imaging and Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38037417 DOI: 10.1021/acsami.3c12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Imaging-guided photodynamic therapy (PDT) has emerged as a promising protocol for cancer theragnostic. However, facile preparation of such a theranostic system for simultaneously achieving tumor location, real-time monitoring, and high-performance reactive oxygen species generation is highly desirable but remains challenging. Herein, we developed a reasonable tumor-targeting strategy based on carbon dots (CDs)-decorated MnO2 nanosheets (HA-MnO2-CDs) with an active magnetic resonance (MR)/fluorescence imaging and enhanced PDT effect. Under light irradiation, the addition of HA-MnO2-CDs increased the production of 1O2 by 2.5 times compared with CDs, providing favorable conditions for the PDT treatment effect on breast cancer. Moreover, HA-MnO2-CDs exhibited excellent performance in producing O2 in the presence of endogenous H2O2, which alleviated hypoxia in tumors and improved the therapeutic effect of PDT. In the presence of glutathione (GSH), the degraded MnO2 nanosheets released CDs and Mn2+ from HA-MnO2-CDs, restoring their fluorescence imaging function and increasing T1 relaxivity (r1) by 23 times. In vivo fluorescence and MR imaging suggested the excellent tumor-targeting property of HA-MnO2-CDs. By combining the complementary properties of nanoprobes and tumor microenvironments, the in vivo PDT therapeutic effect was significantly improved under the action of HA-MnO2-CDs. Overall, our reasonably designed HA-MnO2-CDs may inspire the future development of the next generation of high-performance tumor-responsive diagnostic and therapeutic agents to further enhance the targeted therapy effect of tumors.
Collapse
Affiliation(s)
- Manman Xie
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ruochen Gao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Ke Li
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Siying Kuang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuzhi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Wen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaowen Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuxin Wan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
40
|
Lin X, Wu G, Wang S, Huang J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1255158. [PMID: 38026961 PMCID: PMC10665513 DOI: 10.3389/fphar.2023.1255158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Doxorubicin-induced cardiotoxicity represents a prevalent adverse effect encountered in patients undergoing treatment with doxorubicin. To date, there has been no bibliometric study to summarize the field of doxorubicin-induced cardiotoxicity. In our study, we aim to determine the current status and frontiers of doxorubicin-induced cardiotoxicity by bibliometric analysis. Methods: The documents concerning doxorubicin-induced cardiotoxicity are obtained from the Web of Science Core Collection database (WOSCC), and VOSviewer 1.6.16, CiteSpace 5.1.3 and the WOSCC's literature analysis wire were used to conduct the bibliometric analysis. Results: In total, 7,021 publications were encompassed, which are produced by 37,152 authors and 6,659 organizations, 1,323 journals, and 101 countries/regions. The most productive author, institution, country and journal were Bonnie Ky with 35 publications, University of Texas with 190 documents, the United States with 1,912 publications, and PLOS ONE with 120 documents. The first high-cited article was published in the NEJM with 8,134 citations authored by DJ Slamon et al., in 2001. For keyword analysis, there are four clusters depicted in distinct directions. The keywords in the red cluster are oxidative stress, apoptosis, and cardiomyopathy. The keywords in the green cluster are cardiotoxicity, heart failure, and anthracycline. The keywords in the blue cluster are chemotherapy, trastuzumab, and paclitaxel. The keywords in the purple cluster are doxorubicin, adriamycin, and cancer. Most of the documents were derived from the United States, China and Italy (4,080/7,021, 58.1%). The number of studies from other countries should be increased. Conclusion: In conclusion, the main research hotspots and frontiers in the field of doxorubicin-induced cardiotoxicity include the role of doxorubicin in cardiotoxicity, the mechanisms underlying doxorubicin-induced cardiotoxicity, and the development of treatment strategies for doxorubicin-induced cardiotoxicity. More studies are needed to explore the mechanisms and treatment of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Shuai Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
42
|
