1
|
Shi XY, Liu YK, Chen Y, Jiang ZY, Ye MX, Wang J. The correlation of apolipoprotein B and apolipoprotein A1 with metabolic dysfunction-associated steatotic liver disease in children and adolescents with obesity. Pediatr Obes 2025:e70017. [PMID: 40329497 DOI: 10.1111/ijpo.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a prevalent liver condition in children and teenagers with obesity. Unfortunately, there is no standardized treatment. OBJECTIVE To examine the connection between apolipoprotein B (apoB), apolipoprotein A1 (apoA1), and the apoB/apoA1 ratio with the occurrence of MASLD in this population. METHODS A retrospective study was made on children and adolescents with obesity in a children's hospital between the period 2020 and 2022. Anthropometric data, ultrasound results, and blood biochemistry were analysed to assess the connection between apoB, apoA1, and the presence of MASLD. RESULTS Of the 916 participants included, 313 were diagnosed with MASLD. The level of serum apoB reflected a substantial dose-response correlation with the odds of having MASLD. When apoB levels exceeded the 50th percentile, the risk increased significantly, and at the 95th percentile, the odds were 4.83 times higher than at the 50th percentile (95% CI: 2.02-11.56). The ratio of apoB/apoA1 at the 95th percentile was connected to a 2.41-fold higher prevalence compared to the 50th percentile (95% CI: 1.33-4.37). No significant correlation was found between the levels of apoA1 and MASLD prevalence. CONCLUSION Elevated levels of apoB and the apoB/apoA1 ratio have been strongly connected to increased MASLD prevalence in children and adolescents with obesity; hence, signifying their potential usefulness as biomarkers for early detection and intervention.
Collapse
Affiliation(s)
- Xiao-Yan Shi
- Children's Health Management Center, Children's Hospital of Soochow University, Suzhou, China
| | - Ya-Kun Liu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Zhi-Ying Jiang
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Meng-Xuan Ye
- Department of Children Health Care, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Pediatric Research Institute of Soochow University, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Geng W, Liao W, Cao X, Yang Y. Therapeutic Targets and Approaches to Manage Inflammation of NAFLD. Biomedicines 2025; 13:393. [PMID: 40002806 PMCID: PMC11853636 DOI: 10.3390/biomedicines13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), are the leading causes of chronic liver disease globally. They are driven by complex mechanisms where inflammation plays a pivotal role in disease progression. Current therapies, including lifestyle changes and pharmacological agents, are limited in efficacy, particularly in addressing the advanced stages of the disease. Emerging approaches targeting inflammation, metabolic dysfunction, and fibrosis offer promising new directions, though challenges such as treatment complexity and heterogeneity persist. This review concludes the main therapeutic targets and approaches to manage inflammation currently and emphasizes the critical need for future drug development and combination therapy for NAFLD/NASH management.
Collapse
Affiliation(s)
- Wanying Geng
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Wanying Liao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Xinyuan Cao
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| | - Yingyun Yang
- Department of Gastroenterology, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (W.L.); (X.C.)
| |
Collapse
|
3
|
Shah AS, Barrientos-Pérez M, Chang N, Fu JF, Hannon TS, Kelsey M, Peña AS, Pinhas-Hamiel O, Urakami T, Wicklow B, Wong J, Mahmud FH. ISPAD Clinical Practice Consensus Guidelines 2024: Type 2 Diabetes in Children and Adolescents. Horm Res Paediatr 2024; 97:555-583. [PMID: 39675348 PMCID: PMC11854986 DOI: 10.1159/000543033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Youth-onset type 2 diabetes (T2D) results from genetic, environmental, and metabolic causes that differ among individuals and populations. This chapter builds on the 2022 ISPAD guidelines and summarizes recent advances in the management of T2D in children and adolescents. Updates include diagnostic algorithm for youth with new onset T2D, algorithms and tables for treatment, management, and assessment of comorbidities and complications and recommendations on recently approved pharmacologic therapies for the treatment of youth-onset T2D and management strategies. Youth-onset type 2 diabetes (T2D) results from genetic, environmental, and metabolic causes that differ among individuals and populations. This chapter builds on the 2022 ISPAD guidelines and summarizes recent advances in the management of T2D in children and adolescents. Updates include diagnostic algorithm for youth with new onset T2D, algorithms and tables for treatment, management, and assessment of comorbidities and complications and recommendations on recently approved pharmacologic therapies for the treatment of youth-onset T2D and management strategies.
