1
|
Shulman DS, Crompton BD. Emerging Role of Blood-based Biomarkers in Sarcomas. Hematol Oncol Clin North Am 2025:S0889-8588(25)00040-1. [PMID: 40410056 DOI: 10.1016/j.hoc.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
We assess the emerging role of liquid biopsies, particularly circulating tumor DNA (ctDNA), in sarcoma management. Preliminary studies suggest that ctDNA has multiple potential applications including, early detection in patients with cancer predisposition syndromes, diagnosis, prognostication, therapy selection, and monitoring treatment response. Among patients with gastrointestinal stromal tumors, studies have demonstrated the capacity for identification of clinically relevant resistance mutations. In other sarcoma subtypes such as Ewing sarcoma and osteosarcoma, early findings indicate that ctDNA levels might correlate with tumor burden and outcomes, potentially aiding in risk stratification. Clinical utility has not been established for these applications.
Collapse
Affiliation(s)
- David S Shulman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Brian D Crompton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, Boston, MA 02115, USA; Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Achatz MI, Villani A, Bertuch AA, Bougeard G, Chang VY, Doria AS, Gallinger B, Godley LA, Greer MLC, Kamihara J, Khincha PP, Kohlmann WK, Kratz CP, MacFarland SP, Maese LD, Maxwell KN, Mitchell SG, Nakano Y, Pfister SM, Wasserman JD, Woodward ER, Garber JE, Malkin D. Update on Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clin Cancer Res 2025; 31:1831-1840. [PMID: 40072304 DOI: 10.1158/1078-0432.ccr-24-3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/05/2025] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant cancer predisposition condition characterized by a high lifetime risk for a wide spectrum of malignancies associated with germline pathogenic/likely pathogenic variants in the TP53 tumor suppressor gene. Secondary malignant neoplasms are particularly common. Early cancer detection through surveillance enables early intervention and leads to improved clinical outcomes with reduced tumor-related mortality and treatment-related morbidity. Since the 2017 publication of LFS tumor surveillance guidelines from the inaugural American Association for Cancer Research Childhood Cancer Predisposition Workshop, understanding the genotype-phenotype relationships in LFS has evolved, and adaptations of the guidelines have been implemented in institutions worldwide. The "Toronto Protocol" remains the current standard for lifelong surveillance; however, as outlined in this perspective, modifications should be considered about the use of certain modalities to target organs in an age-dependent manner. The Working Group's recommendations have also been extended to include a more detailed outline for surveillance in the adult TP53 pathogenic/likely pathogenic variant carrier population, based on the recognition that early education of both practitioners and patients on what to expect after the transition from childhood/adolescence to young adulthood is important in preparing them for changes in surveillance strategies. In this perspective, we provide an up-to-date clinical overview of LFS and present our updated consensus tumor surveillance recommendations from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop.
Collapse
Affiliation(s)
| | - Anita Villani
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Gaëlle Bougeard
- Department of Genetics, Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Rouen, France
| | - Vivian Y Chang
- Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, California
| | - Andrea S Doria
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Bailey Gallinger
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Canada
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mary-Louise C Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | | | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Wendy K Kohlmann
- VA Medical Center, National TeleOncology Program, Clinical Cancer Genetics Service, Durham, North Carolina
- University of Utah Huntsman Cancer Institute, Salt Lake City, Utah
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Suzanne P MacFarland
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luke D Maese
- University of Utah-Huntsman Cancer Institute, Primary Children's Hospital, Salt Lake City, Utah
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sarah G Mitchell
- Department of Pediatric Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Yoshiko Nakano
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Stefan M Pfister
- Division Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Emma R Woodward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Lee JW. Li-Fraumeni Syndrome : Current Strategies and Future Perspectives. J Korean Neurosurg Soc 2025; 68:305-310. [PMID: 40289692 PMCID: PMC12062525 DOI: 10.3340/jkns.2025.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/30/2025] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare inherited cancer predisposition syndrome caused by germline mutations in the TP53 tumor suppressor gene. It predisposes affected individuals to a wide spectrum of early-onset malignancies, including sarcomas, breast cancer, brain tumors, and adrenocortical carcinoma. Advances in genetic testing and risk management strategies have enhanced the identification and clinical management of LFS patients. Comprehensive surveillance has demonstrated increased survival rates through proactive screening. Beyond surveillance, research is exploring novel approaches such as liquid biopsy for early cancer detection and chemoprevention strategies, including metformin trials, to mitigate cancer risk. This review discusses the molecular basis, clinical spectrum, surveillance strategies, and emerging research in LFS.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Lolas-Hamameh S, Lieberman S, Sarahneh A, Walsh T, Lee MK, Gulsuner S, Rabie G, Beeri R, Aburayyan A, Mandell JB, Fridman H, Lazer-Derbeko G, Klopstock T, Freireich O, Lahad A, King MC, Levy-Lahad E, Kanaan MN. TP53 missense allele predisposing to high risk of breast cancer but not pediatric cancers. J Natl Cancer Inst 2025; 117:1069-1073. [PMID: 39673796 DOI: 10.1093/jnci/djae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024] Open
Abstract
Pathogenic TP53 germline variants cause young-onset breast cancer and other cancers of the Li-Fraumeni syndrome (LFS) spectrum, but the clinical consequences of partial-loss-of function TP53 variants are incompletely understood. In the consecutive cohort of Palestinian breast cancer patients of the Middle East Breast Cancer Study (MEBCS), breast cancer risk among TP53 p.R181C heterozygotes was 50% by age 50 years and 81% by age 80 years. In contrast, prevalence of pediatric cancers in the MEBCS was similar among first-degree relatives of TP53 p.R181C carriers (3/519 = 0.0058) and first-degree relatives of MEBCS patients with no pathogenic germline variant in any known breast cancer gene (7/1082 = 0.0065; odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.23 to 3.49], Fisher P = .90 [2-tailed]). This result suggests that in families harboring this TP53 allele, genetic testing in children is unwarranted, and screening children for LFS tumors is unnecessary. More generally, some TP53 missense alleles can predispose to very high risk of breast cancer without pleiotropic effects.
Collapse
Affiliation(s)
- Suhair Lolas-Hamameh
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Sari Lieberman
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Alaa Sarahneh
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Tom Walsh
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Ming K Lee
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Suleyman Gulsuner
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Grace Rabie
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| | - Rachel Beeri
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Amal Aburayyan
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Jessica B Mandell
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
| | - Hila Fridman
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Galit Lazer-Derbeko
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Tehila Klopstock
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Orit Freireich
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Amnon Lahad
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Family Medicine, Clalit Health Services, Jerusalem 9548323, Israel
| | - Mary-Claire King
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195-7720, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA
| | - Ephrat Levy-Lahad
- Fuld Family Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Moien N Kanaan
- Hereditary Research Laboratory, Bethlehem University, Bethlehem P1520468, Palestine
| |
Collapse
|
5
|
Connolly EA, Boye K, Bonvalot S, Kratz CP, Leithner A, Malkin D, Messiou C, Miah AB, Pantziarka P, Timmermann B, van der Graaf WT, Thomas DM, Stacchiotti S. Genetic predisposition in sarcomas: clinical implications and management. EClinicalMedicine 2025; 83:103203. [PMID: 40291347 PMCID: PMC12032185 DOI: 10.1016/j.eclinm.2025.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Recent studies indicate up to 20% of sarcomas may be associated with predisposition genes, and this number will probably increase as genetic testing becomes more available. Evidence on the management of patients with sarcoma and genetic predisposition remains, however, scarce. This review compiles available research on genetic predisposition syndromes associated with sarcoma and sarcoma treatment within such syndromes, addressing key gaps in knowledge. We explore the current evidence on how genetic predisposition may influence treatment decisions and clinical management, focusing on surgery, radiotherapy, systemic treatment, and surveillance. Evidence-based recommendations are currently not available for most syndromes, and we have therefore included pragmatic advice for clinicians. Unanswered questions and unmet needs are also identified, underscoring the importance of multidisciplinary input from specialists such as geneticists, radiologists, surgeons and oncologists. The review stresses the need for future research to improve clinical outcomes for patients with sarcoma and genetic predisposition. Funding No funding has been provided for this work.
Collapse
Affiliation(s)
- Elizabeth A. Connolly
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, Australia
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Sylvie Bonvalot
- Department of Surgery, Institut Curie, Comprehensive Cancer Center, Paris, France
| | - Christian P. Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - David Malkin
- Division of Haematology-Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Christina Messiou
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Aisha B. Miah
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Pan Pantziarka
- Anticancer Fund, Meise, Belgium
- George Pantziarka TP53 Trust, London, United Kingdom
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), Essen, Germany
| | - Winette T.A. van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, the Netherlands
| | - David M. Thomas
- Garvan Institute of Medical Research, Sydney, Australia
- Centre for Molecular Oncology, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Jwo SH, Ng SK, Li CT, Chen SP, Chen LY, Liu PJ, Wang HJ, Lin JS, Ko CJ, Lee CF, Wang CH, Ouyang X, Wang L, Wei TT. Dual prophylactic and therapeutic potential of iPSC-based vaccines and neoantigen discovery in colorectal cancer. Theranostics 2025; 15:5890-5908. [PMID: 40365296 PMCID: PMC12068288 DOI: 10.7150/thno.111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Induced pluripotent stem cells (iPSCs) share transcriptomic similarities with cancer cells and express tumor-specific and tumor-associated antigens, highlighting their potential as cancer vaccines. Our previous study demonstrated that an iPSC-based vaccine effectively prevented tumor growth in various mouse models, including melanoma, breast, lung, and pancreatic cancers. However, the underlying mechanisms and the therapeutic efficacy of the iPSC-based vaccine remain unclear. Colorectal cancer (CRC), the third most common cancer with a rising incidence worldwide, presents an urgent need for novel strategies to prevent and treat CRC. Methods: Allograft mouse models were established to evaluate the antitumor effects of the iPSC-based vaccine. CpG oligonucleotide (ODN) 1826 served as a vaccine adjuvant. Bulk RNA-Sequencing (RNA-Seq) and the Microenvironment Cell Population counter (MCP-Counter) algorithm were performed to analyze transcriptomic changes. Liquid chromatography-mass spectrometry (LC-MS) combined with in silico strategies was employed to identify potential antigen proteins. Chinese Hamster Ovary (CHO-K1) models were utilized to express candidate neoantigen proteins. Mouse bone marrow-derived dendritic cells (BMDCs) were used to investigate T cell priming in response to iPSC-associated proteins. Immune cell profiles were characterized by flow cytometry. Results: The combination of CpG and iPSC vaccination demonstrated both prophylactic and therapeutic efficacy in reducing tumor growth in CRC mouse models. Vaccination significantly increased CD8+ T cell infiltration within tumor regions, while T cell depletion abrogated the antitumor effects, underscoring the critical role of T cells in mediating these responses. Proteomic analysis identified two iPSC-associated proteins, heterogeneous nuclear ribonucleoprotein U (HNRNPU) and nucleolin (NCL), as key drivers of the observed immune responses. Vaccination with HNRNPU or NCL, in combination with CpG, enhanced dendritic cell activation, induced antigen-specific CD8+ T cell cytotoxicity, and promoted the formation of central memory CD8+ T cells, collectively leading to significant CRC tumor shrinkage. Conclusions: Our findings reveal potential mechanisms underlying the efficacy of iPSC-based vaccines in cancer immunotherapy. Additionally, HNRNPU and NCL were identified as key antigen proteins in iPSC, demonstrating promise for the development of peptide-based vaccines for both the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Si-Han Jwo
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shang-Kok Ng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chin-Tzu Li
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shao-Peng Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Li-Yu Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Pin-Jung Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Huai-Jie Wang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Fan Lee
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hao Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Xiaoming Ouyang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Lin Wang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics (TIGP-CBMB), Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Omran M, Liu Y, Sun Zhang A, Poluha A, Stenmark-Askmalm M, Persson F, Hallbeck AL, Rosén A, Helgadottir HT, Tham E, Bajalica-Lagercrantz S. Characterisation of heritable TP53-related cancer syndrome in Sweden-a nationwide study of genotype-phenotype correlations in 90 families. Eur J Hum Genet 2025; 33:513-522. [PMID: 39757328 PMCID: PMC11986147 DOI: 10.1038/s41431-024-01753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/07/2025] Open
Abstract
We aimed to describe the clinical characteristics of families with heritable TP53-related cancer (hTP53rc) syndrome in Sweden with class 4 and 5 germline TP53 variants (gTP53), and to evaluate the genotype-phenotype correlation. These results were also used to evaluate our previously published phenotype prediction model based on TP53 missense variants and their impact on protein conformation. 90 families with hTP53rc were initially identified in Sweden. After variant reclassification using the TP53-specific ACMG criteria, 83 families remained (176 carriers) to harbour a pathogenic (class 5) or likely pathogenic (class 4) variant in TP53. Of these, 112 carriers (64%) had a previous history of cancer, and 35 (31%) had developed more than one primary tumour. 16% of the families met the stricter criteria for Classic Li-Fraumeni syndrome, 45% the updated Chompret criteria, 35% for hereditary breast cancer (HBC), and the remaining 5% were classified as "Others". We identified 42 different gTP53 variants of which 22 were missense. The most frequently observed variant was the missense c.542 G > A, p.R181H identified in 14/29 (48%) of HBC families. Fifteen of the 20 informative missense variants (75%) were phenotypically predicted correctly using our previously published in silico prediction model. The TP53 p.R181H was identified as a common Swedish variant predominantly associated with an HBC phenotype. Apart from this variant, there were no significant genotype-phenotype correlations. Therefore, due to phenotypic overlap it is still too early to stratify surveillance programme for different TP53-carriers.
