1
|
Nakamura N, Tabata R, Tabata C. Regorafenib exerts an inhibitory effect on the proliferation of human lung fibroblasts by reducing the production of several cytokines in vitro study. Tissue Cell 2025; 95:102876. [PMID: 40157223 DOI: 10.1016/j.tice.2025.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Pulmonary fibrosis is a disease that leads to respiratory failure and death. There has been little progress in therapeutic strategies for pulmonary fibrosis. There have been several reports on the cytokines associated with pulmonary fibrosis, including IL-6 and TGF-β1. Angiogenesis is one of the most important phenomena in the pathogenesis of pulmonary fibrosis. Previously, we reported the preventive effects of thalidomide against pulmonary fibrosis via the inhibition of neovascularization by angiogenic factors such as VEGF. Regorafenib is a multikinase inhibitor, which inhibits tyrosine kinase receptors such as VEGFR1-3 and TIE2. In the clinical setting, regorafenib has been widely used for anti-cancer therapy for metastatic colorectal cancer. In this study, we examined the preventive effects of regorafenib against pulmonary fibrosis. METHODS We investigated whether regorafenib had an inhibitory effect on the proliferation, viability, and production of several cytokines in lung fibroblasts. RESULTS We demonstrated an inhibitory effect of regorafenib on the proliferation and viability of lung fibroblasts. Moreover, regorafenib reduced the production of several cytokines associated with the pathogenesis of pulmonary fibrosis, including IL-6, VEGF and TGF- β1, and collagen synthesis from lung fibroblasts. CONCLUSIONS These data suggest that regorafenib may have potential clinical applications in the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- Natsuki Nakamura
- Graduate School of Pharmacy, Hyogo Medical University, Hyogo, Japan
| | - Rie Tabata
- Department of Hematology, Osakafu Saiseikai NOE Hospital, Osaka, Japan
| | - Chiharu Tabata
- Graduate School of Pharmacy, Hyogo Medical University, Hyogo, Japan; Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo, Japan.
| |
Collapse
|
2
|
Bai G, Zhao S, Zhao M, Chen L, Chen W. The phosphatase CTDSPL2 promotes proliferation, invasion, metastasis and regorafenib resistance in osteosarcoma. J Bone Oncol 2025; 52:100684. [PMID: 40352265 PMCID: PMC12063119 DOI: 10.1016/j.jbo.2025.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Osteosarcoma is the most common bone malignancy in children and adolescents. Patients with metastatic and recurrent osteosarcoma have poor prognosis. Regorafenib is a multi-kinase inhibitor recommended as a complement to standard chemotherapy in the treatment of advanced osteosarcoma. The mechanisms associated with regorafenib resistance remains unclear. In this study we performed transcriptomics, proteomics and phosphorylated proteomics using regorafenib-treated osteosarcoma cell lines (MG-63, HOS-MNNG for transcriptomics, HOS-MNNG for proteomics and phosphorylated proteomics). After comprehensive multiomics and verification analyses of differentially expressed genes, essential genes for the malignancy of osteosarcoma cells were identified. The effects of essential genes on the proliferation, invasion, and migration of osteosarcoma were determined. The study also evaluated their role in the apoptosis of osteosarcoma cells. The up-regulation of essential genes was determined by immunohistochemistry assays. Using comprehensive multiomics and verification analyses we found that the CTDSPL2 gene might play a role in the malignancy and Regorafenib resistance in osteosarcoma. In vitro and clinical specimen assays demonstrated that CTDSPL2 promotes the proliferation, invasion and metastasis of osteosarcoma cells, while inhibiting tumor cell apoptosis. In conclusion CTDSPL2 was identified as an essential gene for survival of osteosarcoma cells. Knockdown of CTDSPL2 expression significantly inhibited the proliferation, invasion, and metastasis of osteosarcoma cells, suggesting that it is involved in the formation and development of osteosarcoma tumors. Our data showed that CTDSPL2 is a potential therapeutic target for patients with osteosarcoma.
Collapse
Affiliation(s)
- Guannan Bai
- Department of Orthopedics, Children’s Hospital, Zhejiang University School of Medicine, National Children’s Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang Province 310052, China
| | - Shaobo Zhao
- Department of Orthopedics, Children’s Hospital, Zhejiang University School of Medicine, National Children’s Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang Province 310052, China
| | - Manli Zhao
- Department of Pathology, Children’s Hospital, Zhejiang University School of Medicine, National Children’s Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang Province 310052, China
| | - Limiao Chen
- Children’s Hospital, Zhejiang University School of Medicine, National Children’s Regional Medical Center, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, Zhejiang Province 310052, China
| | - Wenhao Chen
- Department of Orthopedics, Children’s Hospital, Zhejiang University School of Medicine, National Children’s Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang Province 310052, China
| |
Collapse
|
3
|
Yip D, Zalcberg J, Blay JY, Eriksson M, Espinoza D, Price T, Marreaud S, Italiano A, Steeghs N, Boye K, Underhill C, Gebski V, Simes J, Gelderblom H, Joensuu H. Imatinib alternating with regorafenib compared to imatinib alone for the first-line treatment of advanced gastrointestinal stromal tumor: The AGITG ALT-GIST intergroup randomized phase II trial. Br J Cancer 2025; 132:897-904. [PMID: 40133509 DOI: 10.1038/s41416-025-02983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND To determine if an alternating regimen of the tyrosine kinase inhibitors imatinib and regorafenib improved outcomes in patients with advanced gastrointestinal stromal tumors. METHODS ALTGIST (NCT02365441) was a randomized phase II study of standard treatment of imatinib (Arm A) compared with an experimental alternating regimen of imatinib and regorafenib (Arm B). Primary outcome was best objective tumor response (OTR) at nine months. RESULTS Seventy-six eligible patients (Arm A 36, Arm B 40) enrolled were evaluable. Median follow-up was 46.0 months (range 6.5-64.6). Best responses and OTR were similar at 9 months. Eighteen (50.0%) Arm A patients and twelve (30.0%) Arm B patients discontinued treatment due to progressive disease. No Arm A patients stopped protocol therapy due to unacceptable toxicity, with 12 (30.0%) stopping in Arm B. Twelve (33.2%) Arm A patients and 12 (30.0%) Arm B patients experienced at least one serious adverse event, mostly grade 3. Secondary endpoints of PFS at 1 and OS at 1 year were not statistically different. CONCLUSIONS Alternation of imatinib and regorafenib did not impact on 9 months objective response nor on the secondary objectives of PFS and OS. Patients in the alternating arm experienced more toxicity and protocol discontinuations. CLINICAL TRIAL REGISTRATION NCT02365441.
Collapse
Affiliation(s)
- Desmond Yip
- The Canberra Hospital and Australian National University, Canberra, ACT, Australia.
| | - John Zalcberg
- School of Public Health, Monash University, Melbourne, VIC, Australia
| | | | | | - David Espinoza
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Timothy Price
- Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Sandrine Marreaud
- European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | | | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Craig Underhill
- Albury-Wodonga Regional Cancer Centre, Albury-Wodonga, NSW, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Hans Gelderblom
- Leiden University Medical Centre, Department of Medical Oncology, Leiden, The Netherlands
| | - Heikki Joensuu
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
4
|
Shamaa MM. Synergistic Targeting of Hepatocellular Carcinoma via Novel Regorafenib Combinations with Diosmin, Sulfasalazine, or Rosuvastatin. Biochem Genet 2025:10.1007/s10528-025-11141-z. [PMID: 40423912 DOI: 10.1007/s10528-025-11141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common liver cancer, has limited treatment options. The author investigated novel combinations of regorafenib (Reg) with diosmin (Dio), sulfasalazine (SZZ), or rosuvastatin (Ros) to enhance anti-HCC efficacy. Each agent potentiated Reg activity via distinct pathway modulation: Reg/Dio inhibited Akt/m-TOR and RAF/ERK; Reg/SZZ suppressed Akt/m-TOR and NF-κB; and Reg/Ros suppressed JAK/STAT3 and RAF/ERK. These findings demonstrate synergistic potential by combining Reg with drugs possessing complementary anti-inflammatory, cholesterol-lowering, or cytotoxic activities, offering promising multi-targeted therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Marium M Shamaa
- Clinical and Biological Sciences Division, Biochemistry Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| |
Collapse
|
5
|
Rethouze F, Risbourg S, Schiffler C, Chabaud S, de Courrèges A, Le Deley MC, Blay JY, Feutry F, Jimenez M, Vanseymortier M, Penel N, Duffaud F, Lebellec L. COREGO: drug-drug interaction analysis on the efficacy and safety of regorafenib in patients with a sarcoma: pooled analysis of the data from the REGOSARC and REGOBONE trials. ESMO Open 2025; 10:105117. [PMID: 40412007 DOI: 10.1016/j.esmoop.2025.105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Regorafenib, an antiangiogenic multikinase inhibitor (MKI), showed antitumour activity in the second line of treatment for sarcomas in the phase II, randomised versus placebo, multicentre clinical trials REGOSARC (NCT01900743) and REGOBONE (NCT02389244). MKIs are drugs with a narrow therapeutic index subject to drug-drug interactions. The co-medications were not included in the trials' analyses. MATERIALS AND METHODS We conducted an ancillary exploratory analysis of the two trials to evaluate the interactions between regorafenib and patients' co-medications administered at baseline in terms of efficacy [progression-free survival (PFS)] and toxicity. The efficacy analysis was stratified according to histology groups. RESULTS Overall, 289 patients were included in the efficacy analysis and 339 in the toxicity analysis. Of the entire population, 71.7% of patients had at least one co-medication (median = 2, range 0-14). Overall, we found an improvement in PFS with regorafenib versus placebo (hazard ratio 0.40, 95% confidence interval 0.30-0.53, P < 0.0001). In the multivariate model adjusted on sex, histological grade, and performance status, we did not find any significant interaction between treatment effect (regorafenib versus placebo) and the co-medications on PFS. In the safety analysis, we observed no significant interaction analysis between treatment effect (regorafenib versus placebo) and the co-medications, for all the adverse events, even when considering co-medications with treatments known to be at risk of similar toxicities, or with co-medications at risk of pharmacological overdose (like cytochrome P-450 3A4 inhibitors, organic anion-transporting polypeptide inhibitors, UDP-glucuronosyltransferase inhibitors, treatments competing on protein binding). We did not find any significant interaction between regorafenib and anti-acid drugs either in the efficacy analysis (P = 0.35) or in the toxicity analysis (P = 0.53). CONCLUSION We did not find any significant unfavourable interaction between regorafenib and patients' co-medications, from any pharmacological class (e.g. anti-acid), either in terms of efficacy or regarding the occurrence of adverse events. These results are reassuring for the safety of regorafenib administered in association with co-medications.
Collapse
Affiliation(s)
- F Rethouze
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - S Risbourg
- Methodology and Biostatistics Unit, Oscar Lambret Centre, Lille, France
| | - C Schiffler
- Department of Clinical Research and Innovation (Biostatistics unit), Centre Leon Berard, Lyon, France
| | - S Chabaud
- Department of Clinical Research and Innovation (Biostatistics unit), Centre Leon Berard, Lyon, France
| | - A de Courrèges
- Methodology and Biostatistics Unit, Oscar Lambret Centre, Lille, France
| | - M-C Le Deley
- Methodology and Biostatistics Unit, Oscar Lambret Centre, Lille, France
| | - J Y Blay
- Department of Medical Oncology, University Claude Bernard Lyon I, Lyon, France; Department of Medicine, Léon Bérard Center, Unicancer, Lyon, France
| | - F Feutry
- Pharmacy Department, Centre Oscar Lambret, Lille, France
| | - M Jimenez
- Precision Medicine Group, UNICANCER, Paris, France
| | - M Vanseymortier
- Clinical Research and Innovation Department, Centre Oscar Lambret, Lille, France
| | - N Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France; ULR 2694 - Metrics: Evaluation des technologies de santé et des pratiques médicales, CHU of Lille, University of Lille, Lille, France
| | - F Duffaud
- Department of Oncology, La Timone Hospital, Aix-Marseille University, Marseille, France
| | - L Lebellec
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France.
| |
Collapse
|
6
|
Haeusser LA, Becker H, Kuhlburger L, Zago M, Walter B, Tsiami F, Erdmann S, Trampert J, Surender S, Stahl A, Templin M, Wegner E, Schmidt T, Schmees C, Casadei N, Sevenich L, Claassen M, Nahnsen S, Beck S, Merk DJ, Tabatabai G. Genome-wide CRISPR-Cas9 screens identify BCL family members as modulators of response to regorafenib in experimental glioma. Neuro Oncol 2025; 27:916-931. [PMID: 39756423 PMCID: PMC12083232 DOI: 10.1093/neuonc/noae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Registered systemic treatment options for glioblastoma patients are limited. The phase II REGOMA trial suggested an improvement of median overall survival in progressive glioblastoma by the multi-tyrosine kinase inhibitor regorafenib. This has not been confirmed by GBM AGILE. So far, regorafenib has been administered as monotherapy or as an addition to standard of care in newly diagnosed glioblastoma. Rational combination therapies involving regorafenib might be a reasonable strategy. Here, we aimed at identifying functionally instructed combination therapies involving regorafenib. METHODS We applied a genome-wide CRISPR-Cas9-based functional genomics target discovery approach using activation and knockout screens followed by genetic, pharmacological, functional validations. Regorafenib-induced molecular alterations were assessed by RNA sequencing and DigiWest. We investigated selected functionally instructed combination therapies in three orthotopic glioma mouse models in vivo (syngeneic SMA560/VM/Dk model and two xenograft models) and performed immunohistochemistry of post-treatment brains. RESULTS We identified potential modifiers of regorafenib response, including BCL2, BCL2L1, ITGB3, FOXC1, SERAC1, ARAF, and PLCE1. The combination of regorafenib with Bcl-2/Bcl-xL inhibition was superior to both monotherapies alone in vitro, ex vivo, and in vivo. We identified regorafenib-induced regulations of the Bcl-2 downstream target chemokine receptor 1 (CCR1) as one potential underlying molecular mediator. Furthermore, regorafenib led to changes in the myeloid compartment of the glioma-associated microenvironment. CONCLUSIONS This preclinical study uses a functional genomics-based target discovery approach with subsequent validations involving regorafenib. It serves as a biological rationale for clinical translation. Particularly, an investigation of the combination of regorafenib plus navitoclax within a clinical trial is warranted.
