1
|
Kushida C, Usui T, Tamura N, Kasashima Y, Sato K, Arai K. Comparison of equine-induced pluripotent stem cell characteristics induced on different cell adhesion substrates. Vet J 2025; 312:106351. [PMID: 40228787 DOI: 10.1016/j.tvjl.2025.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
This study evaluated the effects of cell adhesion substrates that lead to the generation of equine-induced pluripotent stem cells (eiPSC) from embryonic skin fibroblasts by lipofection of plasmid vectors expressing five reprogramming factors. The reprogramming efficiency of cells induced on the E8 fragment of laminin-511 (eiPSC-511) was higher than that on Geltrex containing laminin-111 as a major laminin (eiPSC-111), and supplementation with a cocktail of small molecular compounds increased the number of iPSC colonies on both substrates. In the cell proliferation assay, eiPSC-511 showed higher growth activity than eiPSC-111. Although no significant changes were observed in the expression of pluripotency markers between eiPSC-111 and eiPSC-511, the expression of DPPA3 was significantly upregulated in both iPSCs by reprogramming, suggesting that DPPA3 was a sensitive pluripotent marker for equine iPSC. While both iPSCs expressed high mRNA level of integrin alpha6 and beta1 subunits, mRNA level corresponding to ITGA3 and ITGA7 significantly increased in eiPSC-511 in comparison to those in eiPSC-111. These results suggested that the binding strength to the substrate in eiPSC-511 was stronger than that in eiPSC-111. On the contrary, although no significant differences were observed in the histology of teratomas, increased in vitro differentiation into three germ layers in eiPSC-111 was shown compared to those in eiPSC-511. Thus, these results contributed to the improved generation of iPSC in horses.
Collapse
Affiliation(s)
- Chiho Kushida
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan; National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Tatsuya Usui
- Department of Veterinary Pharmacology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Norihisa Tamura
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Yoshinori Kasashima
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Kota Sato
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
| | - Katsuhiko Arai
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Tang P, Wei F, Qiao W, Chen X, Ji C, Yang W, Zhang X, Chen S, Wu Y, Jiang M, Ma C, Shen W, Dong Q, Cao H, Xie M, Cai Z, Xu L, Shi J, Dong N, Chen J, Wang N. Engineering aortic valves via transdifferentiating fibroblasts into valvular endothelial cells without using viruses or iPS cells. Bioact Mater 2025; 45:181-200. [PMID: 39651397 PMCID: PMC11625219 DOI: 10.1016/j.bioactmat.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The technology of induced pluripotent stem cells (iPSCs) has enabled the conversion of somatic cells into primitive undifferentiated cells via reprogramming. This approach provides possibilities for cell replacement therapies and drug screening, but the potential risk of tumorigenesis hampers its further development and in vivo application. How to generate differentiated cells such as valvular endothelial cells (VECs) has remained a major challenge. Utilizing a combinatorial strategy of selective soluble chemicals, cytokines and substrate stiffness modulation, mouse embryonic fibroblasts are directly and efficiently transdifferentiated into induced aortic endothelial cell-like cells (iAECs), or human primary adult fibroblasts are transdifferentiated into induced valvular endothelial cell-like cells (hiVECs), without expressing pluripotency stem cell markers. These iAECs and hiVECs express VEC-associated genes and proteins and VEC-specific marker NFATC1 and are functional in culture and on decellularized porcine aortic valves, like mouse aortic endothelial cells or human primary aortic valvular endothelial cells. The iAECs and hiVECs seeded on decellularized porcine aortic valves stay intact and express VEC-associated proteins for 60 days after grafting into abdominal aorta of immune-compromised rats. In contrast, induced pluripotent stem cells (iPSCs) are less efficient in differentiating into VEC-like cells and pluripotency marker Nanog is expressed in a small subpopulation of iPSC-derived VEC-like cells that generate teratomas in SCID mice whereas hiVECs derived from transdifferentiation do not generate teratomas in vivo. Our findings highlight an approach to efficiently convert fibroblasts into iAECs and hiVECs and seed them onto decellularized aortic valves for safely generating autologous tissue-engineered aortic valves without using viruses or first reprogramming the cells into pluripotent stem cells.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fuxiang Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenyang Ji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wanzhi Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sihan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanyan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mingxing Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Chenyu Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiqiang Shen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Qi Dong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junwei Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ning Wang
- Institute for Mechanobiology, Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Lee YJ, Song JH, Lee JW, Hong TK, Uhm SJ, Hong K, Do JT. Mitochondrial morphology and energy metabolism in reprogrammed porcine expanded potential stem cells. Anim Biosci 2025; 38:444-453. [PMID: 39483037 PMCID: PMC11917424 DOI: 10.5713/ab.24.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Expanded potential stem cells (EPSCs) are stem cells that can differentiate into embryonic and extraembryonic lineages, including extraembryonic endoderm and trophoblast lineages. Therefore, EPSCs have great potential in advancing regenerative medicine, elucidating disease mechanisms, and exploring early embryonic development. However, the generation and characterization of EPSCs in pigs have not been thoroughly explored. In this study, we successfully generated porcine EPSCs (pEPSCs). METHODS We reprogrammed porcine fetal fibroblasts (PFFs) using an integration-free method with Sendai virus vectors. RESULTS The resulting pEPSCs expressed key pluripotency markers and demonstrated the ability to differentiate between embryonic and extraembryonic lineages. Notably, reprogramming into pEPSCs was associated with a transformation of mitochondrial morphology from the elongated form observed in PFFs to a globular shape, reflecting potential alterations in energy metabolism. We observed significant remodeling of mitochondrial morphology and a subsequent shift towards glycolytic energy dependence during the reprogramming of PFFs into pEPSCs. CONCLUSION Our findings provide valuable insights into the characteristics of EPSCs in pigs and highlight their potential applications in regenerative medicine, disease modeling, and emerging fields such as cell-based meat production.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
- Biotechnology Research Institute, MGENSolutions Co., Ltd., Seoul 06591, Korea
| | - Jae Hoon Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Je Woo Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Sang Jun Uhm
- Department of Animal Science, Sangji University, Wonju 26339, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
4
|
Xu T, Peng Y, Xu Y, Zhu J, Yang Q, Liu Y, Yang H. Exploring the therapeutic potential of small extracellular vesicles derived from induced pluripotent stem cell in periodontal regeneration. J Oral Biosci 2025; 67:100621. [PMID: 39892783 DOI: 10.1016/j.job.2025.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES To investigate the role of small extracellular vesicles derived from induced pluripotent stem cells (iPSC-sEVs) in periodontal tissue regeneration, elucidate their potential molecular mechanisms, and provide theoretical guidance for the clinical application of iPSC-sEVs as a cell-free therapeutic strategy for periodontal tissue regeneration. METHODS We investigated the effects of iPSC-sEVs on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The regenerative potential of iPSC-sEVs was evaluated in vivo, using a periodontal defect model. Bulk RNA sequencing was performed to elucidate the underlying molecular mechanisms. RESULTS iPSC-sEVs were isolated, characterized, and systemically evaluated for regenerative potential. The results revealed that treatment with iPSC-sEVs significantly enhanced the proliferation, migration, and osteogenic differentiation of PDLSCs. In situ treatment with iPSC-sEVs loaded onto collagen sponges was performed in a rat model of periodontal defects. Micro-CT and histological analyses indicated that iPSC-sEV treatment markedly promoted alveolar bone repair and periodontal ligament regeneration. Mechanistically, the analysis of bulk RNA sequencing data coupled with experimental validation revealed that iPSC-sEV treatment significantly activated the mitogen-activated protein kinase (MAPK) signaling pathway in PDLSCs. Further investigation showed that the inhibition of this pathway completely abolished the proliferative effects of iPSC-sEVs on PDLSCs. CONCLUSIONS iPSC-sEVs promote PDLSC proliferation through MAPK signaling pathway activation, while also enhancing PDLSC migratory and osteogenic differentiation capacities, facilitates the repair and regeneration of damaged periodontal tissue and presents a potential novel therapeutic strategy for clinical periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tingting Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yi Peng
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yanan Xu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Jing Zhu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Qiao Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Periodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Yali Liu
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, China; Department of Prosthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, China.
| |
Collapse
|
5
|
Zong M, Ji J, Wang Q, Cai Y, Chen L, Zhang L, Hou W, Li X, Kong Q, Zheng C, Zhang J, Zhao Q, Cai W. Chlorogenic acid promotes fatty acid beta-oxidation to increase hESCs proliferation and lipid synthesis. Sci Rep 2025; 15:7095. [PMID: 40016322 PMCID: PMC11868603 DOI: 10.1038/s41598-025-91582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Cell metabolism plays a crucial role in regulating the pluripotency of human embryonic stem cells (hESCs). Chlorogenic acid (CGA), an essential dietary polyphenol, exhibits diverse pharmacological effects on metabolism regulation. This study examines the effects of CGA on cell metabolism in hESCs using the H9 model. At a concentration of 100 µg/ml, CGA showed low toxicity and had no impact on the viability of H9 cells. Furthermore, it promotes NANOG expression. Importantly, CGA enhances Fatty acid β-oxidation (FAO), thus promoting the proliferation and lipid synthesis of H9 cells. Mechanistically, CGA-induced FAO generates acetyl-CoA, which enhances de novo lipid synthesis and hyperacetylates H3K27 at the promoter regions of associated genes, thereby enhancing their expression. This study highlights the potential beneficial effects of CGA on cell proliferation and provides opportunities for optimizing the in vitro culture of hESCs.