Collapse
Affiliation(s)
- Meis Omran
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, SE-171 77, Stockholm, Sweden.
- Cancer Theme, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, SE-171 77, Stockholm, Sweden
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Alexander Sun Zhang
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, SE-171 77, Stockholm, Sweden
| | - Anna Poluha
- Department of Clinical Genetics, Genetics and Pathology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 05, Uppsala, Sweden
| | - Marie Stenmark-Askmalm
- Division of Clinical Genetics, Department of Laboratory Medicine, Office for Medical Services, Skåne University Hospital, SE-228 85, Lund, Sweden
| | - Fredrik Persson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Anna-Lotta Hallbeck
- Department of Clinical Genetics, Linköping University Hospital, SE-581 85, Linköping, Sweden
| | - Anna Rosén
- Department of Diagnostics and Intervention, Oncology, Umeå University, SE-901 87, Umeå, Sweden
| | - Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 76, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, SE-171 76, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Svetlana Bajalica-Lagercrantz
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, SE-171 77, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| |
Collapse
|
8
|
Rising CJ, Forbes Shepherd R, Sleight AG, Boyd P, Wilsnack C, Thompson AS, Huelsnitz CO, Hutson SP, Khincha PP, Werner-Lin A. Relating to the Body Under Chronic Cancer Threat: Implications for Psychosocial Health Among Adolescents and Young Adults with Cancer Predisposition Syndromes. J Adolesc Young Adult Oncol 2025; 14:151-159. [PMID: 39331584 DOI: 10.1089/jayao.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Purpose: Adolescents and young adults (AYAs) with cancer predisposition syndromes often experience significant physical and psychosocial burdens. These burdens include cancer worry and potentially distressing bodily changes due to risk-reducing procedures (e.g., mastectomy) or cancer treatments. This qualitative-descriptive study explored how AYAs with Li-Fraumeni syndrome (LFS) relate and adjust to their bodies under the chronic threat of cancer. Methods: Participants were enrolled in the National Cancer Institute's LFS study. This analysis included 42 AYAs with LFS aged 15-39 years at enrollment who completed one or two telephone interviews that explored LFS-related bodily experiences and challenges. Transcripts were thematically analyzed. Results: The majority of participants (n = 26/42, 62%) had ≥1 primary cancer. The mean age at first cancer diagnosis was 21 years (range = 0.5-35 years). Participants described challenges relating to the body due to frequent self-monitoring, whole-body magnetic resonance imaging scans, risk-reducing surgeries, and/or cancer treatments. Heightened body awareness and vigilance not only prompted self-protective behaviors but also triggered worry and distress. AYAs coped with bodily changes and concerns by seeking doctors' reassurance, engaging in health-protective behaviors, and reframing perceptions of their altered bodies. Conclusion: Findings suggest AYAs with cancer predisposition syndromes such as LFS experience difficulties relating and adjusting to the body that may compromise psychosocial health. Our results demonstrate that these difficulties may arise across the time course of genetic disease, including before a cancer diagnosis. Clinicians might support AYAs by conducting routine psychosocial risk assessments, providing anticipatory guidance regarding body-related challenges, sharing peer support resources, and referring to mental health providers, as needed.
Collapse
Affiliation(s)
- Camella J Rising
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Rowan Forbes Shepherd
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Alix G Sleight
- Department of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, USA
| | - Patrick Boyd
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Catherine Wilsnack
- Steve Hicks School of Social Work, University of Texas at Austin, Austin, Texas, USA
| | - Ashley S Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Chloe O Huelsnitz
- Behavioral Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, Maryland, USA
| | - Sadie P Hutson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Allison Werner-Lin
- School of Social Policy and Practice, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Standing S, Malkin D, Johnston DL. A Unique Case of a Pediatric Patient with Six Childhood Cancers in Association with a Germline TP53 Gene Pathogenic Variant. Pediatr Blood Cancer 2025; 72:e31487. [PMID: 39702904 DOI: 10.1002/pbc.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Affiliation(s)
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatircs, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Donna L Johnston
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Cardano M, Buscemi G, Zannini L. Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies. Cells 2025; 14:363. [PMID: 40072091 PMCID: PMC11898824 DOI: 10.3390/cells14050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Epidemiological studies have revealed significant sex differences in the incidence of tumors unrelated to reproductive functions, with females demonstrating a lesser risk and a better response to therapy than males. However, the reasons for these disparities are still unknown and cancer therapies are generally sex-unbiased. The tumor-suppressor protein p53 is a transcription factor that can activate the expression of multiple target genes mainly involved in the maintenance of genome stability and tumor prevention. It is encoded by TP53, which is the most-frequently mutated gene in human cancers and therefore constitutes an attractive target for therapy. Recently, evidence of sex differences has emerged in both p53 regulations and functions, possibly providing novel opportunities for personalized cancer medicine. Here, we will review and discuss current knowledge about sexual disparities in p53 pathways, their role in tumorigenesis and cancer progression, and their importance in the therapy choice process, finally highlighting the importance of considering sex contribution in both basic research and clinical practice.
Collapse
|
11
|
Louis J, Rolain M, Levacher C, Baudry K, Pujol P, Ruminy P, Baert Desurmont S, Bou J, Bouvignies E, Coutant S, Kasper E, Lienard G, Vasseur S, Vezain M, Houdayer C, Charbonnier F, Bougeard G. Li-Fraumeni syndrome: a germline TP53 splice variant reveals a novel physiological alternative transcript. J Med Genet 2025; 62:160-168. [PMID: 39788694 DOI: 10.1136/jmg-2024-110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline TP53 variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.6:c.1101-2A>C (rs587781664) variant, located at the splice acceptor site of the last intron of TP53, identified in a female patient with breast cancer diagnosed in her 20s. METHODS To interpret this variant, which has been classified as a variant of uncertain significance (VUS), we developed specific assays including a p53 functional assay, RT-QMPSF, Splice and Expression Analyses by exon Ligation and High-Throughput Sequencing and long RT-droplet digital PCR. RESULTS We demonstrated a loss of p53 transcriptional activity, and a half reduction in TP53 mRNA expression. Additionally, we detected the use of a novel alternative last exon downstream of exon 11, which we have named exon 12. This transcript, typically detectable at low levels in most individuals, was found to be more highly expressed in the c.1101-2A>C carrier, predominantly transcribed from the mutant allele due to the disruption of the splice acceptor site in intron 10. CONCLUSION By combining these approaches, we successfully reclassified this intronic VUS as 'pathogenic', enabling appropriate genetic counselling for the patient and her family. Additionally, we identified a novel TP53 alternative transcript that is expressed in both physiological and pathological contexts, with heightened expression in the patient with LFS. This discovery provides a basis for further investigation into the role of TP53 isoforms in LFS oncogenesis.
Collapse
Affiliation(s)
- Jeanne Louis
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Marion Rolain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Corentin Levacher
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Karen Baudry
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
| | - Pascal Pujol
- CHU Montpellier, Département d'oncogénétique, F-34000, Montpellier, France
- Univ Montpellier et CREEC, UMR IRD 224-CNRS 5290, F-34000, Montpellier, France
| | - Philippe Ruminy
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Centre Henri Becquerel, F-76000, Rouen, France
| | - Stéphanie Baert Desurmont
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Jacqueline Bou
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Emilie Bouvignies
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Sophie Coutant
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Edwige Kasper
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gwendoline Lienard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Stéphanie Vasseur
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Myriam Vezain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Claude Houdayer
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Françoise Charbonnier
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
| |
Collapse
|
12
|
Danishevich A, Fedorova D, Bodunova N, Makarova M, Byakhova M, Semenova A, Galkin V, Litvinova M, Nikolaev S, Efimova I, Osinin P, Lisitsa T, Khakhina A, Shipulin G, Nasedkina T, Shumilova S, Gusev O, Bilyalov A, Shagimardanova E, Shigapova L, Nemtsova M, Sagaydak O, Woroncow M, Gadzhieva S, Khatkov I. Assessing germline TP53 mutations in cancer patients: insights into Li-Fraumeni syndrome and genetic testing guidelines. Hered Cancer Clin Pract 2025; 23:5. [PMID: 39962599 PMCID: PMC11834258 DOI: 10.1186/s13053-025-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Germline TP53 gene variants are intricately linked to Li-Fraumeni syndrome, a rare and aggressive hereditary cancer syndrome. This study investigated the frequency and spectrum of TP53 pathogenic variants associated with Li-Fraumeni syndrome in a large cohort of mainly breast cancer patients from Russia. METHODS The study analyzed 3,455 genomic DNA samples from cancer patients using next-generation sequencing panels and whole-genome sequencing. Clinically significant TP53 variants were identified and validated using Sanger sequencing. The clinical and family history characteristics of patients with TP53 variants were analyzed. RESULTS The analysis identified 13 (0.4%) individuals with clinically significant germline TP53 variants, all of whom were females with either unilateral breast cancer or breast cancer as part of multiple primary malignant neoplasms. The average age of breast cancer manifestation was 39.9 years, with a median of 36 years. Only 38.5% of the TP53 mutation carriers met the modified Chompret criteria for TP53 testing. CONCLUSIONS The findings underscore the necessity of thorough phenotype and family history analysis in genetic counseling to effectively diagnose LFS, and emphasize the importance of identifying TP53 variant carriers for developing treatment strategies, prognosis, and monitoring, as well as for identifying high-risk family members. The study also highlights that the current guidelines fail to identify over half of the TP53 mutation carriers, suggesting the need for a more comprehensive approach to genetic testing in suspected hereditary cancer cases.
Collapse
Affiliation(s)
- Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia.
| | - Daria Fedorova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Maria Makarova
- Evogen LLC, Moscow, 115191, Russia
- Russian Scientific Center of Roentgenoradiology of the Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - Maria Byakhova
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Anna Semenova
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Vsevolod Galkin
- City Clinical Oncological Hospital No. 1 of Moscow Healthcare Department, Moscow, 117152, Russia
| | - Maria Litvinova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Irina Efimova
- Medical Genetic Research Center Named After Academician N.P. Bochkov, Moscow, 115522, Russia
| | - Pavel Osinin
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
| | - Tatyana Lisitsa
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
- FSBI "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya Khakhina
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
| | - German Shipulin
- FSBI "Centre for Strategic Planning and Management of Biomedical Health Risks" of the Federal Medical and Biological Agency, Moscow, 119435, Russia
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Syuykum Shumilova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991, Russia
| | - Oleg Gusev
- Life Improvement By Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Airat Bilyalov
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia
- Life Improvement By Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | | | - Marina Nemtsova
- Evogen LLC, Moscow, 115191, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russian Federation (Sechenov University), Moscow, 119991, Russia
- Medical Genetic Research Center Named After Academician N.P. Bochkov, Moscow, 115522, Russia
| | | | - Mary Woroncow
- National Medical Research Center of Endocrinology, Moscow, 117292, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named After Loginov of Moscow Healthcare Department, Moscow, 111123, Russia.
| |
Collapse
|
13
|
Cè M, Cellina M, Ueanukul T, Carrafiello G, Manatrakul R, Tangkittithaworn P, Jaovisidha S, Fuangfa P, Resnick D. Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics. Cancers (Basel) 2025; 17:599. [PMID: 40002194 PMCID: PMC11852380 DOI: 10.3390/cancers17040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Osteosarcoma is a primary malignant bone tumor characterized by the production of an osteoid matrix. Although histology remains the definitive diagnostic standard, imaging plays a crucial role in diagnosis, therapeutic planning, and follow-up. Conventional radiography serves as the initial checkpoint for detecting this pathology, which often presents diagnostic challenges due to vague and nonspecific symptoms, especially in its early stages. Today, the integration of different imaging techniques enables an increasingly personalized diagnosis and management, with each contributing unique and complementary information. Conventional radiography typically initiates the imaging assessment, and the Bone Reporting and Data System (Bone-RADS) of the Society of Skeletal Radiology (SSR) is a valuable tool for stratifying the risk of suspicious bone lesions. CT is the preferred modality for evaluating the bone matrix, while bone scans and PET/CT are effective for detecting distant metastases. MRI reveals the extent of the lesion in adjacent soft tissues, the medullary canal, and joints, as well as its relationship to neurovascular structures and the presence of skip lesions. Advanced techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted imaging (DWI), and perfusion MRI help characterize the tumor environment and assess treatment response. Osteosarcoma comprises a range of subtypes with differing clinical and imaging characteristics, some of which are particularly distinctive, such as in the case of telangiectatic osteosarcoma. Knowledge of these variants can guide radiologists in the differential diagnosis, which includes both central and surface forms, ranging from highly aggressive to more indolent types. In this review, we present a wide range of representative cases from our hospital case series to illustrate both typical and atypical imaging presentations. Finally, we discuss recent advancements and challenges in applying artificial intelligence approaches to the imaging of osteosarcoma.
