1
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Varadan AC, Grasis JA. Filamentous bacteriophage M13 induces proinflammatory responses in intestinal epithelial cells. Infect Immun 2025:e0061824. [PMID: 40208028 DOI: 10.1128/iai.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Bacteriophages are the dominant members of the human enteric virome and can shape bacterial communities in the gut; however, our understanding of how they directly impact health and disease is limited. Previous studies have shown that specific bacteriophage populations are expanded in patients with Crohn's disease (CD) and ulcerative colitis (UC), suggesting that fluctuations in the enteric virome may contribute to intestinal inflammation. Based on these studies, we hypothesized that a high bacteriophage burden directly induces intestinal epithelial responses. We found that filamentous bacteriophages M13 and Fd induced dose-dependent IL-8 expression in the human intestinal epithelial cell line HT-29 to a greater degree than their lytic counterparts, T4 and ϕX174. We also found that M13, but not Fd, reduced bacterial internalization in HT-29 cells. This led us to investigate the mechanism underlying M13-mediated inhibition of bacterial internalization by examining the antiviral and antimicrobial responses in these cells. M13 upregulated type I and III IFN expressions and augmented short-chain fatty acid (SCFA)-mediated LL-37 expression in HT-29 cells. Taken together, our data establish that filamentous bacteriophages directly affect human intestinal epithelial cells. These results provide new insights into the complex interactions between bacteriophages and the intestinal mucosa, which may underlie disease pathogenesis.
Collapse
Affiliation(s)
- Ambarish C Varadan
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| | - Juris A Grasis
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| |
Collapse
|
4
|
Redgwell TA, Thorsen J, Petit MA, Deng L, Vestergaard G, Russel J, Chawes B, Bønnelykke K, Bisgaard H, Nielsen DS, Sørensen S, Stokholm J, Shah SA. Prophages in the infant gut are pervasively induced and may modulate the functionality of their hosts. NPJ Biofilms Microbiomes 2025; 11:46. [PMID: 40108202 PMCID: PMC11923282 DOI: 10.1038/s41522-025-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Gut microbiome (GM) composition and function is pivotal for human health and disease, of which the virome's importance is increasingly recognised. However, prophages and their induction patterns in the infant gut remain understudied. Here, we identified 10645 putative prophages in 662 metagenomes from 1-year-old children in the COPSAC2010 mother-child cohort and investigated their potential functions. No core provirome was found as the most prevalent vOTU was identified in only ~70% of the samples. The most dominant cluster of vOTUs in the cohort was related to Bacteroides phage Hanky p00', and it carried both diversity generating retroelements and genes involved in capsular polysaccharide synthesis. Paired analysis of viromes and metagenomes from the same samples revealed that most prophages within the infant gut were induced and that induction was unaffected by a range of environmental perturbers. In summary, prophages are major components of the infant gut that may have far reaching influences on the microbiome and its host.
Collapse
Affiliation(s)
- Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Agnès Petit
- Micalis institute, INRAE, Agroparistech, Université Paris-Saclay, Jouy en Josas, France
| | - Ling Deng
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Gisle Vestergaard
- Technical University of Denmark, Section of Bioinformatics, Department of Health Technology, 2800 Kgs, Lyngby, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
| | - Dennis S Nielsen
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark
- Section of Food Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820, Gentofte, Denmark.
| |
Collapse
|
5
|
Godsil M, Ritz NL, Venkatesh S, Meeske AJ. Gut phages and their interactions with bacterial and mammalian hosts. J Bacteriol 2025; 207:e0042824. [PMID: 39846747 PMCID: PMC11844821 DOI: 10.1128/jb.00428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter." This community of gut-residing bacteriophages, called the gut "phageome," plays a central role in the gut microbiome through predation and transformation of native gut bacteria, and through interactions with their mammalian hosts. In this review, we will summarize what is known about the composition and origins of the gut phageome, as well as its role in microbiome homeostasis and host health. Furthermore, we will outline the interactions of gut phages with their bacterial and mammalian hosts, and plot a course for the mechanistic study of these systems.
Collapse
Affiliation(s)
- Marshall Godsil
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Alexander J. Meeske
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Tsantes AG, Liakou AI, Drogari-Apiranthitou M, Kaliouli-Antonopoulou C. The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity-A Narrative Review. Diagnostics (Basel) 2025; 15:413. [PMID: 40002565 PMCID: PMC11854275 DOI: 10.3390/diagnostics15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant's immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | - Andreas G. Tsantes
- Department of Microbiology, Saint Savvas Oncology Hospital, 11522 Athens, Greece;
| | - Aikaterini I. Liakou
- 1st Department of Dermatology-Venereology, “Andreas Sygros” Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Maria Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece;
| | | |
Collapse
|
7
|
Tzang CC, Chi LY, Lee CY, Chang ZY, Luo CA, Chen YH, Lin TA, Yu LC, Chen YR, Tzang BS, Hsu TC. Clinical implications of human Parvovirus B19 infection on autoimmunity and autoimmune diseases. Int Immunopharmacol 2025; 147:113960. [PMID: 39746271 DOI: 10.1016/j.intimp.2024.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Parvovirus B19 (B19V) is a human pathogen from the Parvoviridae family that primarily targets and replicates in erythroid progenitor cells (EPCs). While its symptoms are typically self-limiting in healthy individuals, B19V can cause or exacerbate autoimmune diseases in vulnerable patients. This review integrates the involvement of B19V in the development and worsening of several autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), hematological disorders (thalassemia, anemia, and thrombocytopenia), vasculitis, antiphospholipid syndrome (APS), dermatological disease (systemic sclerosis, psoriasis), autoimmune thyroid disease, myocarditis, and myasthenia gravis, and autoinflammatory disease of adult-onset Still's disease (AOSD). B19V contributes to autoimmunity and autoimmune disease onset and progression through mechanisms such as molecular mimicry, immune system disruption, and chronic infection. By summarizing findings from in vitro experiments, clinical case studies, seroprevalence data, and biopsy results, this review highlights the critical connection between B19V and autoimmune disease development. Recognizing the role of B19V in the early diagnosis and management of these conditions is essential, as its presence may influence the disease course and severity. Greater awareness among healthcare professionals and the public is necessary to address the impact of B19V, leading to more accurate diagnoses and better-informed treatment approaches for autoimmune diseases linked to the virus.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Liang-Yun Chi
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Yu Lee
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Zi-Yi Chang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chiao-An Luo
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yan-Hua Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tzu-An Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Liang-Chien Yu
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yo-Rong Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Bor-Show Tzang
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
8
|
Fliegerová KO, Mahayri TM, Sechovcová H, Mekadim C, Mrázek J, Jarošíková R, Dubský M, Fejfarová V. Diabetes and gut microbiome. Front Microbiol 2025; 15:1451054. [PMID: 39839113 PMCID: PMC11747157 DOI: 10.3389/fmicb.2024.1451054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Diabetes mellitus represents a significant global health problem. The number of people suffering from this metabolic disease is constantly rising and although the incidence is heterogeneous depending on region, country, economic situation, lifestyle, diet and level of medical care, it is increasing worldwide, especially among youths and children, mainly due to lifestyle and environmental changes. The pathogenesis of the two most common subtypes of diabetes mellitus, type 1 (T1DM) and type 2 (T2DM), is substantially different, so each form is characterized by a different causation, etiology, pathophysiology, presentation, and treatment. Research in recent decades increasingly indicates the potential role of the gut microbiome in the initiation, development, and progression of this disease. Intestinal microbes and their fermentation products have an important impact on host metabolism, immune system, nutrient digestion and absorption, gut barrier integrity and protection against pathogens. This review summarizes the current evidence on the changes in gut microbial populations in both types of diabetes mellitus. Attention is focused on changes in the abundance of specific bacterial groups at different taxonomic levels in humans, and microbiome shift is also assessed in relation to geographic location, age, diet and antidiabetic drug. The causal relationship between gut bacteria and diabetes is still unclear, and future studies applying new methodological approaches to a broader range of microorganisms inhabiting the digestive tract are urgently needed. This would not only provide a better understanding of the role of the gut microbiome in this metabolic disease, but also the use of beneficial bacterial species in the form of probiotics for the treatment of diabetes.
