1
|
Yook H, Hwang J, Yeo W, Bang J, Kim J, Kim TY, Choi JS, Han JW. Design Strategies for Hydroxyapatite-Based Materials to Enhance Their Catalytic Performance and Applicability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204938. [PMID: 35917488 DOI: 10.1002/adma.202204938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.
Collapse
Affiliation(s)
- Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonsuk Yeo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungup Bang
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jaeyoung Kim
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Soon Choi
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jeong Woo Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
2
|
Nicholson JW, Sidhu SK, Czarnecka B. Fluoride exchange by glass-ionomer dental cements and its clinical effects: a review. Biomater Investig Dent 2023; 10:2244982. [PMID: 37615013 PMCID: PMC10444020 DOI: 10.1080/26415275.2023.2244982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
The topic of fluoride release and uptake by glass-ionomer (glass polyalkenoate) dental cements is reviewed. The study was based on a literature search carried out using PubMed. The main key words used were glass-ionomer and fluoride, and further refinements were made by adding the keywords anti-microbial, anti-caries and remineralization. Papers were selected from the initial search, which concentrated on fundamental aspects of fluoride release, including kinetics and the influence of the cement composition, and resulting clinical performance against caries. Other relevant papers were cited where they added useful and relevant data. From these published papers, it was possible to explain the detailed mechanism of fluoride release by glass-ionomer cements and also its uptake. Fluoride release has been shown to be a two-step process. In neutral solutions, the steps can be divided into early wash-out and long-term diffusion. In acid conditions, the early wash-out remains, though with greater amounts of fluoride released, and the long-term release becomes one of slow dissolution. The effect of fluoride on the viability of oral micro-organisms has been described, and glass-ionomers have been shown to release sufficient fluoride to reduce the size and viability of adjacent populations of oral bacteria. The effect of low levels of fluoride on the remineralization of tooth tissue has been considered. Levels needed to increase remineralization are much lower than those needed to adversely affect oral bacteria, from which we conclude that glass-ionomers release sufficient fluoride to promote remineralization. Despite this, there remains uncertainty about their overall contribution to sound oral health, given the widespread use of other sources of fluoride, such as toothpastes.
Collapse
Affiliation(s)
- John W. Nicholson
- Dental Materials Unit, Bart’s and the London Institute of Dentistry, Queen Mary University of London, London, UK
- Bluefield Centre for Biomaterials, London, UK
| | - Sharanbir K. Sidhu
- Centre for Oral Bioengineering, Institute of Dentistry, Bart’s & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Doyle ME, Dalgarno K, Masoero E, Ferreira AM. Advances in biomimetic collagen mineralisation and future approaches to bone tissue engineering. Biopolymers 2023; 114:e23527. [PMID: 36444710 PMCID: PMC10078151 DOI: 10.1002/bip.23527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.
Collapse
Affiliation(s)
| | - Kenny Dalgarno
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
4
|
Fuchs-Godec R. Flower-like Superhydrophobic Surfaces Fabricated on Stainless Steel as a Barrier against Corrosion in Simulated Acid Rain. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7104. [PMID: 36295171 PMCID: PMC9604885 DOI: 10.3390/ma15207104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Functionalisation of the metal surface of low-carbon ferritic stainless steel (from hydrophilic to hydrophobic properties) was achieved by flower-like hierarchical structures on a steel substrate prepared by a low-cost immersion method. The flower-like structured hydrophobic layers on the steel substrate were obtained by immersing the samples in an ethanolic solution of stearic acid with the addition of various concentrations of expired vitamin E ((+)α-tocopherol). The stability and corrosion-inhibiting effect of the hierarchically structured (such as natural cornflower) hydrophobic layers were studied systematically during short and long immersion tests, 120 h (five days) in an acidic environment (pH = 3) using potentiodynamic measurements, electrochemical impedance spectroscopy and chronopotentiometry. The surfaces of the samples, their wettability, surface morphology and chemical composition were characterised by contact angle measurements, SEM, ATR-FTIR and EDAX. After 120 h of immersion, the inhibition efficiency of the flower-like structured hydrophobic layers on the steel substrate in the selected corrosion medium remained above 99%, and the hierarchical structure (flower-like structure) was also retained on the surface.
Collapse
Affiliation(s)
- Regina Fuchs-Godec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
5
|
Using DFT to Calculate the Parameters of the Crystal Field in Mn2+ Doped Hydroxyapatite Crystals. CRYSTALS 2021. [DOI: 10.3390/cryst11091050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Crystal field parameters for two nonequivalent positions Ca (I) and Ca (II) for hydroxyapatite (HAp) crystals from the density functional theory (DFT) are calculated. Calculations are compared with the experimental electron paramagnetic resonance (EPR) spectra (registered at two microwave frequencies) for the synthesized Mn-HAp powders Ca9.995Mn0.005(PO4)6(OH)2. It is found that in the investigated species, the manganese is redistributed between both calcium sites with prevalence in Ca (I). Agreement between the calculated and experimental data proves that crystal field parameters in HAp can be calculated in the classical DFT model using the distributed electron density.