Collapse
Affiliation(s)
- Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy; (M.C.); (G.C.)
| | - Michaela Cellina
- Radiology Department, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy;
| | - Thirapapha Ueanukul
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.U.); (R.M.); (P.T.); (S.J.)
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy; (M.C.); (G.C.)
- Radiology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Rawee Manatrakul
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.U.); (R.M.); (P.T.); (S.J.)
| | - Phatthawit Tangkittithaworn
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.U.); (R.M.); (P.T.); (S.J.)
| | - Suphaneewan Jaovisidha
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.U.); (R.M.); (P.T.); (S.J.)
| | - Praman Fuangfa
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.U.); (R.M.); (P.T.); (S.J.)
| | - Donald Resnick
- Department of Radiology, University of California, San Diego, CA 92093, USA
| |
Collapse
|
14
|
Fujii H, Okuma Y, Hirata M, Shinno Y, Yoshida T, Goto Y, Horinouchi H, Yamamoto N, Ohe Y. EGFR-Mutated Lung Adenocarcinoma With Li-Fraumeni Syndrome: The Imperative for Germline Testing in Patients With a Family History, a Case Report. JTO Clin Res Rep 2025; 6:100691. [PMID: 39906181 PMCID: PMC11791262 DOI: 10.1016/j.jtocrr.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Comprehensive genomic profiling (CGP) has progressed rapidly and plays an important role in advancing precision medicine in oncology. However, CGP provides opportunities for molecular-targeted therapy, but it also unveils incidental germline findings, posing challenges and opportunities in patient care. We present the case of a 32-year-old female patient, diagnosed with stage IVB lung adenocarcinoma harboring an EGFR p.L746_A750del, who was also subsequently diagnosed with Li-Fraumeni syndrome (LFS) through CGP testing. Remarkably, despite the presence of EGFR mutation, the response to EGFR-tyrosine kinase inhibitor was poor, whereas the response to cytotoxic anticancer drugs and immunotherapy was favorable. After the diagnosis of LFS, she underwent genetic counseling and has been screened for the development of a second cancer based on the Toronto protocol. This case highlights the importance of family history interviews and considering the practice of germline genomic testing for optimal management of lung cancer patients with a hereditary cancer syndrome such as LFS. Further research is warranted to delineate the impact of germline variants on treatment outcomes and secondary cancer prevention in lung cancer.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo, Kyoto, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Noboru Yamamoto
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo, Tokyo, Japan
| |
Collapse
|
15
|
Kiermeier S, Schott S, Nees J, Dutzmann C, Strüwe F, Kratz CP, Sauer C, Fleischer A, Keymling M, Maatouk I. Health-related quality of life and fear of progression in individuals with Li-Fraumeni syndrome. J Genet Couns 2025; 34:e1859. [PMID: 38348940 PMCID: PMC11726407 DOI: 10.1002/jgc4.1859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2025]
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant cancer predisposition syndrome associated with a highly elevated lifetime cancer risk. This and the recommended intense surveillance program represent a large psychological burden on families. In order to develop targeted psychosocial interventions, we conducted a needs assessment. Adults (≥18 years) with LFS were included via regular hospital visits and online support groups and newsletters. Individuals filled out a questionnaire addressing among others: fear of progression (FoP-questionnaire, short-form), health-related quality of life (HRQoL, Short-Form Health Survey-12), distress (National Comprehensive Cancer Network distress thermometer), perceived cancer risk, and aspects of surveillance adherence. Collecting data over a 14-month period (March 2020 - June 2021), 70 adults were recruited (female = 58, 82.9%; mean age = 41.53 years). With mean mental component scores (MCS) of 42.28 (SD = 10.79), and physical component scores (PCS) of 48.83 (SD = 10.46), HRQoL was low in 34.8% (physical) and 59.4% (mental) of individuals when applying a mean cut-off of 45.4 (PCS) and 47.5 (MCS) to indicate poor HRQoL. High levels of FoP and distress were present in 68.6% and 69.1% of the participants, respectively. Performing a multiple linear regression on MCS and PCS, no sociodemographic variable was shown to be significant. FoP (β = -0.33, p < 0.05) and distress (β = -0.34, p < 0.05) were significantly associated with MCS. Individuals in our sample were burdened more than expected, with the majority reporting low levels of (mental) HRQoL, high distress, and FoP. Psychosocial support is necessary to help individuals with LFS (survivors as well as "previvors") increase their HRQoL, as it is crucial to survival.
Collapse
Affiliation(s)
- Senta Kiermeier
- Section of Psychosomatic Medicine, Psychotherapy and Psychooncology, Department of Internal Medicine IIJulius‐Maximilian University WürzburgWürzburgGermany
| | - Sarah Schott
- Department of Gynecology and ObstetricsUniversity Hospital HeidelbergHeidelbergGermany
| | - Juliane Nees
- Department of Gynecology and ObstetricsUniversity Hospital HeidelbergHeidelbergGermany
| | - Christina Dutzmann
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Farina Strüwe
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Christian P. Kratz
- Department of Pediatric Hematology and OncologyHannover Medical SchoolHannoverGermany
| | - Christina Sauer
- Department of General Internal Medicine and PsychosomaticsUniversity Hospital HeidelbergHeidelbergGermany
| | - Anna Fleischer
- Section of Psychosomatic Medicine, Psychotherapy and Psychooncology, Department of Internal Medicine IIJulius‐Maximilian University WürzburgWürzburgGermany
| | - Myriam Keymling
- Department of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Imad Maatouk
- Section of Psychosomatic Medicine, Psychotherapy and Psychooncology, Department of Internal Medicine IIJulius‐Maximilian University WürzburgWürzburgGermany
| |
Collapse
|
16
|
Singh P, Agnese DM, Amin M, Barrio AV, van den Bruele AB, Burke EE, Danforth DN, Dirbas FM, Eladoumikdachi F, Fayanju OM, Kantor O, Kumar S, Lee MC, Matsen C, Nguyen TT, Ozmen T, Park KU, Plichta JK, Reyna C, Showalter SL, Styblo T, Tranakas N, Weiss A, Woodfin A, Laronga C, Boughey JC. Society of Surgical Oncology Breast Disease Site Working Group Statement on Bilateral Risk-Reducing Mastectomy: Indications, Outcomes, and Risks. Ann Surg Oncol 2025; 32:899-911. [PMID: 39538100 DOI: 10.1245/s10434-024-16484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Bilateral risk-reducing mastectomy (BRRM) is the surgical removal of both breasts to reduce the risk of cancer. In this Society of Surgical Oncology position statement, we review the literature addressing the indications, outcomes, and risks of BRRM to update the society's 2017 statement. We held a virtual meeting to outline key topics and conducted a literature search using PubMed to identify relevant articles. After literature review, recommendations were made according to group consensus. Individuals with a high lifetime risk of breast cancer due to pathogenic variants in high penetrance breast cancer-predisposition genes, early chest or breast radiation exposure, or a compelling family history should be counseled on the option of BRRM. However, BRRM is not recommended for most patients with high-risk lesions and may be contraindicated in patients who have other competing cancers and/or a high risk of surgical complications. BRRM effectively reduces the risk of breast cancer development, although the survival benefit is unclear. For patients with low-to-moderate breast cancer risk, alternative management strategies should be encouraged, including lifestyle modifications, high-risk screening, and risk-reducing medications. Discussions of BRRM should cover: (1) breast-cancer risk estimates; (2) the procedure's degree of risk reduction and impact on survival; (3) surgical techniques, potential surgical complications and long-term sequelae; and (4) alternatives to surgery. Surgeons should encourage shared and informed decision making with patients who have an elevated lifetime risk of developing breast cancer.
Collapse
Affiliation(s)
- Puneet Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | - Andrea V Barrio
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | | | | | | | | | - Olga Kantor
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Shicha Kumar
- Rutgers Cancer Institute, New Brunswick, NJ, USA
| | | | | | | | - Tolga Ozmen
- Massachusetts General Hospital, Boston, MA, USA
| | - Ko Un Park
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Anna Weiss
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
17
|
Cheah W, Cutress RI, Eccles D, Copson E. Clinical Impact of Constitutional Genomic Testing on Current Breast Cancer Care. Clin Oncol (R Coll Radiol) 2025; 38:103631. [PMID: 39242249 DOI: 10.1016/j.clon.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
The most commonly diagnosed cancer in women worldwide is cancer of the breast. Up to 20% of familial cases are attributable to pathogenic mutations in high-penetrance (BReast CAncer gene 1 [BRCA1], BRCA2, tumor protein p53 [TP53], partner and localizer of breast cancer 2 [PALB2]) or moderate-penetrance (checkpoint kinase 2 [CHEK2], Ataxia-telangiectasia mutated [ATM], RAD51C, RAD51D) breast-cancer-predisposing genes. Most of the breast-cancer-predisposing genes are involved in DNA damage repair via homologous recombination pathways. Understanding these pathways can facilitate the development of risk-reducing and therapeutic strategies. The number of breast cancer patients undergoing testing for pathogenic mutations in these genes is rapidly increasing due to various factors. Advances in multigene panel testing have led to increased detection of pathogenic mutation carriers at high risk for developing breast cancer and contralateral breast cancer. However, the lack of long-term clinical outcome data and incomplete understanding of variants, particularly for moderate-risk genes limits clinical application. In this review, we have summarized the key functions, risks, and prognosis of breast-cancer-predisposing genes listed in the National Health Service (NHS) England National Genomic Test Directory for inherited breast cancer and provide an update on current management implications including surgery, radiotherapy, systemic treatments, and post-treatment surveillance.
Collapse
Affiliation(s)
- W Cheah
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - R I Cutress
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - D Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - E Copson
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
18
|
Dacoregio MI, Abrahão Reis PC, Gonçalves Celso DS, Romero LE, Altmayer S, Vilbert M, Moraes FY, Gomy I. Baseline surveillance in Li Fraumeni syndrome using whole-body MRI: a systematic review and updated meta-analysis. Eur Radiol 2025; 35:643-651. [PMID: 39075300 DOI: 10.1007/s00330-024-10983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVES Li-Fraumeni syndrome (LFS) is a cancer syndrome associated with early-onset neoplasias. The use of whole-body magnetic resonance imaging (WBMRI) is recommended for regular cancer screening, however, evidence supporting the benefits in asymptomatic LFS patients is limited. This study aims to assess the clinical utility of WBMRI in germline TP53 mutation carriers at baseline and follow-up. MATERIALS AND METHODS We systematically searched PubMed, Cochrane, and Embase databases for studies evaluating WBMRI as an early detection method for tumor screening in patients with LFS. We pooled the prevalence of the included variables along with their corresponding 95% confidence intervals (CIs). Statistical analyses were performed using R software, version 4.3.1. RESULTS From 1687 results, 11 comprising 703 patients (359 females (51%); with a median age of 32 years (IQR 1-74)) were included. An estimated detection rate of 31% (95% CI: 0.28, 0.34) for any suspicious lesions was found in asymptomatic TP53 carriers who underwent baseline WBMRI. A total of 277 lesions requiring clinical follow-up were identified in 215 patients. Cancer was confirmed in 46 lesions across 39 individuals. The estimated cancer diagnosis rate among suspicious lesions was 18% (95% CI: 0.13, 0.25). WBMRI detected 41 of the 46 cancers at an early-disease stage, with an overall detection rate of 6% (95% CI: 0.05, 0.08). The incidence rate was 2% per patient round of WBMRI (95% CI: 0.01, 0.04), including baseline and follow-up. CONCLUSION This meta-analysis provides evidence that surveillance with WBMRI is effective in detecting cancers in asymptomatic patients with LFS. CLINICAL RELEVANCE STATEMENT Our study demonstrates that whole-body MRI is an effective tool for early cancer detection in asymptomatic Li-Fraumeni Syndrome patients, highlighting its importance in surveillance protocols to improve diagnosis and treatment outcomes. KEY POINTS Current evidence for whole-body MRI screening of asymptomatic Li-Fraumeni Syndrome (LFS) patients remains scarce. Whole-body MRI identified 41 out of 46 cancers at an early stage, achieving an overall detection rate of 6%. Whole-body MRI surveillance is a valuable method for detecting cancers in asymptomatic LFS patients.