Collapse
Affiliation(s)
- Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Prague, Czechia
| | - Radka Jarošíková
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
| | - Vladimíra Fejfarová
- Institute for Clinical and Experimental Medicine, Diabetes Centre, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Hu F, Li X, Liu K, Li Y, Xie Y, Wei C, Liu S, Song J, Wang P, Shi L, Li C, Li J, Xu L, Xue J, Zheng X, Bai M, Fang X, Jin X, Cao L, Hao P, He J, Wang J, Zhang C, Li Z. Rheumatoid arthritis patients harbour aberrant enteric bacteriophages with autoimmunity-provoking potential: a paired sibling study. Ann Rheum Dis 2024; 83:1677-1690. [PMID: 39084885 DOI: 10.1136/ard-2024-225564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Viruses have been considered as important participants in the development of rheumatoid arthritis (RA). However, the profile of enteric virome and its role in RA remains elusive. This study aimed to investigate the atlas and involvement of virome in RA pathogenesis. METHODS Faecal samples from 30 pairs of RA and healthy siblings that minimise genetic interferences were collected for metagenomic sequencing. The α and β diversity of the virome and the virome-bacteriome interaction were analysed. The differential bacteriophages were identified, and their correlations with clinical and immunological features of RA were analysed. The potential involvement of these differential bacteriophages in RA pathogenesis was further investigated by auxiliary metabolic gene annotation and molecular mimicry study. The responses of CD4+ T cells and B cells to the mimotopes derived from the differential bacteriophages were systemically studied. RESULTS The composition of the enteric bacteriophageome was distorted in RA. The differentially presented bacteriophages correlated with the immunological features of RA, including anti-CCP autoantibody and HLA-DR shared epitope. Intriguingly, the glycerolipid and purine metabolic genes were highly active in the bacteriophages from RA. Moreover, peptides of RA-enriched phages, in particular Prevotella phage and Oscillibacter phage could provoke the autoimmune responses in CD4+ T cells and plasma cells via molecular mimicry of the disease-associated autoantigen epitopes, especially those of Bip. CONCLUSIONS This study provides new insights into enteric bacteriophageome in RA development. In particular, the aberrant bacteriophages demonstrated autoimmunity-provoking potential that would promote the occurrence of the disease.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Kai Liu
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shuyan Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Song
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lianjie Shi
- Department of Rheumatology and Immunology, Peking University Shougang Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Chiyu Zhang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
11
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
12
|
Mănescu M, Mănescu IB, Grama A. A Review of Stage 0 Biomarkers in Type 1 Diabetes: The Holy Grail of Early Detection and Prevention? J Pers Med 2024; 14:878. [PMID: 39202069 PMCID: PMC11355657 DOI: 10.3390/jpm14080878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Type 1 diabetes mellitus (T1D) is an incurable autoimmune disease characterized by the destruction of pancreatic islet cells, resulting in lifelong dependency on insulin treatment. There is an abundance of review articles addressing the prediction of T1D; however, most focus on the presymptomatic phases, specifically stages 1 and 2. These stages occur after seroconversion, where therapeutic interventions primarily aim to delay the onset of T1D rather than prevent it. This raises a critical question: what happens before stage 1 in individuals who will eventually develop T1D? Is there a "stage 0" of the disease, and if so, how can we detect it to increase our chances of truly preventing T1D? In pursuit of answers to these questions, this narrative review aimed to highlight recent research in the field of early detection and prediction of T1D, specifically focusing on biomarkers that can predict T1D before the onset of islet autoimmunity. Here, we have compiled influential research from the fields of epigenetics, omics, and microbiota. These studies have identified candidate biomarkers capable of predicting seroconversion from very early stages to several months prior, suggesting that the prophylactic window begins at birth. As the therapeutic landscape evolves from treatment to delay, and ideally from delay to prevention, it is crucial to both identify and validate such "stage 0" biomarkers predictive of islet autoimmunity. In the era of precision medicine, this knowledge will enable early intervention with the potential for delaying, modifying, or completely preventing autoimmunity and T1D in at-risk children.
Collapse
Affiliation(s)
- Măriuca Mănescu
- Department of Pediatrics, Emergency County Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu, 540136 Targu Mures, Romania;
| | - Ion Bogdan Mănescu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu, 540142 Targu Mures, Romania;
| | - Alina Grama
- Department of Pediatrics, Emergency County Clinical Hospital of Targu Mures, 50 Gheorghe Marinescu, 540136 Targu Mures, Romania;
- Department of Pediatrics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gheorghe Marinescu, 540142 Targu Mures, Romania
| |
Collapse
|
13
|
de Jonge PA, van den Born BJH, Zwinderman AH, Nieuwdorp M, Dutilh BE, Herrema H. Phylogeny and disease associations of a widespread and ancient intestinal bacteriophage lineage. Nat Commun 2024; 15:6346. [PMID: 39068184 PMCID: PMC11283538 DOI: 10.1038/s41467-024-50777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Viruses are core components of the human microbiome, impacting health through interactions with gut bacteria and the immune system. Most human microbiome viruses are bacteriophages, which exclusively infect bacteria. Until recently, most gut virome studies focused on low taxonomic resolution (e.g., viral operational taxonomic units), hampering population-level analyses. We previously identified an expansive and widespread bacteriophage lineage in inhabitants of Amsterdam, the Netherlands. Here, we study their biodiversity and evolution in various human populations. Based on a phylogeny using sequences from six viral genome databases, we propose the Candidatus order Heliusvirales. We identify heliusviruses in 82% of 5441 individuals across 39 studies, and in nine metagenomes from humans that lived in Europe and North America between 1000 and 5000 years ago. We show that a large lineage started to diversify when Homo sapiens first appeared some 300,000 years ago. Ancient peoples and modern hunter-gatherers have distinct Ca. Heliusvirales populations with lower richness than modern urbanized people. Urbanized people suffering from type 1 and type 2 diabetes, as well as inflammatory bowel disease, have higher Ca. Heliusvirales richness than healthy controls. We thus conclude that these ancient core members of the human gut virome have thrived with increasingly westernized lifestyles.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology; Biostatistics and Bioinformatics; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics; Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity; Faculty of Biological Sciences; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hilde Herrema
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Fang L, Ning J. Gut virome and diabetes: discovering links, exploring therapies. Arch Microbiol 2024; 206:346. [PMID: 38976078 DOI: 10.1007/s00203-024-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
This review offers a comprehensive analysis of the intricate relationship between the gut virome and diabetes, elucidating the mechanisms by which the virome engages with both human cells and the intestinal bacteriome. By examining a decade of scientific literature, we provide a detailed account of the distinct viral variations observed in type 1 diabetes (T1D) and type 2 diabetes (T2D). Our synthesis reveals that the gut virome significantly influences the development of both diabetes types through its interactions, which indirectly modulate immune and inflammatory responses. In T1D, the focus is on eukaryotic viruses that stimulate the host's immune system, whereas T2D is characterized by a broader spectrum of altered phage diversities. Promisingly, in vitro and animal studies suggest fecal virome transplantation as a potential therapeutic strategy to alleviate symptoms of T2D and obesity. This study pioneers a holistic overview of the gut virome's role in T1D and T2D, its interplay with host immunity, and the innovative potential of fecal transplantation therapy in clinical diabetes management.