Collapse
Affiliation(s)
- Amy S. Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | | | - Nancy Chang
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jun-Fen Fu
- Department of Endocrinology, Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tamara S. Hannon
- Division of Endocrinology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Megan Kelsey
- Section of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Alexia S. Peña
- Robinson Research Institute and Women’s and Children’s Hospital, The University of Adelaide, North Adelaide, SA, Australia
| | - Orit Pinhas-Hamiel
- Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Brandy Wicklow
- Division of Endocrinology, Children’s Hospital Research Institute of Manitoba, Winnipeg Children’s Hospital and University of Manitoba, Winnipeg, MB, Canada
| | - Jencia Wong
- Department of Endocrinology, Royal Prince Alfred Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Farid H. Mahmud
- Division of Endocrinology, Hospital for Sick Children, Sick Kids Research Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Balta C, Herman H, Ciceu A, Lepre CC, Mladin B, Rosu M, Oatis D, Russo M, Peteu VE, Gherghiceanu M, Fenyvesi F, Cotoraci C, Trotta MC, D'Amico M, Hermenean A. Chrysin-loaded calixarene-cyclodextrin ternary drug delivery system inhibits TGF-β and galectin-1 mediated pathways in diabetic liver fibrosis. Biochem Pharmacol 2024; 229:116474. [PMID: 39122218 DOI: 10.1016/j.bcp.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study investigated the efficacy of a new chrysin-loaded calixarene-cyclodextrin ternary drug delivery system (DDS) in reversing liver fibrosis in a mouse model of chronic diabetes. The system was designed to enhance the solubility and bioavailability of chrysin (CHR) and calixarene 0118 (OTX008). Adult male CD1 mice received streptozotocin (STZ) injections to induce diabetes. After 20 weeks, they underwent intraperitoneal treatments twice weekly for a two-week period. Histological analyses revealed that long-term hyperglycaemia increased liver fibrosis and altered hepatic ultrastructure, characterized by lipid accumulation, hepatic stellate cell activation, and collagen deposition. The treatment with the chrysin-loaded DDS restored liver structure closely to normal levels, as opposed to the minimal impact observed with sulfobutylated β-cyclodextrin (SBECD) alone. The treatment significantly decreased serum activities of alanine /aspartate transaminases and reduced the gene expression of collagen type I (Col-I). It also modulated the transforming growth factor beta 1 (TGF-β1)/Smad signalling pathway, inhibiting the activation and proliferation of hepatic stellate cells. The treatment led to a downregulation of the TGF-β1 gene and its receptors TGFβR1 and TGFβR2, together with a decrease in Smad 2 and 3 mRNA levels. Conversely, Smad 7 mRNA expression was increased by the DDS. Furthermore, it downregulated galectin-1 (Gal-1) gene and protein levels, which correlated with fibrotic markers. In conclusion, the chrysin-loaded calixarene-cyclodextrin ternary DDS presents a promising therapeutic approach for diabetic liver fibrosis, effectively targeting fibrotic pathways and restoring hepatic function and structure.