Collapse
Affiliation(s)
- Lara Annina Haeusser
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hannes Becker
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Laurence Kuhlburger
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marcello Zago
- Institute of Biomedical Informatics, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bianca Walter
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Foteini Tsiami
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sarah Erdmann
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jil Trampert
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Surender Surender
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aaron Stahl
- NMI, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Markus Templin
- NMI, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Eileen Wegner
- NMI, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Tobias Schmidt
- NMI, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Christian Schmees
- NMI, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Lisa Sevenich
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Claassen
- Institute of Biomedical Informatics, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- M3 Research Center for Malignome, Metabolome and Microbiome, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
- Quantitative Biology Center, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susanne Beck
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Josef Merk
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, Tübingen, Germany
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Kuo YH, Kuo CN, Chang CL, Ko Y. Cumulative Dose of Regorafenib in Patients With Metastatic Colorectal Cancer: A Multicenter Cohort Study. J Gastroenterol Hepatol 2025. [PMID: 40356543 DOI: 10.1111/jgh.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE This study aimed to evaluate the prognostic effect of the cumulative dose (CD) of regorafenib on survival in patients with metastatic colorectal cancer (mCRC). MATERIALS AND METHODS This retrospective study utilized the Taipei Medical University Clinical Research Database for analysis. Patients aged ≥ 20 years with mCRC who were prescribed regorafenib between January 2014 and December 2021 were identified and then divided into low- and high-CD groups (≤ 4200 mg vs. > 4200 mg). Overall survival (OS), time-to-treatment discontinuation (TTD), and the incidence of five common adverse events were compared between groups. In addition, natural cubic splines were employed to examine the non-linear relationship between cumulative doses and survival in the multivariate Cox regression model. RESULTS A total of 259 patients were enrolled, with 130 in the low-CD group and 129 in the high-CD group; the median OS was 4.6 months and 9.8 months, respectively (p < 0.01). The median TTD was 51.5 days for the low-CD group and 72.0 days for the high-CD group (p < 0.01). No significant difference in drug-related adverse events was observed between groups. In the multivariate Cox analysis, a CD ≤ 4200 mg was a negative prognostic factor (hazard ratio 1.41 [95% confidence interval 1.08-1.84], p = 0.01). In addition, patients on a dose range between 4368 and 5376 mg exhibited minimal mortality risk. CONCLUSION The cumulative doses of regorafenib > 4200 mg were associated with improved survival. The suggested optimal dose range serves as a reference for dose modification in clinical practice.
Collapse
Affiliation(s)
- Yu-Hsuan Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Nan Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lun Chang
- Department of Hemato-Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu Ko
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Research Center for Pharmacoeconomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Samalin E, Evesque L, Turpin A, De La Fouchardiere C, Khemissa-Akouz F, Bouché O, Muller M, Dermeche S, Botsen D, Tougeron D, Zaanan A, Ben Abdelghani M, Guardiola E, Dubreuil O, Le Brun Ly V, Hennequin A, Watson S, Sefrioui D, Lecomte T, De Sousa Carvalho N, Hulin A, Crapez E, Castan F, Senellart H. Regorafenib combined with irinotecan as second-line treatment in metastatic gastro-oesophageal adenocarcinomas: results of PRODIGE 58-UCGI35-REGIRI Unicancer randomised phase II study. ESMO Open 2025; 10:105096. [PMID: 40359707 DOI: 10.1016/j.esmoop.2025.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Several options have been evaluated in metastatic gastro-oesophageal adenocarcinomas (mGA) after failure of first-line fluoropyrimidine and platinum-based chemotherapy. Regorafenib (REGO), a receptor tyrosine kinase inhibitor, has shown promising activity as second- and third-line treatment of mGA. PATIENTS AND METHODS PRODIGE58-UCGI35-REGIRI was a comparative, prospective, phase II, open-label study evaluating the safety and efficacy of REGO [160 mg/day on day 2 (D2)-D8/D16-D22] plus irinotecan (IRI: 180 mg/m2 intravenously on D1/D15 every 28 days) versus IRI alone in patients with mGA (gastric or gastro-oesophageal junction/tumour Siewert II and III) after failure of first-line fluoropyrimidine and platinum-based chemotherapy. Primary endpoint was overall survival (OS). RESULTS Forty-four patients were included in the REGIRI arm and 45 in the IRI arm, primary tumours (67.4%) were mainly localised in the gastro-oesophageal junction, and 60.7% patients had synchronous metastases. With a median follow-up of 19.4 months [95% confidence interval (CI) 16.8-29.9 months], median OS was 6.3 months (95% CI 5.2-7.1 months) versus 8.2 months (95% CI 5.2-9.7 months) in the REGIRI versus IRI arms (hazard ratio 1.11, 95% CI 0.70-1.74, P = 0.66). Median progression-free survival was 2.2 months versus 1.9 months, objective response rate 15.9% versus 13.3%, and disease control rate 45.5% versus 33.3%. Grade 3 treatment-related adverse events (AEs) were reported for 52.3% of patients in the REGIRI arm versus 23.3% in the IRI arm with four toxic deaths (two homozygous UGT1A1∗28 patients died from sepsis and thrombotic microangiopathy, and two heterozygous UGT1A1∗1/∗28 patients from diarrhoea and pulmonary embolism), versus one (UGT1A1∗1 wild-type patient died from primary tumour perforation). Main grade ≥3 AEs were diarrhoea (18.2% versus 7.0%), hypertension (9.1% versus 0.0%), asthenia (6.8% versus 0.0%), febrile neutropenia (6.8% versus 0.0%), neutropenia (6.8% versus 11.6%), and weight decrease (6.8% versus 0.0%). CONCLUSIONS The study was stopped early because of limited efficacy and increased toxicities in the REGIRI arm, possibly due to drug interactions. No optimal sub-population that could benefit from a REGIRI regimen exposure was identified.
Collapse
Affiliation(s)
- E Samalin
- ICM, Department of Medical Oncology, Université de Montpellier, Montpellier, France.
| | - L Evesque
- Centre Antoine Lacassagne, Nice, France
| | - A Turpin
- Department of Medical Oncology, CHRU Lille, Lille, France; CNRS INSERM UMR9020-U1277, CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Université de Lille, Lille, France
| | | | | | | | - M Muller
- CHRU de Nancy, Vandoeuvre-Les-Nancy, France
| | - S Dermeche
- Institut Paoli Calmettes, Marseille, France
| | - D Botsen
- Department of Medical Oncology, Institut Godinot, Reims, France
| | | | - A Zaanan
- Hôpital Européen George Pompidou, Paris, France
| | | | - E Guardiola
- Centre de Cancérologie du Grand Montpellier, Montpellier, France
| | | | | | - A Hennequin
- Centre Georges François Leclerc, Dijon, France
| | | | | | - T Lecomte
- CHRU Tours-Hôpital Trousseau, Chambray-lès-Tours, France
| | | | - A Hulin
- APHP, GH H Mondor, Créteil, France
| | - E Crapez
- ICM, Translational Research Unit, Montpellier, France
| | - F Castan
- ICM, Department of Medical Oncology, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
9
|
Wang Z, Sheng J, Zhang X. Characterization of adverse reactions to four common targeted drugs for hepatocellular carcinoma in WHO-VigiAccess. Sci Rep 2025; 15:16188. [PMID: 40346128 PMCID: PMC12064674 DOI: 10.1038/s41598-025-00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality, with limited therapeutic options available for advanced stages of the disease. Treatment strategies for HCC are multimodal and largely depend on the disease stage, liver function, and individual patient factors. Based on the WHO's VigiAccess database, this study employed a retrospective descriptive analysis of adverse drug reaction (ADR) reports associated with four widely used tyrosine kinase inhibitors (TKIs) for HCC, including Sorafenib, Cabozantinib, Lenvatinib, and Regorafenib. The analysis included demographic data such as patient age, gender, and geographical distribution, alongside clinical information on the systems and symptoms associated with ADR reports. A total of 112,975 ADR reports related to the four TKI-targeted drugs were identified. Sorafenib exhibited the highest ADR reporting rate (30.7%), followed by Cabozantinib (29.4%), Lenvatinib (24.5%), and Regorafenib (15.4%). The odds ratio method was employed to assess the statistical correlation between the use of these targeted drugs and the occurrence of ADRs. Notably, Sorafenib (3,746) and Regorafenib (2,496) served to have the highest number of reported palmar-plantar erythrodysaesthesia syndrome. Chi-square analyses suggested that ADRs related to Lenvatinib were reported significantly more frequently in female patients compared to their male counterparts. The findings of this study can enhance public awareness of drug-related adverse events and provide an evidence-based foundation for prioritizing the management of ADRs associated with TKIs in second-line HCC therapy.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of the Hepatobiliary and Pancreatic Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Jiyao Sheng
- Department of the Hepatobiliary and Pancreatic Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| | - Xuewen Zhang
- Department of the Hepatobiliary and Pancreatic Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
10
|
Zhu S, Fu K, Li S, Yang C, Pan C, Wang X, Wang F, Yu X, To KKW, Fu L. Cardiotoxicity of small-molecule kinase inhibitors in cancer therapy. Exp Hematol Oncol 2025; 14:68. [PMID: 40346640 PMCID: PMC12063284 DOI: 10.1186/s40164-025-00660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Recent advances in precision oncology have enabled many specific cancer patient populations to respond well and achieve longer survival with small-molecule kinase inhibitors, which have become a new therapeutic strategy for tumors. Since 2001, the Food and Drug Administration has approved 108 and 63 new anticancer drugs for treating solid tumors and hematological malignancies, respectively, 89 of which belong to the large group of small-molecule kinase inhibitors (SMKIs). Compared to conventional chemotherapeutic agents such as cyclophosphamide, doxorubicin, and 5-FU, SMKIs offer better efficacy with fewer toxic side effects. Nevertheless, with the development of more novel SMKIs and their wider clinical application to a larger population of cancer patients, variable degrees of cardiotoxic adverse events have emerged for some SMKIs during cancer therapy. This review comprehensively summarizes the most updated progress in the cardiotoxicity of SMKIs in cancer therapy and discusses the new findings and mechanisms, which will provide emerging strategies for the prevention of cardiotoxicity caused by small molecule targeted drugs and the design of the next generation of low cardiotoxicity targeted drugs.