Collapse
Affiliation(s)
- Lihua Fang
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guanlan Road 187, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
16
|
Ullah Khan N, Sadiq A, Khan J, Basharat N, Hassan ZU, Ali I, Shah TA, Bourhia M, Bin Jardan YA, Wondmie GF. Molecular characterization of plasma virome of hepatocellular carcinoma (HCC) patients. AMB Express 2024; 14:46. [PMID: 38664337 PMCID: PMC11045709 DOI: 10.1186/s13568-024-01696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) stands as the most common cancer type, arising from various causes, and responsible for a substantial number of cancer-related fatalities. Recent advancements in viral metagenomics have empowered scientists to delve into the intricate diversity of the virosphere, viral evolution, interactions between viruses and their hosts, and the identification of viral causes behind disease outbreaks, the development of specific symptoms, and their potential role in altering the host's physiology. The present study had the objective of "Molecular Characterization of HBV, HCV, anelloviruses, CMV, SENV-D, SENV-H, HEV, and HPV viruses among individuals suffering from HCC." A total of 381 HCC patients contributed 10 cc of blood each for this study. The research encompassed the assessment of tumor markers, followed by molecular characterization of HBV, HCV, Anelloviruses (TTV, TTMV, and TTMDV), SENV-H and SENV-D viruses, HEV, CMV, and HPV, as well as histopathological examinations. The outcomes of this study revealed that majority of the HCC patients 72.4% (276/381) were male as compared to females. HCV infection, at 76.4% (291 out of 381), exhibited a significant association (p < 0.05) with HCC. Most patients displayed singular lesions in the liver, with Child Pugh Score Type B being the predominant finding in 45.2% of cases. Plasma virome analysis indicated the prevalence of TTMDV (75%), followed by TTMV (70%) and TTV (42.1%) among anelloviruses in HCC patients. Similarly, SENV-H (52%) was followed by SENV-D (20%), with co-infections at 15%. The presence of CMV and HEV among the HCC patients was recorded 5% each however 3.5% of the patients showed the presence of HPV. In conclusion, this study underscores that HCC patients serve as reservoirs for various pathogenic and non-pathogenic viruses, potentially contributing to the development, progression, and severity of the disease.
Collapse
Affiliation(s)
- Niamat Ullah Khan
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asma Sadiq
- Department of Microbiology, University of Jhang, Punjab, Pakistan
| | - Jadoon Khan
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan.
- Department of Allied Health Sciences, Iqra University, Chak Shahzad Campus, Islamabad, Pakistan.
| | - Nosheen Basharat
- Department of Microbiology, University of Jhang, Punjab, Pakistan
| | - Zulfiqar Ul Hassan
- Department of Allied Health Sciences, Iqra University, Chak Shahzad Campus, Islamabad, Pakistan
| | - Ijaz Ali
- Molecular Virology Laboratory, Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, West Mishref, Kuwait
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, 80060, Morocco.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | | |
Collapse
|
17
|
Poulsen CS, Hesse D, Fernandes GR, Hansen TH, Kern T, Linneberg A, Van Espen L, Jørgensen T, Nielsen T, Alibegovic AC, Matthijnssens J, Pedersen O, Vestergaard H, Hansen T, Andersen MK. Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults. Sci Rep 2024; 14:8315. [PMID: 38594375 PMCID: PMC11003976 DOI: 10.1038/s41598-024-58985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease characterized by autoantibodies against insulin producing pancreatic beta cells and initial lack of need for insulin treatment. The aim of the present study was to investigate if individuals with LADA have an altered gut microbiota relative to non-diabetic control subjects, individuals with type 1 diabetes (T1D), and individuals with type 2 diabetes (T2D). Bacterial community profiling was performed with primers targeting the variable region 4 of the 16S rRNA gene and sequenced. Amplicon sequence variants (ASVs) were generated with DADA2 and annotated to the SILVA database. The gut virome was sequenced, using a viral particle enrichment and metagenomics approach, assembled, and quantified to describe the composition of the viral community. Comparison of the bacterial alpha- and beta-diversity measures revealed that the gut bacteriome of individuals with LADA resembled that of individuals with T2D. Yet, specific genera were found to differ in abundance in individuals with LADA compared with T1D and T2D, indicating that LADA has unique taxonomical features. The virome composition reflected the stability of the most dominant order Caudovirales and the families Siphoviridae, Podoviridae, and Inoviridae, and the dominant family Microviridae. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Casper S Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dan Hesse
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Gabriel R Fernandes
- Biosystems Informatics, Institute René Rachou-Fiocruz Minas, Belo Horizonte, Brazil
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics A/S, Copenhagen, Denmark
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lore Van Espen
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amra C Alibegovic
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk A/S, Soeborg, Denmark
| | - Jelle Matthijnssens
- Department of Microbiology, Immunology & Transplantation, Rega Institute, Laboratory of Clinical & Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Department of Medicine, Gentofte University Hospital, Copenhagen, Denmark
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mette K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Gough EK, Edens TJ, Carr L, Robertson RC, Mutasa K, Ntozini R, Chasekwa B, Geum HM, Baharmand I, Gill SK, Mutasa B, Mbuya MNN, Majo FD, Tavengwa N, Francis F, Tome J, Evans C, Kosek M, Prendergast AJ, Manges AR. Bifidobacterium longum modifies a nutritional intervention for stunting in Zimbabwean infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301438. [PMID: 38293149 PMCID: PMC10827232 DOI: 10.1101/2024.01.18.24301438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Child stunting is an indicator of chronic undernutrition and reduced human capital. However, it remains a poorly understood public health problem. Small-quantity lipid-based nutrient supplements (SQ-LNS) have been widely tested to reduce stunting, but have modest effects. The infant intestinal microbiome may contribute to stunting, and is partly shaped by mother and infant histo-blood group antigens (HBGA). We investigated whether mother-infant fucosyltransferase status, which governs HBGA, and the infant gut microbiome modified the impact of SQ-LNS on stunting at age 18 months among Zimbabwean infants in the SHINE Trial ( NCT01824940 ). We found that mother-infant fucosyltransferase discordance and Bifidobacterium longum reduced SQ-LNS efficacy. Infant age-related microbiome shifts in B. longum subspecies dominance from infantis , a proficient human milk oligosaccharide utilizer, to suis or longum , proficient plant-polysaccharide utilizers, were partly influenced by discordance in mother-infant FUT2+/FUT3- phenotype, suggesting that a "younger" microbiome at initiation of SQ-LNS reduces its benefits on stunting.
Collapse
|
19
|
Zolfo M, Silverj A, Blanco-Míguez A, Manghi P, Rota-Stabelli O, Heidrich V, Jensen J, Maharjan S, Franzosa E, Menni C, Visconti A, Pinto F, Ciciani M, Huttenhower C, Cereseto A, Asnicar F, Kitano H, Yamada T, Segata N. Discovering and exploring the hidden diversity of human gut viruses using highly enriched virome samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580813. [PMID: 38464031 PMCID: PMC10925137 DOI: 10.1101/2024.02.19.580813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.