Collapse
Affiliation(s)
- Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; PhD Course in Translational Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Bianca Mladin
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Marcel Rosu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Daniela Oatis
- Doctoral School of Biology, Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | | | - Mihaela Gherghiceanu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; Department of Cell Biology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ferenc Fenyvesi
- Department of Molecular Pharmaceutics and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - Coralia Cotoraci
- Department of Haematology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 310025 Arad, Romania; Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 310025 Arad, Romania.
| |
Collapse
|
5
|
Okuma H, Tsuchiya K. Tissue-specific activation of insulin signaling as a potential target for obesity-related metabolic disorders. Pharmacol Ther 2024; 262:108699. [PMID: 39111411 DOI: 10.1016/j.pharmthera.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
The incidence of obesity is rapidly increasing worldwide. Obesity-associated insulin resistance has long been established as a significant risk factor for obesity-related disorders such as type 2 diabetes and atherosclerosis. Insulin plays a key role in systemic glucose metabolism, with the liver, skeletal muscle, and adipose tissue as the major acting tissues. Insulin receptors and the downstream insulin signaling-related molecules are expressed in various tissues, including vascular endothelial cells, vascular smooth muscle cells, and monocytes/macrophages. In obesity, decreased insulin action is considered a driver for associated disorders. However, whether insulin action has a positive or negative effect on obesity-related disorders depends on the tissue in which it acts. While an enhancement of insulin signaling in the liver increases hepatic fat accumulation and exacerbates dyslipidemia, enhancement of insulin signaling in adipose tissue protects against obesity-related dysfunction of various organs by increasing the capacity for fat accumulation in the adipose tissue and inhibiting ectopic fat accumulation. Thus, this "healthy adipose tissue expansion" by enhancing insulin sensitivity in adipose tissue, but not in the liver, may be an effective therapeutic strategy for obesity-related disorders. To effectively address obesity-related metabolic disorders, the mechanisms of insulin resistance in various tissues of obese patients must be understood and drugs that enhance insulin action must be developed. In this article, we review the potential of interventions that enhance insulin signaling as a therapeutic strategy for obesity-related disorders, focusing on the molecular mechanisms of insulin action in each tissue.
Collapse
Affiliation(s)
- Hideyuki Okuma
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan
| | - Kyoichiro Tsuchiya
- Department of Diabetes and Endocrinology, Graduate School of Interdisciplinary Research, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
6
|
Akhverdyan N, Wieland A, Sullivan S, Lindsay M, Swartwood S, Arndt G, Kaizer LK, Jensen T. Changes in Transient Elastography with Glucagon-Like Peptide-1 Receptor Agonist Use in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Real-World Retrospective Analysis. Metab Syndr Relat Disord 2024; 22:608-618. [PMID: 38868900 DOI: 10.1089/met.2024.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Introduction: Current guidelines recommend the use of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD), especially in patients with comorbid diabetes and obesity. This study investigated the effects of GLP-1RAs on hepatic steatosis and fibrosis in patients with MASLD, as measured by changes in vibration-controlled transient elastography (VCTE) and other clinical parameters in a real-world clinical setting. Methods: We conducted a single-center, retrospective analysis of 96 patients with MASLD from a multidisciplinary care clinic who completed VCTE at baseline and follow-up within 6-24 months to compare changes in controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), as well as other metabolic markers, between GLP-1RA users and nonusers using two-sample t-tests and Wilcoxon rank-sum tests. We also assessed whether improvements in hepatic steatosis, defined as a change in CAP >38 dB/m as previously described in the literature, were associated with improvement in fibrosis. Results: GLP-1RA use resulted in significant improvements in weight (-8.1 kg vs. -3.5 kg, P = 0.009), body mass index (BMI) (-2.9 kg/m2 vs. -1.3 kg/m2, P = 0.012), alanine aminotransferase (-15.0 IU/L vs. -4.0 IU/L, P = 0.017), aspartate aminotransferase (-5.0 IU/L vs. -1.0 IU/L, P = 0.021), glycated hemoglobin (HbA1c) (-0.7% vs. 0.1%, P = 0.019), and CAP (-59.9 dB/m vs. -29.1 dB/m, P = 0.016). Responders also had significant improvements in weight (-9.2 kg vs. -1.9 kg, P < 0.001), BMI (-3.3 kg/m2 vs. -0.7 kg/m2, P < 0.001), diastolic blood pressure (-6.1 mmHg vs. -0.7 mmHg, P = 0.028), HbA1c (-0.8% vs. 0.3%, P < 0.001), and LSM (-1.5 kPa vs. 0.1 kPa, P < 0.001). Conclusions: Patients with MASLD treated with GLP-1RAs showed significant improvements in hepatic steatosis and multiple other metabolic parameters, with weight loss as the proposed mechanism for this liver improvement. In addition, change in CAP >38 dB/m was associated with improvements in LSM and other metabolic parameters, suggesting the clinical utility of VCTE in the surveillance of MASLD.
