1
|
Gellhorn Serra M, Meier L, Sauerhering L, Wilhelm J, Kupke A. Organotypic brain slices as a model to study the neurotropism of the highly pathogenic Nipah and Ebola viruses. J Gen Virol 2024; 105. [PMID: 39466030 DOI: 10.1099/jgv.0.002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Nipah virus (NiV) and Ebola virus (EBOV) are highly pathogenic zoonotic viruses with case fatality rates of up to 90%. While the brain is a known target organ following NiV infection, involvement of the central nervous system in EBOV-infected patients only became more evident after the West African epidemic in 2013-2016. To gain a deeper comprehension of the neurotropism of NiV and EBOV with respect to target cells, affected brain regions and local inflammatory responses, murine organotypic brain slices (BS) were established and infected. Both NiV and EBOV demonstrated the capacity to infect BS from adult wt mice and mice lacking the receptor for type I IFNs (IFNAR-/-) and targeted various cell types. NiV was observed to replicate in BS derived from both mouse strains, yet no release of infectious particles was detected. In contrast, EBOV replication was limited in both BS models. The release of several pro-inflammatory cytokines and chemokines, including eotaxin, IFN-γ, IL-1α, IL-9, IL-17a and keratinocyte-derived chemokine (KC), was observed in both virus-infected models, suggesting a potential role of the inflammatory response in NiV- or EBOV-induced neuropathology. It is noteworthy that the choroid plexus was identified as a highly susceptible target for EBOV and NiV infection, suggesting that the blood-cerebrospinal fluid barrier may serve as a potential entry point for these viruses.
Collapse
Affiliation(s)
- Michelle Gellhorn Serra
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Lars Meier
- Philipps University Marburg, Institute of Virology, Marburg, Germany
| | - Lucie Sauerhering
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| | - Jochen Wilhelm
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
- Institute for Lung Health, Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Alexandra Kupke
- Philipps University Marburg, Institute of Virology, Marburg, Germany
- German Center for Infection Research (DZIF), TTU Emerging Infections, Giessen, Germany
| |
Collapse
|
2
|
Ruiz Díaz N, Cisternas C, Silva M, Hernández A, Chacana P. Characterization of anti-soybean agglutinin (SBA) IgY antibodies: a new strategy for neutralization of the detrimental biological activity of SBA. Front Vet Sci 2024; 11:1382510. [PMID: 38681857 PMCID: PMC11045903 DOI: 10.3389/fvets.2024.1382510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Anti-soybean agglutinin (SBA) IgY was produced, and its potential to neutralize the haemagglutinating activity of SBA in vitro was tested. Thirty-five-week-old hens [treatment (n = 5) and control (n = 5)] were immunized with SBA or injected with saline 4 times every 15 days. Eggs were collected after the last immunization, and IgY was extracted using the polyethylene glycol (PEG) method. Serum anti-SBA IgY titres in immunized hens increased after the first immunization and reached a plateau between days 45 and 60. In contrast, specific IgY titres in the control group remained at basal levels throughout the evaluation. Average IgY titres were significantly higher in the treatment group on days 15, 30, 45, and 60. Total IgY content in the egg yolk extract was 38.7 ± 1.6 and 37.7 ± 1.5 mg/ml for the treatment and control groups, respectively. The specific anti-SBA IgY titer detected in the egg yolk extract was significantly higher (p < 0.001) for hens in the treatment group compared to the control group, with OD450nm values of 0.98 ± 0.05 and 0.058 ± 0.02, respectively. The specificity of anti-SBA IgY was confirmed by the Western blotting, and the inhibition of SBA-induced haemagglutination in vitro was compared with D-galactose, a known molecule that binds to SBA and blocks its binding to erythrocytes. The inhibition of SBA-induced haemagglutination by the anti-SBA IgY reached 512 units of haemagglutination inhibition (UHI), compared to 8 or 256 UHI, respectively, when IgY from control chickens or D-galactose was used. Thus, anti-SBA IgY antibodies were efficiently produced in large quantities and effectively inhibited SBA-induced haemagglutination in vitro.
Collapse
Affiliation(s)
- Nancy Ruiz Díaz
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Temuco, Chile
| | - Carlos Cisternas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco, Chile
| | - Mauricio Silva
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Agroalimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Adrián Hernández
- Núcleo de Investigación en Producción Agroalimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Pablo Chacana
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| |
Collapse
|
3
|
Araújo Pereira MO, Júnior ÁF, Batista Rodrigues ES, Mulser H, Nascimento de Mello E Silva G, Pio Dos Santos WT, de Souza Gil E. An impedimetric immunosensor for diagnosis of Brazilian spotted fever in blood plasma. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:189-195. [PMID: 38098444 DOI: 10.1039/d3ay01308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Brazilian spotted fever (BSF) is a serious disease of medical importance due to its rapid evolution and high lethality. The effectiveness of the treatment mainly depends on the rapid diagnosis, which is currently performed by indirect immunofluorescence and PCR tests, which require high costs and laboratory structure. In order to propose an alternative methodology, we sought to develop an impedimetric immunosensor (IM) based on the immobilization of specific IgY antibodies for IgG anti Rickettsia rickettsii, using blood plasma from capybara (Hydrochoerus hydrochaeris), for characterization, validation and applications of the ready IM. IM selectivity was observed when comparing capybara reagent IgG (IgGcr) readings with non-reagent IgG (IgGnr). A reagent IgG calibration curve was obtained, from which the limits of detection (LOD) and quantification (LOQ) of 1.3 ng mL-1 and 4.4 ng mL-1 were calculated, respectively. The accuracy tests showed that different concentrations of IgGcr showed a maximum deviation of 20.0%, with CI between 90.00% and 95.00%. Intermediate precision tests showed a relative standard deviation of 2.09% for researcher 1 and 2.61% for researcher 2, and the F test showed no significant difference between the recovery values found between the two analysts, since Fcal 1.56 < 5.05 and P-value 0.48 > 0, 05. Therefore, an impedimetric immunosensor was developed to detect anti BSF IgG in capybara blood plasma, which greatly contributes to the improvement of diagnostic tests, cost reduction and ease of execution.
Collapse
Affiliation(s)
| | | | | | - Helena Mulser
- School of Pharmacy, Federal University of Goiás, Brazil.
| | | | - Wallans Torres Pio Dos Santos
- Chemistry Department, Federal University of Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | | |
Collapse
|
4
|
Grzywa R, Łupicka-Słowik A, Sieńczyk M. IgYs: on her majesty's secret service. Front Immunol 2023; 14:1199427. [PMID: 37377972 PMCID: PMC10291628 DOI: 10.3389/fimmu.2023.1199427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
There has been an increasing interest in using Immunoglobulin Y (IgY) antibodies as an alternative to "classical" antimicrobials. Unlike traditional antibiotics, they can be utilized on a continual basis without leading to the development of resistance. The veterinary IgY antibody market is growing because of the demand for minimal antibiotic use in animal production. IgY antibodies are not as strong as antibiotics for treating infections, but they work well as preventative agents and are natural, nontoxic, and easy to produce. They can be administered orally and are well tolerated, even by young animals. Unlike antibiotics, oral IgY supplements support the microbiome that plays a vital role in maintaining overall health, including immune system function. IgY formulations can be delivered as egg yolk powder and do not require extensive purification. Lipids in IgY supplements improve antibody stability in the digestive tract. Given this, using IgY antibodies as an alternative to antimicrobials has garnered interest. In this review, we will examine their antibacterial potential.
Collapse
|
5
|
Chun CKY, Roth M, Welti R, Richards MP, Hsu WW, O'Quinn T, Chao MD. Exploring the potential effect of phospholipase A2 antibody to extend beef shelf-life in a beef liposome model system. Meat Sci 2023; 198:109091. [PMID: 36587462 DOI: 10.1016/j.meatsci.2022.109091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to elucidate the effect of phospholipase A2 (PLA2) and a PLA2 antibody (aPLA2) on phospholipid (PL) hydrolysis in beef and to understand how the altered PL composition may affect lipid oxidation and antioxidant capacity of beef in an in vitro system. Various combinations of PLA2 and aPLA2 were introduced to a beef liposome model system and exposed to a retail display. The PL and free fatty acid (FFA) profiles, antioxidant capacity and lipid oxidation were measured for the liposome system. Key PL classes were reduced and the release of polyunsaturated FFAs was increased with the inclusion of PLA2 in the treatments (P < 0.05). There was no inhibition of PL hydrolysis with the addition of aPLA2. PLA2 showed strong antioxidant capacity in the liposome system (P < 0.01), but lipid oxidation still increased in samples treated with PLA2 throughout the retail display (P < 0.01). Finally, aPLA2 treatments demonstrated potential to decrease lipid oxidation (P < 0.01).