Collapse
|
6
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
7
|
Wang W, Xue Z, Wang R, Wang X, Xu D. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid. J Phys Chem B 2021; 125:5078-5088. [PMID: 33974433 DOI: 10.1021/acs.jpcb.1c02447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Morphological control can enhance the performance of materials like hydroxyapatite (HAP), a well-known bioceramic with various morphologies, including spheres, rods, whiskers, needles, and plates. To obtain certain HAP morphologies, the crystal growth mechanisms at different planes should be investigated. Here, molecular dynamics was employed to understand the mechanism of HAP nanoparticle growth regulated by glutamic acid (Glu). Long-time dynamics simulations and free energy calculations were performed to explore the effect of Glu on calcium and phosphate ion precipitation on the HAP (100) and (001) faces. Without Glu, PO43- prefers binding to the HAP (100) surface, whereas with Glu, the (001) surface is preferred. This could partially explain why HAP changes from needle-like to plate-like with Glu addition in experiments. Our theoretical results indicate that Glu inhibits calcium and phosphate ion deposition on the crystal surfaces by occupying the calcium sites on the outermost layers. In addition, Glu has a strong concentration gradient effect on HAP deposition. At Glu concentrations of >80 mM, ion deposition was inhibited more on the (100) than on the (001) surface. Our results agree with experimental observations and afford insights into complicated HAP crystal growth mechanisms with foreign additives, which will aid in HAP synthesis with morphological control.
Collapse
Affiliation(s)
- Wentian Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhiyu Xue
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruihan Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan 610064, P. R. China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
8
|
Wang M, Li M, Wang Y, Shao Y, Zhu Y, Yang S. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn(iii) coupled H vacancies. J Mater Chem B 2021; 9:3401-3411. [PMID: 33881445 DOI: 10.1039/d1tb00098e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has attracted wide attention for medical application due to its biocompatibility and bioactivity. However, the infection problems of HA remain among the leading reasons for implantation failure. Thus, it is urgent to endow HA biomaterials with antibacterial activity. Herein, the high antibacterial activity was achieved by introducing trace Mn3+ and H vacancy couples in HA through a facile heat-treatment strategy in air. The theoretical results indicated that Mn3+ was preferentially substituted for the Ca(2) site in the HA structure with a charge-compensating H vacancy appearing at the adjacent OH- site. The antibacterial tests showed that Mn-HA possessed antibacterial activity towards both E. coli and S. aureus with trace Mn content at the ppm level, and implied that Mn3+ and centers may play an important role in the antibacterial process. The Mn3+ and couples in Mn-HA, serving as oxidative and reductive centers respectively, could then collectively participate in the CoQ/CoQH2 redox cycling and synergistically facilitate the accumulation of CoQ˙- and ROS radicals. This enhanced ROS production was the main factor to endow Mn-HA with efficient antibacterial activity. Moreover, the in vitro bioactivity assay showed that Mn-HA materials exhibited enhanced osteogenic activity and good biocompatibility. Therefore, this work not only provides a feasible method to control the oxidation state of Mn elements in HA, but also proposes a novel trace Mn3+-doped HA for potential applications in tissue engineering.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China.