Collapse
Affiliation(s)
- Nazar Akhverdyan
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amanda Wieland
- Division of Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shelby Sullivan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark Lindsay
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sheila Swartwood
- Division of Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gretchen Arndt
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Laura Katherine Kaizer
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jensen
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Zhang Y, Bu Y, Zhao R, Han C. Metabolic-associated fatty liver disease and pregnancy complications: new challenges and clinical perspectives. Ther Adv Endocrinol Metab 2024; 15:20420188241274350. [PMID: 39350947 PMCID: PMC11440543 DOI: 10.1177/20420188241274350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
The term metabolic-associated fatty liver disease (MAFLD), with a global prevalence estimated at 38.77%, has gradually replaced the traditional concept of non-alcoholic fatty liver disease (NAFLD). Compared to the general population, the incidence of MAFLD is notably higher among pregnant women, posing potential risks to both maternal and neonatal health. This review summarizes the latest research on MAFLD, focusing on its association with pregnancy complications. Additionally, it provides a comparative analysis with previous studies on NAFLD, presenting a comprehensive perspective for clinical management. Findings suggest that pregnant women with MAFLD face a higher risk of gestational hypertension and cesarean delivery compared to those with NAFLD, while the risk for gestational diabetes mellitus remains similar between the two conditions. Additionally, MAFLD is associated with an increased likelihood of delivering large-for-gestational-age infants and heightened risks of preterm birth and low birth weight. Current treatment strategies for MAFLD focus on lifestyle modifications, such as dietary adjustments and increased physical activity. However, there is an urgent need for the development of safe and effective pharmacological treatments, particularly tailored toward pregnant women. Future research should delve deeper into the causal relationships between MAFLD and pregnancy complications and explore optimal therapeutic approaches to improve outcomes for mothers and their infants.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Nutrition, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yifan Bu
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Rui Zhao
- Department of General Surgery, Unit 1, The Sixth People’s Hospital of Shenyang, 85 Heping S Ave, Shenyang 110001, China
| | - Cheng Han
- Department of Clinical Nutrition, Affiliated Zhongshan Hospital of Dalian University, #6 Jiefang Road, Dalian 116001, China
| |
Collapse
|
8
|
Faienza MF, Farella I, Khalil M, Portincasa P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int J Mol Sci 2024; 25:9924. [PMID: 39337412 PMCID: PMC11432101 DOI: 10.3390/ijms25189924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In the past thirty years, childhood obesity rates have risen significantly worldwide, affecting over 340 million children in affluent nations. This surge is intricately tied to metabolic disorders, notably insulin resistance, type 2 diabetes mellitus (T2DM), and the continually evolving spectrum of metabolic-associated (dysfunction) steatotic liver disease (MASLD). This review underscores the alarming escalation of childhood obesity and delves comprehensively into the evolving and dynamic changes of nomenclature surrounding diverse conditions of hepatic steatosis, from the initial recognition of non-alcoholic fatty liver disease (NAFLD) to the progressive evolution into MASLD. Moreover, it emphasizes the crucial role of pediatric endocrinologists in thoroughly and accurately investigating MASLD onset in children with T2DM, where each condition influences and exacerbates the progression of the other. This review critically highlights the inadequacies of current screening strategies and diagnosis, stressing the need for a paradigm shift. A proposed solution involves the integration of hepatic magnetic resonance imaging assessment into the diagnostic arsenal for children showing insufficient glycemic control and weight loss post-T2DM diagnosis, thereby complementing conventional liver enzyme testing. This holistic approach aims to significantly enhance diagnostic precision, fostering improved outcomes in this vulnerable high-risk pediatric population.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| |