Collapse
Affiliation(s)
- Colin K Y Chun
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Mary Roth
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Ruth Welti
- Kansas State University, Division of Biology, Manhattan, Kansas, 66506, USA
| | - Mark P Richards
- University of Wisconsin Madison, Animal and Dairy Sciences, Madison, WI 53706-1205, USA
| | - Wei-Wen Hsu
- University of Cincinnati, Environmental and Public Health Sciences, Cincinnati, OH 45267, USA
| | - Travis O'Quinn
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA
| | - Michael D Chao
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, Kansas 66506, USA.
| |
Collapse
|
6
|
Artman C, Idegwu N, Brumfield KD, Lai K, Hauta S, Falzarano D, Parreño V, Yuan L, Geyer JD, Goepp JG. Feasibility of Polyclonal Avian Immunoglobulins (IgY) as Prophylaxis against Human Norovirus Infection. Viruses 2022; 14:v14112371. [PMID: 36366469 PMCID: PMC9698945 DOI: 10.3390/v14112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Human norovirus (HuNoV) is the leading viral cause of diarrhea, with GII.4 as the predominant genotype of HuNoV outbreaks globally. However, new genogroup variants emerge periodically, complicating the development of anti-HuNoV vaccines; other prophylactic or therapeutic medications specifically for HuNoV disease are lacking. Passive immunization using oral anti-HuNoV antibodies may be a rational alternative. Here, we explore the feasibility of using avian immunoglobulins (IgY) for preventing HuNoV infection in vitro in a human intestinal enteroid (HIE) model. METHODS Hens were immunized with virus-like particles (VLP) of a GII.4 HuNoV strain (GII.4/CHDC2094/1974/US) by intramuscular injection. The resulting IgY was evaluated for inhibition of binding to histo-blood group antigens (HBGA) and viral neutralization against representative GII.4 and GII.6 clinical isolates, using an HIE model. RESULTS IgY titers were detected by three weeks following initial immunization, persisting at levels of 1:221 (1:2,097,152) from 9 weeks to 23 weeks. Anti-HuNoV IgY significantly (p < 0.05) blocked VLP adhesion to HBGA up to 1:12,048 dilution (0.005 mg/mL), and significantly (p < 0.05) inhibited replication of HuNoV GII.4[P16] Sydney 2012 in HIEs up to 1:128 dilution (0.08 mg/mL). Neutralization was not detected against genotype GII.6. CONCLUSIONS We demonstrate the feasibility of IgY for preventing infection of HIE by HuNoV GII.4. Clinical preparations should cover multiple circulating HuNoV genotypes for comprehensive effects. Plans for animal studies are underway.
Collapse
Affiliation(s)
- Chad Artman
- Scaled Microbiomics, LLC, Hagerstown, MD 21740, USA
| | | | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park Campus, College Park, MD 20742, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park Campus, College Park, MD 20742, USA
| | - Ken Lai
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Shirley Hauta
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Viviana Parreño
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- INCUINTA, IVIT, National Institute of Agricultural Technology (INTA, Argentina), Buenos Aires 1712, Argentina
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - James D. Geyer
- Institute for Rural Health Research, College of Community Health Science, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Julius G. Goepp
- Scaled Microbiomics, LLC, Hagerstown, MD 21740, USA
- Correspondence: ; Tel.: +1-585-820-9937
| |
Collapse
|
7
|
Brumfield K, Seo H, Idegwu N, Artman C, Gonyar L, Nataro J, Zhang W, Sack D, Geyer J, Goepp J. Feasibility of avian antibodies as prophylaxis against enterotoxigenic escherichia coli colonization. Front Immunol 2022; 13:1011200. [PMID: 36341430 PMCID: PMC9627289 DOI: 10.3389/fimmu.2022.1011200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Background This research aims to evaluate the feasibility of using avian immunoglobulins (IgY) raised against adhesion factors of enterotoxigenic Escherichia coli (ETEC) as prophylaxis of diarrheal illness caused by these pathogens. ETEC requires adhesion to human intestinal epithelial cells as a primary step in establishing enteric infection. Therefore, inhibition of adhesion may prevent such infections and reduce clinical burdens of diarrheal illness. Methods IgY samples were prepared from eggs of hens immunized with an adhesin-tip multiepitope fusion antigen (MEFA), developed against nine adhesin tip epitopes derived from clinically relevant ETEC strains. The resulting IgY was evaluated for its ability to inhibit adhesion of ETEC to cell-surface targets. Potential impacts of anti-MEFA IgY on growth of both pathogenic and commensal E. coli isolates were also evaluated. Results Enzyme linked immunosorbent assay (ELISA) titers were achieved for IgY targeting each of the nine individual epitopes included in the adhesin-tip MEFA. Furthermore, anti-MEFA titers exceeding 1:219 were sustained for at least 23 weeks. All ETEC strains used in design of the adhesin-tip MEFA, and five of five clinical ETEC strains were significantly (P < 0.05) inhibited from adhesion to mammalian cells in culture. Conclusions These findings demonstrate that IgY targeting ETEC adhesin-tip MEFA have the potential to disrupt in vitro adherence of ETEC. A formulation containing adhesin-tip MEFA IgY can be considered a potential candidate for in vivo evaluation as prophylaxis of diarrheal diseases. Animal studies of this formulation are planned.
Collapse
Affiliation(s)
- Kyle Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States
| | - Hyesuk Seo
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nnebuefe Idegwu
- Department of Therapeutics Development, Scaled Microbiomics, Hagerstown, MD, United States
| | - Chad Artman
- Department of Therapeutics Development, Scaled Microbiomics, Hagerstown, MD, United States
| | - Laura Gonyar
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States
| | - James Nataro
- Department of Pediatrics, University of Virginia, Charlottesville, VA, United States
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - David Sack
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - James Geyer
- Institute for Rural Health Research, University of Alabama, Tuscaloosa, AL, United States
| | - Julius Goepp
- Department of Therapeutics Development, Scaled Microbiomics, Hagerstown, MD, United States
- *Correspondence: Julius Goepp,
| |
Collapse
|
8
|
Madera-Contreras AM, Solano-Texta R, Cisneros-Sarabia A, Bautista-Santos I, Vences-Velázquez G, Vences-Velázquez A, Cortés-Sarabia K. Optimized method for the extraction of contaminant-free IgY antibodies from egg yolk using PEG 6000. MethodsX 2022; 9:101874. [PMID: 36249931 PMCID: PMC9563561 DOI: 10.1016/j.mex.2022.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Hens are oviparous vertebrates and produce IgY antibodies, which is the main type of immunoglobulin in the egg yolk, and high concentrations can be obtained by using a simple method that does not require sophisticated equipment and reagents. The Polyethylene Glycol 6000 method allows the removal of lipids and the precipitation of IgY in two days with an approximated purity of around 80%, however during the original protocol other contaminant proteins can be precipitated. To overcome the issue of contamination with other proteins and extraction time, we optimized the previously method described by Pauly et al. (2011) by adding some changes that improved the aforementioned problems. • Our protocol is customized by the addition of one more filtration step or one more step with PEG 6000 at 3.5% to avoid the contamination with lipids. • Additionally, the changes in the type of agitation, centrifugation and the skip of dialysis make the method more accessible for all the laboratories. • In summary, these modifications serve to enhance the purity, reduce the time for IgY extraction from egg yolk and make it more accessible for every basic research laboratory.
Collapse
|
9
|
Otterbeck A, Skorup P, Hanslin K, Larsson A, Stålberg J, Hjelmqvist H, Lipcsey M. Intravenous anti- P. aeruginosa IgY-antibodies do not decrease pulmonary bacterial concentrations in a porcine model of ventilator-associated pneumonia. Innate Immun 2022; 28:224-234. [PMID: 36373663 PMCID: PMC9900256 DOI: 10.1177/17534259221114217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Ventilator associated pneumonia (VAP) caused by P. aeruginosa is a cause of morbidity and mortality in critically ill patients. The spread of pathogens with anti-microbial resistance mandates the investigation of novel therapies. Specific polyclonal anti-P. aeruginosa IgY-antibodies (Pa-IgY) might be effective for VAP caused by P. aeruginosa. The objective of this study was to investigate if intravenous Pa-IgY decreases the lower airway concentration of P. aeruginosa in VAP. We used a double blind randomized placebo controlled porcine model of VAP caused by P. aeruginosa. Eighteen pigs were randomized to either receive intravenous Pa-IgY or placebo. Repeated registration of physiological parameters and sampling was performed for 27 h. Concentration of P. aeruginosa in BAL-cultures was similar in both groups with 104.97 ± 102.09 CFU/mL in the intervention group vs 104.37 ± 102.62 CFU/mL in the control group at the end of the experiment. The intervention group had higher heart rate, cardiac index, oxygen delivery and arterial oxygen tension/fraction of inspired oxygen-ratio, but lower plasma lactate and blood hemoglobin levels than the control group. In summary, in an anesthetized and mechanically ventilated porcine model of VAP, Pa-IgY at the dose used did not decrease concentrations of P. aeruginosa in the lower airways.
Collapse
Affiliation(s)
- A. Otterbeck
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - P. Skorup
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - K. Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A. Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J. Stålberg
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - H. Hjelmqvist
- Anesthesiology and Intensive Care, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - M. Lipcsey
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
IgY Antibodies as Biotherapeutics in Biomedicine. Antibodies (Basel) 2022; 11:antib11040062. [PMID: 36278615 PMCID: PMC9590010 DOI: 10.3390/antib11040062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of antibodies by Emil Von Behring and Shibasaburo Kitasato during the 19th century, their potential for use as biotechnological reagents has been exploited in different fields, such as basic and applied research, diagnosis, and the treatment of multiple diseases. Antibodies are relatively easy to obtain from any species with an adaptive immune system, but birds are animals characterized by relatively easy care and maintenance. In addition, the antibodies they produce can be purified from the egg yolk, allowing a system for obtaining them without performing invasive practices, which favors the three “rs” of animal care in experimentation, i.e., replacing, reducing, and refining. In this work, we carry out a brief descriptive review of the most outstanding characteristics of so-called “IgY technology” and the use of IgY antibodies from birds for basic experimentation, diagnosis, and treatment of human beings and animals.
Collapse
|
11
|
Hyperimmunized Chickens Produce Neutralizing Antibodies against SARS-CoV-2. Viruses 2022; 14:v14071510. [PMID: 35891490 PMCID: PMC9318545 DOI: 10.3390/v14071510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
The novel severe acute respiratory syndrome (SARS) coronavirus, SARS-CoV-2, is responsible for the global COVID-19 pandemic. Effective interventions are urgently needed to mitigate the effects of COVID-19 and likely require multiple strategies. Egg-extracted antibody therapies are a low-cost and scalable strategy to protect at-risk individuals from SARS-CoV-2 infection. Commercial laying hens were hyperimmunized against the SARS-CoV-2 S1 protein using three different S1 recombinant proteins and three different doses. Sera and egg yolk were collected at three and six weeks after the second immunization for enzyme-linked immunosorbent assay and plaque-reduction neutralization assay to determine antigen-specific antibody titers and neutralizing antibody titers, respectively. In this study we demonstrate that hens hyperimmunized against the SARS-CoV-2 recombinant S1 and receptor binding domain (RBD) proteins produced neutralizing antibodies against SARS-CoV-2. We further demonstrate that antibody production was dependent on the dose and type of antigen administered. Our data suggests that antibodies purified from the egg yolk of hyperimmunized hens can be used as immunoprophylaxis in humans at risk of exposure to SARS-CoV-2.