| | | | | | | | | | | |
Collapse
|
9
|
Awasthi S, Pandey SK, Arunan E, Srivastava C. A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives. J Mater Chem B 2021; 9:228-249. [DOI: 10.1039/d0tb02407d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of hydroxyapatite (HAP) composite coatings has continuously been investigated for bone tissue applications during the last few decades due to their significant bioactivity and osteoconductivity.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Materials Engineering
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - Sarvesh Kumar Pandey
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - E. Arunan
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| | - Chandan Srivastava
- Department of Materials Engineering
- Indian Institute of Science Bangalore
- Bangalore 560012
- India
| |
Collapse
|
10
|
Baltacis K, Bystrov V, Bystrova A, Dekhtyar Y, Freivalds T, Raines J, Rozenberga K, Sorokins H, Zeidaks M. Physical Fundamentals of Biomaterials Surface Electrical Functionalization. MATERIALS 2020; 13:ma13204575. [PMID: 33066590 PMCID: PMC7602450 DOI: 10.3390/ma13204575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
This article is focusing on electrical functionalization of biomaterial’s surface to enhance its biocompatibility. It is an overview of previously unpublished results from a series of experiments concerning the effects surface electrical functionalization can have on biological systems. Saccharomyces cerevisiae cells were used for biological experiments. The hydroxyapatite (HAp) specimens were used to investigate influence of structural point defects on the surface electrical charge. Threshold photoelectron emission spectroscopy was used to measure the electron work function of HAp and biologic samples. The density functional theory and its different approximations were used for the calculation of HAp structures with defects. It was shown that the electrical charge deposition on the semiconductor or dielectric substrate can be delivered because of production of the point defects in HAp structure. The spatial arrangements of various atoms of the HAp lattice, i.e., PO4 and OH groups, oxygen vacancies, interstitial H atoms, etc., give the instruments to deposit the electrical charge on the substrate. Immobilization of the microorganisms can be achieved on the even surface of the substrate, characterized with a couple of nanometer roughness. This cells attachment can be controlled because of the surface electrical functionalization (deposition of the electrical charge). A protein layer as a shield for the accumulated surface charge was considered, and it was shown that the protein layer having a thickness below 1 µm is not crucial to shield the electrical charge deposited on the substrate surface. Moreover, the influence of surface charge on the attachment of microorganisms, when the surface roughness is excluded, and the influence of controlled surface roughness on the attachment of microorganisms, when surface charge is constant, were also considered.
Collapse
Affiliation(s)
- Karlis Baltacis
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| | - Vladimir Bystrov
- Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Puschino, 142290 Moscow, Russia;
| | - Anna Bystrova
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
- Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Puschino, 142290 Moscow, Russia;
- Correspondence:
| | - Yuri Dekhtyar
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| | | | - Jan Raines
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| | - Krista Rozenberga
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| | - Hermanis Sorokins
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| | - Martins Zeidaks
- Riga Technical University, Kaļķu Street 1, LV-1568 Riga, Latvia; (K.B.); (Y.D.); (J.R.); (K.R.); (H.S.); (M.Z.)
| |
Collapse
|
11
|
Chappell HF, Jugdaohsingh R, Powell JJ. Physiological silicon incorporation into bone mineral requires orthosilicic acid metabolism to SiO 44. J R Soc Interface 2020; 17:20200145. [PMID: 32486955 DOI: 10.1098/rsif.2020.0145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Under physiological conditions, the predominant form of bioavailable silicon (Si) is orthosilicic acid (OSA). In this study, given Si's recognized positive effect on bone growth and integrity, we examined the chemical form and position of this natural Si source in the inorganic bone mineral hydroxyapatite (HA). X-ray diffraction (XRD) of rat tibia bone mineral showed that the mineral phase was similar to that of phase-pure HA. However, theoretical XRD patterns revealed that at the levels found in bone, the 'Si effect' would be virtually undetectable. Thus we used first principles density functional theory calculations to explore the energetic and geometric consequences of substituting OSA into a large HA model. Formation energy analysis revealed that OSA is not favourable as a neutral interstitial substitution but can be incorporated as a silicate ion substituting for a phosphate ion, suggesting that incorporation will only occur under specific conditions at the bone-remodelling interface and that dietary forms of Si will be metabolized to simpler chemical forms, specifically [Formula: see text]. Furthermore, we show that this substitution, at the low silicate concentrations found in the biological environment, is likely to be a driver of calcium phosphate crystallization from an amorphous to a fully mineralized state.
Collapse
Affiliation(s)
- Helen F Chappell
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
12
|
Goreke MD, Alakent B, Soyer-Uzun S. Comparative Study on Factors Governing Binding Mechanisms in Polylactic Acid-Hydroxyapatite and Polyethylene-Hydroxyapatite Systems via Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1125-1137. [PMID: 31935106 DOI: 10.1021/acs.langmuir.9b03480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Binding mechanisms in polylactic acid-hydroxyapatite (PLA-HAp) and polyethylene-hydroxyapatite (PE-HAp) systems are comparatively elucidated on HAp (110) surfaces in unprecedented detail using molecular dynamics simulations conducted with the systematically varying number of monomers (N) between 10 and 400 at 310 K (NVT). Although PE seems to gradually cover the HAp surface more effectively compared to PLA, evident from the corresponding radius of gyration and occupied area values, the interface density and total binding energy in PLA-HAp systems is higher compared to those of PE-HAp systems. It is shown that a linear relationship between the binding energy and the surface area occupied by the monomer exists, consistent with our finding that binding energy converges to a limiting value with respect to monomer size on a constant surface area. The major constituent of the total binding energy is, rather surprisingly, shown to be the energy change in the bulk structure in HAp upon interaction; the next most important contributor is found to be the energy corresponding to surface-polymer interactions. The interplay between mainly these two contributors, acting in different fashions in two systems investigated here, seems to control the total binding energies. Increasing monomer size N initially results in enhanced densification of the interface in the HAp-PLA system up until N ≈ 200 with the positioning of mainly ═O units of PLA onto the HAp surface, consistent with the increasing Ca-O coordination numbers. Further increases in PLA size (N > 200) result in decreasing intensities of the peaks in the concentration profile consistent with the decreasing surface-polymer interaction energies while increased stabilization of the energy of the bulk is pronounced in this region. On the other hand, increasing N leads to a constantly increasing concentration at the interface in PE-HAp systems; -H atoms of the PE chain are positioned closer to the HAp surface than are -C atoms. These changes are coupled with increasing surface-polymer interaction energies in PE-HAp complexes, while slight destabilization in the energy of the bulk is observed for N > 100. A detailed examination of binding mechanisms in these technologically important systems as presented here is essential in material discovery; this valuable information, that will not be available from experiments can be attained through molecular simulations. The current study, to the best of our knowledge, comprises one of the first steps in achieving this goal for PLA/PE-HAp systems.