Collapse
|
9
|
Ito D, Shimizu S, Haisa A, Yanagisawa S, Inoue K, Saito D, Sumita T, Yanagisawa M, Uchida Y, Inukai K, Shimada A. Long-term effects of ipragliflozin and pioglitazone on metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes: 5 year observational follow-up of a randomized, 24 week, active-controlled trial: Effect of ipragliflozin in MASLD. J Diabetes Investig 2024; 15:1220-1230. [PMID: 38775319 PMCID: PMC11363141 DOI: 10.1111/jdi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 08/31/2024] Open
Abstract
AIMS/INTRODUCTION We conducted a 5 year post-trial monitoring study of our previous randomized 24 week, open-label, active-controlled trial that showed beneficial effects of ipragliflozin on metabolic dysfunction-associated steatotic liver disease (MASLD), identical to those of pioglitazone. MATERIALS AND METHODS In our previous trial, 66 patients with MASLD and type 2 diabetes were randomly assigned to receive either ipragliflozin (n = 32) or pioglitazone (n = 34). Upon its conclusion, 61 patients were monitored for 5 years for outcome measures of MASLD, glycemic, and metabolic parameters. Differences between the two groups were analyzed at baseline, 24 weeks, and 5 years; changes in outcome measures from baseline were also evaluated. RESULTS At 5 years, the mean liver-to-spleen attenuation ratio increased by 0.20 (from 0.78 ± 0.24 to 0.98 ± 0.20) in the ipragliflozin group and by 0.26 (from 0.76 ± 0.26 to 1.02 ± 0.20) in the pioglitazone group (P = 0.363). Similarly, ipragliflozin and pioglitazone significantly improved serum aminotransferase, HbA1c, and fasting plasma glucose levels over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat area observed at 24 weeks were sustained throughout the 5 years (-4.0%, P = 0.0075 and -7.6%, P = 0.045, respectively). Moreover, ipragliflozin significantly reduced the values of fibrosis markers (serum ferritin and FIB-4 index), was well tolerated, and had a higher continuation rate for 5 years compared with pioglitazone. CONCLUSIONS Ipragliflozin and pioglitazone improved MASLD and glycemic parameters over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat mass persisted for 5 years.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Satoshi Shimizu
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Akifumi Haisa
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Shinnosuke Yanagisawa
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
- Satsuki Medical ClinicSaitamaJapan
| | - Kazuyuki Inoue
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Daigo Saito
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Takashi Sumita
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | | | - Yoshihito Uchida
- Department of Gastroenterology and HepatologySaitama Medical UniversitySaitamaJapan
| | - Kouichi Inukai
- Department of Diabetes and EndocrinologyHigashiyamato HospitalTokyoJapan
| | - Akira Shimada
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
| |
Collapse
|
10
|