Dong Q, Wang J, Liu J, Zhang L, Xu Z, Kang Y, Xue P. Manganese-Based Redox Homeostasis Disruptor for Inducing Intense Ferroptosis/Apoptosis Through xCT Inhibition And Oxidative Stress Injury. Adv Healthc Mater 2023; 12:e2301453. [PMID: 37531240 DOI: 10.1002/adhm.202301453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Intracellular redox homeostasis plays an important role in promoting tumor progression, development and even treatment resistance. To this end, redox balance impairment may become a prospective therapeutic target of cancer. Herein, a manganese-based homeostasis modulator (MHS) is developed for inducing severe reactive oxygen species accumulation and glutathione (GSH) deprivation, where such redox dyshomeostasis brings about dramatic ferroptosis/apoptosis. Tumor-specific degradation of manganese oxide nanocarriers contributes to hypoxia alleviation and loaded cargo release, resulting in apoptosis by augmented sonodynamic therapy and chemodynamic therapy. On the other hand, regional oxygenation significantly downregulates the expression of activating transcription factor 4, which can synergize with the released sulfasalazine to inhibit the downstream cystine antiporter xCT. Biosynthesis of GSH is sufficiently interrupted by the xCT suppression, leading to the reduction of glutathione peroxidase 4 (GPx4) level. The resultant excessive lipid peroxides promote intense ferroptosis to motivate cell death. On this basis, splendid treatment outcome by MHS is substantiated both in vitro and in vivo, thanks to the synergy of antitumor immunity elicitation. Taken together, this paradigm provides an insightful strategy to evoke drastic ferroptosis/apoptosis toward therapeutics and may also expand the eligibility of manganese-derived nanoagents for medical applications.
Collapse
Affiliation(s)
- Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
43
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
44
|
Tao Y, Yan C, Wu Y, Li D, Li J, Xie Y, Cheng Y, Xu Y, Yang K, Zhu W, Guo Z. Uniting Dual‐Modal MRI/Chemiluminescence Nanotheranostics: Spatially and Sensitively Self‐Reporting Photodynamic Therapy in Oral Cancer. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 01/22/2025]
Abstract
AbstractUnpredictable in vivo therapeutic feedback of reactive oxygen species (ROS) efficiency is the major bottleneck of photodynamic therapy (PDT). Herein, novel PDT‐based nanotheranostics Pa–Mn&CH‐A@P are elaborately constructed for in vivo tracking biodistribution and in situ self‐reporting PDT, which innovatively unites magnetic resonance imaging (MRI) and chemiluminescence (CL) signals. Taking advantages of the versatility of lanthanide coordination chemistry and flash nanoprecipitation (FNP) technology, photosensitizers, MRI, and CL agents are unprecedently integrated within a stable and uniform nanotheranostic. Specifically, MRI signal offers detailed dose distribution of nanotheranostics with high‐spatial resolution, and CL signal timely performs in situ evaluation of ROS generation with high sensitivity. This dual‐modal MRI/CL nanotheranostic makes a breakthrough in high fidelity feedback for oral tumor, conquering the inherent unpredictable obstacles on spatially and sensitively reporting PDT.
Collapse
Affiliation(s)
- Yining Tao
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Chenxu Yan
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yue Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Juan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yuchen Xie
- Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Yingsheng Cheng
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kai Yang
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Wei‐Hong Zhu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Zhiqian Guo
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| |
Collapse
|
45
|
Ren X, Su D, Shi D, Xiang X. The improving strategies and applications of nanotechnology-based drugs in hepatocellular carcinoma treatment. Front Bioeng Biotechnol 2023; 11:1272850. [PMID: 37811369 PMCID: PMC10557528 DOI: 10.3389/fbioe.2023.1272850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-related death worldwide. Conventional treatments for HCC include drugs, radiation, and surgery. Despite the unremitting efforts of researchers, the curative effect of HCC has been greatly improved, but because HCC is often found in the middle and late stages, the curative effect is still not satisfactory, and the 5-year survival rate is still low. Nanomedicine is a potential subject, which has been applied to the treatment of HCC and has achieved promising results. Here, we summarized the factors affecting the efficacy of drugs in HCC treatment and the strategies for improving the efficacy of nanotechnology-based drugs in HCC, reviewed the recent applications' progress on nanotechnology-based drugs in HCC treatment, and discussed the future perspectives and challenges of nanotechnology-based drugs in HCC treatment.