Collapse
Affiliation(s)
- Ming Zong
- Department of Laboratory Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, Zhejiang, China
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jingzhang Ji
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qinglai Wang
- The department of Orthopedics and traumatology Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yizhen Cai
- The Second School of Medicine, Wenzhou Medical University, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lijun Chen
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lixin Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weibo Hou
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xuanwen Li
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cunqing Zheng
- Department of Clinical Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jiaming Zhang
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Qi Zhao
- Oujiang Laboratory, Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Wenpin Cai
- Department of Laboratory Medicine, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
6
|
Sharma S, Bharti V, Das PK, Rahman A, Sharma H, Rauthan R, Rc M, Gupta N, Shukla R, Mohanty S, Kabra M, Francis KR, Chakraborty D. MLC1 alteration in iPSCs give rise to disease-like cellular vacuolation phenotype in the astrocyte lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631607. [PMID: 39829899 PMCID: PMC11741324 DOI: 10.1101/2025.01.06.631607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of in-vitro human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system. Methods Somatic cell reprogramming of peripheral patient-derived blood mononuclear cells (PBMCs) was used to develop iPSC models of MLC. CRISPR-Cas9 system-based genome engineering was also utilized to create the MLC1 knockout model of the disease. Directed differentiation of iPSCs to neural stem cells (NSCs) and astrocytes was performed in a 2D cell culture format, followed by various cellular and molecular biology approaches, to characterize the disease model. Results MLC iPSCs established by somatic cell reprogramming and genome engineering were well characterized for pluripotency. iPSCs were subsequently differentiated to disease-relevant cell types: neural stem cells (NSCs) and astrocytes. RNA sequencing profiling of MLC NSCs revealed a set of differentially expressed genes related to neurological disorders and epilepsy, a common clinical finding within MLC disease. This gene set can serve as a target for drug screening for the development of a potential therapeutic for this disease. Upon differentiation to the more disease relevant cell type-astrocytes, MLC-characteristic vacuoles were clearly observed, which were distinctly absent from controls. This emergence recapitulated a distinguishing phenotypic marker of the disease. Conclusion Through the creation and analyses of iPSC models of MLC, our work addresses a critical need for relevant cellular models of MLC for use in both disease modeling and drug screening assays. Further investigation can utilize MLC iPSC models, as well as generated transcriptomic data sets and analyses, to identify potential therapeutic interventions for this debilitating disease.
Collapse
|
7
|
Xu X, Wang W, Liu Y, Bäckemo J, Heuchel M, Wang W, Nie Y, Iqbal I, Kratz K, Lendlein A, Ma N. Substrates mimicking the blastocyst geometry revert pluripotent stem cell to naivety. NATURE MATERIALS 2024; 23:1748-1758. [PMID: 39134648 PMCID: PMC11599042 DOI: 10.1038/s41563-024-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/11/2024] [Indexed: 09/22/2024]
Abstract
Naive pluripotent stem cells have the highest developmental potential but their in vivo existence in the blastocyst is transient. Here we report a blastocyst motif substrate for the in vitro reversion of mouse and human pluripotent stem cells to a naive state. The substrate features randomly varied microstructures, which we call motifs, mimicking the geometry of the blastocyst. Motifs representing mouse-blastocyst-scaled curvature ranging between 15 and 62 mm-1 were the most efficient in promoting reversion to naivety, as determined by time-resolved correlative analysis. In these substrates, apical constriction enhances E-cadherin/RAC1 signalling and activates the mechanosensitive nuclear transducer YAP, promoting the histone modification of pluripotency genes. This results in enhanced levels of pluripotency transcription factor NANOG, which persist even after cells are removed from the substrate. Pluripotent stem cells cultured in blastocyst motif substrates display a higher development potential in generating embryoid bodies and teratomas. These findings shed light on naivety-promoting substrate design and their large-scale implementation.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Johan Bäckemo
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Matthias Heuchel
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wei Wang
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Iqbal
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Karl Kratz
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Institute of Chemistry, University of Potsdam, Potsdam, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Berlin and Teltow, Teltow, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Madrid M, Lakshmipathy U, Zhang X, Bharti K, Wall DM, Sato Y, Muschler G, Ting A, Smith N, Deguchi S, Kawamata S, Moore JC, Makovoz B, Sullivan S, Falco V, Al-Riyami AZ. Considerations for the development of iPSC-derived cell therapies: a review of key challenges by the JSRM-ISCT iPSC Committee. Cytotherapy 2024; 26:1382-1399. [PMID: 38958627 PMCID: PMC11471376 DOI: 10.1016/j.jcyt.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024]
Abstract
Since their first production in 2007, human induced pluripotent stem cells (iPSCs) have provided a novel platform for the development of various cell therapies targeting a spectrum of diseases, ranging from rare genetic eye disorders to cancer treatment. However, several challenges must be tackled for iPSC-based cell therapy to enter the market and achieve broader global adoption. This white paper, authored by the Japanese Society for Regenerative Medicine (JSRM) - International Society for Cell Therapy (ISCT) iPSC Committee delves into the hurdles encountered in the pursuit of safe and economically viable iPSC-based therapies, particularly from the standpoint of the cell therapy industry. It discusses differences in global guidelines and regulatory frameworks, outlines a series of quality control tests required to ensure the safety of the cell therapy, and provides details and important considerations around cost of goods (COGs), including the impact of automated advanced manufacturing.
Collapse
Affiliation(s)
| | | | | | - Kapil Bharti
- National Eye Institute of the National Institutes of Health, Bethesda, USA
| | - Dominic M Wall
- Peter MacCallum Cancer Centre, Melbourne Australia; Cell Therapies Pty Ltd, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Yoji Sato
- National Institute of Health Sciences, Kawasaki, Japan
| | | | | | | | - Shuhei Deguchi
- CIRA Foundation, Facility for iPS Cell Therapy (FiT), Kyoto, Japan
| | - Shin Kawamata
- Cyto-Facto Inc., Kobe, Japan; Kobe University, Kobe, Japan.
| | | | | | | | | | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, University Medical City, Muscat, Oman
| |
Collapse
|
9
|
Zou C, Zhu J, Xiong J, Tian Y, Peng Y, Cheung E, Zhang D. Comprehensive Characterization of the Integrin Family Across 32 Cancer Types. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae035. [PMID: 39436262 PMCID: PMC11849494 DOI: 10.1093/gpbjnl/qzae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 10/23/2024]
Abstract
Integrin genes are widely involved in tumorigenesis. Yet, a comprehensive characterization of integrin family members and their interactome at the pan-cancer level is lacking. Here, we systematically analyzed integrin family in approximately 10,000 tumors across 32 cancer types. Globally, integrins represent a frequently altered and misexpressed pathway, with alteration and dysregulation overall being protumorigenic. Expression dysregulation, better than mutational landscape, of integrin family successfully identifies a subgroup of aggressive tumors with a high level of proliferation and stemness. The results reveal that several molecular mechanisms collectively regulate integrin expression in a context-dependent manner. For potential clinical usage, we constructed a weighted scoring system, integrinScore, to measure integrin signaling patterns in individual tumors. Remarkably, integrinScore was consistently correlated with predefined molecular subtypes in multiple cancers, with integrinScore-high tumors being more aggressive. Importantly, integrinScore was cancer-dependent and closely associated with proliferation, stemness, tumor microenvironment, metastasis, and immune signatures. IntegrinScore also predicted patients' response to immunotherapy. By mining drug databases, we unraveled an array of compounds that may modulate integrin signaling. Finally, we built a user-friendly database, Pan-cancer Integrin Explorer (PIExplorer; http://computationalbiology.cn/PIExplorer), to facilitate researchers to explore integrin-related knowledge. Collectively, we provide a comprehensive characterization of integrins across cancers and offer gene-specific and cancer-specific rationales for developing integrin-targeted therapy.