Yuan W, Ran Y, Wang J, Pei F, Cui L, Chen S, Wu S, Zhou L. Mediating effect of diabetes on the relationship between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease: a prospective cohort study. Eur J Gastroenterol Hepatol 2024; 36:1133-1140. [PMID: 39101442 DOI: 10.1097/meg.0000000000002794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVE This study explored the mediating effect of diabetes on the relationship between nonalcoholic fatty liver disease (NAFLD) and atherosclerotic cardiovascular disease (ASCVD). METHODS In this prospective community cohort study, 82 975 participants were enrolled, with the primary outcome being the incidence of new-onset ASCVD. Using the Cox proportional hazards model, the hazard ratio (HR) and 95% confidence interval (CI) for ASCVD occurrence were computed between NAFLD and non-NAFLD groups. The correlation between NAFLD and diabetes was assessed using a binary logistic regression model, and that between NAFLD, diabetes and ASCVD using a mediation model. RESULTS During follow-up, 9471 ASCVD cases were observed. Compared with individuals without NAFLD, those with NAFLD showed an increased ASCVD risk (HR: 1.424; 95% CI: 1.363-1.488; P < 0.001). Stratifying NAFLD based on metabolic subphenotypes revealed a higher ASCVD risk in the NAFLD combined with diabetes subgroup than in the non-NAFLD subgroup (HR: 1.960; 95% CI: 1.817-2.115; P < 0.001). NAFLD was positively associated with baseline diabetes (odds ratio: 2.983; 95% CI: 2.813-3.163; P < 0.001). Furthermore, NAFLD severity was positively correlated with diabetes risk. Mediation analysis indicated that diabetes partially mediated the effect of NAFLD on ASCVD incidence, accounting for 20.33% of the total effect. CONCLUSION NAFLD is an independent predictor of increased ASCVD risk, which may be slightly mediated by diabetes in patients with NAFLD. Evaluating NAFLD and diabetes may be crucial in the early screening and prevention of ASCVD.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University
- Tianjin Institute of Digestive Diseases
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, Departments of
- Rheumatology and Immunology
| | - Ying Ran
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University
- Tianjin Institute of Digestive Diseases
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, Departments of
| | | | | | | | - Shuohua Chen
- Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Cardiology, Kailuan General Hospital, Tangshan, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University
- Tianjin Institute of Digestive Diseases
- Tianjin Key Laboratory of Digestive Diseases, Tianjin, Departments of
| |
Collapse
|
11
|
Fardman A, Kodesh A, Siegel AJ, Segev A, Regev E, Maor E, Berkovitch A, Kuperstein R, Morgan A, Nahum E, Peled Y, Grupper A. The safety of sodium glucose transporter 2 inhibitors and trends in clinical and hemodynamic parameters in patients with left ventricular assist devices. Artif Organs 2024; 48:902-911. [PMID: 38409872 DOI: 10.1111/aor.14733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND The safety and impact of sodium glucose transporter 2 inhibitors (SGLT2-I) in patients with left ventricular assist devices (LVAD) are unknown. METHODS A retrospective analysis of all consecutive patients who underwent LVAD Heart Mate 3 (HM3) implantation at a single medical center and received SGLT2-I therapy following surgery was conducted. LVAD parameters, medical therapy, laboratory tests, echocardiography, and right heart catheterization (RHC) study results were recorded and compared before and after initiation of SGLT2-I. RESULTS SGLT2-I medications were initiated in 29 (21%) of 138 patients following HM3 implantation (23 (79%) received Empagliflozin and 6 (21%) Dapagliflozin). The mean age at the time of LVAD implantation was 62 ± 6.7 years, 25 (86%) were male, and 23 (79%) had diabetes mellitus. The median time from HM3 implantation to SGLT2-I initiation was 108 days, IQR (26-477). Following SGLT2-I therapy, the daily dose of furosemide decreased from 47 to 23.5 mg/day (mean difference = 23.5 mg/d, 95% CI 8.2-38.7, p = 0.004) and significant weight reduction was observed (mean difference 2.5 kg, 95% CI 0.7-4.3, p = 0.008). Moreover, a significant 5.6 mm Hg reduction in systolic pulmonary artery pressure (sPAP) was measured during RHC (95% CI 0.23-11, p = 0.042) in a subgroup of 11 (38%) patients. LVAD parameters were similar before and after SGLT2-I initiation (p > 0.2 for all). No adverse events were recorded during median follow-up of 354 days, IQR (206-786). CONCLUSION SGLT2-I treatment is safe in LVAD patients and might contribute to reduction in patients sPAP.