Collapse
Affiliation(s)
- Shuangli Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Sijia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangdong, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Yu J, Li Y, Yang Y, Guo H, Chen Y, Yi P. PD-1 inhibitors improve the efficacy of tyrosine kinase inhibitors combined with transcatheter arterial chemoembolization in advanced hepatocellular carcinoma: a meta-analysis and trial sequential analysis. Scand J Gastroenterol 2025; 60:472-484. [PMID: 40152031 DOI: 10.1080/00365521.2025.2479193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND This meta-analysis and trial sequential analysis (TSA) aimed to evaluate the efficacy and safety of triple therapy with tyrosine kinase inhibitors (TKIs) combined with transcatheter arterial chemoembolization (TACE) plus programmed death 1 (PD-1) inhibitors (T-T-P) and dual therapy with TKIs combined with TACE (T-T) for the treatment of advanced unresectable hepatocellular carcinoma (uHCC). METHODS Literature related to the efficacy of TKIs combined with TACE plus PD-1 inhibitors in uHCC was searched using the Embase, PubMed, and Cocrane libraries. TSA was used to reduce false positive results due to random error. RESULTS Seventeen articles were included in this meta-analysis, including 2,561 patients. In the T-T-P group, OS [HR 0.45, 95% confidence interval (CI) 0.39-0.52; p = 0.000], PFS [HR 0.43, 95% CI 0.38 - 0.48; p = 0.000], were significantly prolonged compared to those in the T-T group; ORR (RR 1.59 [95% CI 1.39-1.81]; p = 0.000) and DCR (RR 1.26 [95% CI 1.15-1.37]; p = 0.000) were significantly higher. TSA analysis showed early results without further testing. Prognostic factor analysis demonstrated that portal vein tumor thrombus (PVTT) and extrahepatic metastasis were common independent risk factors for OS and PFS. Regarding grade 3/4 adverse events results showed no statistically significant differences in any of them. CONCLUSIONS Compared with T-T treatment group, the T-T-P treatment group exhibited a notable improvement in OS and PFS, particularly in cases of PVTT and extrahepatic metastasis. Furthermore, it can markedly enhance the ORR and DCR in patients with uHCC.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yong Li
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yuting Yang
- Department of Educational Technology, Institute of Education, China West Normal University, Nanchong, Sichuan, P. R. China
| | - Hao Guo
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Yimiao Chen
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| | - Pengsheng Yi
- Department of hepato-biliary-pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P. R. China
| |
Collapse
|
12
|
Yu C, Jiang X, Wei S, Zhou C, Zhou C, Wei Y, Su Z. Exploration of research hotspots and evolutionary trends in osteosarcoma pulmonary metastasis: A comprehensive bibliometric analysis spanning five decades. J Orthop 2025; 63:181-195. [PMID: 40291605 PMCID: PMC12018099 DOI: 10.1016/j.jor.2025.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Objective Pulmonary metastasis frequently complicates osteosarcoma, making the investigation of its mechanisms and therapeutic strategies a focal point in both clinical medicine and biosciences. The explosive growth of the relevant literature has still not been systematically sorted out and summarized. Methods Bibliometric methods were used in this study, Literature was retrieved from the Web of Science Core Collection, SCOPUS, and PubMed up until July 1, 2024. Bibliometric indicators were analyzed and research trends and hotspots in the field visualized using the Bibliometrix package, VOSviewer 1.6.19 and Citespace 6.3.R1 software. Results A total of 1148 publications were reviewed, revealing that over the past five decades, the cumulative number of publications on pulmonary metastasis of osteosarcoma has gradually increased. China leads in the number of published papers, while the United States exhibits the most collaborative relationships with other countries. Italy is noted for the highest quality of research. Sun Yat-sen University is the most prolific institution, and the most productive author is Eugenie S. Kleinerman from the University of Texas MD Anderson Cancer Center. "Cancer" is the journal with the most publications, and Zhou Yan's 2020 paper received the highest local citations. Keywords such as "angiogenesis," "tumor microenvironment," and "surgery" appeared frequently, suggesting these topics are current research hotspots. Conclusion "Immunotherapy", "survival", "chemotherapy", "prognosis", "biomarkers", "metastasectomy", "microRNA", "angiogenesis", "tumor microenvironment", and "surgery" define key research areas. Current hot topics include tumor-associated macrophages and the tumor microenvironment, which may hold the key to future therapeutic breakthroughs.
Collapse
Affiliation(s)
- Chaojie Yu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaohua Jiang
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shutian Wei
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chengxing Zhou
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chengyu Zhou
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yanshan Wei
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhiping Su
- Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Eissa IH, Elwan A, Al-Qadhi MA, Husein DZ, Amin FG, Alsfouk AA, Elkaeed EB, Elkady H, Metwaly AM. Targeting VEGFR-2 in breast cancer: synthesis and in silico and in vitro characterization of quinoxaline-based inhibitors. RSC Adv 2025; 15:12896-12916. [PMID: 40271404 PMCID: PMC12013614 DOI: 10.1039/d5ra00526d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025] Open
Abstract
A novel series of quinoxaline derivatives was designed and synthesized to target VEGFR-2, a receptor critical in cancer progression, with a focus on favorable pharmacophoric features. Among these derivatives, compound 11d emerged as a promising candidate, exhibiting potent cytotoxicity against MDA-MB-231 and MCF-7 cancer cell lines, with IC50 values of 21.68 μM and 35.81 μM, respectively, while displaying significantly reduced toxicity in normal cell lines WI-38 and WISH (IC50 values of 82.46 μM and 75.27 μM). Compared to standard treatments doxorubicin and sorafenib, compound 11d demonstrated a favorable therapeutic window. Inhibition assays showed that 11d inhibits VEGFR-2 with an IC50 of 62.26 nM ± 2.77, comparable to sorafenib. Mechanistically, treatment with 11d upregulated pro-apoptotic markers BAX, caspase-8, and caspase-9, while downregulating the anti-apoptotic marker Bcl-2, resulting in a significant BAX/Bcl-2 ratio increase (16.11). A wound healing assay confirmed 11d's anti-migratory effects, limiting wound closure in MDA-MB-231 cells to 27.51% compared to untreated cells. Additionally, flow cytometry revealed that 11d induced both early (46.43%) and late apoptosis (31.49%) in MDA-MB-231 cells, alongside G1 phase cell cycle arrest, reducing S and G2/M phase progression. Molecular docking and dynamics simulations over 200 ns demonstrated stable binding of compound 11d to VEGFR-2, with docking scores superior and comparable to sorafenib. Density Functional Theory (DFT) calculations underscored 11d's stability and reactivity, while in silico ADMET analysis predicted a favorable safety profile over sorafenib, particularly with respect to carcinogenic and chronic toxicity risks. These findings indicate that quinoxaline derivative 11d holds potential as a selective and effective VEGFR-2 inhibitor with promising antitumor and anti-metastatic properties, warranting further investigation.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University 18084 Sana'a Yemen
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Fatma G Amin
- Physics Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University P.O. Box 71666 Riyadh 11597 Saudi Arabia
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
14
|
Assi A, Farhat M, Mohanna R, Hachem MCR, Zalaquett Z, Aoun M, Farraj SA, Daher M, Sebaaly A, Kourie HR. Tyrosine kinase inhibitors in Ewing's sarcoma: a systematic review. BMC Cancer 2025; 25:735. [PMID: 40251562 PMCID: PMC12008964 DOI: 10.1186/s12885-025-14130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025] Open
Abstract
Ewing's sarcoma (ES) is a highly aggressive primary bone malignancy that primarily affects children and adolescents. Several tyrosine kinase receptors (RTKs) have been found to be overexpressed in ES samples, and it was demonstrated that some play significant roles in driving the malignant phenotype of ES. Specifically, ES with insulin-like growth factor 1 (IGF1R) or vascular endothelial growth factor (VEGFR) overexpression were correlated with more aggressive ES and worse outcomes. Other RTKs that were determined to be overexpressed in ES include platelet-derived growth factor receptor, stem cell factor receptor, and hepatocyte growth factor. Overexpression of these molecules suggests their possible tumor-driving role, making them potential targets for intervention. Various tyrosine kinase inhibitors (TKIs), including apatinib, anlotinib, and cabozantinib have shown clinical promise in patients with recurrent ES who have progressed on previous lines of therapy. The findings reported in this review emphasize the importance of assessing IGF1R-focused inhibitors and combinational therapeutic regimens in future research. Furthermore, biomarkers predictive of response are necessary to improve patient outcomes. In order to optimize ES care, considerations for patient eligibility on the basis of positivity for biomarkers predictive of response, and the inclusion of quality-of-life evaluations in studies must be addressed.
Collapse
Affiliation(s)
- Ahmad Assi
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon.
| | - Mohamad Farhat
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Rami Mohanna
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | | | - Ziad Zalaquett
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Marven Aoun
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon
| | - Sami Abi Farraj
- Hematology-Oncology Department, Hotel Dieu de France, Beirut, Lebanon
| | - Mohammad Daher
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon.
- Orthopedics Department, Brown University, Providence, RI, USA.
| | - Amer Sebaaly
- Orthopedics Department, Hotel Dieu de France, Beirut, Lebanon.
| | | |
Collapse
|
15
|
Nahm WJ, Falanga V. The Adverse Impact of Tyrosine Kinase Inhibitors on Wound Healing and Repair. Int Wound J 2025; 22:e70513. [PMID: 40251464 PMCID: PMC12008022 DOI: 10.1111/iwj.70513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) can treat various cancers, primarily through their antiangiogenic effects. However, as angiogenesis is crucial for successful wound healing, TKIs may adversely impact wound repair. This review analysed all 63 FDA-approved TKIs and identified evidence for wound healing and repair implications in 24 agents. The primary mechanism contributing to impaired wound healing appears to be the inhibition of vascular endothelial growth factor receptors, with secondary targets, such as epidermal growth factor receptors and platelet-derived growth factor receptors, potentially playing a role. Information from safety package inserts, preclinical studies, case reports and clinical trials suggests that these TKIs can cause delayed or impaired wound healing. The safety information generally recommends discontinuing treatment for at least one to 2 weeks before elective surgery and resuming treatment only after adequate wound healing has occurred. Neoadjuvant therapy with TKIs may be feasible if sufficient time is allowed between the cessation of the TKI and the onset of surgery. As the use of TKIs continues to increase, healthcare professionals should be aware of their potential impact on wound healing and take appropriate precautions to minimise the risk of wound-related complications.
Collapse
Affiliation(s)
- William J. Nahm
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Vincent Falanga
- Department of DermatologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biochemistry & Cell BiologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
16
|
Elgammal WE, Elkady H, Dahab MA, Mahdy HA, Hagras M, Nofal A, Alsfouk BA, Elkaeed EB, Eissa IH, Metwaly AM. Design and synthesis of thiadiazoles as anticancer, apoptotic, and VEGFR-2 inhibitors. Future Med Chem 2025; 17:915-927. [PMID: 40197130 DOI: 10.1080/17568919.2025.2485863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Vascular endothelial growth factor receptor (VEGFR-2) inhibitors are critical in cancer therapy due to their role in suppressing tumor angiogenesis. Herein, we report a new series of thiadiazole-based derivatives as potential VEGFR-2 inhibitors with promising anticancer activity. METHODS The synthesized compounds were evaluated for anti-proliferative activity against human cancer cell lines (HCT-116, MCF-7, and HepG-2), and WI-38 as normal cells. Sorafenib was used as a reference drug. VEGFR-2 inhibitory activity was determined, followed by cell cycle analysis, apoptosis assays, Q-RT-PCR analysis, and wound-healing assays. In silico molecular docking was conducted to explore binding interactions. RESULTS Among the tested compounds, 13b exhibited potent anti-proliferative activity (IC50: 3.98-11.81 µM) and strong VEGFR-2 inhibition (IC50: 41.51 nM), surpassing sorafenib (IC50: 53.32 nM). Cell cycle analysis revealed that 13b induced G2/M phase arrest in MCF-7 cells. Apoptosis levels increased from 2% to 52%, accompanied by a > 12-fold rise in the Bax/Bcl-2 ratio and activation of caspase-8/9. Additionally, 13b significantly suppressed MCF-7 cell migration, with only 5.28% wound closure. In silico studies confirmed its strong VEGFR-2 binding interactions. CONCLUSION Thiadiazole-based derivatives, particularly compound 13b, exhibit potent VEGFR-2 inhibition, anti-proliferative effects, apoptosis induction, and anti-migratory activity, supporting their potential as promising anticancer agents.