Collapse
Affiliation(s)
- Melike Dilara Goreke
- Department of Chemical Engineering , Bogazici University , Bebek , 34342 Istanbul , Turkey
| | - Burak Alakent
- Department of Chemical Engineering , Bogazici University , Bebek , 34342 Istanbul , Turkey
| | - Sezen Soyer-Uzun
- Department of Chemical Engineering , Bogazici University , Bebek , 34342 Istanbul , Turkey
| |
Collapse
|
13
|
Predicting binding affinities of nitrogen-containing bisphosphonates on hydroxyapatite surface by molecular dynamics. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Doustkhah E, Najafi Zare R, Yamauchi Y, Taheri-Kafrani A, Mohtasham H, Esmat M, Ide Y, Fukata N, Rostamnia S, Sadeghi MH, Assadi MHN. Template-oriented synthesis of hydroxyapatite nanoplates for 3D bone printing. J Mater Chem B 2019; 7:7228-7234. [DOI: 10.1039/c9tb01436e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of hydroxyapatite (HA) nanoarchitecture is critical for fabricating artificial bone tissues as it dictates the biochemical and the mechanical properties of the final product.
Collapse
|
15
|
Faidt T, Friedrichs A, Grandthyll S, Spengler C, Jacobs K, Müller F. Effect of Fluoride Treatment on the Acid Resistance of Hydroxyapatite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15253-15258. [PMID: 30421930 DOI: 10.1021/acs.langmuir.8b03412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The etching behavior of polycrystalline synthetic hydroxyapatite samples has been evaluated to explore the protective impact of fluoride on a tooth-like model system. Etching rates before and after fluoridation with a NaF solution at pH 6 were determined by atomic force microscopy. Despite a very low F concentration of ca. 0.2 atom % in the hydroxyapatite surface, a very strong effect on the acid resistance can be observed. Depending on the crystal orientation, etching in a NaAc buffer at pH 4.5 was completely inhibited for at least 5 min. The major part of the surface withstood etching even for more than 23 min. These results give new insights into how the amount of incorporated fluoride in hydroxyapatite correlates with its protective impact.
Collapse
Affiliation(s)
- Thomas Faidt
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| | - Andreas Friedrichs
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| | - Samuel Grandthyll
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| | - Christian Spengler
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| | - Karin Jacobs
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| | - Frank Müller
- Experimental Physics , Saarland University , Campus E2 9 , 66123 Saarbrücken , Germany
| |
Collapse
|
16
|
Trigos JBR, Jiménez-Flores Y, Suárez V, Suárez-Quezada M, Nogal U. Sol-Gel Synthesis of Calcium-Deficient Hydroxyapatite: Influence of the pH Behavior during Synthesis on the Structural, Chemical Composition and Physical Properties. POWDER TECHNOL 2018. [DOI: 10.5772/intechopen.76531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Xu Z, Yang X, Wei Q, Zhao W, Cui B, Yang X, Sahai N. Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7932-7941. [PMID: 29888924 DOI: 10.1021/acs.langmuir.8b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface.