Collapse
Affiliation(s)
| | | | | | - Lorena Escalante Romero
- Oncology Pediatrics Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Maysa Vilbert
- Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, US
| | - Fabio Ynoe Moraes
- Radiation Oncology Department, Queen's University and Kingston Health Science Center, Kingston, ON, Canada
| | - Israel Gomy
- Genetics Department, Faculdade de Medicina de Ribeirão Preto-USP RP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Ivan A, Cojocaru E, Sirbu PD, Al Namat DR, Tîrnovanu ȘD, Butnariu LI, Bernic J, Bernic V, Țarcă E. Clinical and Pathological Profile of Children and Adolescents with Osteosarcoma. Diagnostics (Basel) 2025; 15:266. [PMID: 39941196 PMCID: PMC11817002 DOI: 10.3390/diagnostics15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction: Osteosarcoma (OS) is the most common type of primary malignant bone and cartilage tumour. Because of the remarkable developments in technology, remarkable progress has been made in the medical field regarding the diagnosis and management of OS patients. The aim of the study is to describe the clinical and pathological profile of paediatric patients with osteosarcoma and to identify potential prognostic factors for an unfavourable outcome in our country. Methods: We conducted a retrospective study of all children and adolescents with musculoskeletal tumours diagnosed and treated at our tertiary Orthopaedic Department for a period of 10 years. Results: A group of 65 children and adolescents with osteosarcoma who benefited from diagnosis, neoadjuvant, adjuvant and surgical treatment in the Emergency Clinical Hospital for Children "Sfânta Maria" Iasi, România, was analysed. The average age at the time of diagnosis was 12.9 years. The analysis revealed a higher frequency for male patients in the case of femur and tibia locations and a significantly higher frequency of osteosarcoma in the scapula and clavicle in female patients, while OS in the humerus was found only in male patients (χ2 = 19.46, p = 0.0149). The most frequent histopathological subtype was osteoblastic osteosarcoma, but there was no significant correlation with the gender or the age of the patients (χ2 = 0.73, p = 0.863 and χ2 = 0.843, p = 0.839). The results indicated instead a significantly (p = 0.0185) lower age values of patients with undifferentiated osteosarcomas, the average age being 9.4 years ± 2.1 SD. After performing a multivariate logistic regression analysis for the risk of death based on clinical parameters, we found that high tumoural grading increases the risk of death 2.8 times, pleomorphic histological subtype increases the risk of death 3.5 times, and stage IV TNM increases this risk 5.9 times. Conclusions: For the north-eastern geographical part of Romania, the epidemiological and clinical profile of a child with osteosarcoma is a 13-year-old boy with a femoral or tibia tumour or a 12-year-old girl with a femoral, tibia, scapula or clavicle tumour, both coming from a rural area. The tumour has around 12 cm diameter and is a differentiated osteoblastic osteosarcoma. The survival rate at 10 years is 63%. Tumour grading, histological subtype and TNM staging significantly influence the probability of death and could be important prognostic parameters for patients with osteosarcoma.
Collapse
Affiliation(s)
- Andrei Ivan
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.); (D.R.A.N.); (E.Ț.)
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Paul Dan Sirbu
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.D.S.); (Ș.D.T.)
| | - Dina Roșca Al Namat
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.); (D.R.A.N.); (E.Ț.)
| | - Ștefan Dragoș Tîrnovanu
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (P.D.S.); (Ș.D.T.)
| | - Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova;
| | - Valentin Bernic
- Department of Surgery II, “Saint Spiridon” Hospital, University Street No. 16, 700115 Iasi, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.I.); (D.R.A.N.); (E.Ț.)
| |
Collapse
|
20
|
Seeling C, Dahlum S, Marienfeld R, Jan V, Rack B, Gerstenmaier U, Beer AJ, Mayer-Steinacker R, Thaiss W, Barth TFE, Seufferlein T, Gaisa NT, Stilgenbauer S, Janni W, Siebert R, Döhner H, Gaidzik VI. Exploiting somatic oncogenic driver alterations in a patient with Li-Fraumeni syndrome- paving the path towards precision medicine: a case report. J Cancer Res Clin Oncol 2025; 151:37. [PMID: 39820556 PMCID: PMC11739273 DOI: 10.1007/s00432-024-06077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients. However, there is limited evidence supporting the effectiveness of targeted therapy approaches in LFS patients. CASE PRESENTATION We present the case of a woman with breast cancer and subsequent osteosarcoma, both treated with surgery and chemotherapy. Constitutional genetic germline testing identified a pathogenic TP53 variant in line with the clinical features of Li-Fraumeni syndrome. Subsequent molecular analysis of the osteosarcoma tissue revealed homozygous loss of the CDKN2A gene locus, warranting treatment with CDK4/6 inhibitor palbociclib. Palbociclib therapy was discontinued after one year with no evidence of disease. One year later, ovarian cancer was diagnosed, with molecular analysis indicating interstitial heterozygous loss of the BRCA2 gene locus, providing a rationale for targeted therapy with the PARP inhibitor olaparib. CONCLUSIONS In the era of accessible and comprehensive genetic and phenotypic tumor profiling, this case study of a patient with Li-Fraumeni syndrome underscores the success of precision oncology in harnessing additional somatic oncogenic driver alterations. Furthermore, it emphasizes the indispensable role of an interdisciplinary molecular tumor board, enhancing the awareness of molecular profiling and targeted therapies in patients with rare cancer susceptibility disorders.
Collapse
Affiliation(s)
- Carolin Seeling
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Vera Jan
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | | | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Wolfgang Thaiss
- Department of Nuclear Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital Ulm, Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
- Comprehensive Cancer Center Ulm (CCCU), University Hospital Ulm, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Ulm and University of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany.
| |
Collapse
|
21
|
Rofes P, Castillo-Manzano C, Menéndez M, Teulé Á, Iglesias S, Munté E, Ramos-Muntada M, Gómez C, Tornero E, Darder E, Montes E, Valle L, Capellá G, Pineda M, Brunet J, Feliubadaló L, Del Valle J, Lázaro C. TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate. Genome Med 2025; 17:3. [PMID: 39810221 PMCID: PMC11734529 DOI: 10.1186/s13073-025-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc). Germline TP53 variant interpretation is challenging due to the diverse nature of TP53 PVs, variable penetrance of the syndrome, possible occurrence of TP53 somatic mosaicism, and TP53 involvement in clonal hematopoiesis of indeterminate potential (CHIP). Here we aim to assess the relevance and impact of these issues on the diagnostic routine, and to evaluate the sensitivity of the different LFS clinical criteria to identify hTP53rc. METHODS TP53 was analyzed in 6161 suspected hereditary cancer non-related patients categorized into three subgroups: (1) 495 patients fulfilling any LFS/Chompret clinical criteria; (2) 2481 patients diagnosed with early-onset breast/colorectal cancer; (3) 3185 patients without clinical criteria suggestive of hTP53rc. Ancillary tests were performed when TP53 PVs were identified in individuals not meeting LFS/Chompret criteria and/or when the variant was identified at low variant allele frequency (VAF). RESULTS TP53 PVs were identified in blood DNA of 45 probands. Variant origin was elucidated in 39 of these: 72% patients had a constitutional PV, 10% were mosaics, and 18% had CHIP-associated PVs. Notably, two of the seven CHIP-TP53 PVs identified were detected at high allelic frequencies (VAF > 35%). Twenty-nine percent of germline TP53 PV did not meet any of the LFS clinical criteria. Among the clinical criteria, Chompret 2009 showed the highest sensitivity in our cohort (68% vs. 54% for Chompret 2015), highlighting the relevance of considering lung cancer in the criteria. CONCLUSIONS Our data supports performing TP53 ancillary testing for the identification of potential mosaicisms and CHIP-associated PVs, particularly in patients not meeting clinical criterial for LFS, irrespective of the VAF, and the application of clinical criteria that include lung cancer diagnosis.
Collapse
Affiliation(s)
- Paula Rofes
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carmen Castillo-Manzano
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Doctoral Programme of Genetics, University of Barcelona, Barcelona, Spain
| | - Mireia Menéndez
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Álex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
| | - Sílvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
| | - Elisabet Munté
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mireia Ramos-Muntada
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carolina Gómez
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
| | - Eva Tornero
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Esther Darder
- Hereditary Cancer Program, Catalan, Institute of Oncology - Institut d'Investigació Biomèdica de Girona (IDIBGi), Girona, Spain
| | - Eva Montes
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
| | - Laura Valle
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel Capellá
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hereditary Cancer Program, Catalan, Institute of Oncology - Institut d'Investigació Biomèdica de Girona (IDIBGi), Girona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jesús Del Valle
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
22
|
Jeyaraman K, Concolino P, Falhammar H. Adrenocortical tumors and hereditary syndromes. Expert Rev Endocrinol Metab 2025; 20:1-19. [PMID: 39570085 DOI: 10.1080/17446651.2024.2431748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
INTRODUCTION Adrenocortical tumors (ACTs) are frequently encountered in clinical practice. They vary in clinical and biological characteristics from nonfunctional to life threatening hormone excess, from benign to highly aggressive malignant tumors. Most ACTs appear to be benign and nonfunctioning. It has been controversial how these apparently benign and nonfunctioning tumors should be monitored. Over the past few decades, significant advances have been made in understanding the regulation of growth and tumorigenesis in adrenocortical cells. Defining the molecular pathomechanisms in inherited tumor syndromes led to the expansion of research to sporadic ACTs. Distinct molecular signatures have been identified in sporadic ACTs and a potential genomic classification of ACT has been proposed. AREAS COVERED In this review, we discuss the various adrenocortical pathologies associated with hereditary syndromes with special focus on their molecular pathomechanisms, the understanding of which is important in the era of precision medicine. EXPERT OPINION Identifying the molecular pathomechanisms of the adrenocortical tumorigenesis in inherited syndromes has led to the understanding of the alterations in different signaling pathways that help explain the wide variations in the biology and behavior of ACTs.
Collapse
Affiliation(s)
| | - Paola Concolino
- Dipartimento di Scienze di Laboratorio ed Ematologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Panagiotou E, Vathiotis IA, Makrythanasis P, Hirsch F, Sen T, Syrigos K. Biological and therapeutic implications of the cancer-related germline mutation landscape in lung cancer. THE LANCET. RESPIRATORY MEDICINE 2024; 12:997-1005. [PMID: 38885686 DOI: 10.1016/s2213-2600(24)00124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Although smoking is the primary cause of lung cancer, only about 15% of lifelong smokers develop the disease. Moreover, a substantial proportion of lung cancer cases occur in never-smokers, highlighting the potential role of inherited genetic factors in the cause of lung cancer. Lung cancer is significantly more common among those with a positive family history, especially for early-onset disease. Therefore, the presence of pathogenic germline variants might act synergistically with environmental factors. The incorporation of next-generation sequencing in routine clinical practice has led to the identification of cancer-predisposing mutations in an increasing proportion of patients with lung cancer. This Review summarises the landscape of germline susceptibility in lung cancer and highlights the importance of germline testing in patients diagnosed with the disease, which has the potential to identify individuals at risk, with implications for tailored therapeutic approaches and successful prevention through genetic counselling and screening.
Collapse
Affiliation(s)
- Emmanouil Panagiotou
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A Vathiotis
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fred Hirsch
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Triparna Sen
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Konstantinos Syrigos
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Saucier E, Bougeard G, Gomez-Mascard A, Schramm C, Abbas R, Berlanga P, Briandet C, Castex MP, Corradini N, Coze C, Guerrini-Rousseau L, Guinebretière JM, Khneisser P, Lervat C, Mansuy L, Marec-Berard P, Marie-Cardine A, Mascard E, Saumet L, Tabone MD, Winter S, Frebourg T, Gaspar N, Brugieres L. Li-Fraumeni-associated osteosarcomas: The French experience. Pediatr Blood Cancer 2024; 71:e31362. [PMID: 39387369 DOI: 10.1002/pbc.31362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Describe clinical characteristics and outcome of Li-Fraumeni syndrome (LFS)-associated osteosarcomas. METHODS TP53 germline pathogenic/likely pathogenic variant carriers diagnosed with osteosarcoma in France between 1980 and 2019 were identified via the French Li-Fraumeni database at Rouen University Hospital. Sixty-five osteosarcomas in 52 patients with available clinical and histological data were included. The main clinical characteristics were compared with data from National Cancer Institute's SEER (Surveillance, Epidemiology, and End Results) for patients of the same age group. RESULTS Median age at first osteosarcoma diagnosis was 13.7 years (range: 5.9-36.7). Compared to unselected osteosarcomas, LFS-associated osteosarcomas occurred more frequently in patients less than 10 years of age (23% vs. 9%), and when compared with osteosarcomas in patients less than 25 years were characterized by an excess of axial (16% vs. 10%) and jaw sites (15% vs. 3%) and histology with predominant chondroblastic component and periosteal subtypes (17% vs. 1%). Metastases incidence (25%) was as expected in osteosarcomas. After the first osteosarcoma treatment, the rate of good histologic response (62%) and the 5-year progression-free survival (55%, 95% confidence interval [CI]: 42.6-71.1) were as expected in unselected series of osteosarcomas, whereas the 5-year event-free survival was 36.5% [95% CI: 25.3-52.7] due to the high incidence of second malignancies reaching a 10-year cumulative risk of 43.4% [95% CI: 28.5-57.5]. CONCLUSION In osteosarcoma, young age at diagnosis, axial and jaw sites, histology with periosteal or chondroblastic subtype, and synchronous multifocal tumors should prompt suspicion of a germline TP53 mutation. Standard treatments are effective, but multiple malignancies impair prognosis. Early recognition of these patients is crucial for tailored therapy and follow-up.
