For: | Zhou RQ, Ji HC, Liu Q, Zhu CY, Liu R. Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers. World J Clin Cases 2019; 7(13): 1611-1622 [PMID: 31367620 DOI: 10.12998/wjcc.v7.i13.1611] |
---|---|
URL: | https://www.wjgnet.com/2307-8960/full/v7/i13/1611.htm |
Number | Citing Articles |
1 |
Anupama Ramachandran, Kumble Seetharama Madhusudhan. Advances in the imaging of gastroenteropancreatic neuroendocrine neoplasms. World Journal of Gastroenterology 2022; 28(26): 3008-3026 doi: 10.3748/wjg.v28.i26.3008
|
2 |
Junzhang Chen, Yongyu Yang, Yuanhua Liu, Heping Kan. Prognosis analysis of patients with pancreatic neuroendocrine tumors after surgical resection and the application of enucleation. World Journal of Surgical Oncology 2021; 19(1) doi: 10.1186/s12957-020-02115-z
|
3 |
Roberta MODICA, Elio BENEVENTO, Alessia LICCARDI, Giuseppe CANNAVALE, Roberto MINOTTA, Gianfranco DI IASI, Annamaria COLAO. Recent advances and future challenges in the diagnosis of neuroendocrine neoplasms. Minerva Endocrinology 2024; 49(2) doi: 10.23736/S2724-6507.23.04140-4
|
4 |
Qian Yan, Yubin Chen, Chunsheng Liu, Hexian Shi, Mingqian Han, Zelong Wu, Shanzhou Huang, Chuanzhao Zhang, Baohua Hou. Predicting histologic grades for pancreatic neuroendocrine tumors by radiologic image-based artificial intelligence: a systematic review and meta-analysis. Frontiers in Oncology 2024; 14 doi: 10.3389/fonc.2024.1332387
|
5 |
Athanasios G. Pantelis, Panagiota A. Panagopoulou, Dimitris P. Lapatsanis. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Gastroenteropancreatic Neuroendocrine Neoplasms—A Scoping Review. Diagnostics 2022; 12(4): 874 doi: 10.3390/diagnostics12040874
|
6 |
Hai-Yan Chen, Yao Pan, Jie-Yu Chen, Jia Chen, Lu-Lu Liu, Yong-Bo Yang, Kai Li, Qian Ma, Lei Shi, Ri-Sheng Yu, Guo-Liang Shao. Machine Learning Methods Based on CT Features Differentiate G1/G2 From G3 Pancreatic Neuroendocrine Tumors. Academic Radiology 2024; 31(5): 1898 doi: 10.1016/j.acra.2023.10.040
|
7 |
Qi Liu, Jack A Gilbert, Hao Zhu, Shiew-Mei Huang, Elizabeth Kunkoski, Promi Das, Kimberly Bergman, Mary Buschmann, M. Khair ElZarrad. Atkinson's Principles of Clinical Pharmacology. 2022; : 691 doi: 10.1016/B978-0-12-819869-8.00028-8
|
8 |
D. Schlanger, F. Graur, C. Popa, E. Moiș, N. Al Hajjar. The role of artificial intelligence in pancreatic surgery: a systematic review. Updates in Surgery 2022; 74(2): 417 doi: 10.1007/s13304-022-01255-z
|
9 |
Masatoshi Murakami, Nao Fujimori, Kohei Nakata, Masafumi Nakamura, Shinichi Hashimoto, Hiroshi Kurahara, Kazuyoshi Nishihara, Toshiya Abe, Shunpei Hashigo, Naotaka Kugiyama, Eisuke Ozawa, Kazuhisa Okamoto, Yusuke Ishida, Keiichi Okano, Ryo Takaki, Yutaka Shimamatsu, Tetsuhide Ito, Masami Miki, Noriko Oza, Daisuke Yamaguchi, Hirofumi Yamamoto, Hironobu Takedomi, Ken Kawabe, Tetsuro Akashi, Koichi Miyahara, Jiro Ohuchida, Yasuhiro Ogura, Yohei Nakashima, Toshiharu Ueki, Kousei Ishigami, Hironobu Umakoshi, Keijiro Ueda, Takamasa Oono, Yoshihiro Ogawa. Machine learning-based model for prediction and feature analysis of recurrence in pancreatic neuroendocrine tumors G1/G2. Journal of Gastroenterology 2023; 58(6): 586 doi: 10.1007/s00535-023-01987-8
|
10 |
He Ren, Chao An, Wanxi Fu, Jingyan Wu, Wenhuan Yao, Jie Yu, Ping Liang. Prediction of local tumor progression after microwave ablation for early-stage hepatocellular carcinoma with machine learning. Journal of Cancer Research and Therapeutics 2023; 19(4): 978 doi: 10.4103/jcrt.jcrt_319_23
|