Collapse
Affiliation(s)
- Walid E Elgammal
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed Nofal
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Dedousis D, Gadra E, Van Galen J, von Mehren M. Recent Advances in Succinate Dehydrogenase Deficient Gastrointestinal Stromal Tumor Systemic Therapies. Curr Treat Options Oncol 2025; 26:227-240. [PMID: 40045030 DOI: 10.1007/s11864-025-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 04/02/2025]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumors (GIST) are the most common gastrointestinal soft tissue sarcomas, with an incidence of about 15 cases per million person-years. Approximately 15% of GIST develop due to succinate dehydrogenase deficiency (SDH-Def), and such tumors do not respond well to the tyrosine kinase inhibitors (TKIs) used to treat other GIST. Due to its indolent nature SDH-Def GIST can often be surveilled if asymptomatic. In our current practice we typically treat advanced symptomatic SDH-Def GIST with the anti-angiogenic TKIs, sequentially treating with sunitinib, regorafenib and pazopanib. This practice is based on limited data. This systematic review provides an update on new data (12/21/2021 to 9/26/2024) for systemic treatment of SDH-Def GIST, both with agents generally used to treat other GIST subtypes and with agents approved in other malignancies. Olverembatinib and rogaratinib have shown promising activity in pre-clinical models and small SDH-Def GIST cohorts. Other agents whose benefits are explored here include the immune checkpoint inhibitors (ICI) ipilimumab and nivolumab and temozolomide, whether as monotherapy or in combination with INBRX-109 (a pro-apoptotic antibody) or olaparib. Additional research into TKI agents with anti-vascular endothelial growth factor receptor (VEGFR) and anti-fibroblast growth factor receptor (FGFR) activity in this clinical setting is needed. Patients with SDH-Def will benefit more broadly from ongoing explorations of treatments with alternative mechanisms of action, especially those that exploit cellular pathways involved in SDH-Def GIST tumorigenesis.
Collapse
Affiliation(s)
- Demitrios Dedousis
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Elyse Gadra
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Joseph Van Galen
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA.
| |
Collapse
|
18
|
Zhang K, Ru J, Wang W, Xu M, Mu L, Pan J, Gu J, Zhang H, Tian J, Yang W, Jiang T, Wang K. ViT-based quantification of intratumoral heterogeneity for predicting the early recurrence in HCC following multiple ablation. Liver Int 2025; 45:e16051. [PMID: 39526488 DOI: 10.1111/liv.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES This study aimed to develop a quantitative intratumoral heterogeneity (ITH) model for assessing the risk of early recurrence (ER) in pre-treatment multimodal imaging for hepatocellular carcinoma (HCC) patients undergoing ablation treatments. METHODS This multi-centre study enrolled 633 HCC patients who underwent ultrasound-guided local ablation between January 2015 and September 2022. Among them, 422, 85, 57 and 69 patients underwent radiofrequency ablation (RFA), microwave ablation (MWA), laser ablation (LA) and irreversible electroporation (IRE) ablation, respectively. Vision-Transformer-based quantitative ITH (ViT-Q-ITH) features were extracted from the US and MRI sequences. Multivariable logistic regression analysis was used to identify variables associated with ER. A combined model integrated clinic-radiologic and ViT-Q-ITH scores. The prediction performance was evaluated concerning calibration, clinical usefulness and discrimination. RESULTS The final training cohort and internal validation cohort included 318 patients and 83 patients, respectively, who underwent RFA and MWA. The three external testing cohorts comprised of 106 patients treated with RFA, 57 patients treated with LA and 69 patients who underwent IRE ablation. The combined model showed excellent predictive performance for ER in the training (AUC: .99, 95% CI: .99-1.00), internal validation (AUC: .86, 95% CI: .78-.94), external testing (AUC: .83, 95% CI: .73-.92), LA (AUC: .84, 95% CI: .73-.95) and IRE (AUC: .82, 95% CI: .72-.93) cohorts, respectively. Decision curve analysis further affirmed the clinical utility of the combined model. CONCLUSIONS The multimodal-based model, incorporating clinic-radiologic factors and ITH features, demonstrated superior performance in predicting ER among early-stage HCC patients undergoing different ablation modalities.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Ru
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Wang
- Department of Ultrasound, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Mu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Pan
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jionghui Gu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Wei Yang
- Department of Ultrasound, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Dunn DM, Pack LJ, Munger JC. RAF1 promotes successful human cytomegalovirus replication and is regulated by AMPK-mediated phosphorylation during infection. J Virol 2025; 99:e0186624. [PMID: 39902964 PMCID: PMC11915854 DOI: 10.1128/jvi.01866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
RAF1 is a key player in growth factor receptor signaling, which has been linked to multiple viral infections, including human cytomegalovirus (HCMV) infection. Although HCMV remains latent in most individuals, it can cause acute infection in immunocompromised populations, such as transplant recipients, neonates, and cancer patients. Current treatments are suboptimal, highlighting the need for novel therapies. Multiple points in the growth factor signaling pathway are important for HCMV infection, but the relationship between HCMV and RAF1, a component of the mitogen-activated protein kinase (MAPK) cascade, is not well understood. The AMP-activated protein kinase (AMPK) is a known regulator of RAF1, and AMPK activity is induced by HCMV infection, which is important for productive HCMV replication. Our data indicate that HCMV infection induces AMPK-specific changes in RAF1 protein phosphorylation, including increasing phosphorylation at RAF1-Ser621, a known AMPK phospho-site, which results in increased binding to the 14-3-3 scaffolding protein, an important aspect of RAF1 protein activation. Inhibition of RAF1, either pharmacologically or via shRNA or CRISPR-mediated targeting, inhibits viral replication and spread in both fibroblasts and epithelial cells. Collectively, our data indicate that HCMV infection and AMPK activation modulate RAF1 activity, which is important for viral replication. IMPORTANCE Human cytomegalovirus (HCMV) infection is a widespread infection impacting approximately 60-90% of the global population. Although latent in healthy individuals, acute infection in immunocompromised populations, such as neonates, transplant recipients, and cancer patients, can result in retinal and gastrointestinal problems, hearing loss, and even death. Current antivirals are suboptimal due to the development of viral resistance or toxicity in patients, highlighting the need for novel treatments. Our research suggests a new potential target, RAF1, which is a regulator of cellular growth and proliferation. We find that RAF1 is phosphorylated by AMP-activated protein kinase, and that inhibition of RAF1 negatively impacts viral infection. Furthermore, drugs currently used to treat certain cancers also inhibit RAF1 and may have an additional anti-HCMV therapeutic effect in HCMV-susceptible cancer patients.
Collapse
Affiliation(s)
- Diana M. Dunn
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Ludia J. Pack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| | - Joshua C. Munger
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
20
|
Eng C, Dasari A, Lonardi S, Garcia-Carbonero R, Elez E, Yoshino T, Sobrero A, Yao J, Garcia-Alfonso P, Kocsis J, Gracian AC, Sartore-Bianchi A, Satoh T, Randrian V, Tomasek J, Chong G, Yang Z, Guevara F, Schelman W, Pallai R, Tabernero J. Fruquintinib versus placebo in patients with refractory metastatic colorectal cancer: safety analysis of FRESCO-2. Oncologist 2025; 30:oyae360. [PMID: 40163688 PMCID: PMC11957243 DOI: 10.1093/oncolo/oyae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Fruquintinib is a highly selective, oral inhibitor of all 3 VEGF receptors. The global, randomized, double-blind phase 3 FRESCO-2 trial (NCT04322539) met its primary endpoint demonstrating significantly improved overall survival in patients with refractory metastatic colorectal cancer (mCRC) who received fruquintinib plus best supportive care (BSC) versus placebo plus BSC. Here we report detailed safety data from FRESCO-2 including an analysis of treatment-related adverse events of special interest (AESIs). PATIENTS AND METHODS Patients with mCRC eligible for FRESCO-2 had received all standard chemotherapies and prior anti-VEGF and anti-EGFR therapies if indicated, and displayed progression on, or intolerance to, TAS-102 and/or regorafenib. Prespecified AESIs based on VEGFR tyrosine kinase inhibitor drug classes were evaluated. RESULTS Incidences of treatment-related AESIs were 64.9% with fruquintinib + BSC versus 23.0% with placebo + BSC. The most frequent all-grade treatment-related AESIs for fruquintinib were hypertension (28.9%; grade ≥3 10.7%), palmar-plantar erythrodysesthesia syndrome/hand-foot skin reaction (PPE 18.6%; grade ≥3 6.1%), and hypothyroidism (15.6%; grade ≥3 0.4%). Dose reductions due to treatment-related AESIs were reported in 10.3% of patients who received fruquintinib + BSC versus 0.4% with placebo + BSC. The most common treatment-related AESIs resulting in dose reduction for fruquintinib were PPE syndrome (5.0%), hypertension (2.9%), and proteinuria (1.3%). Overall, 5.9% versus 0.9% had treatment-related AESIs resulting in study drug discontinuation. CONCLUSION Fruquintinib + BSC demonstrated a predictable and manageable safety profile in pretreated patients with mCRC and is a novel oral treatment option that prolongs survival and enriches the continuum of care in this population.
Collapse
Affiliation(s)
- Cathy Eng
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt Ingram Cancer Center, Nashville, TN 37232, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Sara Lonardi
- Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS Padua, Padua 35128, Italy
| | - Rocio Garcia-Carbonero
- Oncology Department, Hospital Universitario 12 de Octubre, Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28041, Spain
| | - Elena Elez
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Alberto Sobrero
- Department of Medical Oncology, Azienda Ospedaliera San Martino, Genoa 16132, Italy
| | - James Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Judit Kocsis
- Department of Oncoradiology, Bács-Kiskun Megyei Oktatókórház, Kecskemét 6000, Hungary
| | - Antonio Cubillo Gracian
- Medical Oncology, HM Universitario Sanchinarro Centro Integral Oncológico Clara Campal, Madrid 28050, Spain
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20122, Italy
| | - Taroh Satoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Violaine Randrian
- Hepato-Gastroenterology Department, CHU de Poitiers, F-86000Poitiers, France
| | - Jiri Tomasek
- Department of Complex Oncology Care, Masaryk Memorial Cancer Institute, Brno 60200, Czech Republic
| | - Geoff Chong
- Olivia Newton John Cancer & Wellness Centre, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Zhao Yang
- HUTCHMED International Corporation., Florham Park, NJ 07932, United States
| | - Ferdinand Guevara
- HUTCHMED International Corporation., Florham Park, NJ 07932, United States
| | - William Schelman
- HUTCHMED International Corporation., Florham Park, NJ 07932, United States
| | - Rajash Pallai
- HUTCHMED International Corporation., Florham Park, NJ 07932, United States
| | - Josep Tabernero
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| |
Collapse
|
21
|
Shaham SH, Vij P, Tripathi MK. Advances in Targeted and Chemotherapeutic Strategies for Colorectal Cancer: Current Insights and Future Directions. Biomedicines 2025; 13:642. [PMID: 40149618 PMCID: PMC11940796 DOI: 10.3390/biomedicines13030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide, necessitating the continuous evolution of therapeutic approaches. Despite advancements in early detection and localized treatments, metastatic colorectal cancer (mCRC) poses significant challenges due to low survival rates and resistance to conventional therapies. This review highlights the current landscape of CRC treatment, focusing on chemotherapy and targeted therapies. Chemotherapeutic agents, including 5-fluorouracil, irinotecan, and oxaliplatin, have significantly improved survival but face limitations such as systemic toxicity and resistance. Targeted therapies, leveraging mechanisms like VEGF, EGFR, and Hedgehog pathway inhibition, offer promising alternatives, minimizing damage to healthy tissues while enhancing therapeutic precision. Furthermore, future directions in CRC treatment include exploring innovative targets such as Wnt/β-catenin, Notch, and TGF-β pathways, alongside IGF/IGF1R inhibition. These emerging strategies aim to address drug resistance and improve patient outcomes. This review emphasizes the importance of integrating molecular insights into drug development, advocating for a more personalized approach to combat CRC's complexity and heterogeneity.