Collapse
|
12
|
Khalaf HE, Al-Bouqaee H, Hwijeh M, Abbady AQ. Characterization of rabbit polyclonal antibody against camel recombinant nanobodies. Open Life Sci 2022; 17:659-675. [PMID: 35800073 PMCID: PMC9202535 DOI: 10.1515/biol-2022-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Nanobodies (Nbs) are recombinant single-domain fragments derived from camelids’ heavy-chain antibodies (HCAbs). Nanobodies are increasingly used in numerous biotechnological and medical applications because of their high stability, solubility, and yield. However, one major obstacle prohibiting Nb expansion is the affordability of specific detector antibodies for their final revelation. In this work, the production of a specific anti-Nb antibody as a general detector for camel antibodies, conventional cIgG, and HCAb, and their derived Nbs was sought. Thus, a T7 promoter plasmid was constructed and used to highly express six different Nbs that were used in a successful rabbit immunization. Affinity-purified rabbit anti-Nb rIgG was able to detect immobilized or antigen-bound Nbs via enzyme-linked immunosorbent assay, and its performance was comparable to that of a commercial anti-6× His antibody. Its capacities in dosing impure Nbs, detecting Nbs displayed on M13 phages, and revealing denatured Nbs in immune blotting were all proven. As expected, and because of shared epitopes, rabbit anti-Nb cross-reacted with cIgG, HCAbs, and 6× His-tagged proteins, and the percentage of each fraction within anti-Nb rIgG was determined. Anti-Nb is a promising tool for the checkpoints throughout the recombinant Nb technology.
Collapse
Affiliation(s)
- Houssam-Eddin Khalaf
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Hassan Al-Bouqaee
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Manal Hwijeh
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| |
Collapse
|
13
|
Agurto-Arteaga A, Poma-Acevedo A, Rios-Matos D, Choque-Guevara R, Montesinos-Millán R, Montalván Á, Isasi-Rivas G, Cauna-Orocollo Y, Cauti-Mendoza MDG, Pérez-Martínez N, Gutierrez-Manchay K, Ramirez-Ortiz I, Núñez-Fernández D, Salguedo-Bohorquez MI, Quiñones-Garcia S, Fernández Díaz M, Guevara Sarmiento LA, Zimic M. Preclinical Assessment of IgY Antibodies Against Recombinant SARS-CoV-2 RBD Protein for Prophylaxis and Post-Infection Treatment of COVID-19. Front Immunol 2022; 13:881604. [PMID: 35664008 PMCID: PMC9157249 DOI: 10.3389/fimmu.2022.881604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022] Open
Abstract
Within the framework of the current COVID-19 pandemic, there is a race against time to find therapies for the outbreak to be controlled. Since vaccines are still tedious to develop and partially available for low-income countries, passive immunity based on egg-yolk antibodies (IgY) is presented as a suitable approach to preclude potential death of infected patients, based on its high specificity/avidity/production yield, cost-effective manufacture, and ease of administration. In the present study, IgY antibodies against a recombinant RBD protein of SARS-CoV-2 were produced in specific-pathogen-free chickens and purified from eggs using a biocompatible method. In vitro immunoreactivity was tested, finding high recognition and neutralization values. Safety was also demonstrated prior to efficacy evaluation, in which body weight, kinematics, and histopathological assessments of hamsters challenged with SARS-CoV-2 were performed, showing a protective effect administering IgY intranasally both as a prophylactic treatment or a post-infection treatment. The results of this study showed that intranasally delivered IgY has the potential to both aid in prevention and in overcoming COVID-19 infection, which should be very useful to control the advance of the current pandemic and the associated mortality.
Collapse
Affiliation(s)
- Andres Agurto-Arteaga
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Astrid Poma-Acevedo
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Dora Rios-Matos
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ricardo Choque-Guevara
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ricardo Montesinos-Millán
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ángela Montalván
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Gisela Isasi-Rivas
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Yudith Cauna-Orocollo
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - María de Grecia Cauti-Mendoza
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Norma Pérez-Martínez
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Kristel Gutierrez-Manchay
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Ingrid Ramirez-Ortiz
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Dennis Núñez-Fernández
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mario I Salguedo-Bohorquez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Stefany Quiñones-Garcia
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manolo Fernández Díaz
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Luis A Guevara Sarmiento
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru
| | - Mirko Zimic
- Laboratorio de Biotecnología Molecular y Genómica, Laboratorios de Investigación y Desarrollo, Farmacológicos Veterinarios SAC (FARVET SAC), Chincha, Peru.,Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | |
Collapse
|
14
|
Frumkin LR, Lucas M, Scribner CL, Ortega-Heinly N, Rogers J, Yin G, Hallam TJ, Yam A, Bedard K, Begley R, Cohen CA, Badger CV, Abbasi SA, Dye JM, McMillan B, Wallach M, Bricker TL, Joshi A, Boon ACM, Pokhrel S, Kraemer BR, Lee L, Kargotich S, Agochiya M, John TS, Mochly-Rosen D. Egg-Derived Anti-SARS-CoV-2 Immunoglobulin Y (IgY) With Broad Variant Activity as Intranasal Prophylaxis Against COVID-19. Front Immunol 2022; 13:899617. [PMID: 35720389 PMCID: PMC9199392 DOI: 10.3389/fimmu.2022.899617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.
Collapse
Affiliation(s)
- Lyn R. Frumkin
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Michaela Lucas
- Faculty of Health and Medical Sciences Internal Medicine, The University of Western Australia, Perth, WA, Australia
| | | | | | - Jayden Rogers
- Linear Clinical Research Ltd, Nedlands, WA, Australia
| | - Gang Yin
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | | | - Alice Yam
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Kristin Bedard
- Sutro Biopharma Inc., South San Francisco, CA, United States
| | - Rebecca Begley
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Courtney A. Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
- The Geneva Foundation, Tacoma, WA, United States
| | - Catherine V. Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Shawn A. Abbasi
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - John M. Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | | | - Michael Wallach
- University of Technology Sydney, Sydney, NSW, Australia
- SPARK Sydney, Sydney, NSW, Australia
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Benjamin R. Kraemer
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
| | - Stephen Kargotich
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| | - Mahima Agochiya
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Tom St. John
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
| | - Daria Mochly-Rosen
- School of Medicine, SPARK at Stanford, Stanford University, Stanford, CA, United States
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, United States
- School of Medicine, SPARK Global, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Kupke A, Volz A, Dietzel E, Freudenstein A, Schmidt J, Shams-Eldin H, Jany S, Sauerhering L, Krähling V, Gellhorn Serra M, Herden C, Eickmann M, Becker S, Sutter G. Protective CD8+ T Cell Response Induced by Modified Vaccinia Virus Ankara Delivering Ebola Virus Nucleoprotein. Vaccines (Basel) 2022; 10:vaccines10040533. [PMID: 35455282 PMCID: PMC9027530 DOI: 10.3390/vaccines10040533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The urgent need for vaccines against Ebola virus (EBOV) was underscored by the large outbreak in West Africa (2014–2016). Since then, several promising vaccine candidates have been tested in pre-clinical and clinical studies. As a result, two vaccines were approved for human use in 2019/2020, of which one includes a heterologous adenovirus/Modified Vaccinia virus Ankara (MVA) prime-boost regimen. Here, we tested new vaccine candidates based on the recombinant MVA vector, encoding the EBOV nucleoprotein (MVA-EBOV-NP) or glycoprotein (MVA-EBOV-GP) for their efficacy after homologous prime-boost immunization in mice. Our aim was to investigate the role of each antigen in terms of efficacy and correlates of protection. Sera of mice vaccinated with MVA-EBOV-GP were virus-neutralizing and MVA-EBOV-NP immunization readily elicited interferon-γ-producing NP-specific CD8+ T cells. While mock-vaccinated mice succumbed to EBOV infection, all vaccinated mice survived and showed drastically decreased viral loads in sera and organs. In addition, MVA-EBOV-NP vaccinated mice became susceptible to lethal EBOV infection after depletion of CD8+ T cells prior to challenge. This study highlights the potential of MVA-based vaccines to elicit humoral immune responses as well as a strong and protective CD8+ T cell response and contributes to understanding the possible underlying mechanisms.
Collapse
Affiliation(s)
- Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
| | - Erik Dietzel
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Jörg Schmidt
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Hosam Shams-Eldin
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Sylvia Jany
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| | - Lucie Sauerhering
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Michelle Gellhorn Serra
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Markus Eickmann
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany; (A.K.); (E.D.); (J.S.); (H.S.-E.); (L.S.); (V.K.); (M.G.S.); (M.E.)
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
- Correspondence:
| | - Gerd Sutter
- German Center for Infection Research, Partner Site Munich, 80539 Munich, Germany;
- Division of Virology, Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany; (A.F.); (S.J.)
| |
Collapse
|
16
|
Ultrasensitive microfluidic immunosensor with stir bar enrichment for point-of-care test of Staphylococcus aureus in foods triggered by DNAzyme-assisted click reaction. Food Chem 2022; 378:132093. [PMID: 35032807 DOI: 10.1016/j.foodchem.2022.132093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
This work demonstrated an ultrasensitive and simple microfluidic immunosensor for point-of-care test of Staphylococcus aureus (S. aureus) based on the stir bar enrichment and DNAzyme-assisted click reaction. Initially, S. aureus was enriched by the 4-mercaptophenylboronic acid-functionalized stir bar. The yolk antibody (immunoglobulin Y) and copper-labeled polydopamine nanoparticles were then specifically conjugated with the captured target. The Cu(II) was released under acidic conditions and effectively catalyzed the copper-catalyzed azide-alkyne cycloaddition (CuAAC) between the alkyne group-labeled DNAzyme and the streptavidin-biotin-azido with the assistance of DNAzyme. Finally, the DNAzyme-streptavidin complexes were detected by microfluidic chips to quantify S. aureus. Under optimum conditions, this immunosensor showed good detection performances toward S. aureus within 10 to 2.5 × 104 CFU/mL with a limit of detection of 3 CFU/mL. Moreover, the satisfying detection results of real samples of animal origin also implied that this immunosensor owned great potential in practical applications.