Collapse
Affiliation(s)
- Cheng Zou
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jinwei Zhu
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jiangling Xiong
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yu Tian
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha 410082, China
| | - Edwin Cheung
- Faculty of Health Sciences, University of Macau, Macau Special Administrative Region 999078, China
| | - Dingxiao Zhang
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Alexanian AR, Sorokin A, Duersteler M. Dopaminergic progenitors generated by small molecule approach survived, integrated, and promoted functional recovery in (6-OHDA) mouse model of Parkinson's disease. J Neurol Sci 2024; 465:123188. [PMID: 39178824 PMCID: PMC11412743 DOI: 10.1016/j.jns.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder resulting from the loss of dopamine-producing neurons in the brain, causing motor symptoms like tremors and stiffness. Although current treatments like medication and deep brain stimulation can alleviate symptoms, they don't address the root cause of neuron loss. Therefore, cell replacement therapy emerges as a promising treatment strategy. However, the generation of engraftable dopaminergic (DA) cells in clinically relevant quantities is still a challenge. Recent advances in cell reprogramming technologies open up vast possibilities to produce patient-specific cells of a desired type in therapeutic quantities. The main cell reprogramming strategies involve the enforced expression of individual or sets of genes through viral transduction or transfection, or through small molecules, known as the chemical approach, which is a much easier and safer method. In our previous studies, using a small molecule approach (combinations of epigenetic modifiers and SMAD inhibitors such asDorsomorphin and SB431542), we have been able to generate DA progenitors from human mesenchymal stem cells (hMSCs). The aim of this study was to further improve the method for the generation of DA progenitors and to test their therapeutic effect in an animal model of Parkinson's. The results showed that the addition of an autophagy enhancer (AE) to our DA cell induction protocol further increased the yield of DA progenitor cells. The results also showed that DA progenitors transplanted into the mouse model of PD survived, integrated, and improved PD motor symptoms. These data suggest that chemically-produced DA cells can be very promising and safe cellular therapeutics for PD.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, Wauwatosa (Milwaukee County), WI 53226, USA; Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States of America.
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States of America
| | - Megan Duersteler
- Cell Reprogramming & Therapeutics LLC, Wauwatosa (Milwaukee County), WI 53226, USA
| |
Collapse
|
11
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Moratilla A, Martín D, Cadenas-Martín M, Stokking M, Quesada MA, Arnalich F, De Miguel MP. Hypoxia Increases the Efficiencies of Cellular Reprogramming and Oncogenic Transformation in Human Blood Cell Subpopulations In Vitro and In Vivo. Cells 2024; 13:971. [PMID: 38891103 PMCID: PMC11172288 DOI: 10.3390/cells13110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Patients with chronic hypoxia show a higher tumor incidence; however, no primary common cause has been recognized. Given the similarities between cellular reprogramming and oncogenic transformation, we directly compared these processes in human cells subjected to hypoxia. Mouse embryonic fibroblasts were employed as controls to compare transfection and reprogramming efficiency; human adipose-derived mesenchymal stem cells were employed as controls in human cells. Easily obtainable human peripheral blood mononuclear cells (PBMCs) were chosen to establish a standard protocol to compare cell reprogramming (into induced pluripotent stem cells (iPSCs)) and oncogenic focus formation efficiency. Cell reprogramming was achieved for all three cell types, generating actual pluripotent cells capable for differentiating into the three germ layers. The efficiencies of the cell reprogramming and oncogenic transformation were similar. Hypoxia slightly increased the reprogramming efficiency in all the cell types but with no statistical significance for PBMCs. Various PBMC types can respond to hypoxia differently; lymphocytes and monocytes were, therefore, reprogrammed separately, finding a significant difference between normoxia and hypoxia in monocytes in vitro. These differences were then searched for in vivo. The iPSCs and oncogenic foci were generated from healthy volunteers and patients with chronic obstructive pulmonary disease (COPD). Although higher iPSC generation efficiency in the patients with COPD was found for lymphocytes, this increase was not statistically significant for oncogenic foci. Remarkably, a higher statistically significant efficiency in COPD monocytes was demonstrated for both processes, suggesting that physiological hypoxia exerts an effect on cell reprogramming and oncogenic transformation in vivo in at least some cell types.
Collapse
Affiliation(s)
- Adrián Moratilla
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Diana Martín
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Marta Cadenas-Martín
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Martha Stokking
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| | - Maria Angustias Quesada
- Internal Medicine Service, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (M.A.Q.); (F.A.)
| | - Francisco Arnalich
- Internal Medicine Service, La Paz University Hospital, IdiPAZ, 28046 Madrid, Spain; (M.A.Q.); (F.A.)
| | - Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (A.M.); (D.M.); (M.C.-M.); (M.S.)
| |
Collapse
|
14
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
15
|
Nakamura Y, Niho S, Shimizu Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells 2024; 13:893. [PMID: 38891026 PMCID: PMC11172081 DOI: 10.3390/cells13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosing interstitial lung diseases (FILDs), e.g., due to idiopathic pulmonary fibrosis (IPF), are chronic progressive diseases with a poor prognosis. The management of these diseases is challenging and focuses mainly on the suppression of progression with anti-fibrotic drugs. Therefore, novel FILD treatments are needed. In recent years, cell-based therapy with various stem cells has been investigated for FILD, and the use of mesenchymal stem cells (MSCs) has been widely reported and clinical studies are also ongoing. Induced pluripotent stem cells (iPSCs) have also been reported to have an anti-fibrotic effect in FILD; however, these have not been as well studied as MSCs in terms of the mechanisms and side effects. While MSCs show a potent anti-fibrotic effect, the possibility of quality differences between donors and a stable supply in the case of donor shortage or reduced proliferative capacity after cell passaging needs to be considered. The application of iPSC-derived cells has the potential to overcome these problems and may lead to consistent quality of the cell product and stable product supply. This review provides an overview of iPSCs and FILD, followed by the current status of cell-based therapy for FILD, and then discusses the possibilities and perspectives of FILD therapy with iPSC-derived cells.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
- Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| |
Collapse
|
16
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
17
|
Conrad JV, Neira JA, Rusteika M, Meyer S, Clegg DO, Chu LF. Establishment of Transgene-Free Porcine Induced Pluripotent Stem Cells. Curr Protoc 2024; 4:e1012. [PMID: 38712688 DOI: 10.1002/cpz1.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although protocols to generate authentic transgene-free mouse and human induced pluripotent stem cells (iPSCs) are now well established, standard methods for reprogramming porcine somatic cells still suffer from low efficiency and transgene retention. The Basic Protocol describes reprogramming procedures to establish transgene-free porcine iPSCs (PiPSCs) from porcine fibroblasts. This method uses episomal plasmids encoding POU5F1, SOX2, NANOG, KLF4, SV40LT, c-MYC, LIN28A, and microRNA-302/367, combined with an optimized medium, to establish PiPSC lines. Support protocols describe the establishment and characterization of clonal PiPSC lines, as well as the preparation of feeder cells and EBNA1 mRNA. This optimized, step-by-step approach tailored to this species enables the efficient derivation of PiPSCs in ∼4 weeks. The establishment of transgene-free PiPSCs provides a new and valuable model for studies of larger mammalian species' development, disease, and regenerative biology. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Reprogramming of porcine fibroblasts with episomal plasmids Support Protocol 1: Preparation of mouse embryonic fibroblasts for feeder layer Support Protocol 2: Preparation of in vitro-transcribed EBNA1 mRNA Support Protocol 3: Establishment of clonal porcine induced pluripotent stem cell (PiPSC) lines Support Protocol 4: PiPSC characterization: Genomic DNA PCR and RT-PCR Support Protocol 5: PiPSC characterization: Immunostaining.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, California
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
19
|
Hartley A, Burger L, Wincek CL, Dons L, Li T, Grewenig A, Taşgın T, Urban M, Roig-Merino A, Ghazvini M, Harbottle RP. A Simple Nonviral Method to Generate Human Induced Pluripotent Stem Cells Using SMAR DNA Vectors. Genes (Basel) 2024; 15:575. [PMID: 38790204 PMCID: PMC11121542 DOI: 10.3390/genes15050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a powerful tool for biomedical research, but their production presents challenges and safety concerns. Yamanaka and Takahashi revolutionised the field by demonstrating that somatic cells could be reprogrammed into pluripotent cells by overexpressing four key factors for a sufficient time. iPSCs are typically generated using viruses or virus-based methods, which have drawbacks such as vector persistence, risk of insertional mutagenesis, and oncogenesis. The application of less harmful nonviral vectors is limited as conventional plasmids cannot deliver the levels or duration of the factors necessary from a single transfection. Hence, plasmids that are most often used for reprogramming employ the potentially oncogenic Epstein-Barr nuclear antigen 1 (EBNA-1) system to ensure adequate levels and persistence of expression. In this study, we explored the use of nonviral SMAR DNA vectors to reprogram human fibroblasts into iPSCs. We show for the first time that iPSCs can be generated using nonviral plasmids without the use of EBNA-1 and that these DNA vectors can provide sufficient expression to induce pluripotency. We describe an optimised reprogramming protocol using these vectors that can produce high-quality iPSCs with comparable pluripotency and cellular function to those generated with viruses or EBNA-1 vectors.