Collapse
Affiliation(s)
| | | | | | - Weilong Zhao
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| | | | | | - Nita Sahai
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| |
Collapse
|
18
|
Wang X, Zhang L, Liu Z, Zeng Q, Jiang G, Yang M. Probing the surface structure of hydroxyapatite through its interaction with hydroxyl: a first-principles study. RSC Adv 2018; 8:3716-3722. [PMID: 35542921 PMCID: PMC9077697 DOI: 10.1039/c7ra13121f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 11/27/2022] Open
Abstract
Understanding the interaction of the hydroxyapatite (HAp) surface with hydroxyl originating from either the alkalescent physiological environment or HAp itself is crucial for the development of HAp-based biomaterials. Periodical density functional theory calculations were carried out in this study to explore the interaction of the HAp (100), (010) and (001) facets with hydroxyl. Based on a comparison study of Ca-rich, PO4-rich and Ca-PO4-OH mixed surfaces, the interaction pattern, interaction energy and effect of an additional water molecule on the Ca-OH interaction were comprehensively studied. The formation of CaOH on the Ca-rich surface was energetically favored on (100) and (001), while Ca(OH)2 was energetically favored on (010). The Ca-water interaction was competitive, but had lower interaction energy than Ca-OH. Furthermore, Ca-O bonding and its influence on the OH stretching vibration were analyzed. Our calculations suggest that the hydroxyl-coated surface structure is more appropriate than the commonly used Ca-terminated surface model for studying HAp surface activity in its service environments.
Collapse
Affiliation(s)
- Xian Wang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Li Zhang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Zeyu Liu
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Qun Zeng
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, Sichuan University Chengdu 610065 China +86-28-85405515 +86-28-85405515
| |
Collapse
|
19
|
Walsh TR. Molecular Modelling of Peptide-Based Materials for Biomedical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:37-50. [PMID: 29081049 DOI: 10.1007/978-3-319-66095-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The molecular-level interactions between peptides and medically-relevant biomaterials, including nanoparticles, have the potential to advance technologies aimed at improving performance for medical applications including tissue implants and regenerative medicine. Peptides can possess materials-selective non-covalent adsorption properties, which in this instance can be exploited to enhance the biocompatibility and possible multi-functionality of medical implant materials. However, at present, their successful implementation in medical applications is largely on a trial-and-error basis, in part because a deep comprehension of general structure/function relationships at these interfaces is currently lacking. Molecular simulation approaches can complement experimental characterisation techniques and provide a wealth of relevant details at the atomic scale. In this Chapter, progress and prospects for advancing peptide-mediated medical implant surface treatments via molecular simulation is summarised for two of the most widely-found medical implant interfaces, titania and hydroxyapatite.
Collapse
Affiliation(s)
- Tiffany R Walsh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
20
|
Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci Rep 2017; 7:43202. [PMID: 28256557 PMCID: PMC5335334 DOI: 10.1038/srep43202] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/18/2017] [Indexed: 11/11/2022] Open
Abstract
Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0).
Collapse
|
21
|
Molecular Dynamics Simulations of Hydroxyapatite Nanopores in Contact with Electrolyte Solutions: The Effect of Nanoconfinement and Solvated Ions on the Surface Reactivity and the Structural, Dynamical, and Vibrational Properties of Water. CRYSTALS 2017. [DOI: 10.3390/cryst7020057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Abstract
Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.
Collapse
|
23
|
Wu H, Xu D, Yang M, Zhang X. Surface Structure of Hydroxyapatite from Simulated Annealing Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4643-4652. [PMID: 27096760 DOI: 10.1021/acs.langmuir.5b04667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The surface structure of hydroxyapatite (HAP) is crucial for its bioactivity. Using a molecular dynamics simulated annealing method, we studied the structure and its variation with annealing temperature of the HAP (100) surface. In contrast to the commonly used HAP surface model, which is sliced from HAP crystal and then relaxed at 0 K with first-principles or force-field calculations, a new surface structure with gradual changes from ordered inside to disordered on the surface was revealed. The disordering is dependent on the annealing temperature, Tmax. When Tmax increases up to the melting point, which was usually adopted in experiments, the disordering increases, as reflected by its radial distribution functions, structural factors, and atomic coordination numbers. The disordering of annealed structures does not show significant changes when Tmax is above the melting point. The thickness of disordered layers is about 10 Å. The surface energy of the annealed structures at high temperature is significantly less than that of the crystal structure relaxed at room temperature. A three-layer model of interior, middle, and surface was then proposed to describe the surface structure of HAP. The interior layer retains the atomic configurations in crystal. The middle layer has its atoms moved and its groups rotated about their original locations. In the surface layer, the atomic arrangements are totally different from those in crystal. In particular for the hydroxyl groups, they move outward and cover the Ca(2+) ions, leaving holes occupied by the phosphate groups. Our study suggested a new model with disordered surface structures for studying the interaction of HAP-based biomaterials with other molecules.
Collapse
Affiliation(s)
- Hong Wu
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University , Chengdu, Sichuan 610065, China
| | | | - Mingli Yang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University , Chengdu, Sichuan 610065, China
| | | |
Collapse
|
24
|
Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. J Bone Miner Res 2016; 31:380-90. [PMID: 26866939 PMCID: PMC4915725 DOI: 10.1002/jbmr.2705] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness.