Collapse
|
17
|
Zhang L, Xiao Y, Ji L, Lin M, Zou Y, Zhao J, Zhao S. Potential Therapeutic Effects of Egg Yolk Antibody (IgY) in Helicobacter pylori Infections─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13691-13699. [PMID: 34783242 DOI: 10.1021/acs.jafc.1c05398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, the infection with Helicobacter pylori affects about half of the world's population, and the most common therapy to treat H. pylori is the first line clarithromycin-based triple therapy or the quadruple therapy. However, drug resistance, eradication in a low level, high rate of reinfection, and gastrointestinal side effects among the causative organisms for H. pylori infection pose a critical challenge to the global health care community. Therefore, new approaches to treat H. pylori infections are urgently needed. Chicken egg yolk constituting a source of immunoglobulin Y (IgY) has attracted noticeable attention for its advantages of cost-effective extraction, minimization of animal harm and suffering, and induction of no specific resistance and is, therefore, being regarded as an alternative therapy for H. pylori infection. This review is intended to summarize various H. pylori antigens for IgY preparation in terms of their application, mechanism, and limitations.
Collapse
Affiliation(s)
- Leheng Zhang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yire Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Ji
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
18
|
Wang H, Zeng X, Lin J. Ex Vivo Evaluation of Egg Yolk IgY Degradation in Chicken Gastrointestinal Tract. Front Immunol 2021; 12:746831. [PMID: 34621278 PMCID: PMC8490740 DOI: 10.3389/fimmu.2021.746831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Egg yolk antibody (immunoglobulin Y, IgY), due to its unique features (e.g., cost-effectiveness for mass production), is emerging as a promising passive immune agent and alternative to antibiotics to combat infectious diseases, particularly in livestock. Oral administration of egg yolk IgY is the most common and convenient route that has been extensively investigated for controlling enteric pathogens. However, the in vivo stability of egg yolk IgY in the gastrointestinal (GI) tract, a critical issue for the success of this approach, still has not been clearly elucidated. Our recent study showed instability of orally administered egg yolk IgY in chicken GI tract, as demonstrated by both in vivo and ex vivo evidence. To better understand the magnitude and dynamics of instability of egg yolk IgY in vivo, in this study, we conducted comprehensive ex vivo analyses by spiking hyperimmune egg yolk IgY in fresh GI contents collected from five broilers at each sampling age (2, 4, or 6 weeks). The pH in gizzard slightly increased with age from 2.4 to 3.0, while the pH in the small intestine was around 5.8. ELISA analysis indicated that a short time of treatment (30 or 60 min) of IgY with the gizzard contents from the chickens at 2, 4, and 6 weeks of age greatly reduced specific IgY titer by over 8, 6, and 5 log2 units, respectively, when compared with saline control. However, small intestine content only had a mild effect on egg yolk IgY, leading to 1 log2 unit of reduction in IgY titer upon 30 min of treatment. Consistent with these findings, SDS-PAGE and immunoblotting analyses provided direct evidence demonstrating that egg yolk IgY could be drastically degraded to undetectable level in gizzard content upon as short as 5 min of treatment; however, the IgY was only slightly degraded in small intestine content. Immunoblotting also showed that treatment of IgY with HCl (pH 3.0) for 60 min did not affect its integrity at all, further supporting the enzymatic degradation of IgY in gizzard. Collectively, egg yolk IgY could be substantially degraded in chicken gizzard, highly warranting the development of effective approaches, such as encapsulation, for the controlled release and protection of orally administered egg yolk IgY in livestock.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
19
|
Karachaliou CE, Vassilakopoulou V, Livaniou E. IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World J Methodol 2021; 11:243-262. [PMID: 34631482 PMCID: PMC8472547 DOI: 10.5662/wjm.v11.i5.243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
The term “IgY technology” was introduced in the literature in the mid 1990s to describe a procedure involving immunization of avian species, mainly laying hens and consequent isolation of the polyclonal IgYs from the “immune” egg yolk (thus avoiding bleeding and animal stress). IgYs have been applied to various fields of medicine and biotechnology. The present article will deal with specific aspects of IgY technology, focusing on the currently reported methods for developing, isolating, evaluating and storing polyclonal IgYs. Other topics such as current information on isolation protocols or evaluation of IgYs from different avian species are also discussed. Specific advantages of IgY technology (e.g., novel antibody specificities that may emerge via the avian immune system) will also be discussed. Recent in vitro applications of polyclonal egg yolk-derived IgYs to the field of disease diagnosis in human and veterinary medicine through in vitro immunodetection of target biomolecules will be presented. Moreover, ethical aspects associated with animal well-being as well as new promising approaches that are relevant to the original IgY technology (e.g., development of monoclonal IgYs and IgY-like antibodies through the phage display technique or in transgenic chickens) and future prospects in the area will also be mentioned.
Collapse
Affiliation(s)
- Chrysoula-Evangelia Karachaliou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Vyronia Vassilakopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| | - Evangelia Livaniou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, Athens 15310, Greece
| |
Collapse
|
20
|
Cruz, Tipantiza N, Torres, Arias M. Tecnología IgY: Estrategia en el tratamiento de enfermedades infecciosas humanas. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La aparición de microorganismos resistentes a antibióticos, el descubrimiento de nuevos agentes patógenos con potencial pandémico y el aumento de una población inmunocomprometida han dejado casi obsoleta la terapia antimicrobiana, terapia comúnmente usada para tratar enfermedades infecciosas. Por otro lado, las investigaciones acerca del uso del anticuerpo IgY para desarrollar inmunidad pasiva han demostrado el potencial que tiene la tecnología IgY para tratar enfermedades infecciosas víricas y bacterianas. Donde los anticuerpos IgY de aves se destacan por su alta especificidad, rendimiento y escalabilidad de producción a menor costo, con relación a los anticuerpos IgG de mamíferos. El objetivo de esta revisión es determinar la importancia del uso de los anticuerpos IgY como tratamiento terapéutico y profiláctico frente a los patógenos causantes de infecciones virales y bacterianas en humanos, mediante la recopilación de ensayos clínicos, productos comerciales y patentes registradas en el período de 2010-2021. Finalmente, con este estudio se estableció que la tecnología IgY es una herramienta biotecnológica versátil y eficaz para tratar y prevenir enfermedades infecciosas, al reducir los síntomas y la carga del patógeno.
Collapse
Affiliation(s)
- Nathaly Cruz, Tipantiza
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE
| | - Marbel Torres, Arias
- Departamento de Ciencias de la Vida y la Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, ESPE
| |
Collapse
|
21
|
Zhang J, Li HH, Chen YF, Chen LH, Tang HG, Kong FB, Yao YX, Liu XM, Lan Q, Yu XF. Microencapsulation of immunoglobulin Y: optimization with response surface morphology and controlled release during simulated gastrointestinal digestion. J Zhejiang Univ Sci B 2021; 21:611-627. [PMID: 32748577 DOI: 10.1631/jzus.b2000172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immunoglobulin Y (IgY) is an effective orally administered antibody used to protect against various intestinal pathogens, but which cannot tolerate the acidic gastric environment. In this study, IgY was microencapsulated by alginate (ALG) and coated with chitooligosaccharide (COS). A response surface methodology was used to optimize the formulation, and a simulated gastrointestinal (GI) digestion (SGID) system to evaluate the controlled release of microencapsulated IgY. The microcapsule formulation was optimized as an ALG concentration of 1.56% (15.6 g/L), COS level of 0.61% (6.1 g/L), and IgY/ALG ratio of 62.44% (mass ratio). The microcapsules prepared following this formulation had an encapsulation efficiency of 65.19%, a loading capacity of 33.75%, and an average particle size of 588.75 μm. Under this optimum formulation, the coating of COS provided a less porous and more continuous microstructure by filling the cracks on the surface, and thus the GI release rate of encapsulated IgY was significantly reduced. The release of encapsulated IgY during simulated gastric and intestinal digestion well fitted the zero-order and first-order kinetics functions, respectively. The microcapsule also allowed the IgY to retain 84.37% immune-activity after 4 h simulated GI digestion, significantly higher than that for unprotected IgY (5.33%). This approach could provide an efficient way to preserve IgY and improve its performance in the GI tract.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Zhejiang-Russia Joint R&D Center for Nutritional and Health Food Green Manufacturing, Hangzhou 310021, China
| | - Huan-Huan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Zhejiang-Russia Joint R&D Center for Nutritional and Health Food Green Manufacturing, Hangzhou 310021, China
| | - Yi-Fan Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Zhejiang-Russia Joint R&D Center for Nutritional and Health Food Green Manufacturing, Hangzhou 310021, China
| | - Li-Hong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Zhejiang-Russia Joint R&D Center for Nutritional and Health Food Green Manufacturing, Hangzhou 310021, China
| | - Hong-Gang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.,Zhejiang-Russia Joint R&D Center for Nutritional and Health Food Green Manufacturing, Hangzhou 310021, China
| | - Fan-Bin Kong
- Department of Food Science and Technology, The University of Georgia, Athens GA 30602, USA
| | - Yun-Xin Yao
- Zhejiang AGS Biotech Co., Ltd., Huzhou 313100, China
| | - Xu-Ming Liu
- Beijing Deqingyuan Food Co., Ltd., Beijing 100094, China
| | - Qian Lan
- Collage of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xiao-Fan Yu
- Collage of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
22
|
Vansofla AN, Nazarian S, Kordbache E, Fathi J. An IgG/IgY sandwich-ELISA for the detection of heat-labile enterotoxin B subunit of enterotoxigenic Escherichia coli. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS One 2021; 16:e0252399. [PMID: 34048457 PMCID: PMC8162713 DOI: 10.1371/journal.pone.0252399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The global pandemic of Coronavirus infectious disease 2019 (COVID-19), caused by SARS-CoV-2, has plunged the world into both social and economic disarray, with vaccines still emerging and a continued paucity of personal protective equipment; the pandemic has also highlighted the potential for rapid emergence of aggressive respiratory pathogens and the need for preparedness. Avian immunoglobulins (IgY) have been previously shown in animal models to protect against new infection and mitigate established infection when applied intranasally. We carried out a proof-of-concept study to address the feasibility of using such antibodies as mucosally-applied prophylaxis against SARS-CoV-2. METHODS Hens were immunized with recombinant S1 spike glycoprotein of the virus, and the resulting IgY was evaluated for binding specificity, inhibition of glycoprotein binding to angiotensin converting enzyme-2 (ACE2) protein (the requisite binding site for the virus), and inhibition of viral replication in Vero cell culture. RESULTS Titers of anti-S1 glycoprotein IgY were evident in yolks at 14 days post-immunization, peaking at 21 days, and at peak concentrations of 16.8 mg/ml. IgY showed strong and significant inhibition of S1/ACE2 binding interactions, and significantly inhibited viral replication at a concentration of 16.8 mg/ml. Four weeks' collection from eggs of two hens produced a total of 1.55 grams of IgY. CONCLUSIONS In this proof-of-concept study we showed that avian immunoglobulins (IgY) raised against a key virulence factor of the SARS-CoV-2 virus successfully inhibited the critical initial adhesion of viral spike glycoproteins to human ACE2 protein receptors and inhibited viral replication in vitro, in a short period using only two laying hens. We conclude that production of large amounts of IgY inhibiting viral binding and replication of SARS-CoV-2 is feasible, and that incorporation of this or similar material into an intranasal spray and/or other mucosal protecting products may be effective at reducing infection and spread of COVID-19.