Collapse
Affiliation(s)
- Moreno Zolfo
- Department CIBIO, University of Trento, Italy
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - Andrea Silverj
- Department CIBIO, University of Trento, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Italy
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | | | | | - Omar Rota-Stabelli
- Department CIBIO, University of Trento, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Italy
- Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | | | - Jordan Jensen
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sagun Maharjan
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric Franzosa
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King’s College London, London, UK
| | - Alessia Visconti
- Center for Biostatistics, Epidemiology and Public Health, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Hiroaki Kitano
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- The Systems Biology Institute (SBI), Tokyo, Japan
- IOM Bioworks Pvt. Ltd., Centre for Cellular and Molecular Platforms (C-CAMP), GKVK Post, Bellary Rd, Bengaluru, Karnataka-560065, India
| | - Takuji Yamada
- Integrated Open Systems Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
- Metagen, Inc., Yamagata, Japan
- Metagen Therapeutics, Inc., Yamagata, Japan
- digzyme, Inc., Tokyo, Japan
| | - Nicola Segata
- Department CIBIO, University of Trento, Italy
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
20
|
Ligeti B, Szepesi-Nagy I, Bodnár B, Ligeti-Nagy N, Juhász J. ProkBERT family: genomic language models for microbiome applications. Front Microbiol 2024; 14:1331233. [PMID: 38282738 PMCID: PMC10810988 DOI: 10.3389/fmicb.2023.1331233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background In the evolving landscape of microbiology and microbiome analysis, the integration of machine learning is crucial for understanding complex microbial interactions, and predicting and recognizing novel functionalities within extensive datasets. However, the effectiveness of these methods in microbiology faces challenges due to the complex and heterogeneous nature of microbial data, further complicated by low signal-to-noise ratios, context-dependency, and a significant shortage of appropriately labeled datasets. This study introduces the ProkBERT model family, a collection of large language models, designed for genomic tasks. It provides a generalizable sequence representation for nucleotide sequences, learned from unlabeled genome data. This approach helps overcome the above-mentioned limitations in the field, thereby improving our understanding of microbial ecosystems and their impact on health and disease. Methods ProkBERT models are based on transfer learning and self-supervised methodologies, enabling them to use the abundant yet complex microbial data effectively. The introduction of the novel Local Context-Aware (LCA) tokenization technique marks a significant advancement, allowing ProkBERT to overcome the contextual limitations of traditional transformer models. This methodology not only retains rich local context but also demonstrates remarkable adaptability across various bioinformatics tasks. Results In practical applications such as promoter prediction and phage identification, the ProkBERT models show superior performance. For promoter prediction tasks, the top-performing model achieved a Matthews Correlation Coefficient (MCC) of 0.74 for E. coli and 0.62 in mixed-species contexts. In phage identification, ProkBERT models consistently outperformed established tools like VirSorter2 and DeepVirFinder, achieving an MCC of 0.85. These results underscore the models' exceptional accuracy and generalizability in both supervised and unsupervised tasks. Conclusions The ProkBERT model family is a compact yet powerful tool in the field of microbiology and bioinformatics. Its capacity for rapid, accurate analyses and its adaptability across a spectrum of tasks marks a significant advancement in machine learning applications in microbiology. The models are available on GitHub (https://github.com/nbrg-ppcu/prokbert) and HuggingFace (https://huggingface.co/nerualbioinfo) providing an accessible tool for the community.
Collapse
Affiliation(s)
- Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Szepesi-Nagy
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Babett Bodnár
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Noémi Ligeti-Nagy
- Language Technology Research Group, HUN-REN Hungarian Research Centre for Linguistics, Budapest, Hungary
| | - János Juhász
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
22
|
Gliźniewicz M, Miłek D, Olszewska P, Czajkowski A, Serwin N, Cecerska-Heryć E, Dołęgowska B, Grygorcewicz B. Advances in bacteriophage-mediated strategies for combating polymicrobial biofilms. Front Microbiol 2024; 14:1320345. [PMID: 38249486 PMCID: PMC10797108 DOI: 10.3389/fmicb.2023.1320345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Bacteria and fungi tend to coexist within biofilms instead of in planktonic states. Usually, such communities include cross-kingdom microorganisms, which make them harder to remove from abiotic surfaces or infection sites. Additionally, the produced biofilm matrix protects embedded microorganisms from antibiotics, disinfectants, or the host immune system. Therefore, classic therapies based on antibiotics might be ineffective, especially when multidrug-resistant bacteria are causative factors. The complexities surrounding the eradication of biofilms from diverse surfaces and the human body have spurred the exploration of alternative therapeutic modalities. Among these options, bacteriophages and their enzymatic counterparts have emerged as promising candidates, either employed independently or in synergy with antibiotics and other agents. Phages are natural bacteria killers because of mechanisms of action that differ from antibiotics, phages might answer worldwide problems with bacterial infections. In this review, we report the attempts to use bacteriophages in combating polymicrobial biofilms in in vitro studies, using different models, including the therapeutical use of phages. In addition, we sum up the advantages, disadvantages, and perspectives of phage therapy.
Collapse
Affiliation(s)
- Marta Gliźniewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Dominika Miłek
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Patrycja Olszewska
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Artur Czajkowski
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Natalia Serwin
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Elżbieta Cecerska-Heryć
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Department of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, Poland
| |
Collapse
|
23
|
Ji C, Zhang Y, Feng Y, Zhang X, Gong F, Yao H, Sun X, Pan Z. Circular replication-associated protein-encoding single-stranded DNA virus with risk of spillover is widely prevalent in domestic animals in China. Virus Res 2024; 339:199204. [PMID: 37607596 PMCID: PMC10654594 DOI: 10.1016/j.virusres.2023.199204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/24/2023]
Abstract
Circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses are highly diverse and have a broad range of hosts. In this study, we report the detection of Bo-Circo-like virus AH20-1 in the feces of diarrheal cattle. The virus has a circular genome of 3,912 nucleotides, three major putative open reading frames, and encodes a Rep gene of 310 amino acids. We found that the virus is closely related to the Bo-Circo-like virus CH strain, which belongs to the novel Kirkoviridae family. Furthermore, we conducted a nationwide surveillance program and found that the virus is prevalent in China (23.6%, 205/868), with the BCLa subtype being the predominant strain. Our findings suggest that the virus can infect sheep, highlighting the potential for cross-species transmission. Our pressure analysis indicates that the CRESS-DNA Kirkoviridae family has broad host adaptation, and that selection pressure played an important role in the evolution of its Rep genes. Our study underscores the need for continued epidemiological surveillance of this virus due to its widespread prevalence in our ruminant population and potential for cross-species transmission.
Collapse
Affiliation(s)
- Chengyuan Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiu Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinqin Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengju Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqiang Sun
- China Animal Health and Epidemiology Center, Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Qingdao 266000, China.
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China..
| |
Collapse
|
24
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
25
|
Leal Rodríguez C, Shah SA, Rasmussen MA, Thorsen J, Boulund U, Pedersen CET, Castro-Mejía JL, Poulsen CE, Poulsen CS, Deng L, Larsen FAN, Widdowson M, Zhang Y, Sørensen SJ, Moineau S, Petit MA, Chawes B, Bønnelykke K, Nielsen DS, Stokholm J. The infant gut virome is associated with preschool asthma risk independently of bacteria. Nat Med 2024; 30:138-148. [PMID: 38102298 DOI: 10.1038/s41591-023-02685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Bacteriophage (also known as phage) communities that inhabit the gut have a major effect on the structure and functioning of bacterial populations, but their roles and association with health and disease in early life remain unknown. Here, we analyze the gut virome of 647 children aged 1 year from the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort, all deeply phenotyped from birth and with longitudinally assessed asthma diagnoses. Specific temperate gut phage taxa were found to be associated with later development of asthma. In particular, the joint abundances of 19 caudoviral families were found to significantly contribute to this association. Combining the asthma-associated virome and bacteriome signatures had additive effects on asthma risk, implying an independent virome-asthma association. Moreover, the virome-associated asthma risk was modulated by the host TLR9 rs187084 gene variant, suggesting a direct interaction between phages and the host immune system. Further studies will elucidate whether phages, alongside bacteria and host genetics, can be used as preclinical biomarkers for asthma.
Collapse
Affiliation(s)
- Cristina Leal Rodríguez
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Morten Arendt Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Casper-Emil Tingskov Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christina Egeø Poulsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Casper Sahl Poulsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael Widdowson
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Yichang Zhang
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie, et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec City, QC, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, Agroparistech, Micalis Institute, Jouy-en-Josas, France
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte, Denmark.