Collapse
Affiliation(s)
- Emilie Saucier
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Gaëlle Bougeard
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Catherine Schramm
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Rachid Abbas
- Department of Biostatistics and Epidemiology, Gustave Roussy, Paris-Saclay University, Villejuif, France
- Inserm, Clinical Trial Unit 1418 (CIC1418) Clinical Epidemiology, Paris, France
| | - Pablo Berlanga
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Claire Briandet
- Department of Pediatric Haematology-Oncology, Dijon University Hospital, Dijon, France
| | - Marie-Pierre Castex
- Pediatric Immuno-Oncohaematology Unit, Children's Hospital, Toulouse, France
| | - Nadège Corradini
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Carole Coze
- Department of Pediatric Oncology, Hopital la Timone, APHM, Marseille Aix University, Marseille, France
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U981, Paris Saclay University, Villejuif, France
| | | | - Pierre Khneisser
- Department of Pathology, Gustave Roussy, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Cyril Lervat
- Department of Pediatric and AYA Oncology, Centre Oscar Lambret, Lille, France
| | - Ludovic Mansuy
- Department of Pediatric Onco-Hematology, Nancy Brabois University Hospital, Vandœuvre-lès-Nancy, France
| | - Perrine Marec-Berard
- Department of Paediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Aude Marie-Cardine
- Pediatric Immuno-Hematology-Oncology Unit, University Hospital of Rouen, Rouen, France
| | - Eric Mascard
- Department of Orthopedic Surgery, APHP, Necker University Hospital, Paris, France
| | - Laure Saumet
- Department of Pediatric Onco-Hematology, Montpellier University Hospital, Montpellier, France
| | - Marie-Dominique Tabone
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - Sarah Winter
- SIREDO Oncology Center Care, (Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - Thierry Frebourg
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, Rouen, France
| | - Nathalie Gaspar
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
- Inserm U1015, Paris Saclay University, Villejuif, France
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer, Paris-Saclay University, Villejuif, France
| |
Collapse
|
25
|
Denu RA, Quintana-Perez CD, Wangsiricharoen S, Ingram DR, Wani KM, Lazar AJ, Ratan R, Roland CL, You YN. DNA Mismatch Repair Deficiency as a Biomarker in Sarcoma. SURGICAL ONCOLOGY INSIGHT 2024; 1:100091. [PMID: 40190387 PMCID: PMC11967435 DOI: 10.1016/j.soi.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Purpose Lynch syndrome (LS) is a cancer predisposition syndrome caused by a germline loss-of-function mutation in a mismatch repair (MMR) gene. While sarcomas are not classically considered LS cancers, we investigated the MMR status and clinical features of sarcomas in LS patients to help inform optimal treatment strategies. Methods A prospectively maintained institutional clinical cancer genetics database was queried for LS patients (defined by pathogenic germline mutation in a MMR gene) with a documented diagnosis of sarcoma between 1998-2022. Tumor MMR status was determined by immunohistochemistry (IHC) for MMR proteins and secondarily by PCR assay if IHC was normal or intact. Results Among the 30 LS patients with sarcoma, germline mutations were most common in MSH2 (50%). The most common sarcoma subtypes were undifferentiated pleomorphic sarcoma (40%) and leiomyosarcoma (27%). Median age at diagnosis was 49.2 years (interquartile range 40.4-62.4). 90% presented with localized disease, and 10% presented with synchronous metastatic disease. Among 10 patients with tissue available for biomarker determination, dMMR was confirmed in 4 (40%), while the remaining (60%) were pMMR. Three patients received immunotherapy. Two of these had confirmed dMMR tumor status: one demonstrated a sustained complete response on pembrolizumab monotherapy for 44 months; the other had a partial response on ipilimumab and nivolumab for 31 months but died from an unrelated cause. In the entire cohort of 30 patients at a median follow-up time of 68.2 months since sarcoma diagnosis (interquartile range 29.0-151.5 months), median overall survival and progression-free survival have not been reached. Conclusion While rare, sarcoma can be encountered in patients with LS, particularly those with germline MSH2 mutation. LS-associated sarcomas occur significantly earlier, carry a favorable outcome, and demonstrate the potential for durable response with immunotherapy.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD
Anderson Cancer Center, Houston, TX
| | | | - Sintawat Wangsiricharoen
- Department of Pathology, Division of Pathology &
Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston,
TX
| | - Davis R. Ingram
- Department of Pathology, Division of Pathology &
Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston,
TX
| | - Khalida M. Wani
- Department of Pathology, Division of Pathology &
Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston,
TX
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology &
Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston,
TX
- Department of Genomic Medicine, Division of Cancer
Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of
Texas MD Anderson Cancer Center, Houston, TX
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD
Anderson Cancer Center, Houston, TX
| | - Y. Nancy You
- Department of Colon & Rectal Surgery; Clinical Cancer
Genetics Program; The University of Texas MD Anderson Cancer Center, Houston,
TX
| |
Collapse
|
26
|
Al-Haggar MS, Abdelmoneim ZA. Tricuspid mass-curious case of Li-Fraumeni syndrome: A letter to the editor. World J Clin Cases 2024; 12:6644-6646. [PMID: 39600484 PMCID: PMC11514343 DOI: 10.12998/wjcc.v12.i33.6644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
We focus specifically on the rare occurrence of cardiac thrombi in Li-Fraumeni syndrome (LFS). LFS is a hereditary risk to a diverse range of specific, uncommon, malignancies. Children and young adults have a heightened susceptibility to many malignancies, particularly soft-tissue and bone tumors, breast malignancies, central nervous system malignancies, adrenocortical carcinoma, and blood cancers. Additionally, LFS patients may experience other cancer types such as gastrointestinal, lung, kidney, thyroid, and skin cancers, along with those affecting gonadal organs (ovaries, testicles, and prostate). An accurate diagnosis of LFS is crucial to enable affected families to access appropriate genetic counseling and undergo surveillance for early cancer detection.
Collapse
Affiliation(s)
- Mohammad S Al-Haggar
- Department of Pediatrics and Genetics, Mansoura University Children's Hospital, Mansoura 35516, Egypt
| | - Zahraa A Abdelmoneim
- Department of Pediatrics, Genetic Unit, Mansoura University Children Hospital, Mansoura 35516, Egypt
| |
Collapse
|
27
|
Tsoy UA, Sokolnikova PS, Kravchuk EN, Ryazanov PA, Kozyreva AA, Fomicheva YV, Aramisova LS, Karonova TL, Kostareva AA, Grineva E. A Comprehensive Target Panel Allows to Extend the Genetic Spectrum of Neuroendocrine Tumors. Neuroendocrinology 2024:1-21. [PMID: 39536727 DOI: 10.1159/000542223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Neuroendocrine tumors (NETs) frequently have a genetic basis, and the range of genes implicated in NET development continues to expand. Application of targeted gene panels (TGPs) in next-generation sequencing is a central strategy for elucidating novel variants associated with NET development. METHODS In this study, we conducted comprehensive molecular genetic analyses using TGP on a cohort of 93 patients diagnosed with various NETs subtypes, mainly accompanied by various endocrine syndromes: insulinoma (n = 26), pheochromocytoma and paraganglioma (PPGL) (n = 38), parathyroid adenoma (n = 18, including three with insulinoma), and NETs of other locations (n = 14). The TGP encompassed genes linked to diverse NETs and other hereditary endocrine disorders, with subsequent variant classification according to the American College of Medical Genetics and Genomics guidelines. RESULTS Among the identified variants, 20 were found in genes previously linked to specific tumor types, and 10 were found in genes with a limited likelihood and unclear molecular mecanisms of association with observed NETs. Remarkably, 13 variants were discovered in genes not previously associated with the NETs observed in our patients. These genes, such as ABCC8, KCNJ11, KLF11, HABP2, and APC, were implicated in insulinoma; ZNRF3, GNAS, and KCNJ5 were linked with PPGL; parathyroid adenomas were related to variants in SDHB and TP53; while NETs of other locations displayed variants in APC and ABCC8. CONCLUSION Our study demonstrates that utilizing broad TGP in examining patients with various functioning NETs facilitates the identification of new germinal variants in genes that may contribute to the diseases. The verification of revealed findings requires research in vaster sample.
Collapse
Affiliation(s)
- Uliana A Tsoy
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Polina S Sokolnikova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Ekaterina N Kravchuk
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Pavel A Ryazanov
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Alexandra A Kozyreva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Yulia V Fomicheva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Liana S Aramisova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Tatiana L Karonova
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Anna A Kostareva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Elena Grineva
- World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| |
Collapse
|
28
|
Brockman KJ, Thompson MB, Mirabello L, Savage SA, Malayeri A, Hatton JN, Khincha PP. Characterization of sarcoma topography in Li-Fraumeni syndrome. Front Oncol 2024; 14:1415636. [PMID: 39575416 PMCID: PMC11578819 DOI: 10.3389/fonc.2024.1415636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome primarily caused by germline TP53 pathogenic/likely pathogenic (P/LP) variants. Soft tissue and bone sarcomas are among the most frequently occurring of the many LFS-associated cancer types. Cancer screening recommendations for LFS are centered around annual whole-body MRI (wbMRI), the interpretation of which can be challenging. This study aims to characterize sarcoma topography in LFS. Methods Study subjects included individuals from clinically and genetically ascertained cohorts of germline TP53 variant-carriers, namely the National Cancer Institute's LFS longitudinal cohort study (NCI-LFS), the NCI Genetic Epidemiology of Osteosarcoma (NCI-GEO) study, and the germline TP53 Database. Results Data was aggregated for a total of 160 sarcomas that had detailed topography available. Abdominal sarcomas and extremity osteosarcomas were among the most frequent locations of sarcomas. Chi-squared analyses showed no statistical differences in sarcoma topography based on age (pediatric vs adult) or sex (male vs female). A case series of sarcomas from the NCI-LFS study highlights the diagnostic challenges due to topography-related imaging. Discussion While LFS-related sarcomas frequently occur in expected locations such as the extremities, they also occur in less typical sites, leading to difficulties in discerning between differential diagnoses on wbMRI and imaging. Prospective collection of detailed cancer topography in individuals with LFS will further aid in recommendations for radiologic interpretation and personalized screening in individuals with LFS.
Collapse
Affiliation(s)
- Karin J. Brockman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatric Hematology/Oncology, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Mone’t B. Thompson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Jessica N. Hatton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal P. Khincha
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Bottosso M, Sandoval RL, Verret B, Polidorio N, Caron O, Gennari A, Bychkovsky BL, Cahill SH, Achatz MI, Guarneri V, André F, Garber JE. HER2 status and response to neoadjuvant anti-HER2 treatment among patients with breast cancer and Li-Fraumeni syndrome. Eur J Cancer 2024; 211:114307. [PMID: 39260016 DOI: 10.1016/j.ejca.2024.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among females with Li-Fraumeni syndrome (LFS), but available data on LFS-related BC characteristics are derived from small retrospective cohorts. Prior work has demonstrated a high proportion of HER2-positive BCs, but our understanding of how HER2-positive LFS BCs respond to anti-HER2 treatments is limited. METHODS BCs diagnosed in patients with germline TP53 variants between 2002-2022 were assembled from three institutions. Hormone receptor (HR) and HER2 expression were retrieved from pathology records. Pathologic complete response (pCR) was defined as ypT0/is ypN0. RESULTS A total of 264 BCs were identified among 232 patients with LFS: 211 (79.9 %) were invasive carcinomas, of which 106 were HER2-positive. Among HER2-positive BCs, most tumors co-expressed HRs (72.6 %) and were more frequent among those diagnosed at younger age (p < 0.001). Mastectomy was the preferred surgical approach among women with nonmetastatic cancers (77.8 %) and most received anti-HER2 targeted therapy (74.7 %). Among 38 patients receiving neoadjuvant therapy with available post-treatment pathology reports, 27 (71.1 %) achieved pCR: 18/26 (69.2 %) among HR-positive and 7/10 (70.0 %) HR-negative. The rate of pCR was 84.6 % among patients treated with an anthracycline-free regimen (all received trastuzumab). Among classifiable HER2-negative BCs (n = 77), 31 (40.3 %) were HER2-low and 46 (59.7 %) HER2-zero. CONCLUSIONS Among females with LFS and BC, HER2-positive subtype was associated with younger age at diagnosis and a predominant HR-positivity. Favorable pCR rates were observed among those receiving neoadjuvant HER2-directed therapies, for both HR-positive and negative tumors. These data may inform the counseling and care of patients with LFS.