Collapse
|
24
|
Gardnerella vaginalis Vaginolysin (VLY)-Derived MAP8 Peptide (VLY-MAP8) Induced the Production of Egg Yolk IgY Antibodies that Inhibit Erythrocytes Lysis. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Redwan EM, Aljadawi AA, Uversky VN. Simple and efficient protocol for immunoglobulin Y purification from chicken egg yolk. Poult Sci 2020; 100:100956. [PMID: 33652537 PMCID: PMC7936219 DOI: 10.1016/j.psj.2020.12.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Besides being a common food component broadly consumed worldwide, egg yolk immunoglobulin Y (IgY) has essential therapeutic potentials. In fact, in a time of ever-increasing risk of antibiotic resistance, it is crucial to find new ways to battle infection, and oral administration of preformed specific antibodies represents one of the most attractive approaches against infection. Infectious diseases of bacterial and viral origin in humans and animals can be controlled and passively cured by orally applied IgYs isolated from chicken egg yolks. Despite multiple obvious advantages of oral administration of IgY, harvesting IgY from egg yolk in a pure form is a challenging task. In this study, we developed a fast, simple, cost-effective, and efficient protocol for IgY isolation from chicken egg yolks. First, egg yolk was collected and diluted with 5 volumes of cold distilled water, homogenized, pH adjusted, and centrifuged. Next, the supernatant was collected, to which caprylic acid at concentration of 2% v/v was added, followed by pH adjustment to pH 5.0, centrifugation at 4°C, and collection of the resulting supernatant. This step was repeated twice, with adding 2% v/v of caprylic acid each time. The final supernatant was concentrated using ultrafiltration, and the IgY purity and activities were checked by SDS-PAGE, western blotting, and ELISA. The sequential (2, 2, 2%) addition of caprylic acid yielded IgY with a purity of 63.5, 90.6, and 95.8%, respectively, and reached 97.9% after ultrafiltration at pH 9.0. The IgY activity increased exponentially to reach 99% after the ultrafiltration step. The proposed caprylic-acid-based protocol of IgY purification from the yolk of chicken eggs seems to be simple, fast, direct, and very cheap. This indicates that this protocol has great potential for scale-up processing.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abdullah A Aljadawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
26
|
Generation of Chicken IgY against SARS-COV-2 Spike Protein and Epitope Mapping. J Immunol Res 2020; 2020:9465398. [PMID: 33134398 PMCID: PMC7568776 DOI: 10.1155/2020/9465398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
This new decade has started with a global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), precipitating a worldwide health crisis and economic downturn. Scientists and clinicians have been racing against time to find therapies for COVID-19. Repurposing approved drugs, developing vaccines and employing passive immunization are three major therapeutic approaches to fighting COVID-19. Chicken immunoglobulin Y (IgY) has the potential to be used as neutralizing antibody against respiratory infections, and its advantages include high avidity, low risk of adverse immune responses, and easy local delivery by intranasal administration. In this study, we raised antibody against the spike (S) protein of SARS-CoV-2 in chickens and extracted IgY (called IgY-S) from egg yolk. IgY-S exhibited high immunoreactivity against SARS-CoV-2 S, and by epitope mapping, we found five linear epitopes of IgY-S in SARS-CoV-2 S, two of which are cross-reactive with SARS-CoV S. Notably, epitope SIIAYTMSL, one of the identified epitopes, partially overlaps the S1/S2 cleavage region in SARS-CoV-2 S and is located on the surface of S trimer in 3D structure, close to the S1/S2 cleavage site. Thus, antibody binding at this location could physically block the access of proteolytic enzymes to S1/S2 cleavage site and thereby impede S1/S2 proteolytic cleavage, which is crucial to subsequent virus-cell membrane fusion and viral cell entry. Therefore, the feasibility of using IgY-S or epitope SIIAYTMS-specific IgY as neutralizing antibody for preventing or treating SARS-CoV-2 infection is worth exploring.
Collapse
|
27
|
Li X, He P, Yu L, He Q, Jia C, Yang H, Lu M, Wei X, Zhao S. Production and characteristics of a novel chicken egg yolk antibody (IgY) against periodontitis-associated pathogens. J Oral Microbiol 2020; 12:1831374. [PMID: 33144924 PMCID: PMC7580850 DOI: 10.1080/20002297.2020.1831374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a bacterial biofilm-induced oral disease, mostly caused by Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) and Porphyromonas gingivalis (P. gingivalis). Oral administration of chicken egg yolk antibody (IgY) is a promising nutritional strategy to control pathogen infections. The objective of this study was to produce an A. actinomycetemcomitans- and P. gingivalis-specific IgY and evaluate its effects on bacterial agglutination and biofilm formation. Thirty laying hens were immunized with a complex of lysate containing typical molecular weights of membrane proteins of A. actinomycetemcomitans and P. gingivalis. IgY was isolated by polyethylene glycol 6000 and ammonium sulfate and purified by dialysis. The results of enzyme-linked immunosorbent assay showed that the obtained IgY were specific to both A. actinomycetemcomitans and P. gingivalis. In addition, immunoelectron microscopy scanning and crystal violet staining showed that the IgY could bind to cell wall of the pathogens and efficiently accelerate agglutination and inhibit biofilm formation. Furthermore, the activity of the IgY remained stable at different temperature, pH, and storage period. This is the first report that a novel two-in-one IgY was produced to modulate the agglutination and biofilm formation of A. actinomycetemcomitans and P. gingivalis, suggesting the potential of IgY to control periodontitis caused by oral pathogens.
Collapse
Affiliation(s)
- Xiangguang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Pan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Linjin Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Qiyi He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Chenggang Jia
- Institute of Biopharmaceutical, Guilin Sanjin Pharmaceutical Co.,Ltd, Guilin City, Guangxi, People's Republic of China
| | - Huiyi Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Minglei Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Xiuting Wei
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Electrochemical immunosensor for determination of Staphylococcus aureus bacteria by IgY immobilized on glassy carbon electrode with electrodeposited gold nanoparticles. Mikrochim Acta 2020; 187:567. [PMID: 32929566 DOI: 10.1007/s00604-020-04547-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
A new ultrasensitive immunosensor is proposed based on the covalently attached anti-protein A antibody (IgY) on deposited gold nanoparticle (AuNP)-modified glassy carbon electrode (GCE) for the electrochemical measurement of Staphylococcus aureus (S. aureus). Chicken IgY as a capture antibody provides highly selective and specific binding to the target bacteria and selectively captures the S. aureus in its three-dimensional space. Due to that it can eliminate the interference from protein G-producing Streptococcus. In addition, the electron-transfer characteristic of [Fe(CN)6]4-/3- is hindered by this combination; as it is reflected on the electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves. The proposed immunosensor displays a wide linear dynamic range from 10 to 107 CFU mL-1 with a detection limit of 3.3 CFU mL-1 with RSD 3.0%. It is capable to accurately determine S. aureus in milk and human blood serum as a complex matrix sample with satisfactory recovery of ∼ 97-103%. The immunosensor also displays high selectivity over other bacteria and acceptable stability. Presumably, our study can be regarded as the first one to report chicken IgY in order to detect S. aureus based on an electrochemical method.Graphical abstract.