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Yu Z, Liu H, Chen Z, Shao Y, Wang Z, Cheng F, Zhang Y, Wang Z, Tu J, Song X, Qi K. LAMP assay coupled with a CRISPR/Cas12a system for the rapid and ultrasensitive detection of porcine circovirus-like virus in the field. Anal Bioanal Chem 2024; 416:363-372. [PMID: 37935845 DOI: 10.1007/s00216-023-05020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
A recent outbreak of porcine circovirus-like virus (PCLV), a virus that may be associated with porcine diarrhea, has been reported in swine herds in China. The virus is spreading rapidly, causing huge economic losses to the swine farming industry. To achieve the rapid, inexpensive, and sensitive detection of PCLV, we combined loop-mediated isothermal amplification (LAMP) and the CRISPR/Cas12a system, whose fluorescence intensity readout can detect PCLV ORF4 gene levels as low as 10 copies. To overcome the need for sophisticated equipment, lateral flow strip reading technology was introduced for the first time in a LAMP-Cas12a-based system to detect PCLV. The lateral flow strip (LFS) results were readout by the naked eye, and the method was highly sensitive with a detection limit of 10 copies, with a detection time of about 60 min. In addition, the method is highly specific and has no cross-reactivity with other related viruses. In conclusion, LAMP-CRISPR/Cas12a-based assays have the advantages of rapidity, accuracy, portability, low cost, and visualization of the results. They therefore have great potential, especially for areas where specialized equipment is lacking, and can expect to be an ideal method for early diagnosis and on-site detection of PCLV.
Collapse
Affiliation(s)
- Zhaorong Yu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Hua Liu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Zhe Chen
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Ying Shao
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Zhipeng Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Fanyu Cheng
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Yu Zhang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Zhenyu Wang
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Jian Tu
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Xiangjun Song
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China.
| | - Kezong Qi
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
27
|
Hess SC, Weiss KCB, Custer JM, Lewis JS, Kraberger S, Varsani A. Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA). Arch Virol 2023; 169:12. [PMID: 38151635 DOI: 10.1007/s00705-023-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.
Collapse
Affiliation(s)
- Savage C Hess
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Katherine C B Weiss
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Jesse S Lewis
- College of Integrative Sciences and Arts, Arizona State University, Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ, 85212, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA.
- Center of Evolution and Medicine, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
28
|
Hamilton T, Joris BR, Shrestha A, Browne TS, Rodrigue S, Karas BJ, Gloor GB, Edgell DR. De Novo Synthesis of a Conjugative System from Human Gut Metagenomic Data for Targeted Delivery of Cas9 Antimicrobials. ACS Synth Biol 2023; 12:3578-3590. [PMID: 38049144 PMCID: PMC10729033 DOI: 10.1021/acssynbio.3c00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023]
Abstract
Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.
Collapse
Affiliation(s)
- Thomas
A. Hamilton
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Benjamin R. Joris
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Arina Shrestha
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Tyler S. Browne
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Sébastien Rodrigue
- Départment
de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - Gregory B. Gloor
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| | - David R. Edgell
- Department
of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London N6A 5C1, ON, Canada
| |
Collapse
|
29
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
30
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
31
|
Pan J, Ji L, Wu H, Wang X, Wang Y, Wu Y, Yang S, Shen Q, Liu Y, Zhang W, Zhang K, Shan T. Metagenomic analysis of herbivorous mammalian viral communities in the Northwest Plateau. BMC Genomics 2023; 24:568. [PMID: 37749507 PMCID: PMC10521573 DOI: 10.1186/s12864-023-09646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Mammals are potential hosts for many infectious diseases. However, studies on the viral communities of herbivorous mammals in the Northwest Plateau are limited. Here, we studied the viral communities of herbivorous mammals in the Northwest Plateau using virus metagenomic analysis to analyze and compare the viral community composition of seven animal species. RESULTS By library construction and next-generation sequencing, contigs and singlets reads with similar viral sequences were classified into 24 viral families. Analyzed from the perspective of sampling areas, the virus community composition was relatively similar in two areas of Wuwei and Jinchang, Gansu Province. Analyzed from the perspective of seven animal species, the viral reads of seven animal species were mostly ssDNA and dominated by CRESS-DNA viruses. Phylogenetic analysis based on viral marker genes indicated that CRESS-DNA viruses and microviruses have high genetic diversity. In addition to DNA viruses, nodaviruses, pepper mild mottle viruses and picornaviruses were RNA viruses that we performed by phylogenetic analysis. The CRESS-DNA viruses and nodaviruses are believed to infect plants and insects, and microviruses can infect bacteria, identifying that they were likely from the diet of herbivorous mammals. Notably, two picornaviruses were identified from red deer and wild horse, showing that the picornavirus found in red deer had the relatively high similarity with human hepatitis A virus, and the picornavirus carried by wild horse could potentially form a new species within the Picornaviridae family. CONCLUSIONS This study explored the herbivorous mammalian virus community in the Northwest Plateau and the genetic characteristics of viruses that potentially threaten human health. It reveals the diversity and stability of herbivorous mammalian virus communities in the Northwest Plateau and helps to expand our knowledge of various herbivorous mammalian potentially pathogenic viruses.
Collapse
Grants
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No.2022YFC2603801 National Key Research and Development Programs of China
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
- No. 20220817004 Funding for Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents - Leading Talents
Collapse
Affiliation(s)
- Jiamin Pan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
32
|
Varga KZ, Gyurina K, Radványi Á, Pál T, Sasi-Szabó L, Yu H, Felszeghy E, Szabó T, Röszer T. Stimulator of Interferon Genes (STING) Triggers Adipocyte Autophagy. Cells 2023; 12:2345. [PMID: 37830559 PMCID: PMC10572001 DOI: 10.3390/cells12192345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Innate immune signaling in adipocytes affects systemic metabolism. Cytosolic nucleic acid sensing has been recently shown to stimulate thermogenic adipocyte differentiation and protect from obesity; however, DNA efflux from adipocyte mitochondria is a potential proinflammatory signal that causes adipose tissue dysfunction and insulin resistance. Cytosolic DNA activates the stimulator of interferon response genes (STING), a key signal transducer which triggers type I interferon (IFN-I) expression; hence, STING activation is expected to induce IFN-I response and adipocyte dysfunction. However, we show herein that mouse adipocytes had a diminished IFN-I response to STING stimulation by 2'3'-cyclic-GMP-AMP (cGAMP). We also show that cGAMP triggered autophagy in murine and human adipocytes. In turn, STING inhibition reduced autophagosome number, compromised the mitochondrial network and caused inflammation and fat accumulation in adipocytes. STING hence stimulates a process that removes damaged mitochondria, thereby protecting adipocytes from an excessive IFN-I response to mitochondrial DNA efflux. In summary, STING appears to limit inflammation in adipocytes by promoting mitophagy under non-obesogenic conditions.
Collapse
Affiliation(s)
- Kornél Z. Varga
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Katalin Gyurina
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Radványi
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Pál
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Sasi-Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Haidong Yu
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| | - Enikő Felszeghy
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Röszer
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
33
|
Rook GAW. The old friends hypothesis: evolution, immunoregulation and essential microbial inputs. FRONTIERS IN ALLERGY 2023; 4:1220481. [PMID: 37772259 PMCID: PMC10524266 DOI: 10.3389/falgy.2023.1220481] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023] Open
Abstract
In wealthy urbanised societies there have been striking increases in chronic inflammatory disorders such as allergies, autoimmunity and inflammatory bowel diseases. There has also been an increase in the prevalence of individuals with systemically raised levels of inflammatory biomarkers correlating with increased risk of metabolic, cardiovascular and psychiatric problems. These changing disease patterns indicate a broad failure of the mechanisms that should stop the immune system from attacking harmless allergens, components of self or gut contents, and that should terminate inappropriate inflammation. The Old Friends Hypothesis postulates that this broad failure of immunoregulation is due to inadequate exposures to the microorganisms that drive development of the immune system, and drive the expansion of components such as regulatory T cells (Treg) that mediate immunoregulatory mechanisms. An evolutionary approach helps us to identify the organisms on which we are in a state of evolved dependence for this function (Old Friends). The bottom line is that most of the organisms that drive the regulatory arm of the immune system come from our mothers and family and from the natural environment (including animals) and many of these organisms are symbiotic components of a healthy microbiota. Lifestyle changes that are interrupting our exposure to these organisms can now be identified, and many are closely associated with low socioeconomic status (SES) in wealthy countries. These insights will facilitate the development of education, diets and urban planning that can correct the immunoregulatory deficit, while simultaneously reducing other contributory factors such as epithelial damage.