Collapse
Affiliation(s)
- Alexander Fardman
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Afek Kodesh
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Department of Internal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Amitai Segev
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ehud Regev
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Elad Maor
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anat Berkovitch
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rafael Kuperstein
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Avi Morgan
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eyal Nahum
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yael Peled
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Avishay Grupper
- The Cardiovascular Division, Sheba Medical Center, Tel Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
13
|
Pramanik S, Pal P, Ray S. Non-alcoholic fatty liver disease in type 2 diabetes: Emerging evidence of benefit of peroxisome proliferator-activated receptors agonists and incretin-based therapies. World J Methodol 2024; 14:91319. [PMID: 38983664 PMCID: PMC11229880 DOI: 10.5662/wjm.v14.i2.91319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic, affecting more than half of the people living with type 2 diabetes (T2D). The relationship between NAFLD and T2D is bidirectional and the presence of one perpetuates the other, which significantly increases the hepatic as well as extrahepatic complications. Until recently, there was no approved pharmacological treatment for NAFLD/ nonalcoholic steatohepatitits (NASH). However, there is evidence that drugs used for diabetes may have beneficial effects on NAFLD. Insulin sensitizers acting through peroxisome proliferator-activated receptor (PPAR) modulation act on multiple levels of NAFLD pathogenesis. Pioglitazone (PPARγ agonist) and saroglitazar (PPARα/γ agonist) are particularly beneficial and recommended by several authoritative bodies for treating NAFLD in T2D, although data on biopsy-proven NASH are lacking with the latter. Initial data on elafibanor (PPAR α/δ agonist) and Lanifibranor (pan PPAR agonist) are promising. On the other hand, incretin therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RA) and dual- and triple-hormone receptor co-agonists reported impressive weight loss and may have anti-inflammatory and antifibrotic properties. GLP-1 RAs have shown beneficial effects on NAFLD/NASH and more studies on potential direct effects on liver function by dual- and triple-agonists are required. Furthermore, the long-term safety of these therapies in NAFLD needs to be established. Collaborative efforts among healthcare providers such as primary care doctors, hepatologists, and endocrinologists are warranted for selecting patients for the best possible management of NAFLD in T2D.
Collapse
Affiliation(s)
- Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospital, Siliguri 734010, West Bengal, India
| | - Partha Pal
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500082, India
| | - Sayantan Ray
- Department of Endocrinology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar 751019, Odisha, India
| |
Collapse
|
14
|
Qi X, Li J, Caussy C, Teng GJ, Loomba R. Epidemiology, screening, and co-management of type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease. Hepatology 2024:01515467-990000000-00875. [PMID: 38722246 DOI: 10.1097/hep.0000000000000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as NAFLD, is increasingly recognized as a prevalent global burden. Type 2 diabetes mellitus (T2DM), another important metabolic disease, is considered a major contributor to the development of MASLD. MASLD and T2DM have a strong association with each other due to shared pathogenic mechanisms. The co-existence of the 2 diseases increases the risk of liver-related adverse outcomes and imposes a heavier burden on extrahepatic outcomes, representing a substantial public health issue. Effective assessment and management of T2DM combined with MASLD necessitate a multidisciplinary approach. The emergence of numerous RCTs has shed light on the treatment of T2DM combined with MASLD. This review uncovers the epidemiology of the intertwined T2DM and MASLD, offers insights into the evaluation of hepatic fibrosis in patients with T2DM, glucose monitoring in the MASLD population, and provides comprehensive co-management strategies for addressing both diseases.