Collapse
|
29
|
Pérez de la Lastra JM, Baca-González V, Asensio-Calavia P, González-Acosta S, Morales-delaNuez A. Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines (Basel) 2020; 8:E486. [PMID: 32872186 PMCID: PMC7565424 DOI: 10.3390/vaccines8030486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
In the current worldwide pandemic situation caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the newest coronavirus disease (COVID-19), therapeutics and prophylactics are urgently needed for a large population. Some of the prophylaxis strategies are based on the development of antibodies targeting viral proteins. IgY antibodies are a type of immunoglobulin present in birds, amphibians, and reptiles. They are usually obtained from egg yolk of hyper-immunized hens and represent a relatively inexpensive source of antibodies. Specific IgY can be produced by immunizing chickens with the target antigen and then purifying from the egg yolk. Chicken IgY has been widely explored as a clinical anti-infective material for prophylaxis, preventive medicine, and therapy of infectious diseases. Administered non-systemically, IgY antibodies are safe and effective drugs. Moreover, passive immunization with avian antibodies could become an effective alternative therapy, as these can be obtained relatively simply, cost-efficiently, and produced on a large scale. Here, we highlight the potential use of polyclonal avian IgY antibodies as an oral prophylactic treatment for respiratory viral diseases, such as COVID-19, for which no vaccine is yet available.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Patricia Asensio-Calavia
- Biological Activity Service, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain;
| | - Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain; (V.B.-G.); (S.G.-A.); (A.M.-d.)
| |
Collapse
|
30
|
Distinct Cation Gradients Power Cholesterol Transport at Different Key Points in the Hedgehog Signaling Pathway. Dev Cell 2020; 55:314-327.e7. [PMID: 32860743 DOI: 10.1016/j.devcel.2020.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
Abstract
Cholesterol plays two critical roles in Hedgehog signaling, a fundamental pathway in animal development and cancer: it covalently modifies the Sonic hedgehog (SHH) ligand, restricting its release from producing cells, and directly activates Smoothened in responding cells. In both contexts, a membrane protein related to bacterial RND transporters regulates cholesterol: Dispatched1 controls release of cholesterylated SHH, and Patched1 antagonizes Smoothened activation by cholesterol. The mechanism and driving force for eukaryotic RND proteins, including Dispatched1 and Patched1, are unknown. Here, we show that Dispatched1 acts enzymatically to catalyze SHH release. Dispatched1 uses the energy of the plasma membrane Na+ gradient, thus functioning as an SHH/Na+ antiporter. In contrast, Patched1 repression of Smoothened requires the opposing K+ gradient. Our results clarify the transporter activity of essential eukaryotic RND proteins and demonstrate that the two main cation gradients of animal cells differentially power cholesterol transport at two crucial steps in the Hedgehog pathway.
Collapse
|
31
|
Fathi J, Ebrahimi F, Nazarian S, Hajizade A, Malekzadegan Y, Abdi A. Production of egg yolk antibody (IgY) against shiga-like toxin (stx) and evaluation of its prophylaxis potency in mice. Microb Pathog 2020; 145:104199. [DOI: 10.1016/j.micpath.2020.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
32
|
Mondal B, Ramlal S, Setlem K, Mahadeva A, Aradhya S, Parida M. A real-time immunocapture PCR (RT-IPCR) without interference of protein A for convenient detection of staphylococcal enterotoxin B from food and environmental samples. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01567-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
A real-time immunocapture PCR (RT-IPCR) has been fabricated for the detection of Staphylococcus aureus enterotoxin B (SEB) from food and environmental samples.
Methods
Considering the fact, anti-SEB immunoglobulin G (IgG) has affinity towards protein A, produced by nearly all S. aureus, and generates false-positive read out in all immuno-based assay. We have employed avian anti-SEB antibody (SEB-IgY) as capture probe, since IgY interact less efficiently to protein A and biotinylated SEB-specific monoclonal antibody (SEB -MAb) conjugated with reporter DNA as revealing probe for real-time PCR amplification and signal generation. Sensitivity and selectivity of the assay were evaluated employing closely related enterotoxins and other toxins.
Results
The RT-IPCR is highly specific and sensitive (100 fg/mL). The practical applicability of the assay was tested using spiked food sample as well as naturally contaminated food samples. The sensitivity and specificity of RT-IPCR were not compromised by the foods tested and was able to detect SEB conveniently. Further, the assay was validated comparing with the in-house developed PCR, and plausible result was obtained.
Conclusion
The developed assay can be utilized as a low-cost detection system of SEB in routine food testing laboratories.
Collapse
|
33
|
Constantin C, Neagu M, Diana Supeanu T, Chiurciu V, A Spandidos D. IgY - turning the page toward passive immunization in COVID-19 infection (Review). Exp Ther Med 2020; 20:151-158. [PMID: 32536989 PMCID: PMC7282020 DOI: 10.3892/etm.2020.8704] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022] Open
Abstract
The world is facing one of the major outbreaks of viral infection of the modern history, however, as vaccine development workflow is still tedious and can not control the infection spreading, researchers are turning to passive immunization as a good and quick alternative to treat and contain the spreading. Within passive immunization domain, raising specific immunoglobulin (Ig)Y against acute respiratory tract infection has been developing for more than 20 years. Far from being an obsolete chapter we will revise the IgY-technology as a new frontier for research and clinic. A wide range of IgY applications has been effectively confirmed in both human and animal health. The molecular particularities of IgY give them functional advantages recommending them as good candidates in this endeavor. Obtaining specific IgY is sustained by reliable and nature friendly methodology as an alternative for mammalian antibodies. The aria of application is continuously enlarging from bacterial and viral infections to tumor biology. Specific anti-viral IgY were previously tested in several designs, thus its worth pointing out that in the actual COVID-19 pandemic context, respiratory infections need an enlarged arsenal of therapeutic approaches and clearly the roles of IgY should be exploited in depth.
Collapse
Affiliation(s)
- Carolina Constantin
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Laboratory, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania.,Doctoral School of Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | | | | | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
34
|
Zhang Q, He D, Xu L, Ge S, Wang J, Zhang X. Generation and evaluation of anti-mouse IgG IgY as secondary antibody. Prep Biochem Biotechnol 2020; 50:788-793. [PMID: 32163005 DOI: 10.1080/10826068.2020.1737940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to evaluate the possibility of using IgY as the secondary antibody in immunoassay, specific IgY (1: 128,000) was generated by immunizing hens with mouse serum IgG purified by protein A column. IgY was extracted from egg yolk by polyethylene glycol 6000 (PEG-6000), and further purified using protein M affinity chromatography column. The purified IgY was conjugated with horseradish peroxidase (HRP) and fluorescein isothiocyanate (FITC), in that order. The reactivity of conjugated antibodies was evaluated by ELISA, Western blot and Immunofluorescence, demonstrating that the obtained IgY was able to conjugate with enzymes, react with mouse primary IgG antibody, and subsequently amplify the antigen-antibody signals in different immune reaction conditions, in a comparable secondary effect to conventional goat anti-mouse IgG antibody. The obtained conjugated antibodies showed high stability in broad pH ranges (4-10; >70%) and high thermostability at 37 °C for 84 h (>85%). Despite the need to further consider and evaluate the industrial standardization and production process, our data provided the primary evidence that conjugated IgY antibodies can be used as a secondary antibody for broad immunological analysis.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Dongyang He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Long Xu
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Shikun Ge
- Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiaoying Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.,Department of Biology, Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| |
Collapse
|
35
|
Hatamzade Isfahani N, Rahimi S, Rasaee MJ, Karimi Torshizi MA, Zahraei Salehi T, Grimes JL. The effect of capsulated and noncapsulated egg-yolk-specific antibody to reduce colonization in the intestine of Salmonella enterica ssp. enterica serovar Infantis-challenged broiler chickens. Poult Sci 2020; 99:1387-1394. [PMID: 32111313 PMCID: PMC7587780 DOI: 10.1016/j.psj.2019.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 11/16/2022] Open
Abstract
The antibacterial properties of egg yolk antibodies have been known for many years. Enhanced antibiotic resistance has resulted in increased need for using these antibodies as an alternative. In the present study, generation, capsulation, and inhibition growth properties of IgY directed against Salmonella enterica subsp. enterica serovar Infantis (SI) were evaluated. White Leghorn layer hens were immunized using whole cell of inactivated SI. Salmonella Infantis-specific antibody activities in sera and egg yolk were determined by ELISA. A total of 480 one-day-old male "Cobb 500" chicks were randomly divided into 8 groups, with 6 replications of 10 birds kept for 21 D. All birds from 7 challenged groups were orally inoculated with 1 mL of SI suspension (1 × 107 CFU/mL) at 3 and 4 D of age. Two groups were dietary supplemented with 5 g/kg immune powdered yolk or nonimmune powdered yolk. One group was dietary supplemented with 12.8 g/kg capsulated immune yolk (CIY). Two groups were given 8.3 mL/L of immune water-soluble yolk or nonimmune water-soluble yolk fraction in drinking water. In the antibiotic group, 1 mL/L Enrofloxacin 10% was added to drinking water. All supplements except for the antibiotic (on Day 4 for 10 D) were added on day one and continued during the experiment. Negative and positive control groups received no supplements. During the experiment, among the challenged groups, the minimum SI cecal colonization and the lowest isolation of SI from the liver (P < 0.01) was observed in the antibiotic group. Following antibiotic group, in the group receiving CIY, colonization of bacteria in ceca and liver was significantly reduced during the second and third weeks of the experiment (P < 0.01). According to the results, capsulated specific IgY has a beneficial effect in reducing the colonization of Salmonella under the conditions of this study in comparison with other forms of IgY antibody.
Collapse
Affiliation(s)
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Tehran, University of Tehran, Iran
| | - Jesse L Grimes
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
36
|
Antenucci F, Arak H, Gao J, Allahgadry T, Thøfner I, Bojesen AM. Hydrostatic Filtration Enables Large-Scale Production of Outer Membrane Vesicles That Effectively Protect Chickens against Gallibacterium anatis. Vaccines (Basel) 2020; 8:vaccines8010040. [PMID: 31979285 PMCID: PMC7158690 DOI: 10.3390/vaccines8010040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/09/2023] Open
Abstract
Gallibacterium anatis is a Gram-negative opportunistic avian pathogen representing an emerging threat to poultry meat and egg production worldwide. To date, no vaccine able to effectively prevent the morbidity associated with G. anatis infections has been developed yet. Our group previously reported that inoculation of different combinations of G. anatis outer membrane vesicles (OMVs), FlfA and GtxA-N proteins is effective in preventing lesions caused by G. anatis infections in layer chickens. Here we report the testing of the efficacy as vaccine prototypes of G. anatis OMVs isolated by hydrostatic filtration, a simple technique that allows the cost-effective isolation of high yields of OMVs. Layer chickens were immunized with OMVs alone or in combination with FlfA and/or GtxA-N proteins. Subsequent challenge with a heterologous G. anatis strain showed that immunization with OMVs alone could significantly reduce the lesions following a G. anatis infection. A second study was carried out to characterize the dose-response (0.25, 2.5 and 25 µg) relationship of G. anatis OMVs as immunogens, showing that 2.5 μg of OMVs represent the optimal dose to elicit protection in the immunized animals after a similar challenge. Additionally, administration of ≥2.5 μg of G. anatis OMVs induced specific IgY titers and possibly vertical transfer of immunity.