Collapse
Affiliation(s)
- Baptiste Depalle
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Heinz H. Adsorption of biomolecules and polymers on silicates, glasses, and oxides: mechanisms, predictions, and opportunities by molecular simulation. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Heinz H, Ramezani-Dakhel H. Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem Soc Rev 2016; 45:412-48. [PMID: 26750724 DOI: 10.1039/c5cs00890e] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Natural and man-made materials often rely on functional interfaces between inorganic and organic compounds. Examples include skeletal tissues and biominerals, drug delivery systems, catalysts, sensors, separation media, energy conversion devices, and polymer nanocomposites. Current laboratory techniques are limited to monitor and manipulate assembly on the 1 to 100 nm scale, time-consuming, and costly. Computational methods have become increasingly reliable to understand materials assembly and performance. This review explores the merit of simulations in comparison to experiment at the 1 to 100 nm scale, including connections to smaller length scales of quantum mechanics and larger length scales of coarse-grain models. First, current simulation methods, advances in the understanding of chemical bonding, in the development of force fields, and in the development of chemically realistic models are described. Then, the recognition mechanisms of biomolecules on nanostructured metals, semimetals, oxides, phosphates, carbonates, sulfides, and other inorganic materials are explained, including extensive comparisons between modeling and laboratory measurements. Depending on the substrate, the role of soft epitaxial binding mechanisms, ion pairing, hydrogen bonds, hydrophobic interactions, and conformation effects is described. Applications of the knowledge from simulation to predict binding of ligands and drug molecules to the inorganic surfaces, crystal growth and shape development, catalyst performance, as well as electrical properties at interfaces are examined. The quality of estimates from molecular dynamics and Monte Carlo simulations is validated in comparison to measurements and design rules described where available. The review further describes applications of simulation methods to polymer composite materials, surface modification of nanofillers, and interfacial interactions in building materials. The complexity of functional multiphase materials creates opportunities to further develop accurate force fields, including reactive force fields, and chemically realistic surface models, to enable materials discovery at a million times lower computational cost compared to quantum mechanical methods. The impact of modeling and simulation could further be increased by the advancement of a uniform simulation platform for organic and inorganic compounds across the periodic table and new simulation methods to evaluate system performance in silico.
Collapse
Affiliation(s)
- Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
27
|
Ivić JT, Dimitrijević A, Milosavić N, Bezbradica D, Drakulić BJ, Jankulović MG, Pavlović M, Rogniaux H, Veličković D. Assessment of the interacting mechanism between Candida rugosa lipases and hydroxyapatite and identification of the hydroxyapatite-binding sequence through proteomics and molecular modelling. RSC Adv 2016. [DOI: 10.1039/c6ra07521e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hydroxyapatite (HAP), a calcium-phosphate bioactive ceramic, is actively employed in medical and separation sciences.
Collapse
Affiliation(s)
| | - Aleksandra Dimitrijević
- Department of Molecular Biology and Biochemistry
- University of California Irvine
- 92697 Irvine
- USA
| | - Nenad Milosavić
- Division of Experimental Therapeutics
- Department of Medicine
- Columbia University
- 10032 New York
- USA
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- 11000 Belgrade
- Serbia
| | - Branko J. Drakulić
- Department of Chemistry
- Institute of Chemistry
- Technology and Metallurgy
- University of Belgrade
- Belgrade
| | | | - Marija Pavlović
- INRA
- UR1268
- Biopolymers Interactions Assembles
- 44316 Nantes
- France
| | - Helene Rogniaux
- INRA
- UR1268
- Biopolymers Interactions Assembles
- 44316 Nantes
- France
| | - Dušan Veličković
- Department of Biochemistry
- Faculty of Chemistry
- 11000 Belgrade
- Serbia
| |
Collapse
|
28
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
29
|
Ruiz Hernandez SE, Streeter I, de Leeuw NH. The effect of water on the binding of glycosaminoglycan saccharides to hydroxyapatite surfaces: a molecular dynamics study. Phys Chem Chem Phys 2015; 17:22377-88. [PMID: 26247336 DOI: 10.1039/c5cp02630j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classical molecular dynamics (MD) simulations have been employed to study the interaction of the saccharides glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) with the (0001) and (011̄0) surfaces of the mineral hydroxyapatite (HAP). GlcA and GalNAc are the two constituent monosaccharides of the glycosaminoglycan chondroitin sulfate, which is commonly found in bone and cartilage and has been implicated in the modulation of the hydroxyapatite biomineralization process. MD simulations of the mineral surfaces and the saccharides in the presence of solvent water allowed the calculation of the adsorption energies of the saccharides on the HAP surfaces. The calculations show that GalNAc interacts with HAP principally through the sulfate and the carbonyl of acetyl amine groups, whereas the GlcA interacts primarily through the carboxylate functional groups. The mode and strength of the interaction depends on the orientation of the saccharide with respect to the surface and the level of disruption of the layer of water competing with the saccharide for adsorption sites on the HAP surface, suggesting that chondroitin 4-sulfate binds to the layer of solvent water rather than to HAP.