Collapse
Affiliation(s)
- Anna Hartley
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Luisa Burger
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Cornelia L. Wincek
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Lieke Dons
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Tracy Li
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Annabel Grewenig
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| | - Toros Taşgın
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Manuela Urban
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Alicia Roig-Merino
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehrnaz Ghazvini
- Erasmus MC iPS Core Facility, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands (M.G.)
| | - Richard P. Harbottle
- DNA Vector Laboratory, German Cancer Research Center, 69120 Heidelberg, Germany; (A.H.); (A.G.); (A.R.-M.)
| |
Collapse
|
20
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
21
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Bellon A. Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Transl Psychiatry 2024; 14:127. [PMID: 38418498 PMCID: PMC10901833 DOI: 10.1038/s41398-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 03/01/2024] Open
Abstract
The inaccessibility of neurons coming directly from patients has hindered our understanding of mental illnesses at the cellular level. To overcome this obstacle, six different cellular approaches that carry the genetic vulnerability to psychiatric disorders are currently available: Olfactory Neuroepithelial Cells, Mesenchymal Stem Cells, Pluripotent Monocytes, Induced Pluripotent Stem Cells, Induced Neuronal cells and more recently Brain Organoids. Here we contrast advantages and disadvantages of each of these six cell-based methodologies. Neuronal-like cells derived from pluripotent monocytes are presented in more detail as this technique was recently used in psychiatry for the first time. Among the parameters used for comparison are; accessibility, need for reprograming, time to deliver differentiated cells, differentiation efficiency, reproducibility of results and cost. We provide a timeline on the discovery of these cell-based methodologies, but, our main goal is to assist researchers selecting which cellular approach is best suited for any given project. This manuscript also aims to help readers better interpret results from the published literature. With this goal in mind, we end our work with a discussion about the differences and similarities between cell-based techniques and postmortem research, the only currently available tools that allow the study of mental illness in neurons or neuronal-like cells coming directly from patients.
Collapse
Affiliation(s)
- Alfredo Bellon
- Penn State Hershey Medical Center, Department of Psychiatry and Behavioral Health, Hershey, PA, USA.
- Penn State Hershey Medical Center, Department of Pharmacology, Hershey, PA, USA.
| |
Collapse
|
23
|
Zhang T, Qian C, Song M, Tang Y, Zhou Y, Dong G, Shen Q, Chen W, Wang A, Shen S, Zhao Y, Lu Y. Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy. Int J Mol Sci 2024; 25:2680. [PMID: 38473926 DOI: 10.3390/ijms25052680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells. Furthermore, iPSC-based cell therapy has emerged as a focal point of clinical interest. In this review, we provide an extensive overview of non-integrative reprogramming methods that have evolved since the inception of iPSC technology. We also deliver a comprehensive examination of iPSC-derived organoids, spanning the realms of the nervous system, cardiovascular system, and oncology, as well as systematically elucidate recent advancements in iPSC-related cell therapies.
Collapse
Affiliation(s)
- Teng Zhang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Yang Zhao
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
24
|
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int J Mol Sci 2024; 25:1863. [PMID: 38339142 PMCID: PMC10855589 DOI: 10.3390/ijms25031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A hallmark of plastic and reconstructive surgery is restoring form and function. Historically, tissue procured from healthy portions of a patient's body has been used to fill defects, but this is limited by tissue availability. Human-induced pluripotent stem cells (hiPSCs) are stem cells derived from the de-differentiation of mature somatic cells. hiPSCs are of particular interest in plastic surgery as they have the capacity to be re-differentiated into more mature cells, and cultured to grow tissues. This review aims to evaluate the applications of hiPSCs in the plastic surgery context, with a focus on recent advances and limitations. The use of hiPSCs and non-human iPSCs has been researched in the context of skin, nerve, vasculature, skeletal muscle, cartilage, and bone regeneration. hiPSCs offer a future for regenerated autologous skin grafts, flaps comprised of various tissue types, and whole functional units such as the face and limbs. Also, they can be used to model diseases affecting tissues of interest in plastic surgery, such as skin cancers, epidermolysis bullosa, and scleroderma. Tumorigenicity, immunogenicity and pragmatism still pose significant limitations. Further research is required to identify appropriate somatic origin and induction techniques to harness the epigenetic memory of hiPSCs or identify methods to manipulate epigenetic memory.
Collapse
Affiliation(s)
- Nina Hadzimustafic
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Andrew D’Elia
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Valentina Shamoun
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Siba Haykal
- Department of Plastic and Reconstructive Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
25
|
Bao Q, Tay NL, Lim CY, Chua DHH, Kee SK, Choolani M, Loh YH, Ng SC, Chai C. Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Sci Rep 2024; 14:2391. [PMID: 38287040 PMCID: PMC10825216 DOI: 10.1038/s41598-023-50510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Advanced molecular and cellular technologies provide promising tools for wildlife and biodiversity conservation. Induced pluripotent stem cell (iPSC) technology offers an easily accessible and infinite source of pluripotent stem cells, and have been derived from many threatened wildlife species. This paper describes the first successful integration-free reprogramming of adult somatic cells to iPSCs, and their differentiation, from three endangered Southeast Asian primates: the Celebes Crested Macaque (Macaca nigra), the Lar Gibbon (Hylobates lar), and the Siamang (Symphalangus syndactylus). iPSCs were also generated from the Proboscis Monkey (Nasalis larvatus). Differences in mechanisms could elicit new discoveries regarding primate evolution and development. iPSCs from endangered species provides a safety net in conservation efforts and allows for sustainable sampling for research and conservation, all while providing a platform for the development of further in vitro models of disease.
Collapse
Affiliation(s)
- Qiuye Bao
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Nicole Liling Tay
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Christina Yingyan Lim
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | | | - Su Keyau Kee
- Cytogenetics Laboratory, Department of Pathology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Soon Chye Ng
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Sincere Healthcare Group, 8 Sinaran Drive, Singapore, 307470, Singapore.
| | - Chou Chai
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
26
|
Şen B, Balcı‐Peynircioğlu B. Cellular models in autoinflammatory disease research. Clin Transl Immunology 2024; 13:e1481. [PMID: 38213819 PMCID: PMC10784111 DOI: 10.1002/cti2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous group of rare genetic disorders caused by dysregulation of the innate immune system. Understanding the complex mechanisms underlying these conditions is critical for developing effective treatments. Cellular models are essential for identifying new conditions and studying their pathogenesis. Traditionally, these studies have used primary cells and cell lines of disease-relevant cell types, although newer induced pluripotent stem cell (iPSC)-based models might have unique advantages. In this review, we discuss the three cellular models used in autoinflammatory disease research, their strengths and weaknesses, and their applications to inform future research in the field.