Collapse
Affiliation(s)
- Salique H. Shaham
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA;
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
22
|
Wu S, Chu X, Lv G, Gao J, Huang Y, Li H, Jiang X, Liu Y, Zhang J, Fang X, Yao Z, Bu W. Mesenchymal Stem Cells With Polydopamine-Coated NaGdF 4 Nanoparticles with Ca 2+ Chelation Ability for Ischemic Stroke Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416020. [PMID: 39887461 DOI: 10.1002/adma.202416020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for ischemic stroke. However, the survival of transplanted MSCs is often compromised by the excessive levels of reactive oxygen species (ROS) and calcium ions (Ca2+) in the ischemic microenvironment following blood flow occlusion. In this study, a protective strategy is developed using functional nanomaterials to escort and shield MSCs. Specifically, NaGdF4@PDA-ALD nanoparticles (NPANs) are synthesized, featuring a NaGdF4 core coated with polydopamine (PDA) for ROS scavenging and further modified with alendronate sodium (ALD) for Ca2+ chelation. The internalization of NPANs by MSCs protected them from oxidative damage and calcium overload, thereby promoting their viability and functionality. Furthermore, NaGdF4 generated T1 signal enhancement, enabling in vivo tracking of MSCs via magnetic resonance imaging. The NPANs-treated MSCs demonstrated improved survival and migration to the ischemic region, promoting blood flow restoration and angiogenesis. These findings confirm the feasibility of employing functional nanoparticles to augment MSCs-based therapies, offering a promising strategy to improve their therapeutic efficacy in ischemic stroke treatment.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xu Chu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Guanglei Lv
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Jiahao Gao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuxin Huang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, 214023, P. R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
23
|
Jiao J, Wu Y, Wu S, Jiang J. Enhancing Colorectal Cancer Treatment Through VEGF/VEGFR Inhibitors and Immunotherapy. Curr Treat Options Oncol 2025; 26:213-225. [PMID: 40045029 DOI: 10.1007/s11864-025-01306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
OPINION STATEMENT Colorectal cancer, ranking as the third most prevalent malignancy globally, substantially benefits from both immunotherapy and VEGF/VEGFR inhibitors. Nevertheless, the use of monotherapy proves inadequate in effectively tackling the heterogeneity of tumors and the intricacies of their microenvironment, frequently leading to drug resistance and immune evasion. This situation underscores the pressing need for innovative strategies aimed at augmenting the effectiveness and durability of treatments. Clinical research demonstrates that the combination of VEGF/VEGFR inhibitors (primarily including VEGF/VEGFR-targeted drugs and multi-kinase inhibitors) with immune checkpoint inhibitors creates a synergistic effect in the treatment of colorectal cancer. Our analysis explores how VEGF/VEGFR inhibitors recalibrate the tumor microenvironment, modulate immune cell functions, and influence the expression of immune checkpoints and cytokines. Furthermore, we critically evaluate the preclinical and clinical feasibility of these combined therapeutic approaches. Despite the potential for toxicity, the significant benefits and prospective applications of these strategies warrant thorough exploration. Exploring the synergistic mechanisms of these combined treatments has the potential to inaugurate a new paradigm in oncology, enabling more personalized and efficacious treatment modalities. Additionally, the synergy between VEGF/VEGFR inhibitors and nascent immunotherapies emerges as a promising field of inquiry.
Collapse
Affiliation(s)
- Jing Jiao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - You Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jingting Jiang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Tumor Biological Treatment, Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University Jiangsu Engineering Research Center for Tumor Immunotherapy, Soochow University, Juqian Road №185, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
24
|
Sun R, Wu C, Gou Y, Zhao Y, Huang P. Advancements in second-line treatment research for hepatocellular carcinoma. Clin Transl Oncol 2025; 27:837-857. [PMID: 39162977 DOI: 10.1007/s12094-024-03653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, characterized by high incidence and mortality rates. Due to its insidious onset, most patients are diagnosed at an advanced stage, often missing the opportunity for surgical resection. Consequently, systemic treatments play a pivotal role. In recent years, an increasing number of drugs have been approved for first-line systemic treatment of HCC. However, their efficacy is limited, and some patients develop drug resistance after a period of treatment. For such patients, there is currently a lack of standard second-line systemic treatment options. This review summarizes the latest advancements in second-line systemic treatment research for HCC patients who have developed resistance to various first-line systemic treatments, aiming to provide more rational and personalized second-line treatment strategies.
Collapse
Affiliation(s)
- Ruirui Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Chenrui Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yang Gou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Yaowu Zhao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
25
|
Buzatu IM, Tataranu LG, Duta C, Stoian I, Alexandru O, Dricu A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. Int J Mol Sci 2025; 26:2192. [PMID: 40076810 PMCID: PMC11899917 DOI: 10.3390/ijms26052192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. This is partly because tumors cleverly use alternative growth factor pathways, other than VEGF signaling, to restore angiogenesis. Multi-target inhibitors have been developed to inhibit several receptor kinases that play a role in the development of angiogenesis. By simultaneously affecting various receptor kinases, these treatments can potentially obstruct various angiogenic pathways that are involved in brain cancer advancement, often offering a more holistic strategy than treatments focusing on just one kinase. Since 2009, the FDA has approved a number of multi-kinase inhibitors that target angiogenic growth factor receptors (e.g., VEGFR, PDGFR, FGFR, RET, c-KIT, MET, AXL and others) for treatment of malignant diseases, including brain cancer. Here, we present some recent results from the literature regarding the preclinical and clinical effects of these inhibitors on brain tumors.
Collapse
Affiliation(s)
- Iuliana Mihaela Buzatu
- Department of Microbiology, “Fundeni” Clinical Institute, Șoseaua Fundeni 258, 022328 Bucharest, Romania;
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania;
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Duta
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Irina Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| |
Collapse
|
26
|
Pouyan A, Ghorbanlo M, Eslami M, Jahanshahi M, Ziaei E, Salami A, Mokhtari K, Shahpasand K, Farahani N, Meybodi TE, Entezari M, Taheriazam A, Hushmandi K, Hashemi M. Glioblastoma multiforme: insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol Cancer 2025; 24:58. [PMID: 40011944 PMCID: PMC11863469 DOI: 10.1186/s12943-025-02267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor in adults, characterized by a poor prognosis and significant resistance to existing treatments. Despite progress in therapeutic strategies, the median overall survival remains approximately 15 months. A hallmark of GBM is its intricate molecular profile, driven by disruptions in multiple signaling pathways, including PI3K/AKT/mTOR, Wnt, NF-κB, and TGF-β, critical to tumor growth, invasion, and treatment resistance. This review examines the epidemiology, molecular mechanisms, and therapeutic prospects of targeting these pathways in GBM, highlighting recent insights into pathway interactions and discovering new therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Ashkan Pouyan
- Department of Neurosurgery, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Masoud Ghorbanlo
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Department of Neurosurgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Jahanshahi
- Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ziaei
- Department of Neurosurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Salami
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Koorosh Shahpasand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Tohid Emami Meybodi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Epidemiology, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
27
|
Zhu XD, Zhao L, Li B, Cheng Y, Sun HC. Systemic Treatment for Unresectable Hepatocellular Carcinoma: A Surgeon's Perspective. J Hepatocell Carcinoma 2025; 12:399-413. [PMID: 40034975 PMCID: PMC11873029 DOI: 10.2147/jhc.s504457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025] Open
Abstract
In recent years, the standard treatment for hepatocellular carcinoma (HCC) has changed dramatically due to the emergence of potent systemic treatment options. These advanced therapies have led to increased survival benefits for patients with advanced or intermediate-stage HCC. Advancements in HCC treatments also offer the possibility of conversion therapy for initially unresectable HCC. However, the treatment of HCC is becoming increasingly complex, due to the expanding availability of systemic therapies, their use in combination with locoregional therapies, and their perioperative applications. Patient characteristics such as liver function, esophageal and gastric variceal status, and treatment goal (downstaging resection or long-term maintenance treatment), are the most critical factors when selecting a systemic treatment strategy. Consequently, the necessity to tailor a personalized and comprehensive treatment strategy for individual patients is growing. This review briefly summarizes the current systemic treatment regimens for HCC from a surgeon's perspective. It is based on results from clinical studies as well as personal experience and introduces the concept of a patient-centered, treatment goals-driven, individualized systemic treatment strategy for managing HCC.
Collapse
Affiliation(s)
- Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Binkui Li
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Yuan Cheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People’s Republic of China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
28
|
Schulz T, Gontla R, Teuber A, Beerbaum M, Fletcher BS, Mühlenberg T, Kaitsiotou H, Hardick J, Jeyakumar K, Keul M, Müller MP, Sievers S, Bauer S, Rauh D. Design, Synthesis, and SAR of Covalent KIT and PDGFRA Inhibitors─Exploring Their Potential in Targeting GIST. J Med Chem 2025; 68:3238-3259. [PMID: 39841084 DOI: 10.1021/acs.jmedchem.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Gastrointestinal stromal tumors (GIST), driven by KIT and PDGFRA mutations, are the most common mesenchymal tumors of the gastrointestinal tract. Although tyrosine kinase inhibitors (TKIs) have advanced treatment, resistance mutations and off-target toxicity limit their efficacy. This study develops covalent TKIs targeting drug-resistant GIST through structure-based design, synthesis, and biological evaluation. SAR studies provided key insights into mutant KIT and PDGFRA interactions, and the first crystal structure of PDGFRA bound to a covalent inhibitor is reported. These findings highlight the promise of covalent inhibitors for overcoming resistance and advancing safer, more effective therapies for advanced GIST.
Collapse
Affiliation(s)
- Tom Schulz
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Rajesh Gontla
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Alina Teuber
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Maria Beerbaum
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Benjamin S Fletcher
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, and DKTK partner site Essen, German Cancer Consortium (DKTK), University Duisburg-Essen, Medical School, Hufelandstraße 55, Essen 45122, Germany
| | - Thomas Mühlenberg
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, and DKTK partner site Essen, German Cancer Consortium (DKTK), University Duisburg-Essen, Medical School, Hufelandstraße 55, Essen 45122, Germany
| | - Helena Kaitsiotou
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Julia Hardick
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Kirujan Jeyakumar
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Marina Keul
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Matthias P Müller
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Compound Management and Screening Center (COMAS), Otto-Hahn-Straße 11, Dortmund 44227, Germany
| | - Sebastian Bauer
- Department of Medical Oncology and Sarcoma Center, West German Cancer Center, and DKTK partner site Essen, German Cancer Consortium (DKTK), University Duisburg-Essen, Medical School, Hufelandstraße 55, Essen 45122, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, Dortmund 44227, Germany
| |
Collapse
|
29
|
Vienot A, Vernerey D, Bouard A, Klajer E, Kim S, Tournigand C, Louvet C, André T, Rousseau B, Wespiser M, Spehner L, Wang YA, Weispfenning A, Dochy E, Borg C. Stanniocalcin 1 in Patients with Refractory Colorectal Cancer Treated with Regorafenib: A Post Hoc Biomarker Analysis of the TEXCAN and CORRECT Trials. CANCER RESEARCH COMMUNICATIONS 2025; 5:287-294. [PMID: 39807836 PMCID: PMC11811826 DOI: 10.1158/2767-9764.crc-24-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE STC1 is a protein secreted by intratumor endothelial cells in which plasma concentrations increase in patients with chemorefractory mCRC. Based on analyses of patients with refractory mCRC in the TEXCAN and CORRECT trials, we found that STC1 plasma levels had a prognostic role for OS, with high levels associated with poor outcome. A predictive role for baseline STC1 levels was pointed out for regorafenib efficacy.
Collapse
Affiliation(s)
- Angélique Vienot
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Dewi Vernerey
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Adeline Bouard
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Elodie Klajer
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | | | | | - Thierry André
- Sorbonne Université and Hôpital Saint-Antoine, Paris, France
| | | | - Mylène Wespiser
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| | - Ying A. Wang
- Bayer HealthCare Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
- University of Franche Comté, EFS, INSERM, UMR RIGHT, Besançon, France
| |
Collapse
|
30
|
Ji P, Chen T, Li C, Zhang J, Li X, Zhu H. Comprehensive review of signaling pathways and therapeutic targets in gastrointestinal cancers. Crit Rev Oncol Hematol 2025; 206:104586. [PMID: 39653094 DOI: 10.1016/j.critrevonc.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Targeted therapy, the milestone in the development of human medicine, originated in 2004 when the FDA approved the first targeted agent bevacizumab for colorectal cancer treatment. This new development has resulted from drug developers moving beyond traditional chemotherapy, and several trials have popped up in the last two decades with an unprecedented speed. Specifically, EGF/EGFR, VEGF/VEGFR, HGF/c-MET, and Claudin 18.2 therapeutic targets have been developed in recent years. Some targets previously thought to be undruggable are now being newly explored, such as the RAS site. However, the efficacy of targeted therapy is extremely variable, especially with the emergence of new drugs and the innovative use of traditional targets for other tumors in recent years. Accordingly, this review provides an overview of the major signaling pathway mechanisms and recent advances in targeted therapy for gastrointestinal cancers, as well as future perspectives.