Collapse
|
37
|
Ozkan B, Budama-Kilinc Y, Cakir-Koc R, Mese S, Badur S. Application of an immunoglobulin Y-alkaline phosphatase bioconjugate as a diagnostic tool for influenza A virus. Bioengineered 2019; 10:33-42. [PMID: 30913952 PMCID: PMC6527078 DOI: 10.1080/21655979.2019.1586054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The diagnosis of influenza A virus is essential since it can be confused with influenza A like illness and lead to inaccurate drug prescription. In this study, the M2e peptide, a strategic antigen that is conserved in all virus subtypes, was used as a diagnostic marker of influenza A. For the first time, M2e-specific IgY antibody was covalently conjugated to alkaline phosphatase (ALP) enzyme in the presence of glutaraldehyde. The antibody-enzyme bioconjugate was characterized by fluorescence and Fourier-transform infrared spectroscopy. Subsequently, the diagnostic value of this bioconjugate was evaluated by direct sandwich ELISA using nasopharyngeal swab samples positive/negative for H1N1 and H3N2, which were previously analyzed by rRT-PCR for influenza. In conclusion, the M2e-specific IgY-ALP bioconjugate demonstrated positive results for Influenza A in samples that were diagnosed as Influenza A via the RT-PCR method.
Collapse
Affiliation(s)
- Busra Ozkan
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Yasemin Budama-Kilinc
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Rabia Cakir-Koc
- a Department of Bioengineering, Chemical and Metallurgical Engineering Faculty , Yildiz Technical University , Istanbul , Turkey
| | - Sevim Mese
- b Department of Virology and Fundamental Immunology, Istanbul Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Selim Badur
- c GlaxoSmithKline-Vaccine , Istanbul , Turkey
| |
Collapse
|
38
|
Pereira EPV, van Tilburg MF, Florean EOPT, Guedes MIF. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. Int Immunopharmacol 2019; 73:293-303. [PMID: 31128529 PMCID: PMC7106195 DOI: 10.1016/j.intimp.2019.05.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
Egg yolk constitutes a relevant alternative source of antibodies. It presents some advantages over mammalian serum immunoglobulins regarding productivity, animal welfare and specificity. The main immunoglobulin present in avian blood (IgY) is transmitted to their offspring and accumulates in egg yolks, which enables the non-invasive harvesting of high amounts of antibodies. Moreover, due to structural differences and phylogenetic distance, IgY is more suitable for diagnostic purposes than mammalian antibodies, since it does not react with certain components of the human immune system and displays greater avidity for mammalian conserved proteins. IgY has been extensively used in health researches, as both therapeutic and diagnostic tool. This article aims to review its applications in both human and veterinary health.
Collapse
Affiliation(s)
- E P V Pereira
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil.
| | - M F van Tilburg
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - E O P T Florean
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| | - M I F Guedes
- Laboratory of Biotechnology and Molecular Biology - LBBM, Ceará State University, Brazil
| |
Collapse
|
39
|
Tran TV, Do BN, Nguyen TPT, Tran TT, Tran SC, Nguyen BV, Nguyen CV, Le HQ. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Res 2019; 8:1042. [PMID: 31956398 PMCID: PMC6950345 DOI: 10.12688/f1000research.19643.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 07/27/2023] Open
Abstract
Fumonisin is one of the most prevalent mycotoxins in maize, causing substantial economic losses and potential health risks in human and animals. In the present study, in-house polyclonal IgY antibody against fumonisin group B (FB) was applied for the development of a competitive lateral flow immunoassay detecting these mycotoxins in maize grains with the limit of detection of 4000 µg/kg, which corresponds to the maximum residue limit adopted by The International Codex Alimentarius Commission. To this end, factors affecting the test performance including nitrocellulose membrane type, dilution factor of maize homogenates in running buffer, amount of detection conjugate, and incubation time between detection conjugate and samples were optimized. Under the optimal condition (UniSart ®CN140 nitrocellulose membrane, FB 1-BSA immobilized at 1 µg/cm, 1:10 dilution factor, 436 ng of gold nanoparticle conjugate, 30 minutes of incubation), the developed test could detect both FB 1 and FB 2 in maize with limit of detection of 4000 µg/kg, and showed no cross-reactivity to deoxynivalenol, ochratoxin A, aflatoxin B1 and zearalenone. When applied to detect FB 1 and FB 2 in naturally contaminated maize samples, results obtained from the developed assay were in good agreement with those from the high-performance liquid chromatography method. This lateral flow immunoassay is particularly suitable for screening of fumonisins in maize because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Tien Viet Tran
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Binh Nhu Do
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Thao Phuong Thi Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Tung Thanh Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Son Cao Tran
- Laboratory of Food Toxicology and Allergens Testing, National Institute for Food Control, Hanoi, Vietnam
| | - Ba Van Nguyen
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | | | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
40
|
Tran TV, Do BN, Nguyen TPT, Tran TT, Tran SC, Nguyen BV, Nguyen CV, Le HQ. Development of an IgY-based lateral flow immunoassay for detection of fumonisin B in maize. F1000Res 2019; 8:1042. [PMID: 31956398 PMCID: PMC6950345 DOI: 10.12688/f1000research.19643.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Fumonisin is one of the most prevalent mycotoxins in maize, causing substantial economic losses and potential health risks in human and animals. In the present study, in-house polyclonal IgY antibody against fumonisin group B (FB) was applied for the development of a competitive lateral flow immunoassay detecting these mycotoxins in maize grains with the limit of detection of 4000 µg/kg, which corresponds to the maximum residue limit adopted by The International Codex Alimentarius Commission. To this end, factors affecting the test performance including nitrocellulose membrane type, dilution factor of maize homogenates in running buffer, amount of detection conjugate, and incubation time between detection conjugate and samples were optimized. Under the optimal condition (UniSart ®CN140 nitrocellulose membrane, FB 1-BSA immobilized at 1 µg/cm, 1:10 dilution factor, 436 ng of gold nanoparticle conjugate, 30 minutes of incubation), the developed test could detect both FB 1 and FB 2 in maize with limit of detection of 4000 µg/kg, and showed no cross-reactivity to deoxynivalenol, ochratoxin A, aflatoxin B1 and zearalenone. When applied to detect FB 1 and FB 2 in naturally contaminated maize samples, results obtained from the developed assay were in good agreement with those from the high-performance liquid chromatography method. This lateral flow immunoassay is particularly suitable for screening of fumonisins in maize because of its simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Tien Viet Tran
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Binh Nhu Do
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | - Thao Phuong Thi Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Tung Thanh Tran
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Son Cao Tran
- Laboratory of Food Toxicology and Allergens Testing, National Institute for Food Control, Hanoi, Vietnam
| | - Ba Van Nguyen
- Vietnam Military Medical University, Hanoi, 100000, Vietnam
| | | | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| |
Collapse
|
41
|
ABDOLMALEKI F, ZAMANI Z, TALEBI S. Evaluation of Human Anti IgG Polyclonal Antibody Production Conjugated with Peroxidase in Egg Yolk. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1326-1334. [PMID: 31497555 PMCID: PMC6708545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Egg yolk is a rich and accessible source of yolk immunoglobulin (Y immunoglobulin). Presently, polyclonal antibodies from mammalian sources are used for diagnosis. Antibody production from egg yolk gives a higher yield and turnover than that from lab animals, and invasive methods such as phlebotomy and causing stress to the animals are not required. Due to the issues regarding mammalian antibodies, we aimed to evaluate the human anti-IgG polyclonal antibody production conjugated with peroxidase in egg yolk. METHODS Population of laying hens reared in Agriculture/Isfahan University of Technology were used in 2017. After immunizing hen against pure human IgG, specific IgY (yolk immunoglobulin) was purified from the yolk by sedimentation with polyethylene glycol (PEG6000). To assess the molecular weight and activity of the product, SDS-PAGE and ELISA-test were used, respectively. RESULTS The complete molecular weight of IgY was 180 kDa and the molecular weight of its light and heavy chains were 27 and 67 kDa, respectively. CONCLUSION Antihuman IgG IgY had a purity above 90%. The product of this study can be used to measure IgG class antibodies in order to diagnose different diseases.