Collapse
|
30
|
|
31
|
Li B, Han Y, Qi K. Formation mechanism, degradation behavior, and cytocompatibility of a nanorod-shaped HA and pore-sealed MgO bilayer coating on magnesium. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18258-74. [PMID: 25265530 DOI: 10.1021/am505437e] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel bilayer coating (HT24h) was fabricated on magnesium using microarc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of narrow interrod spaced hydroxyapatite (HA) nanorods and an inner layer of MgO containing Mg(OH)2/HA-sealing-pores. The hydrothermal formation mechanism of HA nanorods on MAO-formed MgO was explored. Also, evolution of structure and bonding integrity of HT24h coating with immersion in physiological saline (PS) for 0-90 days, corrosion resistance and cytocompatibility of the coating were investigated, together with MgO containing Mg(OH)2-sealing-pores (HT2h) and porous MgO (MAO) coatings. Corrosion resistance was identified by three-point bending and electrochemical tests in PS, while cytocompatibility was determined by MTT, live/dead staining, and vinculin-actin-nucleus tricolor staining assays of hFOB1.19 cells. Immersion tests indicate that cracking rather than delamination is a common feature in most areas of the coatings up to day 90 and degradation is the reason for thinning in thickness of the coatings. MAO and HT2h coatings exhibit a significant thinning due to fast degradation of MgO. However, HT24h coating shows a quite small thinning, owing to the fact that the HA nanorods underwent quite slow degradation while the underlying MgO only underwent conversion to Mg(OH)2 without dissolution of the Mg(OH)2. Scratch tests reveal that HT24h coating still retains relatively high bonding integrity, although the failure position changes from the MgO interior to a point between the HA and MgO layers after 90 days of immersion. HT24h coating appears far more effective than MAO and HT2h coatings in reducing degradation and maintaining the mechanical integrity of Mg, as well as enhancing the mitochondrial activity, adhesion, and proliferation of osteoblasts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University , Xi'an 710049, China
| | | | | |
Collapse
|
32
|
Biktagirov T, Gafurov M, Mamin G, Klimashina E, Putlayev V, Orlinskii S. Combination of EPR measurements and DFT calculations to study nitrate impurities in the carbonated nanohydroxyapatite. J Phys Chem A 2014; 118:1519-26. [PMID: 24512217 DOI: 10.1021/jp410900m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate the application of the combined experimental-computational approach for studying the anionic impurities in hydroxyapatite (HAp). Influence of the carbonation level (x) on the concentration of the NO3(2-) radicals in the HAp nanocrystals of Ca10-xNax(PO4)6-x(CO3)x(OH)2 with x in the range 0 < x < 2 and average sizes of 30 nm is investigated by different analytical methods including electron paramagnetic resonance (EPR). Stable NO3(2-) radicals are formed under X-ray irradiation of nano-HAp samples from NO3(-) ions incorporated in trace amounts during the wet synthesis process. Density functional theory (DFT) based calculations show energetic preference for the PO4 group substitution by NO3(-) ions. Comparison of the calculated and experimental spectroscopic parameters (g and hyperfine tensors) reveals that EPR detects the NO3(2-) radicals located in the positions of the PO4 group only. It is shown that with the increase in x, the carbonate ions substitute the NO3(2-)/NO3(-) ions. DFT calculations confirm that carbonate incorporation in HAp structure is energetically more favorable than the formation of the nitrate defect.