Collapse
Affiliation(s)
- Pengfei Ji
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China
| | - Tingting Chen
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Xiao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
31
|
Muñoz-Mármol AM, Meléndez B, Hernandez A, Sanz C, Domenech M, Arpí-Llucia O, Gut M, Esteve A, Esteve-Codina A, Parra G, Carrato C, Aldecoa I, Mallo M, Pineda E, Alameda F, de la Iglesia N, Martinez-Balibrea E, Martinez-Cardús A, Estival-Gonzalez A, Balana C. Multikinase Treatment of Glioblastoma: Evaluating the Rationale for Regorafenib. Cancers (Basel) 2025; 17:375. [PMID: 39941744 PMCID: PMC11816343 DOI: 10.3390/cancers17030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
We explored the rationale for treating glioblastoma (GBM) with regorafenib. In 103 newly diagnosed GBM patients, we assessed mutations, copy number variants (CNVs), fusions, and overexpression in 46 genes encoding protein kinases (PKs) potentially targeted by regorafenib or its metabolites and performed a functional enrichment analysis to assess their implications in angiogenesis. We analyzed regorafenib's binding inhibitory activity and target affinity for these 46 PKs and focused on a subset of 18 genes inhibited by regorafenib at clinically achievable concentrations and on 19 genes involved in angiogenesis. Putative oncogenic alterations were defined as oncogenic/likely oncogenic mutations, oncogenic fusions, CNVs > 5, and/or gene overexpression. Regorafenib did not target all 46 PKs. For the 46-gene set, 40 genes (86.9%) and 73 patients (70.8%) harbored at least one alteration in genes encoding targetable PKs, but putative oncogenic alterations were present in only 34 patients (33%). In the 18-gene set, 18 genes (100%) and 48 patients (46.6%) harbored alterations, but putative oncogenic alterations were detected in only 26 patients (25.2%). Thirty patients (29.1%) had oncogenic alterations in the 18-gene set and/or in angiogenesis-related genes. Around 33% of patients had oncogenic alterations in any of the 46 potential targets. Additionally, the suboptimal dosing of regorafenib, due to its poor penetration of the blood-brain barrier, may reduce the likelihood of effectively targeting certain PKs. Future use of multi-target drugs must be guided by a thorough understanding of target presence, effective inhibition, and the drug's ability to reach brain tumors at adequate concentrations.
Collapse
Affiliation(s)
- Ana Maria Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.S.); (C.C.)
| | - Bárbara Meléndez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45005 Toledo, Spain;
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Spain;
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.S.); (C.C.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Spain;
| | - Oriol Arpí-Llucia
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, Universitat de Barcelona (UB), C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Spain;
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, Universitat de Barcelona (UB), C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, Universitat de Barcelona (UB), C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (A.M.M.-M.); (C.S.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain;
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain;
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Eva Martinez-Balibrea
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Spain;
- ProCURE Program, Catalan Institute of Oncology, Ctra. de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Anna Martinez-Cardús
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Spain;
| | - Anna Estival-Gonzalez
- Medical Oncology, Hospital Universitario Insular de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Carmen Balana
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| |
Collapse
|
32
|
Chen A, Yin K, Liu Y, Hu L, Cui Q, Wan X, Yang W. WEE Family Kinase Inhibitors Combined with Sorafenib Can Selectively Inhibit HCC Cell Proliferation. Curr Cancer Drug Targets 2025; 25:370-385. [PMID: 38860904 DOI: 10.2174/0115680096298370240520093003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Sorafenib is currently the first choice for the treatment of patients with advanced hepatocellular carcinoma, but its therapeutic effect is still limited. OBJECTIVES This study aims to examine whether WEE family kinase inhibitors can enhance the anticancer effect of sorafenib. METHODS We analyzed the expression levels of PKMYT1 kinase and WEE1 kinase in HCC, studied the inhibitory effect of PKMYT1 kinase inhibitor RP-6306, WEE1 kinase inhibitor adavosertib combined with sorafenib on the proliferation of HCC cells, and detected the effect of drug combination on CDK1 phosphorylation. RESULTS We found that PKMYT1 and WEE1 were upregulated in HCC and were detrimental to patient survival. Cell experiments showed that both RP-6306 and adavosertib (1-100 μM) inhibited the proliferation of HCC cell lines in a dose-dependent manner alone, and the combination of the two drugs had a synergistic effect. In HCC cell lines, sorafenib combined with RP-6306 or adavosertib showed a synergistic antiproliferation effect and less toxicity to normal cells. Sorafenib combined with RP-6306 and adavosertib further inhibited the proliferation of HCC cells and caused complete dephosphorylation of CDK1. CONCLUSION Taken together, our findings provide experimental evidence for the future use of sorafenib in combination with RP-6306 or adavosertib for the treatment of HCC.
Collapse
Affiliation(s)
- Anling Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
| | - Ke Yin
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yu Liu
- School of Life Sciences, Bengbu Medical College, Bengbu, 233000, China
| | - Lei Hu
- School of Preclinical Medicine, Wannan Medical College, Wuhu, 241002, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
| | - Xiaofeng Wan
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
33
|
Uba AI. Computer-Aided Design of VEGFR-2 Inhibitors as Anticancer Agents: A Review. J Mol Recognit 2025; 38:e3104. [PMID: 39389566 DOI: 10.1002/jmr.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024]
Abstract
Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| |
Collapse
|
34
|
Battaglia L, Dianzani C, Muntoni E, Marini E, Bozza A, Bordano V, Ferraris C, Garelli S, Valsania MC, Terreno E, Capozza M, Costanzo D, Capucchio MT, Hassan T, Pizzimenti S, Pettineo E, Di Muro M, Scorziello F. Ultrasmall solid lipid nanoparticles as a potential innovative delivery system for a drug combination against glioma. Nanomedicine (Lond) 2025; 20:37-52. [PMID: 39611709 DOI: 10.1080/17435889.2024.2434452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION High grade gliomas are characterized by a very poor prognosis due to fatal relapses after surgery. Current chemotherapy is only a palliative care, while potential drug candidates are limited by poor overcoming of the blood-brain barrier. AIMS A suitable chemotherapeutic approach should be engineered to overcome both the altered blood-brain barrier in the glioma site, as well as the intact one in the brain adjacent to tumor zone, and to target the multiple factors influencing glioma proliferation, differentiation, migration, and angiogenesis. MATERIALS & METHODS In this experimental research, ultrasmall solid lipid nanoparticles were prepared owing to the temperature phase inversion technology and loaded with a specific drug combination made of paclitaxel, regorafenib, and nanoceria. RESULTS Such solid lipid nanoparticles demonstrated capability to inhibit glioma cell proliferation and migration, as well as angiogenesis in vitro. Moreover, relevant in vivo evidence assessed the accumulation of solid lipid nanoparticles in the glioma site of the F98/Fischer rat model, without causing any off-target toxicity. CONCLUSIONS Thus, promising results for glioma treatment were obtained with a technology characterized by safety and economy, allowing the perspective of successful scalability.
Collapse
Affiliation(s)
- Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Turin, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Maria Carmen Valsania
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, Turin, Italy
- Department of Chemistry, University of Turin, Turin, Italy
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Diana Costanzo
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Talal Hassan
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisa Pettineo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
35
|
Liu X, He Q, Sun S, Lu X, Chen Y, Lu S, Wang Z. Research progress of SHP-1 agonists as a strategy for tumor therapy. Mol Divers 2024:10.1007/s11030-024-11059-5. [PMID: 39739293 DOI: 10.1007/s11030-024-11059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities. Based on the structure skeletons, we classify these SHP-1 agonists as kinase inhibitors, sorafenib derivatives, obatoclax derivatives, lithocholic acid derivatives and thieno[2,3-b]quinoline derivatives. Additionally, we discuss the potential opportunities and challenges for developing SHP-1 agonists. It is hoped that this review will provide inspiring insights into the discovery of drugs targeting SHP-1.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Xun Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
36
|
Tünbekici S, Yuksel HC, Acar C, Sahin G, Orman S, Majidova N, Coskun A, Seyyar M, Dilek MS, Kara M, Dıslı AK, Demir T, Kolkıran N, Sahbazlar M, Demırcıler E, Kuş F, Aytac A, Menekse S, Yucel H, Biter S, Koseci T, Unsal A, Ozveren A, Sevınc A, Goker E, Gürsoy P. Regorafenib Treatment for Recurrent Glioblastoma Beyond Bevacizumab-Based Therapy: A Large, Multicenter, Real-Life Study. Cancers (Basel) 2024; 17:46. [PMID: 39796675 PMCID: PMC11718784 DOI: 10.3390/cancers17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES In the REGOMA trial, regorafenib demonstrated an overall survival advantage over lomustine, and it has become a recommended treatment for recurrent glioblastoma in guidelines. This study aimed to evaluate the effectiveness and safety of regorafenib as a third-line treatment for patients with recurrent glioblastoma who progressed while taking bevacizumab-based therapy. METHODS This retrospective, multicenter study in Turkey included 65 patients treated between 2021 and 2023 across 19 oncology centers. The main inclusion criteria were histologically confirmed isocitrate dehydrogenase (IDH)-wildtype glioblastoma, progression after second-line bevacizumab-based treatment, and an Eastern Cooperative Oncology Group (ECOG) performance status score of ≤2. Patients received regorafenib 160 mg once daily for the first 3 weeks of each 4-week cycle. RESULTS The median age of the patients was 53 years (18-67 years), with a median progression-free survival of 2.5 months (95% Confidence Interval: 2.23-2.75) and a median overall survival of 4.1 months (95% CI: 3.52-4.68). The median overall survival was improved in patients who received subsequent therapy after regorafenib treatment compared with those who did not (p = 0.022). Progression-free survival was longer in patients with ECOG 0-1 than in those with ECOG 2 (p = 0.042). The safety profile was consistent with that of the REGOMA trial, with no drug-related deaths observed. CONCLUSIONS Regorafenib shows good efficacy and safety as a third-line treatment for recurrent glioblastoma after bevacizumab-based therapy. This study supports the use of regorafenib and emphasizes the need for further randomized studies to validate its role and optimize treatment strategies.
Collapse
Affiliation(s)
- Salih Tünbekici
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Haydar cagatay Yuksel
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Caner Acar
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Gökhan Sahin
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Seval Orman
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Cevizli, D-100 Güney Yanyol, Cevizli Mevkii No:47, Kartal, Istanbul 34865, Turkey;
| | - Nargiz Majidova
- Department of Medical Oncology, School of Medicine, Marmara University, Istanbul 34899, Turkey;
| | - Alper Coskun
- Department of Medical Oncology, Uludağ University, Bursa 16059, Turkey;
| | - Mustafa Seyyar
- Department of Medical Oncology, Gaziantep City Hospital, Gaziantep 27470, Turkey;
| | - Mehmet sıddık Dilek
- Medical Oncology, Medical School, Dicle University, Diyarbakir 21280, Turkey;
| | - Mahmut Kara
- Department of Medical Oncology, Yuzuncu Yil University Faculty of Medicine, Van 65090, Turkey;
| | - Ahmet Kursat Dıslı
- Department of Medical Oncology, Erciyes University Faculty of Medicine, Kayseri 38030, Turkey;
| | - Teyfik Demir
- Department of Medical Oncology, Ondokuz Mayis University Faculty of Medicine, Samsun 55270, Turkey;
| | - Nagihan Kolkıran
- Department of Medical Oncology, Celal Bayar University Faculty of Medicine, Manisa 45030, Turkey; (N.K.); (M.S.)
| | - Mustafa Sahbazlar
- Department of Medical Oncology, Celal Bayar University Faculty of Medicine, Manisa 45030, Turkey; (N.K.); (M.S.)
| | - Erkut Demırcıler
- Department of Medical Oncology, 9 Eylül University Faculty of Medicine, Izmir 35220, Turkey;
| | - Fatih Kuş
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey;
| | - Ali Aytac
- Department of Medical Oncology, Mehmet Akif İnan Training and Research Hospital, Sanlıurfa 63040, Turkey;
| | - Serkan Menekse
- Department of Medical Oncology, Manisa City Hospital, Manisa 45040, Turkey;
| | - Hakan Yucel
- Department of Medical Oncology, School of Medicine, Gaziantep University, Gaziantep 27580, Turkey;
| | - Sedat Biter
- Department of Medical Oncology, Cukurova University, Adana 01790, Turkey; (S.B.); (T.K.)
| | - Tolga Koseci
- Department of Medical Oncology, Cukurova University, Adana 01790, Turkey; (S.B.); (T.K.)
| | - Ahmet Unsal
- Department of Medical Oncology, Gumushane State Hospital, Gumushane 29000, Turkey;
| | - Ahmet Ozveren
- Medical Oncology, Department MD, İzmir Kent Hospital, Izmir 35620, Turkey;
| | - Alper Sevınc
- Medical Oncology, Medical Park Gaziantep Hospital, Gaziantep 27090, Turkey;
| | - Erdem Goker
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| | - Pınar Gürsoy
- Department of Medical Oncology, Ege University Medical Faculty, Izmir 35040, Turkey; (H.c.Y.); (C.A.); (G.S.); (P.G.)