Collapse
Affiliation(s)
- Graham A. W. Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, United Kingdom
| |
Collapse
|
34
|
Roach DR, Noël B, Chollet-Martin S, de Jode M, Granger V, Debarbieux L, de Chaisemartin L. Human Neutrophil Response to Pseudomonas Bacteriophage PAK_P1, a Therapeutic Candidate. Viruses 2023; 15:1726. [PMID: 37632068 PMCID: PMC10458410 DOI: 10.3390/v15081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The immune system offers several mechanisms of response to harmful microbes that invade the human body. As a first line of defense, neutrophils can remove pathogens by phagocytosis, inactivate them by the release of reactive oxygen species (ROS) or immobilize them by neutrophil extracellular traps (NETs). Although recent studies have shown that bacteriophages (phages) make up a large portion of human microbiomes and are currently being explored as antibacterial therapeutics, neutrophilic responses to phages are still elusive. Here, we show that exposure of isolated human resting neutrophils to a high concentration of the Pseudomonas phage PAK_P1 led to a 2-fold increase in interleukin-8 (IL-8) secretion. Importantly, phage exposure did not induce neutrophil apoptosis or necrosis and did not further affect activation marker expression, oxidative burst, and NETs formation. Similarly, inflammatory stimuli-activated neutrophil effector responses were unaffected by phage exposure. Our work suggests that phages are unlikely to inadvertently cause excessive neutrophil responses that could damage tissues and worsen disease. Because IL-8 functions as a chemoattractant, directing immune cells to sites of infection and inflammation, phage-stimulated IL-8 production may modulate some host immune responses.
Collapse
Affiliation(s)
- Dwayne R. Roach
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015 Paris, France; (D.R.R.); (M.d.J.)
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Benoît Noël
- INSERM UMR-996, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France; (B.N.); (S.C.-M.); (V.G.)
| | - Sylvie Chollet-Martin
- INSERM UMR-996, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France; (B.N.); (S.C.-M.); (V.G.)
- APHP, Service Auto-Immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, 75018 Paris, France
| | - Mathieu de Jode
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015 Paris, France; (D.R.R.); (M.d.J.)
| | - Vanessa Granger
- INSERM UMR-996, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France; (B.N.); (S.C.-M.); (V.G.)
- APHP, Service Auto-Immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, 75018 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, 75015 Paris, France; (D.R.R.); (M.d.J.)
| | - Luc de Chaisemartin
- INSERM UMR-996, Inflammation, Microbiome and Immunosurveillance, Faculté de Pharmacie, Université Paris-Saclay, 91400 Orsay, France; (B.N.); (S.C.-M.); (V.G.)
- APHP, Service Auto-Immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, 75018 Paris, France
| |
Collapse
|
35
|
Amini Khiabani S, Asgharzadeh M, Samadi Kafil H. Chronic kidney disease and gut microbiota. Heliyon 2023; 9:e18991. [PMID: 37609403 PMCID: PMC10440536 DOI: 10.1016/j.heliyon.2023.e18991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a range of various pathophysiological processes correlated with abnormal renal function and a progressive loss in GFR. Just as dysbiosis and altered pathology of the gut are accompanied with hypertension, which is a significant CKD risk factor. Gut dysbiosis in CKD patients is associated with an elevated levels of uremic toxins, which in turn increases the CKD progression. According to research results, the gut-kidney axis has a role in the formation of kidney stones, also in IgAN. A number of researchers have categorized the gut microbiota as enterotypes, and others, skeptical of theory of enterotypes, have suggested biomarkers to describe taxa that related to lifestyle, nutrition, and disease status. Metabolome-microbiome studies have been used to investigate the interactions of host-gut microbiota in terms of the involvement of metabolites in these interactions and are yielded promising results. The correlation between gut microbiota and CKD requires further multi-omic researches. Also, with regard to systems biology, studies on the communication network of proteins and transporters such as SLC and ABC, can help us achieve a deeper understanding of the gut-liver-kidney axis communication and can thus provide promising new horizons in the treatment of CKD patients. Probiotic-based treatment is an approach to reduce uremic poisoning, which is accomplished by swallowing microbes those can catalyze URS in the gut. If further comprehensive studies are carried out, we will know about the probiotics impact in slowing the renal failure progression and reducing inflammatory markers.
Collapse
Affiliation(s)
- Siamak Amini Khiabani
- Research center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
37
|
Avellaneda-Franco L, Dahlman S, Barr JJ. The gut virome and the relevance of temperate phages in human health. Front Cell Infect Microbiol 2023; 13:1241058. [PMID: 37577374 PMCID: PMC10413269 DOI: 10.3389/fcimb.2023.1241058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 08/15/2023] Open
Abstract
Alterations in the gut virome impact human health. Bacteriophages, viruses that infect bacteria, dominate the gut virome and are mainly composed by virulent and temperate phages. While virulent phages exclusively replicate within and lyse their bacterial host's cell, temperate phages switch from an integrated state residing within their bacterial host's chromosome to an induced free virion state via an induction event. How often do these induction events occur and what are their implications on gut homeostasis? Here, we summarize the current knowledge of the gut virome based on metagenomics and present how the proportion of induced temperate phages varies amongst individuals, age, and disease states. Finally, we highlight the importance of building upon classical culture-dependent techniques and sequencing approaches to improve our understanding of temperate phages to enable their potential therapeutic use.
Collapse
Affiliation(s)
| | | | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
38
|
Isaacs SR, Roy A, Dance B, Ward EJ, Foskett DB, Maxwell AJ, Rawlinson WD, Kim KW, Craig ME. Enteroviruses and risk of islet autoimmunity or type 1 diabetes: systematic review and meta-analysis of controlled observational studies detecting viral nucleic acids and proteins. Lancet Diabetes Endocrinol 2023:S2213-8587(23)00122-5. [PMID: 37390839 DOI: 10.1016/s2213-8587(23)00122-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Enteroviruses are routinely detected with molecular methods within large cohorts that are at risk of type 1 diabetes. We aimed to examine the association between enteroviruses and either islet autoimmunity or type 1 diabetes. METHODS For this systematic review and meta-analysis, we searched PubMed and Embase for controlled observational studies from inception until Jan 1, 2023. Cohort or case-control studies were eligible if enterovirus RNA or protein were detected in individuals with outcomes of islet autoimmunity or type 1 diabetes. Studies in pregnancy or other types of diabetes were excluded. Data extraction and appraisal involved author contact and deduplication, which was done independently by three reviewers. Study quality was assessed with the Newcastle-Ottawa Scale and National Health and Medical Research Council levels of evidence. Pooled and subgroup meta-analyses were done in RevMan version 5.4, with random effects models and Mantel-Haenszel odds ratios (ORs; 95% CIs). The study is registered with PROSPERO, CRD42021278863. FINDINGS The search returned 3266 publications, with 897 full texts screened. Following deduplication, 113 eligible records corresponded to 60 studies (40 type 1 diabetes; nine islet autoimmunity; 11 both), comprising 12077 participants (5981 cases; 6096 controls). Study design and quality varied, generating substantial statistical heterogeneity. Meta-analysis of 56 studies showed associations between enteroviruses and islet autoimmunity (OR 2·1, 95% CI 1·3-3·3; p=0·002; n=18; heterogeneity χ2/df 2·69; p=0·0004; I2=63%), type 1 diabetes (OR 8·0, 95% CI 4·9-13·0; p<0·0001; n=48; χ2/df 6·75; p<0·0001; I2=85%), or within 1 month of type 1 diabetes (OR 16·2, 95% CI 8·6-30·5; p<0·0001; n=28; χ2/df 3·25; p<0·0001; I2=69%). Detection of either multiple or consecutive enteroviruses was associated with islet autoimmunity (OR 2·0, 95% CI 1·0-4·0; p=0·050; n=8). Detection of Enterovirus B was associated with type 1 diabetes (OR 12·7, 95% CI 4·1-39·1; p<0·0001; n=15). INTERPRETATION These findings highlight the association between enteroviruses and islet autoimmunity or type 1 diabetes. Our data strengthen the rationale for vaccine development targeting diabetogenic enterovirus types, particularly those within Enterovirus B. Prospective studies of early life are needed to elucidate the role of enterovirus timing, type, and infection duration on the initiation of islet autoimmunity and the progression to type 1 diabetes. FUNDING Environmental Determinants of Islet Autoimmunity, European Association for the Study of Diabetes, JDRF, Australian National Health and Medical Research Council, and University of New South Wales.