Collapse
Affiliation(s)
- Başak Şen
- Department of Medical BiologyHacettepe University Faculty of Medicine, SıhhiyeAnkaraTurkey
| | | |
Collapse
|
27
|
Nakajima T, Imai A, Ishii C, Tsuruyama K, Yamanaka R, Tomooka Y, Saito S, Adachi N, Kohno S, Sato T. SMAD2/3 signaling regulates initiation of mouse Wolffian ducts and proximal differentiation in Müllerian ducts. FEBS Open Bio 2024; 14:37-50. [PMID: 37953493 PMCID: PMC10761927 DOI: 10.1002/2211-5463.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Male and female reproductive tracts develop from anterior intermediate mesoderm with similar differentiation processes. The anterior intermediate mesoderm develops into the mesonephros, and the Wolffian duct initiates by epithelialization in the mesonephros. The Müllerian duct invaginates from the coelomic epithelium of the cranial mesonephros for ductal formation and is then regionalized into proximal to caudal female reproductive tracts. In this study, we focused on the epithelialization of the Wolffian duct, initiation of the Müllerian duct, and the regionalization step of the Müllerian ducts as a continuous process. By using intermediate mesodermal cells from mouse pluripotent stem cells, we identified that inhibition of SMAD2/3 signaling might be involved in the differentiation into mesenchymal cells, after which mesonephric cells might be then epithelialized during differentiation of the Wolffian duct. Aggregation of coelomic epithelial cells might be related to initiation of the Müllerian duct. Transcriptomic analysis predicted that consensus sequences of SMAD3/4 were enriched among highly expressed genes in the proximal Müllerian duct. SMAD2/3 signaling to regulate differentiation of the Wolffian duct was continuously activated in the proximal Müllerian duct and was involved in proximal and oviductal regionalization. Therefore, SMAD2/3 signaling may be finely tuned to regulate differentiation from initiation to regionalization steps.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Akihiro Imai
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Chihiro Ishii
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Kota Tsuruyama
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Risa Yamanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceJapan
| | - Shinta Saito
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Noritaka Adachi
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| | - Satomi Kohno
- Department of Biological SciencesSt. Cloud State UniversityMNUSA
| | - Tomomi Sato
- Department of ScienceYokohama City UniversityJapan
- Graduate School of NanobioscienceYokohama City UniversityJapan
| |
Collapse
|
28
|
Makarczyk MJ. Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis 2023; 19:2278235. [PMID: 37963189 PMCID: PMC10898818 DOI: 10.1080/15476278.2023.2278235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Articular cartilage is a common cartilage type found in a multitude of joints throughout the human body. However, cartilage is limited in its regenerative capacity. A range of methods have been employed to aid adults under the age of 45 with cartilage defects, but other cartilage pathologies such as osteoarthritis are limited to non-steroidal anti-inflammatory drugs and total joint arthroplasty. Cell therapies and synthetic biology can be utilized to assist not only cartilage defects but have the potential as a therapeutic approach for osteoarthritis as well. In this review, we will cover current cell therapy approaches for cartilage defect regeneration with a focus on autologous chondrocyte implantation and matrix autologous chondrocyte implantation. We will then discuss the potential of stem cells for cartilage repair in osteoarthritis and the use of synthetic biology to genetically engineer cells to promote cartilage regeneration and potentially reverse osteoarthritis.
Collapse
Affiliation(s)
- Meagan J Makarczyk
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
30
|
Chastagnier L, Marquette C, Petiot E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol Adv 2023; 68:108211. [PMID: 37463610 DOI: 10.1016/j.biotechadv.2023.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Various research fields use the transfection of mammalian cells with genetic material to induce the expression of a target transgene or gene silencing. It is a tool widely used in biological research, bioproduction, and therapy. Current transfection protocols are usually performed on 2D adherent cells or suspension cultures. The important rise of new gene therapies and regenerative medicine in the last decade raises the need for new tools to empower the in situ transfection of tissues and 3D cell cultures. This review will present novel in situ transfection methods based on a chemical or physical non-viral transfection of cells in tissues and 3D cultures, discuss the advantages and remaining gaps, and propose future developments and applications.
Collapse
Affiliation(s)
- Laura Chastagnier
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Christophe Marquette
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France
| | - Emma Petiot
- 3D Innovation Lab - 3d.FAB - ICBMS, University Claude Bernard Lyon 1, Université Lyon 1, CNRS, INSA, CPE-Lyon, UMR 5246, bat. Lederer, 5 rue Gaston Berger, 69100 Villeurbanne, France.
| |
Collapse
|
31
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
32
|
He R, Weng Z, Liu Y, Li B, Wang W, Meng W, Li B, Li L. Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Rev Rep 2023; 19:2557-2575. [PMID: 37755647 PMCID: PMC10661832 DOI: 10.1007/s12015-023-10633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
In the past decade, induced pluripotent stem cells (iPSCs) technology has significantly progressed in studying malignant solid tumors. This technically feasible reprogramming techniques can reawaken sequestered dormant regions that regulate the fate of differentiated cells. Despite the evolving therapeutic modalities for malignant solid tumors, treatment outcomes have not been satisfactory. Recently, scientists attempted to apply induced pluripotent stem cell technology to cancer research, from modeling to treatment. Induced pluripotent stem cells derived from somatic cells, cancer cell lines, primary tumors, and individuals with an inherited propensity to develop cancer have shown great potential in cancer modeling, cell therapy, immunotherapy, and understanding tumor progression. This review summarizes the evolution of induced pluripotent stem cells technology and its applications in malignant solid tumor. Additionally, we discuss potential obstacles to induced pluripotent stem cell technology.
Collapse
Affiliation(s)
- Rong He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Zhang Y, Li X, Xing J, Zhou J, Li H. Chemical Transdifferentiation of Somatic Cells: Unleashing the Power of Small Molecules. Biomedicines 2023; 11:2913. [PMID: 38001913 PMCID: PMC10669320 DOI: 10.3390/biomedicines11112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Chemical transdifferentiation is a technique that utilizes small molecules to directly convert one cell type into another without passing through an intermediate stem cell state. This technique offers several advantages over other methods of cell reprogramming, such as simplicity, standardization, versatility, no ethical and safety concern and patient-specific therapies. Chemical transdifferentiation has been successfully applied to various cell types across different tissues and organs, and its potential applications are rapidly expanding as scientists continue to explore new combinations of small molecules and refine the mechanisms driving cell fate conversion. These applications have opened up new possibilities for regenerative medicine, disease modeling, drug discovery and tissue engineering. However, there are still challenges and limitations that need to be overcome before chemical transdifferentiation can be translated into clinical practice. These include low efficiency and reproducibility, incomplete understanding of the molecular mechanisms, long-term stability and functionality of the transdifferentiated cells, cell-type specificity and scalability. In this review, we compared the commonly used methods for cell transdifferentiation in recent years and discussed the current progress and future perspective of the chemical transdifferentiation of somatic cells and its potential impact on biomedicine. We believe that with ongoing research and technological advancements, the future holds tremendous promise for harnessing the power of small molecules to shape the cellular landscape and revolutionize the field of biomedicine.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Xuefeng Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Jianyu Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150006, China;
| | - Jinsong Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| | - Hai Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
34
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
35
|
Zhao S, Chen J, Wu L, Tao X, Yaqub N, Chang J. Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles. Int J Mol Sci 2023; 24:11520. [PMID: 37511279 PMCID: PMC10380861 DOI: 10.3390/ijms241411520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Skeletal muscle, which comprises a significant portion of the body, is responsible for vital functions such as movement, metabolism, and overall health. However, severe injuries often result in volumetric muscle loss (VML) and compromise the regenerative capacity of the muscle. Tissue-engineered muscles offer a potential solution to address lost or damaged muscle tissue, thereby restoring muscle function and improving patients' quality of life. Induced pluripotent stem cells (iPSCs) have emerged as a valuable cell source for muscle tissue engineering due to their pluripotency and self-renewal capacity, enabling the construction of tissue-engineered artificial skeletal muscles with applications in transplantation, disease modelling, and bio-hybrid robots. Next-generation iPSC-based models have the potential to revolutionize drug discovery by offering personalized muscle cells for testing, reducing reliance on animal models. This review provides a comprehensive overview of iPSCs in tissue-engineered artificial skeletal muscles, highlighting the advancements, applications, advantages, and challenges for clinical translation. We also discussed overcoming limitations and considerations in differentiation protocols, characterization methods, large-scale production, and translational regulations. By tackling these challenges, iPSCs can unlock transformative advancements in muscle tissue engineering and therapeutic interventions for the future.