Collapse
Affiliation(s)
- Fahimeh ABDOLMALEKI
- Department of Biochemistry, Tehran East Branch, Payam Noor University, Tehran, Iran
| | - Zahra ZAMANI
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author:
| | - Somayeh TALEBI
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
42
|
Zhu Y, Ma Y, Lu M, Zhang Y, Li A, Liang X, Li J. Efficient Production of Human Norovirus-Specific IgY in Egg Yolks by Vaccination of Hens with a Recombinant Vesicular Stomatitis Virus Expressing VP1 Protein. Viruses 2019; 11:v11050444. [PMID: 31100802 PMCID: PMC6563233 DOI: 10.3390/v11050444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Program in Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Yu Zhang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Otterbeck A, Hanslin K, Lantz EL, Larsson A, Stålberg J, Lipcsey M. Inhalation of specific anti-Pseudomonas aeruginosa IgY antibodies transiently decreases P. aeruginosa colonization of the airway in mechanically ventilated piglets. Intensive Care Med Exp 2019; 7:21. [PMID: 30963317 PMCID: PMC6453987 DOI: 10.1186/s40635-019-0246-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Background P. aeruginosa is a pathogen frequently resistant to antibiotics and a common cause of ventilator-associated pneumonia (VAP). Non-antibiotic strategies to prevent or treat VAP are therefore of major interest. Specific polyclonal avian IgY antibodies have previously been shown to be effective against pneumonia caused by P. aeruginosa in rodents and against P. aeruginosa airway colonization in patients. Objectives To study the effect of specific polyclonal anti-P. aeruginosa IgY antibodies (Pa-IgY) on colonization of the airways in a porcine model. Method The pigs were anesthetized, mechanically ventilated, and subject to invasive hemodynamic monitoring and allocated to either receive 109 CFU nebulized P. aeruginosa (control, n = 6) or 109 CFU nebulized P. aeruginosa + 200 mg Pa-IgY antibodies (intervention, n = 6). Physiological measurement, blood samples, and tracheal cultures were then secured regularly for 27 h, after which the pigs were sacrificed and lung biopsies were cultured. Results After nebulization, tracheal growth of P. aeruginosa increased in both groups during the experiment, but with lower growth in the Pa-IgY-treated group during the experiment (p = 0.02). Tracheal growth was 4.6 × 103 (9.1 × 102–3.1 × 104) vs. 4.8 × 104 (7.5 × 103–1.4 × 105) CFU/mL in the intervention group vs. the control group at 1 h and 5.0 × 100 (0.0 × 100–3.8 × 102) vs. 3.3 × 104 (8.0 × 103–1.4 × 105) CFU/mL at 12 h in the same groups. During this time, growth in the intervention vs. control group was one to two orders of ten lower. After 12 h, the treatment effect disappeared and bacterial growth increased in both groups. The intervention group had lower body temperature and cardiac index and higher static compliance compared to the control group. Conclusion In this porcine model, Pa-IgY antibodies lessen bacterial colonization of the airways. Electronic supplementary material The online version of this article (10.1186/s40635-019-0246-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Otterbeck
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - K Hanslin
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - E Lidberg Lantz
- Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Stålberg
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Lipcsey
- Hedenstierna laboratory, CIRRUS, Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Kota RK, Srirama K, Reddy PN. IgY antibodies of chicken do not bind staphylococcal binder of immunoglobulin (Sbi) from Staphylococcus aureus. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Silva RDOE, Almeida MEMD, Marialva EF, Balieiro AADS, Castro DPD, Rios-Velasquez CM, Mariúba LAM, Pessoa FAC. Chicken eggs as a surveillance tool for malaria and leishmaniasis vector presence. Rev Soc Bras Med Trop 2019; 52:e20180415. [DOI: 10.1590/0037-8682-0415-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Eric Fabrício Marialva
- Pós-graduação em Biologia Celular e Molecular (convênio- IOC-ILMD), Brasil; FIOCRUZ, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
Development of IgY-Based Sandwich ELISA as a Robust Tool for Rapid Detection and Discrimination of Toxigenic Vibrio cholerae. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:4032531. [PMID: 30386445 PMCID: PMC6189684 DOI: 10.1155/2018/4032531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 11/17/2022]
Abstract
Background The conventional methods for diagnosis of Vibrio cholerae are time consuming, complicated, and expensive. Development of rapid detection tests is critical for prevention and management of cholera. This study aimed to introduce two sensitive sandwich ELISAs based on avian antibodies (IgY) targeting outer membrane protein W (OmpW) and cytotoxin B (CtxB) antigens of V. cholerae. Methods The sequences of ompW and ctxB genes were cloned into pET28a vector. Escherichia coli BL21 (DE3) was transformed with the recombinant vectors, and gene expression was induced by IPTG. The expressed proteins were purified by affinity chromatography using Ni-NTA resins. Two groups of white Leghorn chickens were immunized by recombinant proteins, and the generated antibodies were purified from egg yolks of chickens by PEG precipitation. The antibodies were used for the development of α-OmpW and α-CtxB ELISAs. Results The expression and purification yielded 59 and 38 mg of recombinant OmpW and CtxB, respectively, per one liter of bacterial culture. PEG precipitation and purification of egg yolk antibodies yielded on average (±SD) 66.5 ± 1.80 and 50.9 ± 2.23 mg of purified α-OmpW and α-CtxB per egg, respectively. The analytical sensitivity of α-OmpW ELISA was 103 cfu/mL of V. cholerae and that of α-CtxB ELISA was 33 pg/mL of recombinant cytotoxin B. The two developed ELISAs did not show any cross-reactivity to any tested bacteria grown in common conditions. Discussion The current study is the first report on using IgY for detection of V. cholerae. The developed ELISAs were shown to have considerable analytical sensitivity and specificity. Therefore, the assays can be one of the convenient methods for sensitive and specific detection of toxigenic V. cholerae strains in clinical and environmental samples.
Collapse
|
47
|
Development and Evaluation of IgY Immunocapture PCR for Detection of Enteropathogenic E. coli Devoid of Protein A Interference. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Sun L, Li M, Fei D, Diao Q, Wang J, Li L, Ma M. Preparation and Application of Egg Yolk Antibodies Against Chinese Sacbrood Virus Infection. Front Microbiol 2018; 9:1814. [PMID: 30123212 PMCID: PMC6085425 DOI: 10.3389/fmicb.2018.01814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese sacbrood virus (CSBV) infects Apis cerana larvae, resulting in the inability of the larvae to pupate and their consequent death, which may pose a serious threat to entire colonies. As there is no effective medical treatment for CSBV infections, further studies are necessary. In this study, an effective treatment for CSBV is described, based on a specific immunoglobulin Y (IgY) from egg yolk against CSBV. The inactivated vaccine was produced by ultracentrifugation and formalin treatment, using CSBV purified from a natural outbreak. The specific IgY was produced by immunization of white leghorn hens with the vaccine. An enzyme-linked immunosorbent assay using purified CSBV as the coating antigen revealed that the anti-CSBV IgY titer began increasing in the egg yolk on the 14th day post-immunization, reaching a peak on day 42, and anti-CSBV IgY remained at a high level until day 91. IgY isolated from the combinations of egg yolk collected between days 42-91 was purified by PEG and ammonium sulfate precipitation. In three repeated protection experiments using A. cerana larvae inoculated with CSBV, the survival rate of larvae was more than 80%, and the titer of anti-CSBV IgY was more than 25 and 24 when the larvae were fed IgY 24 h after and before inoculation with CSBV, respectively. Therefore, 400 colonies infected with CSBV were treated by feeding sugar containing IgY solutions with an antibody titer of 25, and the cure rate was 95-100%. Three hundred susceptible colonies were protected by feeding the larvae with sugar containing IgY solutions with an antibody titer of 24, and the protection rate was 97%. The results clearly suggest that a specific IgY was obtained from hens immunized with an inactivated-CSBV vaccine; this may be a novel method for controlling CSBV infection.
Collapse
Affiliation(s)
- Li Sun
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Ming Li
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Dongliang Fei
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Qingyun Diao
- Honeybee Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Liqin Li
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Tianjin, China
| | - Mingxiao Ma
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
49
|
Song D, Qu X, Liu Y, Li L, Yin D, Li J, Xu K, Xie R, Zhai Y, Zhang H, Bao H, Zhao C, Wang J, Song X, Song W. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies. NANOSCALE RESEARCH LETTERS 2017; 12:179. [PMID: 28282974 PMCID: PMC5344867 DOI: 10.1186/s11671-017-1941-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/21/2017] [Indexed: 05/14/2023]
Abstract
Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)-N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL (R 2 = 0.9983), and it can be well used in real samples.
Collapse
Affiliation(s)
- Dandan Song
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Xiaofeng Qu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Yushen Liu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Li Li
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Dehui Yin
- School of Public Health, Xuzhou Medical University, 221000 Xuzhou, China
| | - Juan Li
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Kun Xu
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130000 Changchun, China
| | - Yue Zhai
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Huiwen Zhang
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Hao Bao
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Chao Zhao
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Juan Wang
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Xiuling Song
- Department of Health Laboratory, School of Public Health, Jilin University, 130021 Changchun, China
| | - Wenzhi Song
- China-Japan Union Hospital, Jilin University, 130000 Changchun, China
| |
Collapse
|
50
|
Łupicka-Słowik A, Psurski M, Grzywa R, Bobrek K, Smok P, Walczak M, Gaweł A, Stefaniak T, Oleksyszyn J, Sieńczyk M. Development of Adenosine Deaminase-Specific IgY Antibodies: Diagnostic and Inhibitory Application. Appl Biochem Biotechnol 2017; 184:1358-1374. [PMID: 29043661 PMCID: PMC5889419 DOI: 10.1007/s12010-017-2626-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase (ADA) is currently used as a diagnostic marker for tuberculous pleuritis. Although ADA has been suggested as a potential marker for several types of cancer, the importance of each of ADA isoforms as well as their levels and enzymatic activities in tumors need to be further investigated. Herein we developed avian immunoglobulin Y highly specific to human ADA via hens immunization with calf adenosine deaminase. The obtained antibodies were used for the development of a sensitive double-egg yolk immunoglobulin (IgY) sandwich ELISA assay with an ADA detection limit of 0.5 ng/ml and a linearity range of up to 10 ng/ml. Specific, affinity-purified IgYs were able to recognize human recombinant ADA and ADA present in human cancer cell lines. In addition, antigen-specific IgY antibodies were able to inhibit catalytic activity of calf ADA with an IC50 value of 47.48 nM. We showed that generated IgY antibodies may be useful for ADA detection, thus acting as a diagnostic agent in immunoenzymatic assays.
Collapse
Affiliation(s)
- Agnieszka Łupicka-Słowik
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mateusz Psurski
- Laboratory of Experimental Anticancer Therapy, Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Renata Grzywa
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Kamila Bobrek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Patrycja Smok
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Maciej Walczak
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Andrzej Gaweł
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Bird and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Tadeusz Stefaniak
- Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Józef Oleksyszyn
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|