Collapse
Affiliation(s)
- Sonia R Isaacs
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anju Roy
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Brieana Dance
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Emily J Ward
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Dylan B Foskett
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anna J Maxwell
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - William D Rawlinson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ki Wook Kim
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Maria E Craig
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Serology and Virology Division (SAViD), NSW Health Pathology, Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, Australia; Institute of Endocrinology and Diabetes, Children's Hospital at Westmead, Westmead, Sydney, NSW, Australia; Specialty of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
39
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
40
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
41
|
Jurburg SD, Hom EFY, Chatzinotas A. Beyond pathogenesis: Detecting the full spectrum of ecological interactions in the virosphere. PLoS Biol 2023; 21:e3002109. [PMID: 37186573 PMCID: PMC10184920 DOI: 10.1371/journal.pbio.3002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The public perception of viruses has historically been negative. We are now at a stage where the development of tools to study viruses is at an all-time high, but society's perception of viruses is at an all-time low. The literature regarding viral interactions has been skewed towards negative (i.e., pathogenic) symbioses, whereas viral mutualisms remain relatively underexplored. Viral interactions with their hosts are complex and some non-pathogenic viruses could have potential benefits to society. However, viral research is seldom designed to identify viral mutualists, a gap that merits considering new experimental designs. Determining whether antagonisms, mutualisms, and commensalisms are equally common ecological strategies requires more balanced research efforts that characterize the full spectrum of viral interactions.
Collapse
Affiliation(s)
- Stephanie D. Jurburg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Erik F. Y. Hom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, Mississippi, United States of America
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
42
|
Wang L, Yao H, Morgan DC, Lau KS, Leung SY, Ho JWK, Leung WK. Altered human gut virome in patients undergoing antibiotics therapy for Helicobacter pylori. Nat Commun 2023; 14:2196. [PMID: 37069161 PMCID: PMC10110541 DOI: 10.1038/s41467-023-37975-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Transient gut microbiota alterations have been reported after antibiotic therapy for Helicobacter pylori. However, alteration in the gut virome after H. pylori eradication remains uncertain. Here, we apply metagenomic sequencing to fecal samples of 44 H. pylori-infected patients at baseline, 6-week (N = 44), and 6-month (N = 33) after treatment. Following H. pylori eradication, we discover contraction of the gut virome diversity, separation of virome community with increased community difference, and shifting towards a higher proportion of core virus. While the gut microbiota is altered at 6-week and restored at 6-month, the virome community shows contraction till 6-month after the treatment with enhanced phage-bacteria interactions at 6-week. Multiple courses of antibiotic treatments further lead to lower virus community diversity when compared with treatment naive patients. Our results demonstrate that H. pylori eradication therapies not only result in transient alteration in gut microbiota but also significantly alter the previously less known gut virome community.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobin Yao
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
| | - Daniel C Morgan
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
| | - Kam Shing Lau
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Suet Yi Leung
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
- The Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Joshua W K Ho
- School of Biomedical Science, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai K Leung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
43
|
Shah SA, Deng L, Thorsen J, Pedersen AG, Dion MB, Castro-Mejía JL, Silins R, Romme FO, Sausset R, Jessen LE, Ndela EO, Hjelmsø M, Rasmussen MA, Redgwell TA, Leal Rodríguez C, Vestergaard G, Zhang Y, Chawes B, Bønnelykke K, Sørensen SJ, Bisgaard H, Enault F, Stokholm J, Moineau S, Petit MA, Nielsen DS. Expanding known viral diversity in the healthy infant gut. Nat Microbiol 2023; 8:986-998. [PMID: 37037943 PMCID: PMC10159846 DOI: 10.1038/s41564-023-01345-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.
Collapse
Affiliation(s)
- Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark.
| | - Ling Deng
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders G Pedersen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
| | | | - Ronalds Silins
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Fie O Romme
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Romain Sausset
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Leon E Jessen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Eric Olo Ndela
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Mathis Hjelmsø
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Tamsin A Redgwell
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Cristina Leal Rodríguez
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Yichang Zhang
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Francois Enault
- Lab de Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Quebec, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, Quebec, Canada
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, Agroparistech, Micalis institute, Jouy-en-Josas, France
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Strachan E, Clemente-Casares X, Tsai S. Maternal provisions in type 1 diabetes: Evidence for both protective & pathogenic potential. Front Immunol 2023; 14:1146082. [PMID: 37033940 PMCID: PMC10073710 DOI: 10.3389/fimmu.2023.1146082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Maternal influences on the immune health and development of an infant begin in utero and continue well into the postnatal period, shaping and educating the child's maturing immune system. Two maternal provisions include early microbial colonizers to initiate microbiota establishment and the transfer of antibodies from mother to baby. Maternal antibodies are a result of a lifetime of antigenic experience, reflecting the infection history, health and environmental exposure of the mother. These same factors are strong influencers of the microbiota, inexorably linking the two. Together, these provisions help to educate the developing neonatal immune system and shape lymphocyte repertoires, establishing a role for external environmental influences even before birth. In the context of autoimmunity, the transfer of maternal autoantibodies has the potential to be harmful for the child, sometimes targeting tissues and cells with devastating consequences. Curiously, this does not seem to apply to maternal autoantibody transfer in type 1 diabetes (T1D). Moreover, despite the rising prevalence of the disease, little research has been conducted on the effects of maternal dysbiosis or antibody transfer from an affected mother to her offspring and thus their relevance to disease development in the offspring remains unclear. This review seeks to provide a thorough evaluation of the role of maternal microorganisms and antibodies within the context of T1D, exploring both their pathogenic and protective potential. Although a definitive understanding of their significance in infant T1D development remains elusive at present, we endeavor to present what has been learned with the goal of spurring further interest in this important and intriguing question.
Collapse
Affiliation(s)
| | | | - Sue Tsai
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Stockdale SR, Shkoporov AN, Khokhlova EV, Daly KM, McDonnell SA, O' Regan O, Nolan JA, Sutton TDS, Clooney AG, Ryan FJ, Sheehan D, Lavelle A, Draper LA, Shanahan F, Ross RP, Hill C. Interpersonal variability of the human gut virome confounds disease signal detection in IBD. Commun Biol 2023; 6:221. [PMID: 36841913 PMCID: PMC9968284 DOI: 10.1038/s42003-023-04592-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Viruses are increasingly recognised as important components of the human microbiome, fulfilling numerous ecological roles including bacterial predation, immune stimulation, genetic diversification, horizontal gene transfer, microbial interactions, and augmentation of metabolic functions. However, our current view of the human gut virome is tainted by previous sequencing requirements that necessitated the amplification of starting nucleic acids. In this study, we performed an original longitudinal analysis of 40 healthy control, 19 Crohn's disease, and 20 ulcerative colitis viromes over three time points without an amplification bias, which revealed and highlighted the interpersonal individuality of the human gut virome. In contrast to a 16 S rRNA gene analysis of matched samples, we show that α- and β-diversity metrics of unamplified viromes are not as efficient at discerning controls from patients with inflammatory bowel disease. Additionally, we explored the intrinsic properties of unamplified gut viromes and show there is considerable interpersonal variability in viral taxa, infrequent longitudinal persistence of intrapersonal viruses, and vast fluctuations in the abundance of temporal viruses. Together, these properties of unamplified faecal viromes confound the ability to discern disease associations but significantly advance toward an unbiased and accurate representation of the human gut virome.