Collapse
Affiliation(s)
- Shudong Zhao
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Jishizhan Chen
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Lei Wu
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Xin Tao
- Department of iPS Cell Applications, Kobe University, Kobe 657-8501, Japan
| | - Naheem Yaqub
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| | - Jinke Chang
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, UK
| |
Collapse
|
36
|
Cho S, Aakash P, Lee S, Yoon YS. Endothelial cell direct reprogramming: Past, present, and future. J Mol Cell Cardiol 2023; 180:22-32. [PMID: 37080451 PMCID: PMC10330356 DOI: 10.1016/j.yjmcc.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Ischemic cardiovascular disease still remains as a leading cause of morbidity and mortality despite various medical, surgical, and interventional therapy. As such, cell therapy has emerged as an attractive option because it tackles underlying problem of the diseases by inducing neovascularization in ischemic tissue. After overall failure of adult stem or progenitor cells, studies attempted to generate endothelial cells (ECs) from pluripotent stem cells (PSCs). While endothelial cells (ECs) differentiated from PSCs successfully induced vascular regeneration, differentiating volatility and tumorigenic potential is a concern for their clinical applications. Alternatively, direct reprogramming strategies employ lineage-specific factors to change cell fate without achieving pluripotency. ECs have been successfully reprogrammed via ectopic expression of transcription factors (TFs) from endothelial lineage. The reprogrammed ECs induced neovascularization in vitro and in vivo and thus demonstrated their therapeutic value in animal models of vascular insufficiency. Methods of delivering reprogramming factors include lentiviral or retroviral vectors and more clinically relevant, non-integrative adenoviral and episomal vectors. Most studies made use of fibroblast as a source cell for reprogramming, but reprogrammability of other clinically relevant source cell types has to be evaluated. Specific mechanisms and small molecules that are involved in the aforementioned processes tackles challenges associated with direct reprogramming efficiency and maintenance of reprogrammed EC characteristics. After all, this review provides summary of past and contemporary methods of direct endothelial reprogramming and discusses the future direction to overcome these challenges to acquire clinically applicable reprogrammed ECs.
Collapse
Affiliation(s)
- Seonggeon Cho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Parthasarathy Aakash
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Kang H, Hasselbeck S, Taškova K, Wang N, Oosten LNV, Mrowka R, Utikal J, Andrade-Navarro MA, Wang J, Wölfl S, Cheng X. Development of a next-generation endogenous OCT4 inducer and its anti-aging effect in vivo. Eur J Med Chem 2023; 257:115513. [PMID: 37253308 DOI: 10.1016/j.ejmech.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
The identification of small molecules capable of replacing transcription factors has been a longstanding challenge in the generation of human chemically induced pluripotent stem cells (iPSCs). Recent studies have shown that ectopic expression of OCT4, one of the master pluripotency regulators, compromised the developmental potential of resulting iPSCs, This highlights the importance of finding endogenous OCT4 inducers for the generation of clinical-grade human iPSCs. Through a cell-based high throughput screen, we have discovered several new OCT4-inducing compounds (O4Is). In this work, we prepared metabolically stable analogues, including O4I4, which activate endogenous OCT4 and associated signaling pathways in various cell lines. By combining these with a transcription factor cocktail consisting of SOX2, KLF4, MYC, and LIN28 (referred to as "CSKML") we achieved to reprogram human fibroblasts into a stable and authentic pluripotent state without the need for exogenous OCT4. In Caenorhabditis elegans and Drosophila, O4I4 extends lifespan, suggesting the potential application of OCT4-inducing compounds in regenerative medicine and rejuvenation therapy.
Collapse
Affiliation(s)
- Han Kang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Sebastian Hasselbeck
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany
| | - Katerina Taškova
- Faculty of Biology, Johannes Gutenberg University Mainz, Germany
| | - Nessa Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Luuk N van Oosten
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Ralf Mrowka
- Experimentelle Nephrologie, KIM III, Universitätsklinikum, Jena, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jichang Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Frankfurt Cancer Institute, Germany.
| |
Collapse
|
38
|
Cheng W, Fan C, Song Q, Chen P, Peng H, Lin L, Liu C, Wang B, Zhou Z. Induced pluripotent stem cell-based therapies for organ fibrosis. Front Bioeng Biotechnol 2023; 11:1119606. [PMID: 37274156 PMCID: PMC10232908 DOI: 10.3389/fbioe.2023.1119606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Fibrotic diseases result in organ remodelling and dysfunctional failure and account for one-third of all deaths worldwide. There are no ideal treatments that can halt or reverse progressive organ fibrosis, moreover, organ transplantation is complicated by problems with a limited supply of donor organs and graft rejection. The development of new approaches, especially induced pluripotent stem cell (iPSC)-based therapy, is becoming a hot topic due to their ability to self-renew and differentiate into different cell types that may replace the fibrotic organs. In the past decade, studies have differentiated iPSCs into fibrosis-relevant cell types which were demonstrated to have anti-fibrotic effects that may have the potential to inform new effective precision treatments for organ-specific fibrosis. In this review, we summarize the potential of iPSC-based cellular approaches as therapeutic avenues for treating organ fibrosis, the advantages and disadvantages of iPSCs compared with other types of stem cell-based therapies, as well as the challenges and future outlook in this field.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Song
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Hong Peng
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Ling Lin
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Cong Liu
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
39
|
Gramatiuk SM, Ivanova YV, Hudyma AA, Sargsyan K, Kryvoruchko IA, Puliaieva IS. Differentiation of neurosphere after transplantation into the damaged spinal cord. J Med Life 2023; 16:689-698. [PMID: 37520471 PMCID: PMC10375341 DOI: 10.25122/jml-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/26/2023] [Indexed: 08/01/2023] Open
Abstract
This study aimed to compare the differentiation and survival of human neural stem/progenitor cells of various origins in vitro and after transplantation into the injured spinal cord of laboratory animals. Rats with simulated spinal cord injury were transplanted with neurosphere cells obtained by directed differentiation of HUES6 cell lines. Fluorescence microscopy was used to visualize the obtained results. HUES6#1 and iPSC#1 neurospheres showed a wide range of markers associated with glial differentiation. The expression of the proliferation marker Ki67 did not exceed 25%, both in the lines of early and late neurospheres. Although neurospheres did not fully differentiate into astrocytes in vitro, they massively approached the GFAP+ astrocyte phenotype when exposed to the transplanted environment. PSC-derived neurospheres transplanted into the site of SM injury without additional growth factors showed only moderate survival, a significant degree of differentiation into astrocytes, and moderate differentiation into neurons. The difference in the survival and differentiation of HUES6#1 and iPSC#1 neurospheres, both in vitro and in vivo, can be explained by the difference in the regulatory behavior of signaling molecules corresponding to the source of origin of PSCs. Derivatives of human PSCs of various origins obtained according to the described differentiation protocol did not mature into astrocytic populations, nor did the glycogenic transition of PSC-derived NSCs occur in vitro. The study demonstrated the impact of the injured spinal cord microenvironment on the differentiation of transplanted HUES6#1 and iPSC#1 into astrocytes. The results showed that HUES6-derived neurospheres generated 90% of GFAP+ astrocytes and 5-10% of early neurons, while iPSC-derived neurospheres generated an average of 74% GFAP+ astrocytes and 5% of early neurons in vivo.