Collapse
Affiliation(s)
- Michele Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padua, Italy.
| | - Renata L Sandoval
- Medical Oncology Center, Hospital Sírio-Libanês, Brasília, DF, Brazil
| | - Benjamin Verret
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Natalia Polidorio
- Breast Surgery Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivier Caron
- Gustave Roussy, Département de médecine oncologique, F-94805 Villejuif, France
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy; Medical Oncology, "Maggiore Della Carità" University Hospital, Novara, Italy
| | - Brittany L Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Sophie H Cahill
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, Sao Paulo, SP, Brazil
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Italy
| | - Fabrice André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France; PRISM, INSERM, Gustave Roussy, Villejuif, France; Paris Saclay University, Gif Sur-Yvette, France
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| |
Collapse
|
30
|
Arnon J, Zick A, Maoz M, Salaymeh N, Gugenheim A, Marouani M, Mor E, Hamburger T, Saadi N, Elia A, Ganz G, Fahham D, Meirovitz A, Kadouri L, Meiner V, Yablonski-Peretz T, Shkedi-Rafid S. Clinical and genetic characteristics of carriers of the TP53 c.541C > T, p.Arg181Cys pathogenic variant causing hereditary cancer in patients of Arab-Muslim descent. Fam Cancer 2024; 23:531-542. [PMID: 38743206 PMCID: PMC11512851 DOI: 10.1007/s10689-024-00391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
TP53 pathogenic variants cause Li-Fraumeni syndrome (LFS), with some variants causing an attenuated phenotype. Herein, we describe the clinical phenotype and genetic characteristics of carriers of NM_000546.6 (TP53): c.541C > T, (p.Arg181Cys) treated at Hadassah Medical Center. We retrospectively examined our genetic databases to identify all carriers of TP53 p.Arg181Cys. We reached out to carriers and their relatives and collected clinical and demographic data, lifestyle factors, carcinogenic exposures as well as additional blood samples for genetic testing and whole exome sequencing. Between 2005 and 2022 a total of 2875 cancer patients underwent genetic testing using genetic panels, whole exome sequencing or targeted TP53 assays. A total of 30 cancer patients, all of Arab-Muslim descent, were found to be carriers of TP53 p.Arg181Cys, the majority from Jerusalem and Hebron, two of which were homozygous for the variant. Carriers were from 24 distinct families of them, 15 families (62.5%) met updated Chompret criteria for LFS. Median age of diagnosis was 35 years-old (range 1-69) with cancers characteristic of LFS (16 Breast cancer; 6 primary CNS tumors; 3 sarcomas) including 4 children with choroid plexus carcinoma, medulloblastoma, or glioblastoma. A total of 21 healthy carriers of TP53 p.Arg181Cys were identified at a median age of 39 years-old (range 2-54)-19 relatives and 2 additional pediatric non-cancer patients, in which the finding was incidental. We report a shared haplotype of 350kb among carriers, limited co-morbidities and low BMI in both cancer patients and healthy carriers. There were no demographic factors or carcinogenic exposures unique to carriers who developed malignancy. Upon exome analysis no other known pathogenic variants in cancer predisposing genes were identified. TP53 p.Arg181Cys is a founder pathogenic variant predominant to the Arab-Muslim population in Jerusalem and Hebron, causing attenuated-LFS. We suggest strict surveillance in established carriers and encourage referral to genetic testing for all cancer patients of Arab-Muslim descent in this region with LFS-associated malignancies as well as family members of established carriers.
Collapse
Affiliation(s)
- Johnathan Arnon
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nada Salaymeh
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Ahinoam Gugenheim
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - MazalTov Marouani
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Mor
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
| | - Nagam Saadi
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Elia
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pathology, Hadassah University Medical Center, Jerusalem, Israel
| | - Gael Ganz
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Duha Fahham
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Yablonski-Peretz
- Sharett Institute of Oncology, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Shkedi-Rafid
- Department of Genetics, Hadassah University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
31
|
Giovino C, Subasri V, Telfer F, Malkin D. New Paradigms in the Clinical Management of Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med 2024; 14:a041584. [PMID: 38692744 PMCID: PMC11529854 DOI: 10.1101/cshperspect.a041584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Approximately 8.5%-16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant-a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li-Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning-based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.
Collapse
Affiliation(s)
- Camilla Giovino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Frank Telfer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
32
|
Amador-Gómez AI, Aguiñiga-Sánchez I, Mendoza-Núñez VM, Cadena-Iñiguez J, Romero-López E, Santiago-Osorio E. Li-Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation. Int J Mol Sci 2024; 25:11477. [PMID: 39519030 PMCID: PMC11546847 DOI: 10.3390/ijms252111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
There are hereditary mutations that predispose individuals to cancer development, such as pathogenic variants in the germ line of the tumor protein 53 (TP53) suppressor gene. This leads to a rare condition known as Li-Fraumeni syndrome (LFS), characterized by a high risk of developing multiple cancers throughout life by the precancerous niche that promotes the tumor microenvironment. LFS presents a significant challenge due to its limited therapeutic and chemoprophylactic options. Recently, protocols involving metformin as a prophylactic medication have been developed to target precancerous niches. However, this approach is still in the clinical phase, and no established therapeutic regimen is available. Therefore, new alternatives are needed to impact this disease effectively. Novel studies suggest that Sechium extract, rich in polyphenols, exhibits chemoprophylactic, antineoplastic, anti-inflammatory, and antioxidant activities, all involved in the tumor microenvironment of LFS. However, the specific role of Sechium extract in preventing recurrent neoplastic development in LFS remains unclear. We conducted this research through a case report of an LFS-diagnosed patient who has experienced multiple malignancies and cutaneous neoformations. This patient received a chemoprophylactic supplementation based on Sechium H387 07 extract over 11 years without reporting new primary malignancy events or recurrences, as evidenced by laboratory and positron emission tomography/computed tomography (PET/CT) studies. An extensive literature review on the disease, precancerous niche, tumor microenvironment, and potential mechanisms of Sechium H387 07 extract components was conducted to explain cancer absence in LFS. This review promotes the research and use of polyphenols as powerful chemoprophylactic agents to prevent and treat proliferative diseases like LFS.
Collapse
Affiliation(s)
- Angel Iván Amador-Gómez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
- Department of Biomedical Sciences, School of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
- Department of Biomedical Sciences, School of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico;
| | - Jorge Cadena-Iñiguez
- Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico;
| | - Ernesto Romero-López
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (A.I.A.-G.); (I.A.-S.); (E.R.-L.)
| |
Collapse
|
33
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Le TT, Ha TS, To LM, Dang QM, Bui HTP, Tran TD, Vu PT, Giang HB, Tran DT, Nguyen XH. Osteosarcoma patient with Li-Fraumeni syndrome: the first case report in Vietnam. Front Oncol 2024; 14:1458232. [PMID: 39439949 PMCID: PMC11493536 DOI: 10.3389/fonc.2024.1458232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 10/25/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary disorder characterized by an increased risk of developing multiple early-onset cancers, primarily due to germline TP53 mutations. Women and men with this mutation face lifetime cancer risks of 90% and 70%, respectively. This report describes the first documented case of LFS with clinical information in Vietnam involving a 9-year-old child diagnosed with osteosarcoma who had multiple first- and second-degree relatives with cancer. Whole-genome sequencing (WGS) revealed a heterozygous, pathogenic, autosomal dominant TP53 variant NM_000546.6:c.733G>A (p.Gly245Ser) and a translocation in the 3'UTR of the ATMIN gene with unknown pathogenicity in both the patient and her mother. Sanger sequencing confirmed the presence of the TP53 c.733G>A mutation, which was subsequently detected in extended family members. Of the 17 family members invited for testing, only 8, none of whom currently have cancer, agreed to participate: all tested negative for the mutation. This case highlights the importance of genetic testing for the early detection and management of cancers in LFS patients. It also underscores significant barriers to genetic screening in Vietnam, including limited access and the psychosocial consequences of testing, which emphasize the need for improved genetic counseling and surveillance strategies that are tailored to local contexts.
Collapse
Affiliation(s)
- Thanh Thien Le
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Tung Sy Ha
- Department of Medical Biology and Genetics, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Mai To
- Department of Biology, Hanoi University Science, Hanoi, Vietnam
| | - Quang Minh Dang
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoa Thi Phuong Bui
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Duc Tran
- Sarcoma Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Phuong Thi Vu
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hoan Bao Giang
- Pathology Department, Vinmec Times City International Hospital, Vinmec Healthcare System, Hanoi, Vietnam
| | | | - Xuan-Hung Nguyen
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- Department of Medical Genetics, Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
35
|
Kuhlmann L, Stritzelberger J, Fietkau R, Distel LV, Hamer HM. Radiosensitivity in individuals with tuberous sclerosis complex. Discov Oncol 2024; 15:525. [PMID: 39367202 PMCID: PMC11452609 DOI: 10.1007/s12672-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Benign tumors, but rarely cancer, are common in patients with tuberous sclerosis complex (TSC). Blood samples from patients undergoing treatment for TSC at our institution were analyzed for their individual sensitivity to ionizing radiation. Blood samples were collected from 13 adult patients with TSC. The samples were irradiated ex vivo and analyzed by 3-color fluorescence in situ hybridization. In each patient, aberrations were analyzed in 200 metaphases of chromosomes 1, 2, and 4 and scored as breaks. Radiosensitivity was determined by mean breaks per metaphase (B/M) and compared to both healthy donors and oncologic patients. The radiosensitivity (B/M) of the TSC patient cohort (n = 13; female: 46.2%, B/M: 0.48 ± 0.11) was clearly increased compared to healthy individuals of similar age (n = 90; female: 54.4%; B/M: 0.40 ± 0.09; p = 0.001). There was no difference compared to age-matched oncological patients (n = 78; female: 67.9%; B/M 0.49 ± 0.14; p = 0.246). Similarly, the proportion of radiosensitive (B/M > 0.5) and distinctly radiosensitive individuals (B/M > 0.6) was increased in the TSC and oncological patient cohorts (TSC: 30.8% and 7.7%, oncological patients: 46.2% and 14.1%) compared to the healthy individuals (11.1% and 2.2%). Although patients with TSC develop mostly benign and rarely malignant tumors, they are similarly sensitive to radiation as patients with malignant tumors.
Collapse
Affiliation(s)
- Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Jenny Stritzelberger
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany.
| | - Hajo M Hamer
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
O'Neill AF, Ribeiro RC, Pinto EM, Clay MR, Zambetti GP, Orr BA, Weldon CB, Rodriguez-Galindo C. Pediatric Adrenocortical Carcinoma: The Nuts and Bolts of Diagnosis and Treatment and Avenues for Future Discovery. Cancer Manag Res 2024; 16:1141-1153. [PMID: 39263332 PMCID: PMC11389717 DOI: 10.2147/cmar.s348725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Adrenocortical tumors (ACTs) are infrequent neoplasms in children and adolescents and are typically associated with clinical symptoms reflective of androgen overproduction. Pediatric ACTs typically occur in the context of a germline TP53 mutation, can be cured when diagnosed at an early stage, but are difficult to treat when advanced or associated with concurrent TP53 and ATRX alterations. Recent work has demonstrated DNA methylation patterns suggestive of prognostic significance. While current treatment standards rely heavily upon surgical resection, chemotherapy, and hormonal modulation, small cohort studies suggest promise for multi-tyrosine kinases targeting anti-angiogenic pathways or immunomodulatory therapies. Future work will focus on novel risk stratification algorithms and combination therapies intended to mitigate toxicity for patients with perceived low-risk disease while intensifying therapy or accelerating discoveries aimed at improving survival for patients with difficult-to-treat disease.
Collapse
Affiliation(s)
- Allison F O'Neill
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emilia M Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael R Clay
- Department of Pathology, Children's Hospital Colorado, Denver, CO, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Carlos Rodriguez-Galindo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
37
|
Yan P, Wang J, Yue B, Wang X. Unraveling molecular aberrations and pioneering therapeutic strategies in osteosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189171. [PMID: 39127243 DOI: 10.1016/j.bbcan.2024.189171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Osteosarcoma, a rare primary bone cancer, presents diverse molecular aberrations that underscore its complexity. Despite the persistent endeavors by researchers, the limited amelioration in the five-year survival rate indicates that current therapeutic strategies prove inadequate in addressing the clinical necessities. Advancements in molecular profiling have facilitated an enhanced comprehension of the biology of osteosarcoma, offering a promising outlook for treatment. There is an urgent need to develop innovative approaches to address the complex challenges of osteosarcoma, ultimately contributing to enhanced patient outcomes. This review explores the nexus between osteosarcoma and cancer predisposition syndromes, intricacies in its somatic genome, and clinically actionable alterations. This review covers treatment strategies, including surgery, chemotherapy, immune checkpoint inhibitors (ICIs), and tyrosine kinase inhibitors (TKIs). Innovative treatment modalities targeting diverse pathways, including multi-target tyrosine kinases, cell cycle, PI3K/mTOR pathway, and DNA damage repair (DDR), offer promising interventions. This review also covers promising avenues, including antibody-drug conjugates (ADCs) and immunotherapy strategies, such as cytokines, adoptive cellular therapy (ACT), ICIs, and cancer vaccines. This comprehensive exploration contributes to a holistic understanding, offering guidance for clinical applications to advance the management of osteosarcoma.
Collapse
Affiliation(s)
- Peng Yan
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Jie Wang
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China
| | - Bin Yue
- Department of Orthopedic Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| | - Xinyi Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, China.
| |
Collapse
|
38
|
Carley H, Kulkarni A. Reproductive decision-making in cancer susceptibility syndromes. Best Pract Res Clin Obstet Gynaecol 2024; 96:102527. [PMID: 38987108 DOI: 10.1016/j.bpobgyn.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Cancer susceptibility syndromes confer an increased lifetime risk of cancer and occur due to germline likely-pathogenic or pathogenic variants in a cancer susceptibility gene. Clinical Genetics services advise patients of ways to manage their future cancer risks, often prefaced with uncertainties due to poor understandings of individualised risk. For individuals/couples whose future offspring are at risk of a cancer susceptibility syndrome, different options are available depending on their preferences and circumstances, including prenatal diagnosis and preimplantation genetic testing. This review provides an overview of the most common cancer susceptibility syndromes, available reproductive options and a genetic counselling framework recommended to support individuals/couples in their decision-making. We describe complexities of decision-making involving moderate penetrance and sex-specific variable penetrance genes and explore associated ethical issues arising in this complex area of medicine.