Collapse
Affiliation(s)
- Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- The Ninth Hospital of Xi’an, Xi’an, Shaanxi, China
| | - Xiaohong Xiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Liu J, Wen C, Hu M, Leng N, Lin XC. Mechanism underlying the effect of MnO 2 nanosheets for A549 cell chemodynamic therapy. Mikrochim Acta 2023; 190:381. [PMID: 37697041 DOI: 10.1007/s00604-023-05974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
MnO2 nanosheets (MnO2NSs) were synthesized by one-step method, and MnO2NSs were applied to A549 cell chemodynamic Therapy (CDT). The cytotoxicity, redox ability, and reactive oxygen species production of MnO2NSs have been investigated, and differences in cell metabolism during CDT were determined using liquid chromatography-mass spectrometry (LC-MS/MS). In addition, the metabolites of A549 lung cancer cells affected by MnO2NSs treatment are identified; metabolite differences were identified by PCA, PLS-DA, orthogonal PLS-DA, and other methods; and these differences were analyzed using non-targeted metabolomics. We found that A549 cells which were treated by MnO2NSs have 17 different metabolites and 9 metabolic pathways that varied markedly. Owing to their unique composition, structure, and physicochemical properties, MnO2NSs and their composites have become a favored type of nanomaterial used for CDT in cancer therapy. This work provides insights into the mechanism underlying the effects of MnO2NSs on the tumor microenvironment of A549 lung cancer cells, effectively making up for the deficiency of the study on cellular mechanism of CDT-induced apoptosis of cancer cells. It could aid the development of cancer CDT treatment strategies and help improve the use of nanomaterials in the clinical field.
Collapse
Affiliation(s)
- Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Nan Leng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.
| |
Collapse
|
47
|
Sabaghi V, Rashidi-Ranjbar P, Davar F, Sharif-Paghaleh E. Development of lanthanide-based “all in one” theranostic nanoplatforms for TME-reinforced T1-weighted MRI/CT bimodal imaging. J Drug Deliv Sci Technol 2023; 87:104703. [DOI: 10.1016/j.jddst.2023.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
48
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5193-5203. [PMID: 37621595 PMCID: PMC10445077 DOI: 10.12998/wjcc.v11.i22.5193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
49
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5187-5197. [DOI: 10.12998/wjcc.v11.i22.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
50
|
Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front Immunol 2023; 14:1230893. [PMID: 37600822 PMCID: PMC10435760 DOI: 10.3389/fimmu.2023.1230893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has developed rapidly in solid tumors, especially in the areas of blocking inhibitory immune checkpoints and adoptive T-cell transfer for immune regulation. Many patients benefit from immunotherapy. However, the response rate of immunotherapy in the overall population are relatively low, which depends on the characteristics of the tumor and individualized patient differences. Moreover, the occurrence of drug resistance and adverse reactions largely limit the development of immunotherapy. Recently, the emergence of nanodrug delivery systems (NDDS) seems to improve the efficacy of immunotherapy by encapsulating drug carriers in nanoparticles to precisely reach the tumor site with high stability and biocompatibility, prolonging the drug cycle of action and greatly reducing the occurrence of toxic side effects. In this paper, we mainly review the advantages of NDDS and the mechanisms that enhance conventional immunotherapy in solid tumors, and summarize the recent advances in NDDS-based therapeutic strategies, which will provide valuable ideas for the development of novel tumor immunotherapy regimen.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daidi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Wang
- Academy of Medical Science, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|