Collapse
Affiliation(s)
- Svetlana Mykolaiivna Gramatiuk
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Biotechnology, Louisiana State University, Baton Rouge, Louisiana, USA
- International Biobanking and Education, Medical University of Graz, Graz, Austria
| | - Yulia Viktorovna Ivanova
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
- Department of Surgery No.1, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Arsen Arsenievich Hudyma
- Emergency Medical Care, Ternopil National Medical University named after I. Ya. Gorbachevsky, Ternopil, Ukraine
| | - Karine Sargsyan
- International Biobanking and Education, Medical University of Graz, Graz, Austria
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | | | - Inna Sergeevna Puliaieva
- Department of Biotechnology, Institute of Bio-Stem Cell Rehabilitation of the Ukrainian Association of Biobanks, Kharkiv, Ukraine
| |
Collapse
|
40
|
Itakura H, Hata T, Okuzaki D, Takeda K, Iso K, Qian Y, Morimoto Y, Adachi T, Hirose H, Yokoyama Y, Ogino T, Miyoshi N, Takahashi H, Uemura M, Mizushima T, Hinoi T, Mori M, Doki Y, Eguchi H, Yamamoto H. Tumor-suppressive role of the musculoaponeurotic fibrosarcoma gene in colorectal cancer. iScience 2023; 26:106478. [PMID: 37091240 PMCID: PMC10119606 DOI: 10.1016/j.isci.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
Somatic cell reprogramming using the microRNAs miR-200c, miR-302s, and miR-369s leads to increased expression of cyclin-dependent kinase inhibitors in human colorectal cancer (CRC) cells and suppressed tumor growth. Here, we investigated whether these microRNAs inhibit colorectal tumorigenesis in CPC;Apc mice, which are prone to colon and rectal polyps. Repeated administration of microRNAs inhibited polyp formation. Microarray analysis indicated that c-MAF, which reportedly shows oncogene-like behavior in multiple myeloma and T cell lymphoma, decreased in tumor samples but increased in microRNA-treated normal mucosa. Immunohistochemistry identified downregulation of c-MAF as an early tumorigenesis event in CRC, with low c-MAF expression associated with poor prognosis. Of note, c-MAF expression and p53 protein levels were inversely correlated in CRC samples. c-MAF knockout led to enhanced tumor formation in azoxymethane/dextran sodium sulfate-treated mice, with activation of cancer-promoting genes. c-MAF may play a tumor-suppressive role in CRC development.
Collapse
Affiliation(s)
- Hiroaki Itakura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Centre, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | - Koki Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kenji Iso
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Morimoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tomohiro Adachi
- Department of Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, 1-2-1, Kameyama-minami, Asakita-ku, Horoshima 731-0293, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Takayuki Ogino
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Osaka Police Hospital, 10-31, Kitayama-town, Tennoji-ku, Osaka city, Osaka 543-0035, Japan
| | - Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medical Sciences, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
- Corresponding author
| |
Collapse
|
41
|
Rani R, Nayak M, Nayak B. Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transpl Immunol 2023; 78:101804. [PMID: 36921730 DOI: 10.1016/j.trim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
Initiating from multipotent progenitors, the lineages extrapolated from hematopoietic stem cells are determined by transcription factors specific to each of them. The commitment factors assist in the differentiation of progenitor cells into terminally differentiated cells. B lymphocytes constitute a population of cells that expresses clonally diverse cell surface immunoglobulin (Ig) receptors specific to antigenic epitopes. B cells are a significant facet of the adaptive immune system. The secreted antibodies corresponding to the B cell recognize the antigens via the B cell receptor (BCR). Following antigen recognition, the B cell is activated and thereafter undergoes clonal expansion and proliferation to become memory B cells. The essence of 'cellular reprogramming' has aided in reliably altering the cells to desired tissue type. The potential of reprogramming has been harnessed to decipher and find solutions for various genetically inherited diseases and degenerative disorders. B lymphocytes can be reprogrammed to their initial naive state from where they get differentiated into any lineage or cell type similar to a pluripotent stem cell which can be accomplished by the deletion of master regulators of the B cell lineage. B cells can be reprogrammed into pluripotent stem cells and also can undergo transdifferentiation at the midway of cell differentiation to other cell types. Mandated expression of C/EBP in specialized B cells corresponds to their fast and effective reprogramming into macrophages, reversing the cell fate of these lymphocytes and allowing them to differentiate freshly into other types of cells. The co-expression of C/EBPα and OKSM (Oct4, Sox2, Klf4, c-Myc) amplified the reprogramming efficiency of B lymphocytes. Various human somatic cells including the immune cells are compliant to reprogramming which paves a path for opportunities like autologous tissue grafts, blood transfusion, and cancer immunotherapy. The ability to reprogram B cells offers an unprecedented opportunity for developing a therapeutic approach for several human diseases. Here, we will focus on all the proteins and transcription factors responsible for the developmental commitment of B lymphocytes and how it is harnessed in various applications.
Collapse
Affiliation(s)
- Reetika Rani
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Madhusmita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha. 769008, India.
| |
Collapse
|
42
|
Notopoulou S, Gkekas I, Petrakis S. Omics Analyses in a Neural Stem Cell Model of Familial Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:149-160. [PMID: 37525039 DOI: 10.1007/978-3-031-31978-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting millions of people worldwide. Despite considerable efforts, the underlying pathological mechanisms remain elusive, and yet, no treatment has been developed to efficiently reverse or modify disease progression. Thus, new experimental models are required to provide insights into the pathology of PD. Small-molecule neural precursor cells (smNPCs) are ideal for the study of neurodegenerative disorders due to their neural identity and stem cell properties. Cytoplasmic aggregates of α-synuclein (αSyn) are considered a hallmark of PD and a point mutation in the gene encoding p.A53T is responsible for a familial PD form with earlier and robust symptom onset. In order to study the cellular pathology of PD, we genetically modified smNPCs to inducibly overexpress EYFP-SNCA A53T. This cellular model was biochemically characterized, while dysregulated biological pathways and key regulators of PD pathology were identified by computational analyses. Our study indicates three novel genes, UBA52, PIP5K1A, and RPS2, which may mediate PD cellular pathology.
Collapse
Affiliation(s)
| | - Ioannis Gkekas
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Spyros Petrakis
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| |
Collapse
|
43
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
44
|
Niharika, Roy A, Mishra J, Chakraborty S, Singh SP, Patra SK. Epigenetic regulation of pluripotency inducer genes NANOG and SOX2 in human prostate cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:241-260. [PMID: 37019595 DOI: 10.1016/bs.pmbts.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cells of multicellular organisms are genetically homogeneous but heterogenous in structure and function by virtue of differential gene expression. During embryonic development, differential gene expression by modification of chromatin (DNA and histone complex) regulates the developmental proceedings before and after the germ layers are formed. Post-replicative DNA modification, where the fifth carbon atom of the cytosine gets methylated (hereafter, DNA methylation), does not incorporate mutations within the DNA. In the past few years, a boom has been observed in the field of research related to various epigenetic regulation models, which includes DNA methylation, post-translational modification of histone tails, control of chromatin structure by non-coding RNAs, and remodeling of nucleosome. Epigenetic effects like DNA methylation or histone modification play a cardinal role in development but also be able to arise stochastically, as observed during aging, in tumor development and cancer progression. Over the past few decades, researchers allured toward the involvement of pluripotency inducer genes in cancer progression and apparent for prostate cancer (PCa); also, PCa is the most diagnosed tumor worldwide and comes to the second position in causing mortality in men. The anomalous articulation of pluripotency-inducing transcription factor; SRY-related HMG box-containing transcription factor-2 (SOX2), Octamer-binding transcription factor 4 (OCT4) or POU domain, class 5, transcription factor 1 (POU5F1), and NANOG have been reported in different cancers which includes breast cancer, tongue cancer, and lung cancer, etc. Although there is a variety in gene expression signatures demonstrated by cancer cells, the epigenetic mode of regulation at the pluripotency-associated genes in PCa has been recently explored. This chapter focuses on the epigenetic control of NANOG and SOX2 genes in human PCa and the precise role thereof executed by the two transcription factors.
Collapse
|
45
|
Abstract
Human induced pluripotent stem cells (iPSCs), since their discovery in 2007, have rapidly become a starting cell type of choice for the differentiation of many mature cell types. Their flexibility, amenability to gene editing and functional equivalence to embryonic stem cells ensured their subsequent adoption by many manufacturing processes for cellular products. In this chapter, we will discuss the process whereby iPSCs are generated, key quality control steps which should be considered during manufacturing, the application of good manufacturing practice to production processes and iPSC-derived cellular products which are already undergoing clinical trials. iPSCs provide a new avenue for the next generation of cellular therapeutics and by combining new differentiation protocols, quality control and reproducible manufacturing, iPSC-derived cellular products could provide treatments for many currently untreatable diseases, allowing the large-scale manufacture of high-quality cell therapies.