| |
Collapse
|
37
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
38
|
Pham TD, Becker JH, Metropulos AE, Mubin N, Spaulding C, Bentrem DJ, Munshi HG. Regorafenib induces DNA damage and enhances PARP inhibitor efficacy in pancreatic ductal carcinoma. BMC Cancer 2024; 24:1562. [PMID: 39707244 DOI: 10.1186/s12885-024-13334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND There is increasing interest in enhancing the response of the PARP inhibitor olaparib, which is currently approved for pancreatic ductal adenocarcinoma (PDAC) patients with defects in DNA damage repair associated with germline BRCA1/2 mutations. Moreover, agents that can mimic these defects in the absence of germline BRCA1/2 mutations are an area of active research in hopes of increasing the number of patients eligible for treatment with PARP inhibitors. The extent to which regorafenib, an FDA-approved tyrosine kinase inhibitor, can be used to enhance the efficacy of PARP inhibitors in PDAC cells without known BRCA1/2 mutations remains to be investigated. METHODS Comet assay, cell cycle analysis, western blotting, and immunofluorescent detection of H2AXS139 were used to evaluate the extent to which regorafenib induces DNA damage in PDAC cell lines. The effects of regorafenib, either alone or in combination with PARPi inhibitors, on PDAC cell death were assessed by Annexin V/PI co-staining assay in cell lines and by immunohistochemistry staining for cleaved caspase-3 in mouse tumors and in ex vivo slice cultures of human PDAC tumors. Flow cytometry-based analysis was used to evaluate the ability of regorafenib to reprogram PDAC tumor microenvironment. RESULTS We now show that regorafenib, a tyrosine-kinase inhibitor with efficacy in several gastrointestinal malignancies, can enhance the response of olaparib in pancreatic cancer. While regorafenib induces DNA damage and limits the ability of PDAC cells to resolve the damage, regorafenib by itself does not induce apoptosis. However, regorafenib in combination with olaparib further induces DNA damage in vitro, in tumor-bearing mice, and in ex vivo slice cultures of human PDAC tumors, resulting in increased apoptosis compared to olaparib alone. Notably, we show that the efficacy of the combination treatment is not dependent on cytolytic T cells. CONCLUSIONS Together, these findings demonstrate that regorafenib can attenuate DNA damage response and potentiate the efficacy of PARP inhibitors in PDAC tumors.
Collapse
Affiliation(s)
- Thao D Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| | - Jeffrey H Becker
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Anastasia E Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Nida Mubin
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David J Bentrem
- Jesse Brown VA Medical Center, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
39
|
Dirven I, Pierre E, Vander Mijnsbrugge AS, Vounckx M, Kessels JI, Neyns B. Regorafenib Combined with BRAF/MEK Inhibitors for the Treatment of Refractory Melanoma Brain Metastases. Cancers (Basel) 2024; 16:4083. [PMID: 39682270 DOI: 10.3390/cancers16234083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND There are no active treatment options for patients with progressive melanoma brain metastases (MBM) failing immune checkpoint blockade (ICB) and BRAF/MEK inhibitors (BRAF/MEKi). Regorafenib (REGO), an oral multi-kinase inhibitor (incl. RAF-dimer inhibition), can overcome adaptive resistance to BRAF/MEKi in preclinical models. METHODS This is a single-center retrospective case series of patients with refractory MBM treated with REGO plus BRAF/MEKi (compassionate use). RESULTS A total of 22 patients were identified (18 BRAF-mutant, 4 NRASQ61-mutant; 19 with progressive MBM; 11 on corticosteroids). Thirteen BRAFV600-mutant patients were progressing on BRAF/MEKi at the time of REGO association. BRAF-mutant patients received REGO (40-80 mg once daily) combined with BRAF/MEKi, NRAS-mutant patients were treated with REGO + MEKi (+low-dose BRAFi to mitigate skin-toxicity). Grade 3 TRAE included arterial hypertension (n = 4) and maculopapular rash (n = 3). There were no G4/5 TRAE. In BRAF-mutant patients, overall and intracranial objective response rates (overall ORR and IC-ORR) were 11 and 29%, and overall and intracranial disease control rates (overall DCR and IC-DCR) were 44 and 59%, respectively. In NRAS-mutant patients overall ORR and IC-ORR were 0 and 25% and overall DCR and IC-DCR were 25 and 50%, respectively. The median PFS and OS were, respectively, 7.1 and 16.4 weeks in BRAF-mutant and 8.6 and 10.1 weeks in NRAS-mutant patients. CONCLUSIONS In heavily pretreated patients with refractory MBM, REGO combined with BRAF/MEKi demonstrated promising anti-tumor activity with an acceptable safety profile. In BRAFV600-mutant melanoma patients, responses cannot solely be attributed to BRAF/MEKi rechallenge. Further investigation in a prospective trial is ongoing to increase understanding of the efficacy.
Collapse
Affiliation(s)
- Iris Dirven
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Eden Pierre
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - An-Sofie Vander Mijnsbrugge
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Manon Vounckx
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jolien I Kessels
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Bart Neyns
- Team Laboratory for Medical and Molecular Oncology (LMMO), Translational Oncology Research Center (TORC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
40
|
Xu B, Liu N, Zhou T, Chen J, Jiang L, Wu W, Fu H, Chen X, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Schisandrin C prevents regorafenib-induced cardiotoxicity by recovering EPHA2 expression in cardiomyocytes. Toxicol Sci 2024; 202:220-235. [PMID: 39348200 DOI: 10.1093/toxsci/kfae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Regorafenib, an oral multikinase inhibitor of angiogenic, stromal, and oncogenic receptor tyrosine kinases, has been approved for the treatment of metastatic colorectal cancer, gastrointestinal stromal tumors, and hepatocellular carcinoma by the US Food and Drug Administration and European Medicines Agency. However, regorafenib-induced cardiotoxicity increases the risk of mortality. Despite reports that regorafenib can cause mitochondrial dysfunction in cardiomyocytes, the molecular mechanism of regorafenib-induced cardiotoxicity is much less known and there is an urgent need for intervention strategies. Here, we treated mice with vehicle or 200 mg/kg regorafenib daily for 42 d by gavage or treated cardiomyocyte lines with 8, 16, or 32 μM regorafenib, and we found that regorafenib could cause apoptosis, mitochondrial injury, and DNA damage in cardiomyocytes. Mechanistically, regorafenib can reduce the expression of EPHA2, which inhibits AKT signaling, leading to cardiomyocyte apoptosis and cardiotoxicity. In addition, we showed that recovering EPHA2 expression via plasmid-induced overexpression of EPHA2 or schisandrin C, a natural product, could prevent regorafenib-induced cardiotoxicity. These findings demonstrated that regorafenib causes cardiomyocyte apoptosis and cardiac injury by reducing the expression of EPHA2 and schisandrin C could prevent regorafenib-induced cardiotoxicity by recovering EPHA2 expression, which provides a potential management strategy for regorafenib-induced cardiotoxicity and will benefit the safe application of regorafenib in clinic.
Collapse
Affiliation(s)
- Bo Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ning Liu
- Emergency Department, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Taicheng Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Liyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xueqin Chen
- Department of Medical Oncology, Affiliated Hangzhou First People's Hospital, Xihu University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
41
|
Diaz MA, Vázquez-Gómez F, Garrido I, Arias F, Suarez J, Buño I, Lassaletta Á. Novel Fibroblast Growth Factor Receptor 3-Fatty Acid Synthase Gene Fusion in Recurrent Epithelioid Glioblastoma Linked to Aggressive Clinical Progression. Curr Oncol 2024; 31:7308-7318. [PMID: 39590169 PMCID: PMC11592913 DOI: 10.3390/curroncol31110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with a median overall survival (OS) of 15-18 months despite standard treatments. Approximately 8% of GBM cases exhibit genomic alterations in fibroblast growth factor receptors (FGFRs), particularly FGFR1 and FGFR3. Next-generation sequencing techniques have identified various FGFR3 fusions in GBM. This report presents a novel FGFR3 fusion with fatty acid synthase (FASN) in a 41-year-old male diagnosed with GBM. The patient presented with a persistent headache, and imaging revealed a right frontal lobe lesion. Surgical resection and subsequent histopathology confirmed GBM. Initial NGS analysis showed no mutations in the IDH1, IDH2 or H3F3 genes, but revealed a TERT promoter mutation and CDKN2A/2B and PTEN deletions. Postoperative treatment included radiotherapy and temozolomide. Despite initial management, recurrence occurred four months post-diagnosis, confirmed by MRI and histology. A second surgery identified a novel FGFR3-FASN fusion, alongside increased Ki67 expression. The recurrence was managed with regorafenib and bevacizumab, though complications like hand-foot syndrome and radiation necrosis arose. Despite initial improvement, the patient died 15 months after diagnosis. This case underscores the importance of understanding GBM's molecular landscape for effective treatment strategies. The novel FGFR3-FASN fusion suggests potential implications for GBM recurrence and lipid metabolism. Further studies are warranted to explore FGFR3-FASN's role in GBM and its therapeutic targeting.
Collapse
Affiliation(s)
- Miguel A. Diaz
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| | - Felisa Vázquez-Gómez
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| | - Irene Garrido
- Neuro-Radiology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
| | - Francisco Arias
- Pathology Department, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain;
| | - Julia Suarez
- Genomics Unit, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain (I.B.)
- Health Research Institute (IiSGM), Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
| | - Ismael Buño
- Genomics Unit, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain (I.B.)
- Health Research Institute (IiSGM), Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
- Department of Hematology, Hospital General Universitario “Gregorio Marañón”, 28007 Madrid, Spain
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Álvaro Lassaletta
- Pediatric Hematology/Oncology, Hospital Infantil Universitario “Niño Jesús”, Universidad Autónoma de Madrid, 28009 Madrid, Spain
| |
Collapse
|
42
|
Ji Y, Harris MA, Newton LM, Harris TJ, Fairlie WD, Lee EF, Hawkins CJ. Osteosarcoma cells depend on MCL-1 for survival, and osteosarcoma metastases respond to MCL-1 antagonism plus regorafenib in vivo. BMC Cancer 2024; 24:1350. [PMID: 39497108 PMCID: PMC11533409 DOI: 10.1186/s12885-024-13088-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Osteosarcoma is the most common form of primary bone cancer, which primarily afflicts children and adolescents. Chemotherapy, consisting of doxorubicin, cisplatin and methotrexate (MAP) increased the 5-year osteosarcoma survival rate from 20% to approximately 60% by the 1980s. However, osteosarcoma survival rates have remained stagnant for several decades. Patients whose disease fails to respond to MAP receive second-line treatments such as etoposide and, in more recent years, the kinase inhibitor regorafenib. BCL-2 and its close relatives enforce cellular survival and have been implicated in the development and progression of various cancer types. BH3-mimetics antagonize pro-survival members of the BCL-2 family to directly stimulate apoptosis. These drugs have been proven to be efficacious in other cancer types, but their use in osteosarcoma has been relatively unexplored to date. We investigated the potential efficacy of BH3-mimetics against osteosarcoma cells in vitro and examined their cooperation with regorafenib in vivo. We demonstrated that osteosarcoma cell lines could be killed through inhibition of MCL-1 combined with BCL-2 or BCL-xL antagonism. Inhibition of MCL-1 also sensitized osteosarcoma cells to killing by second-line osteosarcoma treatments, particularly regorafenib. Importantly, we found that inhibition of MCL-1 with the BH3-mimetic S63845 combined with regorafenib significantly prolonged the survival of mice bearing pulmonary osteosarcoma metastases. Together, our results highlight the importance of MCL-1 in osteosarcoma cell survival and present a potential therapeutic avenue that may improve metastatic osteosarcoma patient outcomes.
Collapse
Affiliation(s)
- Yanhao Ji
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael A Harris
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Swinburne University, Hawthorn, VIC, 3122, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
43
|
Seif SE, Wardakhan WW, Hassan RA, Abdou AM, Mahmoud Z. New S-substituted-3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one scaffold with promising anticancer activity profile through the regulation and inhibition of mutated B-RAF signaling pathway. Drug Dev Res 2024; 85:e70007. [PMID: 39425261 DOI: 10.1002/ddr.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Novel 3-phenyltetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives were synthesized and screened for their antiproliferative activity against a panel of 60 cancer cell lines. Derivatives 5b, 5f, and 9c showed significant antitumor activity at a single dose with mean growth inhibition of 55.62%, 55.79%, and 71.40%, respectively. These compounds were further investigated against HCT-116, colon cancer cell line, and FHC, normal colon cell line. Compound 9c showed the highest activity with IC50 = 0.904 ± 0.03 µM and SI = 20.42 excelling doxorubicin which scored IC50 = 2.556 ± 0.09 µM and SI = 6.19. Compound 9c was also the most potent against B-RAFWT and mutated B-RAFV600E with IC50 = 0.145 ± 0.005 and 0.042 ± 0.002 µM, respectively in comparison with vemurafenib with IC50 = 0.229 ± 0.008 and 0.038 ± 0.001 µM, respectively. The cell cycle analysis showed that 9c increased the cell population and induced an arrest in the cell cycle of HCT-116 cancer cells at the G0-G1 stage with 1.23-fold. Apoptosis evaluation showed that compound 9c displayed an 18.18-fold elevation in total apoptosis of HCT-116 cancer cells in comparison to the control. Compound 9c increased the content of caspase-3 by 3.52-fold versus the control. A molecular modeling study determined the binding profile and interaction of 9c with the B-RAF active site.