Collapse
Affiliation(s)
| | | | | | - Karen M Daly
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | | | - Orla O' Regan
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - James A Nolan
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | | | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Feargal J Ryan
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Donal Sheehan
- Department of Medicine, University College Cork, Co, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
- Department of Medicine, University College Cork, Co, Cork, Ireland
| | | | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
- Department of Medicine, University College Cork, Co, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland.
- School of Microbiology, University College Cork, Co, Cork, Ireland.
| |
Collapse
|
46
|
Gut Microbiome and Neurodevelopmental Disorders: A Link Yet to Be Disclosed. Microorganisms 2023; 11:microorganisms11020487. [PMID: 36838452 PMCID: PMC9964594 DOI: 10.3390/microorganisms11020487] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Τhe importance of the gut microbiome and its functions has only recently been recognized and researched in greater depth. The establishment of the human gut microbiome begins in utero, forming its adult-like phenotype in the first 2-3 years of life. Several factors affect and alter the gut microbiome composition and its metabolic functions, such as early onset of breastfeeding, mode of delivery, antibiotic administration, or exposure to chemical substances, among others. Existing data support the important connection between health status and gut microbiome homeostasis. In cases when this balance is disturbed, several disorders may arise, such as inflammatory reactions that lead to atopy, eczema, or allergic asthma. The so-called gut-brain axis refers to the complex biochemical pathways between the central nervous system and the gastrointestinal system. One of the most fascinating areas of ongoing research is the broad spectrum of neurodevelopmental disorders (NDDs) and how gut health may be associated with such disorders. The prevalence of NDDs, such as autism spectrum disorder or attention deficit hyperactivity disorder, has increased over recent years. Whether gut microbiota homeostasis plays a role in these disorders is not yet fully understood. The aim of this narrative review is to provide an account of current knowledge on how gut health is linked with these disorders. We performed a literature review in order to identify and synthesize available data that highlights the potential association between NDDs and a balanced gut microbiome in terms of composition and proper function. The connection between the gut microbiome and NDDs offers promising new opportunities for future research.
Collapse
|
47
|
Chen B, Cao J, Liu W, Zhang Y, Liu Y, Wang M, Xiao F, Ma J, Wang J, Zhang X. Disturbed gut virome with potent interferonogenic property in systemic lupus erythematosus. Sci Bull (Beijing) 2023; 68:295-304. [PMID: 36697300 DOI: 10.1016/j.scib.2023.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Accumulating evidence suggests an essential role of disturbed gut microbiota in the etiopathogenesis of systemic lupus erythematosus (SLE), but it remains unclear as to gut virome. In this study, fecal virus-like particles (VLPs) isolated from 76 non-treated SLE patients and 75 healthy controls were subjected to gut virome profiling. The proportion of bacteriophages was significantly elevated in the SLE gut, and the altered viral taxa were correlated with clinical parameters. Gut virome and bacteriome were closely associated with each other in SLE patients. The combination of gut viral and bacterial markers displayed better performance in distinguishing SLE patients from healthy controls. Further, VLPs from non-treated SLE patients promoted interferon-α production in an epithelial cell line and human immune cells. Intriguingly, the interferon-stimulatory capacity diminished in VLPs from post-treated SLE patients. Our findings may shed novel insights into SLE pathogenesis. Further in-depth understanding of gut virome might help develop future biomarkers and therapeutics for SLE patients.
Collapse
Affiliation(s)
- Beidi Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China; Division of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, China
| | - Jiabao Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuqing Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
48
|
Ezzatpour S, Mondragon Portocarrero ADC, Cardelle-Cobas A, Lamas A, López-Santamarina A, Miranda JM, Aguilar HC. The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients 2023; 15:977. [PMID: 36839335 PMCID: PMC9960951 DOI: 10.3390/nu15040977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The human gastrointestinal tract contains large communities of microorganisms that are in constant interaction with the host, playing an essential role in the regulation of several metabolic processes. Among the gut microbial communities, the gut bacteriome has been most widely studied in recent decades. However, in recent years, there has been increasing interest in studying the influences that other microbial groups can exert on the host. Among them, the gut virome is attracting great interest because viruses can interact with the host immune system and metabolic functions; this is also the case for phages, which interact with the bacterial microbiota. The antecedents of virome-rectification-based therapies among various diseases were also investigated. In the near future, stool metagenomic investigation should include the identification of bacteria and phages, as well as their correlation networks, to better understand gut microbiota activity in metabolic disease progression.
Collapse
Affiliation(s)
- Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alexandre Lamas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Aroa López-Santamarina
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
Type I Diabetes Pathoetiology and Pathophysiology: Roles of the Gut Microbiome, Pancreatic Cellular Interactions, and the 'Bystander' Activation of Memory CD8 + T Cells. Int J Mol Sci 2023; 24:ijms24043300. [PMID: 36834709 PMCID: PMC9964837 DOI: 10.3390/ijms24043300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) arises from the failure of pancreatic β-cells to produce adequate insulin, usually as a consequence of extensive pancreatic β-cell destruction. T1DM is classed as an immune-mediated condition. However, the processes that drive pancreatic β-cell apoptosis remain to be determined, resulting in a failure to prevent ongoing cellular destruction. Alteration in mitochondrial function is clearly the major pathophysiological process underpinning pancreatic β-cell loss in T1DM. As with many medical conditions, there is a growing interest in T1DM as to the role of the gut microbiome, including the interactions of gut bacteria with Candida albicans fungal infection. Gut dysbiosis and gut permeability are intimately associated with raised levels of circulating lipopolysaccharide and suppressed butyrate levels, which can act to dysregulate immune responses and systemic mitochondrial function. This manuscript reviews broad bodies of data on T1DM pathophysiology, highlighting the importance of alterations in the mitochondrial melatonergic pathway of pancreatic β-cells in driving mitochondrial dysfunction. The suppression of mitochondrial melatonin makes pancreatic β-cells susceptible to oxidative stress and dysfunctional mitophagy, partly mediated by the loss of melatonin's induction of PTEN-induced kinase 1 (PINK1), thereby suppressing mitophagy and increasing autoimmune associated major histocompatibility complex (MHC)-1. The immediate precursor to melatonin, N-acetylserotonin (NAS), is a brain-derived neurotrophic factor (BDNF) mimic, via the activation of the BDNF receptor, TrkB. As both the full-length and truncated TrkB play powerful roles in pancreatic β-cell function and survival, NAS is another important aspect of the melatonergic pathway relevant to pancreatic β-cell destruction in T1DM. The incorporation of the mitochondrial melatonergic pathway in T1DM pathophysiology integrates wide bodies of previously disparate data on pancreatic intercellular processes. The suppression of Akkermansia muciniphila, Lactobacillus johnsonii, butyrate, and the shikimate pathway-including by bacteriophages-contributes to not only pancreatic β-cell apoptosis, but also to the bystander activation of CD8+ T cells, which increases their effector function and prevents their deselection in the thymus. The gut microbiome is therefore a significant determinant of the mitochondrial dysfunction driving pancreatic β-cell loss as well as 'autoimmune' effects derived from cytotoxic CD8+ T cells. This has significant future research and treatment implications.
Collapse
|
50
|
Yang K, Wang X, Hou R, Lu C, Fan Z, Li J, Wang S, Xu Y, Shen Q, Friman VP, Wei Z. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. MICROBIOME 2023; 11:16. [PMID: 36721270 PMCID: PMC9890766 DOI: 10.1186/s40168-023-01463-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. 'primary phages') and (2) that 'secondary phages' that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly 'helping' the pathogen. RESULTS Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, 'secondary phages' that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and 'secondary phages' were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. CONCLUSIONS Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. Video Abstract.
Collapse
Affiliation(s)
- Keming Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaofang Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rujiao Hou
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunxia Lu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhe Fan
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ville-Petri Friman
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland.
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|