Collapse
Affiliation(s)
- Moyra Lawrence
- Centre for iPS Cell Research and Application (CiRA) and Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
46
|
Lohrasbi F, Ghasemi-Kasman M, Soghli N, Ghazvini S, Vaziri Z, Abdi S, Darban YM. The Journey of iPSC-derived OPCs in Demyelinating Disorders: From In vitro Generation to In vivo Transplantation. Curr Neuropharmacol 2023; 21:1980-1991. [PMID: 36825702 PMCID: PMC10514531 DOI: 10.2174/1570159x21666230220150010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 02/22/2023] Open
Abstract
Loss of myelination is common among neurological diseases. It causes significant disability, even death, if it is not treated instantly. Different mechanisms involve the pathophysiology of demyelinating diseases, such as genetic background, infectious, and autoimmune inflammation. Recently, regenerative medicine and stem cell therapy have shown to be promising for the treatment of demyelinating disorders. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs), can differentiate into oligodendrocyte progenitor cells (OPCs), which may convert to oligodendrocytes (OLs) and recover myelination. IPSCs provide an endless source for OPCs generation. However, the restricted capacity of proliferation, differentiation, migration, and myelination of iPSC-derived OPCs is a notable gap for future studies. In this article, we have first reviewed stem cell therapy in demyelinating diseases. Secondly, methods of different protocols have been discussed among in vitro and in vivo studies on iPSC-derived OPCs to contrast OPCs' transplantation efficacy. Lastly, we have reviewed the results of iPSCs-derived OLs production in each demyelination model.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Science, Babol, Iran
| | - Negar Soghli
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sobhan Ghazvini
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sadaf Abdi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | |
Collapse
|
47
|
Ozawa M, Taguchi J, Katsuma K, Ishikawa-Yamauchi Y, Kikuchi M, Sakamoto R, Yamada Y, Ikawa M. Efficient simultaneous double DNA knock-in in murine embryonic stem cells by CRISPR/Cas9 ribonucleoprotein-mediated circular plasmid targeting for generating gene-manipulated mice. Sci Rep 2022; 12:21558. [PMID: 36513736 PMCID: PMC9748034 DOI: 10.1038/s41598-022-26107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Gene targeting of embryonic stem (ES) cells followed by chimera production has been conventionally used for developing gene-manipulated mice. Although direct knock-in (KI) using murine zygote via CRISPR/Cas9-mediated genome editing has been reported, ES cell targeting still has merits, e.g., high throughput work can be performed in vitro. In this study, we first compared the KI efficiency of mouse ES cells with CRISPR/Cas9 expression vector and ribonucleoprotein (RNP), and confirmed that KI efficiency was significantly increased by using RNP. Using CRISPR/Cas9 RNP and circular plasmid with homologous arms as a targeting vector, knock-in within ES cell clones could be obtained efficiently without drug selection, thus potentially shortening the vector construction or cell culture period. Moreover, by incorporating a drug-resistant cassette into the targeting vectors, double DNA KI can be simultaneously achieved at high efficiency by a single electroporation. This technique will help to facilitate the production of genetically modified mouse models that are fundamental for exploring topics related to human and mammalian biology.
Collapse
Affiliation(s)
- Manabu Ozawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Jumpei Taguchi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Kento Katsuma
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yu Ishikawa-Yamauchi
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Mio Kikuchi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Reiko Sakamoto
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yasuhiro Yamada
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Masahito Ikawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.136593.b0000 0004 0373 3971Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| |
Collapse
|
48
|
Obara K, Reynoso J, Hamada Y, Aoki Y, Kubota Y, Masaki N, Amoh Y, Hoffman RM. Hair follicle associated pluripotent (HAP) stem cells jump from transplanted whiskers to pelage follicles and stimulate hair growth. Sci Rep 2022; 12:21174. [PMID: 36476963 PMCID: PMC9729176 DOI: 10.1038/s41598-022-25383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Stimulation of hair growth in hair loss has been a difficult goal to achieve. Hair follicle-associated pluripotent (HAP) stem cells express nestin and have been shown to differentiate to multiple cell types including keratinocytes, neurons, beating cardiac muscles and numerous other cell types. HAP stem cells originate in the bulge area of the hair follicle and have been shown to migrate within and outside the hair follicle. In the present study, the upper part of vibrissa follicles from nestin-driven green-fluorescent protein (GFP) transgenic mice, containing GFP-expressing HAP stem cells, were transplanted in the dorsal area of athymic nude mice. Fluorescence microscopy and immunostaining showed the transplanted HAP stem cells jumped and targeted the bulge and hair bulb and other areas of the resident nude mouse pelage follicles where they differentiated to keratinocytes. These results indicate that transplanted nestin-GFP expressing HAP stem cells jumped from the upper part of the whisker follicles and targeted nude-mouse hair follicles, which are genetically deficient to grow normal hair shafts, and differentiated to keratinocytes to produce normal mature hair shafts. The resident nude-mouse pelage follicles targeted by jumping whisker HAP stem cells produced long hair shafts from numerous hair follicles for least 2 hair cycles during 36 days, demonstrations that HAP stem cells can stimulate hair growth. The present results for hair loss therapy are discussed.
Collapse
Affiliation(s)
- Koya Obara
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Jose Reynoso
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Aoki
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Yutaro Kubota
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Noriyuki Masaki
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
| |
Collapse
|
49
|
Du F, Cao Z, Ye Z, He J, Zhang W, Zhang K, Ning P. Production and immunogenicity of a deoxyribonucleic acid Alphavirus vaccine expressing classical swine fever virus E2-Erns protein and porcine Circovirus Cap-Rep protein. Front Microbiol 2022; 13:1065532. [PMID: 36560936 PMCID: PMC9764008 DOI: 10.3389/fmicb.2022.1065532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Classical swine fever virus (CSFV) and porcine Circovirus type 2 (PCV2) are economically pivotal infectious disease viruses of swine. Alphaviral RNA replicon plasmids have been used as an important vector for constructing nucleic acid vaccines. Here, we aimed to construct a recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep for the prevention and control of CSFV and PCV2. Our results showed that the recombinant alphaviral plasmid vaccine pSCA1-E2-Erns-Cap-Rep was successfully constructed. The vaccine encoding E2 and Erns of CSFV, Cap, and Rep of PCV2 can induce E2, Erns, Cap, and Rep protein expression. ELISA analysis showed that mice-immunized pSCA1-E2-Erns-Cap-Rep plasmid vaccine produced higher anti-CSFV- and anti-PCV2-specific antibodies with dose- and time-dependent manners. Furthermore, neutralizing assays were measured using IF and ELISA methods. The results showed the production of neutralizing antibodies could neutralize CSFV (up to 210.13) and PCV2 (28.6) effectively, which exhibited the immune efficacy of the pSCA1-E2-Erns-Cap-Rep plasmid vaccine. Taken together, this pSCA1-E2-Erns-Cp-Rep plasmid vaccine could be considered a novel candidate vaccine against CSFV and PCV2.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Weijie Zhang
- School of Life Science and Technology, Xidian University, Xi’an, China
| | - Ke Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi’an, China,Shaoxing Academy of Biomedicine of Zhejiang Sci-Tech University, Shaoxing, China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China,*Correspondence: Pengbo Ning,
| |
Collapse
|
50
|
Tsujimoto H, Osafune K. Current status and future directions of clinical applications using iPS cells-focus on Japan. FEBS J 2022; 289:7274-7291. [PMID: 34407307 DOI: 10.1111/febs.16162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 01/13/2023]
Abstract
Regenerative medicine using iPS cell technologies has progressed remarkably in recent years. In this review, we summarize these technologies and their clinical application. First, we discuss progress in the establishment of iPS cells, including the HLA-homo iPS cell stock project in Japan and the advancement of low antigenic iPS cells using genome-editing technology. Then, we describe iPS cell-based therapies in or approaching clinical application, including those for ophthalmological, neurological, cardiac, hematological, cartilage, and metabolic diseases. Next, we introduce disease models generated from patient iPS cells and successfully used to identify therapeutic agents for intractable diseases. Clinical medicine using iPS cells has advanced safely and effectively by making full use of current scientific standards, but tests on cell safety need to be further developed and validated. The next decades will see the further spread of iPS cell technology-based regenerative medicine.
Collapse
Affiliation(s)
- Hiraku Tsujimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,RegeNephro Co., Ltd., MIC bldg. Graduate School of Medicine, Kyoto University, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,Meiji University International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| |
Collapse
|