Collapse
Affiliation(s)
- Helena Carley
- Clinical Genetics, 7(th) Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK; Clinical Ethics, Law, & Society Group, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Anjana Kulkarni
- Clinical Genetics, 7(th) Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK; Guy's & St Thomas NHS Foundation Trust, UK.
| |
Collapse
|
39
|
Fabi A, Cortesi L, Duranti S, Cordisco EL, Di Leone A, Terribile D, Paris I, de Belvis AG, Orlandi A, Marazzi F, Muratore M, Garganese G, Fuso P, Paoletti F, Dell'Aquila R, Minucci A, Scambia G, Franceschini G, Masetti R, Genuardi M. Multigenic panels in breast cancer: Clinical utility and management of patients with pathogenic variants other than BRCA1/2. Crit Rev Oncol Hematol 2024; 201:104431. [PMID: 38977141 DOI: 10.1016/j.critrevonc.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Multigene panels can analyze high and moderate/intermediate penetrance genes that predispose to breast cancer (BC), providing an opportunity to identify at-risk individuals within affected families. However, considering the complexity of different pathogenic variants and correlated clinical manifestations, a multidisciplinary team is needed to effectively manage BC. A classification of pathogenic variants included in multigene panels was presented in this narrative review to evaluate their clinical utility in BC. Clinical management was discussed for each category and focused on BC, including available evidence regarding the multidisciplinary and integrated management of patients with BC. The integration of both genetic testing and counseling is required for customized decisions in therapeutic strategies and preventative initiatives, as well as for a defined multidisciplinary approach, considering the continuous evolution of guidelines and research in the field.
Collapse
Affiliation(s)
- Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Cortesi
- Department of Oncology and Haematology, Modena Hospital University, Modena Italy (Cortesi)
| | - Simona Duranti
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Emanuela Lucci Cordisco
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Terribile
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ida Paris
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Giulio de Belvis
- Value Lab, Faculty of Economics, Università Cattolica del Sacro Cuore, Rome, Italy; Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Armando Orlandi
- Unit of Oncology, Comprehensive Cancer Centre, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Fabio Marazzi
- UOC Oncological Radiotherapy, Department of Diagnostic Imaging, Radiation Oncology and Haematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Margherita Muratore
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"
| | - Giorgia Garganese
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Section of Obstetrics and Gynecology, Department of Woman and Child Health and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Fuso
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Filippo Paoletti
- Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Rossella Dell'Aquila
- Critical Pathways and Outcomes Evaluation Unit, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Angelo Minucci
- Genomics Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Gianluca Franceschini
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Riccardo Masetti
- Breast Unit, Department of Woman and Child's Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Maurizio Genuardi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Medical Genetics Unit, Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
40
|
Wong D, Tageldein M, Luo P, Ensminger E, Bruce J, Oldfield L, Gong H, Fischer NW, Laverty B, Subasri V, Davidson S, Khan R, Villani A, Shlien A, Kim RH, Malkin D, Pugh TJ. Cell-free DNA from germline TP53 mutation carriers reflect cancer-like fragmentation patterns. Nat Commun 2024; 15:7386. [PMID: 39191772 DOI: 10.1038/s41467-024-51529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710-1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Maha Tageldein
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Erik Ensminger
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leslie Oldfield
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Haifan Gong
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Brianne Laverty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Reem Khan
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Anita Villani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toroton, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Raymond H Kim
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Berry DK, Gillis N, Padron E, Moore C, Barton LV, Gewandter KR, Haskins CG, Knepper TC. Interpretation of ambiguous TP53 test results: Mosaicism, clonal hematopoiesis, and variants of uncertain significance. J Genet Couns 2024; 33:916-926. [PMID: 37715966 DOI: 10.1002/jgc4.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
The increased use of next-generation sequencing has led to the detection of pathogenic TP53 variants in the germline setting in patients without a personal or family history consistent with Li-Fraumeni syndrome (LFS). These variants can represent low-penetrance LFS, mosaic LFS, or clonal hematopoiesis of indeterminate potential. Additionally, TP53 variants of uncertain significance can be detected in patients with a history suspicious for LFS. The interpretation of the significance of these variants can be challenging but is crucial for an accurate diagnosis and appropriate medical management. This retrospective case review provides illustrative examples of the interpretation of challenging TP53 results through multidisciplinary expertise and use of a flowchart. The authors describe eight patients with TP53 variants associated with ambiguous diagnoses and, for each case, describe how the results were interpreted and the medical care that was implemented. This report presents illustrative cases to help guide clinicians to reach definitive diagnoses for patients when confronted with TP53 variants that are inconsistent with the clinical picture and to add to the body of literature regarding interpretation and medical management of TP53 variants discovered on germline testing.
Collapse
Affiliation(s)
- Darcy K Berry
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Nancy Gillis
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Colin Moore
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Laura V Barton
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kathleen R Gewandter
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Carolyn G Haskins
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Todd C Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
42
|
Sandoval RL, Bottosso M, Tianyu L, Polidorio N, Bychkovsky BL, Verret B, Gennari A, Cahill S, Achatz MI, Caron O, Imbert-Bouteille M, Noguès C, Mawell KN, Fortuno C, Spurdle AB, Tayob N, Andre F, Garber JE. TP53-associated early breast cancer: new observations from a large cohort. J Natl Cancer Inst 2024; 116:1246-1254. [PMID: 38569880 PMCID: PMC11308175 DOI: 10.1093/jnci/djae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND A recent large, well-annotated international cohort of patients with Li-Fraumeni syndrome and early-stage breast cancer was examined for shared features. METHODS This multicenter cohort study included women with a germline TP53 pathogenic or likely pathogenic variant and nonmetastatic breast cancer diagnosed between 2002 and 2022. Clinical and genetic data were obtained from institutional registries and clinical charts. Descriptive statistics were used to summarize proportions, and differences were assessed using χ2 or Wilcoxon rank sum tests. Metachronous contralateral breast cancer risk, radiation-induced sarcoma risk, and recurrence-free survival were analyzed using the Kaplan-Meier methodology. RESULTS Among 227 women who met study criteria, the median age of first breast cancer diagnosis was 37 years (range = 21-71), 11.9% presented with bilateral synchronous breast cancer, and 18.1% had ductal carcinoma in situ only. In total, 166 (73.1%) patients underwent mastectomies, including 67 bilateral mastectomies as first breast cancer surgery. Among those patients with retained breast tissue, the contralateral breast cancer rate was 25.3% at 5 years. Among 186 invasive tumors, 72.1% were stages I to II, 48.9% were node negative, and the most common subtypes were hormone receptor-positive/HER2-negative (40.9%) and hormone receptor positive/HER2 positive (34.4%). At a median follow-up of 69.9 months (interquartile range = 32.6-125.9), invasive hormone receptor-positive/HER2-negative disease had the highest recurrence risk among the subtypes (5-year recurrence-free survival = 61.1%, P = .001). Among those who received radiation therapy (n = 79), the 5-year radiation-induced sarcoma rate was 4.8%. CONCLUSION We observed high rates of ductal carcinoma in situ, hormone receptor-positive, and HER2-positive breast cancers, with a worse outcome in the hormone receptor-positive/HER2-negative luminal tumors, despite appropriate treatment. Confirmation of these findings in further studies could have implications for breast cancer care in those with Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Renata L Sandoval
- Medical Oncology Center, Hospital Sírio-Libanês, Brasília, DF, Brazil
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michele Bottosso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Li Tianyu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Natalia Polidorio
- Breast Surgery Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany L Bychkovsky
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin Verret
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Alessandra Gennari
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Sophie Cahill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Olivier Caron
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | | | - Catherine Noguès
- Cancer Risk Management Department, Clinical Oncogenetics, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Kara N Mawell
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina Fortuno
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fabrice Andre
- Medical Oncology Department, Gustave Roussy Cancer Campus, INERM U981, Université Paris Saclay, France
| | - Judy E Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, USA
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Rios JD, Simbulan F, Reichman L, Caswell K, Tachdjian M, Malkin D, Cotton C, Nathan PC, Goudie C, Pechlivanoglou P. Cost-effectiveness of the McGill interactive pediatric oncogenetic guidelines in identifying Li-Fraumeni syndrome in female patients with osteosarcoma. Pediatr Blood Cancer 2024; 71:e31077. [PMID: 38783403 DOI: 10.1002/pbc.31077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is a penetrant cancer predisposition syndrome (CPS) associated with the development of many tumor types in young people including osteosarcoma and breast cancer (BC). The McGill Interactive Pediatric OncoGenetic Guidelines (MIPOGG) decision-support tool provides a standardized approach to identify patients at risk of CPSs. METHODS We conducted a cost-utility analysis, from the healthcare payer perspective, to compare MIPOGG-guided, physician-guided, and universal genetic testing strategies to detect LFS in female patients diagnosed at an age of less than 18 years with osteosarcoma. We developed a decision tree and discrete-event simulation model to simulate the clinical and cost outcomes of the three genetic referral strategies on a cohort of female children diagnosed with osteosarcoma, especially focused on BC as subsequent cancer. Outcomes included BC incidence, quality-adjusted life-years (QALYs), healthcare costs, and incremental cost-utility ratios (ICURs). We conducted probabilistic and scenario analyses to assess the uncertainty surrounding model parameters. RESULTS Compared to the physician-guided testing, the MIPOGG-guided strategy was marginally more expensive by $105 (-$516; $743), but slightly more effective by 0.003 (-0.04; 0.045) QALYs. Compared to MIPOGG, the universal testing strategy was $1333 ($732; $1953) more costly and associated with 0.011 (-0.043; 0.064) additional QALYs. The ICUR for the MIPOGG strategy was $33,947/QALY when compared to the physician strategy; the ICUR for universal testing strategy was $118,631/QALY when compared to the MIPOGG strategy. DISCUSSION This study provides evidence for clinical and policy decision-making on the cost-effectiveness of genetic referral strategies to identify LFS in the setting of osteosarcoma. MIPOGG-guided strategy was most likely to be cost-effective at a willingness-to-pay threshold value of $50,000/QALY.
Collapse
Affiliation(s)
- Juan David Rios
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Frances Simbulan
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lara Reichman
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kimberly Caswell
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Tachdjian
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David Malkin
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cecilia Cotton
- Department of Statistics and Actuarial Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul C Nathan
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Catherine Goudie
- Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pediatrics, Division of Hematology-Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Petros Pechlivanoglou
- Child Health Evaluative Sciences, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Abreu RBV, Pereira AS, Rosa MN, Ashton-Prolla P, Silva VAO, Melendez ME, Palmero EI. Functional evaluation of germline TP53 variants identified in Brazilian families at-risk for Li-Fraumeni syndrome. Sci Rep 2024; 14:17187. [PMID: 39060302 PMCID: PMC11282216 DOI: 10.1038/s41598-024-67810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Germline TP53 pathogenic variants can lead to a cancer susceptibility syndrome known as Li-Fraumeni (LFS). Variants affecting its activity can drive tumorigenesis altering p53 pathways and their identification is crucial for assessing individual risk. This study explored the functional impact of TP53 missense variants on its transcription factor activity. We selected seven TP53 missense variants (c.129G > C, c.320A > G, c.417G > T, c.460G > A, c,522G > T, c.589G > A and c.997C > T) identified in Brazilian families at-risk for LFS. Variants were created through site-directed mutagenesis and transfected into SK-OV-3 cells to assess their transcription activation capabilities. Variants K139N and V197M displayed significantly reduced transactivation activity in a TP53-dependent luciferase reporter assay. Additionally, K139N negatively impacted CDKN1A and MDM2 expression and had a limited effect on GADD45A and PMAIP1 upon irradiation-induced DNA damage. Variant V197M demonstrated functional impact in all target genes evaluated and loss of Ser15 phosphorylation. K139N and V197M variants presented a reduction of p21 levels after irradiation. Our data show that K139N and V197M negatively impact p53 functions, supporting their classification as pathogenic variants. This underscores the significance of conducting functional studies on germline TP53 missense variants classified as variants of uncertain significance to ensure proper management of LFS-related cancer risks.
Collapse
Affiliation(s)
- Renata B V Abreu
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | - Ariane S Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Patricia Ashton-Prolla
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Department of Pathology, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
- Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Plowman JN, Matoy EJ, Uppala LV, Draves SB, Watson CJ, Sefranek BA, Stacey ML, Anderson SP, Belshan MA, Blue EE, Huff CD, Fu Y, Stessman HAF. Targeted sequencing for hereditary breast and ovarian cancer in BRCA1/2-negative families reveals complex genetic architecture and phenocopies. HGG ADVANCES 2024; 5:100306. [PMID: 38734904 PMCID: PMC11166883 DOI: 10.1016/j.xhgg.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Approximately 20% of breast cancer cases are attributed to increased family risk, yet variation in BRCA1/2 can only explain 20%-25% of cases. Historically, only single gene or single variant testing were common in at-risk family members, and further sequencing studies were rarely offered after negative results. In this study, we applied an efficient and inexpensive targeted sequencing approach to provide molecular diagnoses in 245 human samples representing 134 BRCA mutation-negative (BRCAX) hereditary breast and ovarian cancer (HBOC) families recruited from 1973 to 2019 by Dr. Henry Lynch. Sequencing identified 391 variants, which were functionally annotated and ranked based on their predicted clinical impact. Known pathogenic CHEK2 breast cancer variants were identified in five BRCAX families in this study. While BRCAX was an inclusion criterion for this study, we still identified a pathogenic BRCA2 variant (p.Met192ValfsTer13) in one family. A portion of BRCAX families could be explained by other hereditary cancer syndromes that increase HBOC risk: Li-Fraumeni syndrome (gene: TP53) and Lynch syndrome (gene: MSH6). Interestingly, many families carried additional variants of undetermined significance (VOUSs) that may further modify phenotypes of syndromic family members. Ten families carried more than one potential VOUS, suggesting the presence of complex multi-variant families. Overall, nine BRCAX HBOC families in our study may be explained by known likely pathogenic/pathogenic variants, and six families carried potential VOUSs, which require further functional testing. To address this, we developed a functional assay where we successfully re-classified one family's PMS2 VOUS as benign.