Collapse
Affiliation(s)
- Timur Biktagirov
- Institute of Physics, Kazan Federal University , Kremlevskaya Street 18, 420008 Kazan, Russian Federation
| | | | | | | | | | | |
Collapse
|
33
|
Bolis V, Busco C, Martra G, Bertinetti L, Sakhno Y, Ugliengo P, Chiatti F, Corno M, Roveri N. Coordination chemistry of Ca sites at the surface of nanosized hydroxyapatite: interaction with H₂O and CO. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:1313-36. [PMID: 22349244 DOI: 10.1098/rsta.2011.0273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The affinity towards water of a selection of well-defined, nanostructured hydroxyapatite (HA) samples was investigated by H(2)O vapour adsorption microcalorimetry and infrared (IR) spectroscopy. A large hydrophilicity of all investigated materials was confirmed. The surface features of hydrated HA were investigated on the as-synthesized samples pre-treated in mild conditions at T=303 K, whereas dehydrated HA features were characterized on samples activated at T=573 K. The relatively large hydrophilicity of the hydrated surface (-Δ(ads)H~100-50 kJ mol(-1)) was due to the interaction of water with the highly polarized H(2)O molecules strongly coordinated to the surface Ca(2+) cations. At the dehydrated surface, exposing coordinatively unsaturated (cus) Ca(2+) cations, H(2)O was still molecularly adsorbed but more strongly (-Δ(ads)H~120-90 kJ mol(-1)). The use of CO adsorption to quantify the Lewis acidic strength of HA surface sites revealed only a moderate strength of cus Ca(2+) cations, as confirmed by both microcalorimetric and IR spectroscopic measurements and ab initio calculations. This result implies that the large HA/H(2)O interaction energy is due to the interplay between cus Ca(2+) sites and nearby hydrophilic PO(4) groups, not revealed by the CO probe. The lower density of cus Ca(2+) cations at the 573 K activated HA surface with respect to the pristine one did not affect the whole hydrophilicity of the surface, as the polarizing effect of Ca sites is so strong to extend up to the fourth hydrated layer, as confirmed by both high-coverage microcalorimetric and IR spectroscopic data. No specific effects due to the investigated specimen preparation method and/or different morphology were observed.
Collapse
Affiliation(s)
- Vera Bolis
- Dipartimento DiSCAFF, Università del Piemonte Orientale A. Avogadro, Largo G. Donegani 2, Novara, 28100, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dorozhkin SV. Dissolution mechanism of calcium apatites in acids: A review of literature. World J Methodol 2012; 2:1-17. [PMID: 25237611 PMCID: PMC4145559 DOI: 10.5662/wjm.v2.i1.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/17/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023] Open
Abstract
Eight dissolution models of calcium apatites (both fluorapatite and hydroxyapatite) in acids were drawn from the published literature, analyzed and discussed. Major limitations and drawbacks of the models were conversed in details. The models were shown to deal with different aspects of apatite dissolution phenomenon and none of them was able to describe the dissolution process in general. Therefore, an attempt to combine the findings obtained by different researchers was performed which resulted in creation of the general description of apatite dissolution in acids. For this purpose, eight dissolution models were assumed to complement each other and provide the correct description of the specific aspects of apatite dissolution. The general description considers all possible dissolution stages involved and points out to some missing and unclear phenomena to be experimentally studied and verified in future. This creates a new methodological approach to investigate reaction mechanisms based on sets of affine data, obtained by various research groups under dissimilar experimental conditions.
Collapse
|
35
|
Yavkin BV, Mamin GV, Orlinskii SB, Gafurov MR, Salakhov MK, Biktagirov TB, Klimashina ES, Putlayev VI, Tretyakov YD, Silkin NI. Pb3+ radiation defects in Ca9Pb(PO4)6(OH)2 hydroxyapatite nanoparticles studied by high-field (W-band) EPR and ENDOR. Phys Chem Chem Phys 2012; 14:2246-9. [DOI: 10.1039/c2cp23601j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. BIOMATTER 2011; 1:121-164. [PMID: 23507744 PMCID: PMC3549886 DOI: 10.4161/biom.18790] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
37
|
Jauregui-Osoro M, Williamson PA, Glaria A, Sunassee K, Charoenphun P, Green MA, Mullen GED, Blower PJ. Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging. Dalton Trans 2011; 40:6226-37. [PMID: 21394352 PMCID: PMC3929900 DOI: 10.1039/c0dt01618g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [(18)F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [(18)F]-fluoride in various biological media. The in vivo behaviour of the [(18)F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [(18)F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, Subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [(18)F]-fluoride (over a period of 4 h) which accumulated in bone. [(18)F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (Subcutaneous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with (18)F.
Collapse
Affiliation(s)
- Maite Jauregui-Osoro
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Peter A. Williamson
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Arnaud Glaria
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Kavitha Sunassee
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Putthiporn Charoenphun
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Mark A. Green
- Department of Physics, King’s College London, The Strand, London, WC2R 2LS
| | - Gregory E. D. Mullen
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| | - Philip J. Blower
- Division of Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, UK SE1 7EH
| |
Collapse
|
38
|
Marković S, Veselinović L, Lukić MJ, Karanović L, Bračko I, Ignjatović N, Uskoković D. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomed Mater 2011; 6:045005. [PMID: 21659698 DOI: 10.1088/1748-6041/6/4/045005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [00l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 °C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.
Collapse
Affiliation(s)
- Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|