Collapse
Affiliation(s)
- Safaa E Seif
- National Organization for Drug Control and Research, Cairo, Egypt
| | | | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
44
|
Xuan X, Li Y, Huang C, Zhang Y. Regorafenib promotes antitumor progression in melanoma by reducing RRM2. iScience 2024; 27:110993. [PMID: 39435141 PMCID: PMC11492136 DOI: 10.1016/j.isci.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Melanoma is a malignant tumor with a terrible prognosis. Although so many therapies are used for melanoma, the overall survival rate is still poor globally. Novel therapies are still required. In our study, the role and potential mechanism of regorafenib in melanoma are explored. Regorafenib has the ability to limit the growth, invasion, and metastasis of melanoma cells but to upregulate apoptosis-prompting markers (cleaved-PARP and Bax). RRM2 is identified to be the downstream target of regorafenib by RNA sequencing. In addition, we discovered that RRM2 inhibition and regorafenib have comparable effects on melanoma cells. Rescue experiments showed that RRM2 is crucial in regulating regorafenib's anti-melanoma progression. Moreover, ERK/E2F3 signaling influences regorafenib's ability to suppress melanoma cell growth. Ultimately, regorafenib significantly inhibits tumor growth in vivo. In conclusion, our finding demonstrated that regorafenib promotes antitumor progression in melanoma by reducing RRM2.
Collapse
Affiliation(s)
- Xiuyun Xuan
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yanqiu Li
- Department of Dermatology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan 430033, Hubei, China
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
45
|
Wongprayoon P, Pengnam S, Srisuphan R, Opanasopit P, Jirawatnotai S, Charoensuksai P. The correlation between cellular O-GlcNAcylation and sensitivity to O-GlcNAc inhibitor in colorectal cancer cells. PLoS One 2024; 19:e0312173. [PMID: 39413067 PMCID: PMC11482669 DOI: 10.1371/journal.pone.0312173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
The upregulation of O-GlcNAc signaling has long been implicated in the development and progression of numerous human malignancies, including colorectal cancer. In this study, we characterized eight colorectal cancer cell lines and one non-cancerous cell line for O-GlcNAc-related profiles such as the expression of OGT, OGA, and total protein O-GlcNAcylation, along with their sensitivity toward OSMI-1 (Os), an OGT inhibitor (OGTi). Indeed, Os dose-dependently suppressed the viability of all colorectal cancer cell lines tested. Among the three O-GlcNAc profiles, our results revealed that Os IC50 exhibited the strongest correlation with total protein O-GlcNAcylation (Pearson Correlation Coefficient r = -0.73), suggesting that total O-GlcNAcylation likely serves as a better predictive marker for OGTi sensitivity than OGT expression levels. Furthermore, we demonstrated that Os exhibited a synergistic relationship with regorafenib (Re). We believed that this synergism could be explained, at least in part, by the observed Re-mediated increase of cellular O-GlcNAcylation, which was counteracted by Os. Finally, we showed that the Os:Re combination suppressed the growth of NCI-H508 tumor spheroids. Overall, our findings highlighted OGTi as a potential anticancer agent that could be used in combination with other molecules to enhance the efficacy while minimizing adverse effects, and identified total cellular O-GlcNAcylation as a potential predictive marker for OGTi sensitivity.
Collapse
Affiliation(s)
- Pawaris Wongprayoon
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| | - Supusson Pengnam
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Center of Precision Medicine Innovation and Advanced Medicinal Product Development, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Green Innovations Group (PDGIG), Silpakorn University, Nakhon Pathom, Thailand
| | - Roongtiwa Srisuphan
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Faculty of Pharmacy, Center of Precision Medicine Innovation and Advanced Medicinal Product Development, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Green Innovations Group (PDGIG), Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Department of Industrial Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Siwanon Jirawatnotai
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Department of Pharmacology, Mahidol University, Bangkok, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Purin Charoensuksai
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
46
|
Wang XX, Zhou YW, Wang B, Cao P, Luo DY, Li CH, Wang K, Qiu M. A nomogram construction and multicenter validation for predicting overall survival after fruquintinib application in patients with metastatic colorectal cancer: a multicenter retrospective study. Therap Adv Gastroenterol 2024; 17:17562848241284229. [PMID: 39386273 PMCID: PMC11462570 DOI: 10.1177/17562848241284229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Fruquintinib is a third-line and subsequent targeted therapy for patients with metastatic colorectal cancer (mCRC). Identifying survival predictors after fruquintinib is crucial for optimizing the clinical use of this medication. Objectives We aimed to identify factors influencing the prognosis of patients with mCRC treated with fruquintinib and to leverage these insights to develop a nomogram model for estimating survival rates in this patient population. Design Multicenter retrospective observational study. Methods We collected patient data from January 2019 to October 2023, with one healthcare institution's data serving as the training cohort and the other three hospitals' data serving as the multicenter validation cohort. The nomogram for overall survival was calculated from Cox regression models, and variable selection was screened using the univariate Cox regression analysis with additional variables based on clinical experience. Model performance was measured by the concordance index (C-index), calibration curves, decision curve analyses (DCA), and utility (patient stratification into low-risk vs high-risk groups). Results Data were ultimately collected on 240 patients, with 144 patients included in the training cohort and 96 included in the multicenter validation cohort. Predictors included in the nomogram were CA199, body mass index, T stage, the primary site of the tumor, and other metastatic and pathological differentiation. The C-index of the nomogram in the training set and multicenter validation was 0.714 and 0.729, respectively. The models were fully calibrated and their predictions aligned closely with the observed data. DCA curves indicated the promising clinical benefits of the predictive model. Finally, the reliability of the model was also verified through the risk classification using the nomogram. Conclusions We constructed a nomogram for mCRC treated with fruquintinib based on six variables that may be used to assist in personalizing the use of the drug.
Collapse
Affiliation(s)
- Xiao-Xuan Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Wen Zhou
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Cao
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - De-Yun Luo
- Department of Abdominal Cancer, Cancer Center, Shang Jin Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Hong Li
- Department of Oncology, Suining Central Hospital, Suining, China
| | - Kai Wang
- Institute for Emergency Medicine and Disaster Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Meng Qiu
- Colorectal Cancer Center, West China Hospital, Sichuan University, Guoxue Road 37, Chengdu 610041, Sichuan, China
| |
Collapse
|
47
|
Zhang W, Gao S, Wang L, Ge X, Wu X, Liu J, Lu J. Preclinical Evaluation of a Radiolabeled Pan-RAF Inhibitor for RAF-Specific PET/CT Imaging. Mol Pharm 2024; 21:5247-5254. [PMID: 39303222 DOI: 10.1021/acs.molpharmaceut.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Abnormalities in the RAS-RAF signaling pathway occur in many solid tumors, leading to aberrant tumor proliferation, invasion, and metastasis. Due to the elusive pharmacology of RAS, RAF inhibitors have become the main targeted therapeutic drugs. Naporafenib (LXH-254) is a high-affinity pan-RAF inhibitor with FDA Fast Track Qualification. We sought to develop an 18F-labeled molecular probe from LXH-254 for PET imaging of tumors overexpressing RAF to noninvasively screen patients for susceptibility to targeted RAF therapy. To reduce the lipid solubility, LXH-254 was designed with triethylene glycol di(p-toluenesulfonate) (TsO-PEG3-OTs) to obtain the precursor (LXH-254-OTs) and a nucleophilic substitution reaction with 18F to obtain the tracer ([18F]F-LXH-254). [18F]F-LXH-254 exhibited good molar activity (7.16 ± 0.81 GBq/μmol), radiochemical purity (>95%), and stability. Micro-PET imaging revealed distinct radioactivity accumulation of [18F]F-LXH-254 in tumors in the imaging groups, whereas in the blocked group, the tumor radioactivity level was consistent with the background tissue, illustrating the affinity and specificity of [18F]F-LXH-254 in targeting RAF. Overall, [18F]F-LXH-254 is a promising radiotracer for screening and diagnosing patients with RAF-related disease and monitoring their treatment. This is the first attempt at using an 18F-labeled RAF-specific radiotracer.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Leqiang Wang
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Xiaonan Wu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Jingbin Lu
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
48
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Deng Q, Huang Y, Zeng J, Li X, Zheng X, Guo L, Shi J, Bai L. Recent advancements in the small-molecule drugs for hepatocellular carcinoma (HCC): Structure-activity relationships, pharmacological activities, and the clinical trials. Biomed Pharmacother 2024; 179:117343. [PMID: 39180795 DOI: 10.1016/j.biopha.2024.117343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and the sixth leading cause of cancer death worldwide, and it is urgent to find safe and effective drugs for treatment. As an important therapeutic method, small-molecule drugs are continually being updated to achieve improved therapeutic effects. The purpose of this study was to investigate the structural effects of various FDA-listed small-molecule drugs sorafenib, cabozantinib, lenvatinib, and regorafenib on the corresponding HCC targets and possible structural optimization methods, and to explore the mechanism for identifying potential therapeutic drugs that offer better efficacy and fewer side effects. METHODS The structure-activity relationship, pharmacological actions, and clinical applications of small-molecule drugs were reviewed by referencing MEDLINE, Web of Science, CNKI, and other databases, summarizing and integrating the relevant content. RESULTS The results showed that small-molecule drugs can inhibit HCC primarily by forming hydrogen bonds with Glu885, Asp1046, and Cys919 on the HCC target. HCC can be targeted by inhibiting the activation of multiple pathways, blocking the conduction of downstream signaling, and reducing the formation of tumor blood vessels. In general, small-molecule drugs primarily target four key receptors in HCC: VEGFR, PDGFR, EGFR, and FGFR, to achieve effective treatment. CONCLUSIONS By revealing their structure-activity relationships, pharmacological actions, and clinical trials, small-molecule drugs can offer broad prospects for the development of new medications.
Collapse
Affiliation(s)
- Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Guo
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
50
|
Zhang S, Zhang X, Ren Y, Huang L, Xu W, Wang H, Lu Q. Regorafenib enhances the efficacy of photodynamic therapy in hepatocellular carcinoma through MAPK signaling pathway suppression. Photodiagnosis Photodyn Ther 2024; 49:104319. [PMID: 39181490 DOI: 10.1016/j.pdpdt.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Photodynamic therapy (PDT) is a promising and innovative approach for treating tumors. The synergistic effect of PDT and chemotherapy can enhance the anti-tumor efficacy by leveraging their complementing benefits. In this study, we created lipid vesicles to deliver a photosensitizer (chlorin e6, Ce6) and Regorafenib into tumors for the purpose of examining the effectiveness and mechanism of Lipo-Ce6@Rego-PDT (LCR-P) on Hepatocellular carcinoma (HCC) both in vitro and in vivo. We found that the cytotoxicity on HCC caused by LCR-P was significantly stronger than that caused by Lipo-Ce6-PDT (LC-P). Cellular ROS production in the LCR-P group was approximately higher than that in the LC-P group, and Regorafenib significantly inhibited the phosphorylation of JNK, ERK, and P38 of Lipo-Ce6-PDT group in vitro and in vivo. Furthermore, Regorafenib significantly downregulated the expression of Bcl-2 and upregulated the expression of Bax and cleaved caspase-3 of LC-P group in vitro and in vivo. Compared with LC-P, LCR-P significantly increased cell apoptosis rate. The body weight and HE staining of normal organs primarily indicated the safety of this combined strategy. These results indicate that the combination of Regorafenib and Lipo-Ce6 can significantly enhance the anti-tumor efficiency of PDT for HCC and exhibits good biosafety.
Collapse
Affiliation(s)
- Song Zhang
- Postdoctoral Research Station, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Xiao Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yali Ren
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lu Huang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Weitian Xu
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Cancer Institute, School of Medicine, Jianghan University, Wuhan, China.
| | - Qiping Lu
- Postdoctoral Research Station, General Hospital of Central Theater Command, Wuhan, Hubei 430070, China.
| |
Collapse
|