BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Huang HF, Liu Y, Li JX, Dong H, Gao S, Huang ZY, Fu SZ, Yang LY, Lu HZ, Xia LY, Cao S, Gao Y, Yu XX. Validated tool for early prediction of intensive care unit admission in COVID-19 patients. World J Clin Cases 2021; 9(28): 8388-8403 [PMID: 34754848 DOI: 10.12998/wjcc.v9.i28.8388]
URL: https://www.wjgnet.com/2307-8960/full/v9/i28/8388.htm
Number Citing Articles
Ruiyao Chen, Jiayuan Chen, Sen Yang, Shuqing Luo, Zhongzhou Xiao, Lu Lu, Bilin Liang, Sichen Liu, Huwei Shi, Jie Xu. Prediction of prognosis in COVID-19 patients using machine learning: A systematic review and meta-analysisInternational Journal of Medical Informatics 2023; 177: 105151 doi: 10.1016/j.ijmedinf.2023.105151
Miguel Ortiz-Barrios, Sebastián Arias-Fonseca, Alessio Ishizaka, Maria Barbati, Betty Avendaño-Collante, Eduardo Navarro-Jiménez. Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case studyJournal of Business Research 2023; 160: 113806 doi: 10.1016/j.jbusres.2023.113806
Chepkoech Buttia, Erand Llanaj, Hamidreza Raeisi-Dehkordi, Lum Kastrati, Mojgan Amiri, Renald Meçani, Petek Eylul Taneri, Sergio Alejandro Gómez Ochoa, Peter Francis Raguindin, Faina Wehrli, Farnaz Khatami, Octavio Pano Espínola, Lyda Z. Rojas, Aurélie Pahud de Mortanges, Eric Francis Macharia-Nimietz, Fadi Alijla, Beatrice Minder, Alexander B. Leichtle, Nora Lüthi, Simone Ehrhard, Yok-Ai Que, Laurenz Kopp Fernandes, Wolf Hautz, Taulant Muka. Prognostic models in COVID-19 infection that predict severity: a systematic reviewEuropean Journal of Epidemiology 2023; 38(4): 355 doi: 10.1007/s10654-023-00973-x