Collapse
Affiliation(s)
- Jocelyn N Plowman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Evanjalina J Matoy
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Lavanya V Uppala
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Samantha B Draves
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| | - Cynthia J Watson
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Bridget A Sefranek
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Mark L Stacey
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Samuel P Anderson
- Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA
| | - Michael A Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute, Seattle, WA 98195, USA
| | - Chad D Huff
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yusi Fu
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; Creighton University Core Facilities, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
46
|
Apostolou P, Dellatola V, Papathanasiou A, Kalfakakou D, Fountzilas E, Tryfonopoulos D, Karageorgopoulou S, Yannoukakos D, Konstantopoulou I, Fostira F. Genetic Testing of Breast Cancer Patients with Very Early-Onset Breast Cancer (≤30 Years) Yields a High Rate of Germline Pathogenic Variants, Mainly in the BRCA1, TP53, and BRCA2 Genes. Cancers (Basel) 2024; 16:2368. [PMID: 39001430 PMCID: PMC11240773 DOI: 10.3390/cancers16132368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Early-onset breast cancer constitutes a major criterion for genetic testing referral. Nevertheless, studies focusing on breast cancer patients (≤30 years) are limited. We investigated the contribution and spectrum of known breast-cancer-associated genes in 267 Greek women with breast cancer ≤30 years while monitoring their clinicopathological characteristics and outcomes. In this cohort, a significant proportion (39.7%) carried germline pathogenic variants (PVs) distributed in 8 genes. The majority, namely 36.7%, involved BRCA1, TP53, and BRCA2. PVs in BRCA1 were the most prevalent (28.1%), followed by TP53 (4.5%) and BRCA2 (4.1%) PVs. The contribution of PVs in CHEK2, ATM, PALB2, PTEN, and RAD51C was limited to 3%. In the patient group ≤26 years, TP53 PVs were significantly higher compared to the group 26-30 years (p = 0.0023). A total of 74.8% of TP53 carriers did not report a family history of cancer. Carriers of PVs receiving neoadjuvant chemotherapy showed an improved event-free survival (p < 0.0001) compared to non-carriers. Overall, many women with early-onset breast cancer carry clinically actionable variants, mainly in the BRCA1/2 and TP53 genes. The inclusion of timely testing of TP53 in these patients provides essential information for appropriate clinical management. This is important for countries where reimbursement involves the cost of genetic analysis of BRCA1/2 only.
Collapse
Affiliation(s)
- Paraskevi Apostolou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Vasiliki Dellatola
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Athanasios Papathanasiou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | | | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, 55236 Thessaloniki, Greece
- European University Cyprus, 6, Diogenes 2404 Engomi, Nicosia 1516, Cyprus
| | | | | | - Drakoulis Yannoukakos
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Irene Konstantopoulou
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| | - Florentia Fostira
- Human Molecular Genetics Laboratory, National Center for Scientific Research "Demokritos", 15341 Athens, Greece
| |
Collapse
|
47
|
Nguyen NH, Dodd-Eaton EB, Corredor JL, Woodman-Ross J, Green S, Gutierrez AM, Arun BK, Wang W. Validating Risk Prediction Models for Multiple Primaries and Competing Cancer Outcomes in Families With Li-Fraumeni Syndrome Using Clinically Ascertained Data. J Clin Oncol 2024; 42:2186-2195. [PMID: 38569124 PMCID: PMC11191065 DOI: 10.1200/jco.23.01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/02/2023] [Accepted: 02/07/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE There exists a barrier between developing and disseminating risk prediction models in clinical settings. We hypothesize that this barrier may be lifted by demonstrating the utility of these models using incomplete data that are collected in real clinical sessions, as compared with the commonly used research cohorts that are meticulously collected. MATERIALS AND METHODS Genetic counselors (GCs) collect family history when patients (ie, probands) come to MD Anderson Cancer Center for risk assessment of Li-Fraumeni syndrome, a genetic disorder characterized by deleterious germline mutations in the TP53 gene. Our clinical counseling-based (CCB) cohort consists of 3,297 individuals across 124 families (522 cases of single primary cancer and 125 cases of multiple primary cancers). We applied our software suite LFSPRO to make risk predictions and assessed performance in discrimination using AUC and in calibration using observed/expected (O/E) ratio. RESULTS For prediction of deleterious TP53 mutations, we achieved an AUC of 0.78 (95% CI, 0.71 to 0.85) and an O/E ratio of 1.66 (95% CI, 1.53 to 1.80). Using the LFSPRO.MPC model to predict the onset of the second cancer, we obtained an AUC of 0.70 (95% CI, 0.58 to 0.82). Using the LFSPRO.CS model to predict the onset of different cancer types as the first primary, we achieved AUCs between 0.70 and 0.83 for sarcoma, breast cancer, or other cancers combined. CONCLUSION We describe a study that fills in the critical gap in knowledge for the utility of risk prediction models. Using a CCB cohort, our previously validated models have demonstrated good performance and outperformed the standard clinical criteria. Our study suggests that better risk counseling may be achieved by GCs using these already-developed mathematical models.
Collapse
Affiliation(s)
- Nam H. Nguyen
- The University of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computation Biology, Houston, TX
- Rice University, Department of Statistics, Houston, TX
| | - Elissa B. Dodd-Eaton
- The University of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computation Biology, Houston, TX
| | - Jessica L. Corredor
- The University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Genetics, Houston, TX
| | - Jacynda Woodman-Ross
- The University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Genetics, Houston, TX
| | - Sierra Green
- The University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Genetics, Houston, TX
| | - Angelica M. Gutierrez
- The University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX
| | - Banu K. Arun
- The University of Texas MD Anderson Cancer Center, Department of Clinical Cancer Genetics, Houston, TX
- The University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX
| | - Wenyi Wang
- The University of Texas MD Anderson Cancer Center, Department of Bioinformatics and Computation Biology, Houston, TX
| |
Collapse
|
48
|
Linga BG, Mohammed SGAA, Farrell T, Rifai HA, Al-Dewik N, Qoronfleh MW. Genomic Newborn Screening for Pediatric Cancer Predisposition Syndromes: A Holistic Approach. Cancers (Basel) 2024; 16:2017. [PMID: 38893137 PMCID: PMC11171256 DOI: 10.3390/cancers16112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
As next-generation sequencing (NGS) has become more widely used, germline and rare genetic variations responsible for inherited illnesses, including cancer predisposition syndromes (CPSs) that account for up to 10% of childhood malignancies, have been found. The CPSs are a group of germline genetic disorders that have been identified as risk factors for pediatric cancer development. Excluding a few "classic" CPSs, there is no agreement regarding when and how to conduct germline genetic diagnostic studies in children with cancer due to the constant evolution of knowledge in NGS technologies. Various clinical screening tools have been suggested to aid in the identification of individuals who are at greater risk, using diverse strategies and with varied outcomes. We present here an overview of the primary clinical and molecular characteristics of various CPSs and summarize the existing clinical genomics data on the prevalence of CPSs in pediatric cancer patients. Additionally, we discuss several ethical issues, challenges, limitations, cost-effectiveness, and integration of genomic newborn screening for CPSs into a healthcare system. Furthermore, we assess the effectiveness of commonly utilized decision-support tools in identifying patients who may benefit from genetic counseling and/or direct genetic testing. This investigation highlights a tailored and systematic approach utilizing medical newborn screening tools such as the genome sequencing of high-risk newborns for CPSs, which could be a practical and cost-effective strategy in pediatric cancer care.
Collapse
Affiliation(s)
- BalaSubramani Gattu Linga
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | | | - Thomas Farrell
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
| | - Hilal Al Rifai
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
| | - Nader Al-Dewik
- Department of Research, Women’s Wellness and Research Center, Hamad Medical Corporation (HMC), P.O. Box 3050, Doha 0974, Qatar
- Translational and Precision Medicine Research, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Neonatal Intensive Care Unit (NICU), Newborn Screening Unit, Department of Pediatrics and Neonatology, Women’s Wellness and Research Center (WWRC), Hamad Medical Corporation (HMC), Doha 0974, Qatar
- Genomics and Precision Medicine (GPM), College of Health & Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha 0974, Qatar
- Faculty of Health and Social Care Sciences, Kingston University and St George’s University of London, Kingston upon Thames, Surrey, London KT1 2EE, UK
| | - M. Walid Qoronfleh
- Healthcare Research & Policy Division, Q3 Research Institute (QRI), Ann Arbor, MI 48197, USA
| |
Collapse
|
49
|
Beigh M, Vagher J, Codden R, Maese LD, Cook S, Gammon A. Newborn Screening for Li-Fraumeni Syndrome: Patient Perspectives. RESEARCH SQUARE 2024:rs.3.rs-4351728. [PMID: 38798617 PMCID: PMC11118696 DOI: 10.21203/rs.3.rs-4351728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Li-Fraumeni syndrome (LFS) is an inherited cancer predisposition syndrome with an estimated prevalence of 1 in 3,000-5,000 individuals. LFS poses a significant cancer risk throughout the lifespan, with notable cancer susceptibility in childhood. Despite being predominantly inherited, up to 20% of cases arise de novo. Surveillance protocols facilitate the reduction of mortality and morbidity through early cancer detection. While newborn screening (NBS) has proven effective in identifying newborns with rare genetic conditions, even those occurring as rarely as 1 in 185,000, its potential for detecting inherited cancer predispositions remains largely unexplored. Methods This survey-based study investigates perspectives toward NBS for LFS among individuals with and parents of children with LFS receiving care at single comprehensive cancer center in the U.S. Results All participants unanimously supported NBS for LFS (n = 24). Reasons included empowerment (83.3%), control (66.7%), and peace of mind (54.2%), albeit with concerns about anxiety (62.5%) and devastation (50%) related to receiving positive results. Participants endorsed NBS as beneficial for cancer detection and prevention (91.7%), research efforts (87.5%), and family planning (79.2%) but voiced apprehensions about the financial cost of cancer surveillance (62.5%), emotional burdens (62.5%), and insurance coverage and discrimination (54.2%). Approximately 83% of respondents believed that parental consent should be required to screen newborns for LFS. Conclusion This study revealed strong support for NBS for LFS despite the recognition of various perceived benefits and risks. These findings underscore the complex interplay between clinical, psychosocial, and ethical factors in considering NBS for LFS from the perspective of the LFS community.
Collapse
Affiliation(s)
| | | | - Rachel Codden
- Division of Epidemiology, Department of Internal Medicine, University of Utah
| | | | - Sabina Cook
- Utah Department of Health and Human Services
| | | |
Collapse
|
50
|
Stojiljković D, Cvetković A, Jokić A, Mirčić D, Mihajlović S, Krivokuća A, Crnogorac MĐ, Glisic L. Li-Fraumeni Syndrome With Six Primary Tumors-Case Report. Case Rep Oncol Med 2024; 2024:6699698. [PMID: 38765733 PMCID: PMC11101246 DOI: 10.1155/2024/6699698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 05/22/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome associated with a high, lifetime risk of a broad spectrum of cancers caused by pathogenic germline TP53 mutations. Numerous different germline TP53 mutations have been associated with LFS, which has an exceptionally diverse clinical spectrum in terms of tumor type and age of onset. Our patient has developed six asynchronous tumors to date: a phyllode tumor of the breast, a pheochromocytoma, a rosette-forming glioneuronal tumor (RGNT), an adrenocortical carcinoma (ACC), a ductal carcinoma of the breast, and a thymoma. The occurrence of such a number of rare tumors is sporadic even among in the population of patients living with cancer predisposition syndromes. In this instance, the omission of pretest genetic counseling and thorough family tree analysis prior to selecting the test led to the oversight of an underlying TP53 likely pathogenic mutation (classified as Class 4). This emphasizes the necessity for such counseling to prevent overlooking crucial genetic information. Neglecting this step could have had profound implications on the patient's treatment, particularly considering the early onset and occurrence of multiple tumors, which typically raise suspicion of a hereditary component. The implications for family members must be considered.
Collapse
Affiliation(s)
- Dejan Stojiljković
- Department of Surgery, Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Cvetković
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Anesthesiology With Reanimatology and Intensive Care Unit, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Andrej Jokić
- Department of Anesthesiology With Reanimatology and Intensive Care Unit, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Dijana Mirčić
- Department of Anesthesiology With Reanimatology and Intensive Care Unit, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Sanja Mihajlović
- Department of Surgery, Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuća
- Department for Experimental Research and Genetics, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Marija Đorđić Crnogorac
- Department for Experimental Research and Genetics, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Lazar Glisic
- Department of Obstetrics and Gynecology, University Clinic Ulm, Faculty of Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|