Collapse
Affiliation(s)
- Xiaolong Qi
- Department of Radiology, Center of Portal Hypertension, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging and Interventional Radiology (Southeast University), Nanjing, China
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, Nanjing, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cyrielle Caussy
- Faculté de Médecine Lyon Sud, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, California, USA
| | - Gao-Jun Teng
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, Nanjing, China
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, California, USA
- School of Public Health, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Haber R, Zarzour F, Ghezzawi M, Saadeh N, Bacha DS, Al Jebbawi L, Chakhtoura M, Mantzoros CS. The impact of metformin on weight and metabolic parameters in patients with obesity: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2024; 26:1850-1867. [PMID: 38468148 DOI: 10.1111/dom.15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
There are conflicting data on the weight-reducing potential of metformin (MTF) in nondiabetic patients with obesity. The purpose of this systematic review and meta-analysis was to evaluate the effect of MTF on weight and cardiometabolic parameters in adults with overweight/obesity with or without nonalcoholic fatty liver disease (NAFLD) (CRD42018085512). We included randomized controlled trials (RCTs) in adults without diabetes mellitus, with mean body mass index (BMI) ≥ 25 kg/m2, with or without NAFLD, comparing MTF to placebo/control, lifestyle modification (LSM) or a US Food and Drug Administration-approved anti-obesity drug, reporting on weight or metabolic parameters, and extending over at least 3 months. We conducted a systematic search in MEDLINE, EMBASE, PubMed and the Cochrane Library without time limitation (until March 2022). We screened and selected eligible articles, abstracted relevant data, and assessed the risk of bias. All steps were in duplicate and independently. We conducted a random-effects model meta-analysis using Review Manager version 5.3, with prespecified subgroup analyses in case of heterogeneity. We identified 2650 citations and included 49 trials (55 publications). Compared to placebo, MTF was associated with a significant reduction in BMI (mean difference [MD] -0.56 [-0.74, -0.37] kg/m2; p < 0.0001), at doses ranging from 500 to 2550 mg/day, and with a significant percentage change in BMI of -2.53% (-2.90, -2.17) at the dose 1700 mg/day. There was no interaction by baseline BMI, MTF dose or duration, nor presence or absence of NAFLD. There was no significant difference between MTF and LSM. Orlistat was more effective than MTF (at doses of 1000-1700 mg/day) in terms of weight loss, with an MD in BMI of -3.17 (-5.88; -0.47) kg/m2, favouring the former. Compared to placebo/control, MTF improved insulin parameters, while no effect was detected when compared to LSM. A few small trials showed heterogenous effects on liver parameters in patients with NAFLD treated with MTF compared to placebo/control. There was a large variability in the expression of outcome measures and RCTs were of low quality. In conclusion, MTF was associated with a modest weight reduction in obese nondiabetic patients. Further high-quality and better powered studies are needed to examine the impact of MTF in patients with insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Rachelle Haber
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fatima Zarzour
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Natalie Saadeh
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Dania S Bacha
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Al Jebbawi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Wang Y, Yi H, Sun W, Yu H, Tao W, Yu X, Jia D, Liu Y, Pandol SJ, Li L. Comparative Efficacy of Drug Interventions on NAFLD Over 24 Weeks: A Traditional and Network Meta-Analysis of Randomized Controlled Trials. Drugs 2024; 84:425-439. [PMID: 38478331 DOI: 10.1007/s40265-024-02015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD), currently referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), affects approximately 38% of the world's population, yet no pharmacological therapies have been approved for treatment. We conducted a traditional and network meta-analysis to comprehensively assess the effectiveness of drug regimens on NAFLD, and continued to use the old terminology for consistency. METHODS Randomized, placebo-controlled trials (RCTs) investigating drug therapy in an adult population diagnosed with NAFLD with or without diabetes mellitus were included. We assessed the quality of RCTs via the Risk of Bias 2 (ROB 2) tool. When I2 < 50%, we chose a random-effects model, otherwise a fixed-effects model was selected. A random effects model was applied in the network meta-analysis. The odds ratio (OR), weighted mean difference (WMD) or standard mean difference (SMD) with 95% confidence interval (CI) were used for outcome evaluation. The primary endpoint was the resolution of nonalcoholic steatohepatitis (NASH) without the worsening of liver fibrosis. Other endpoints included histological findings and metabolic changes. The PROSPERO Registration ID was CRD42023404309. RESULTS Thiazolidinediones (TZDs), vitamin E plus pioglitazone, glucagon-like peptide-1 (GLP-1) receptor agonists and fibroblast growth factor-21 (FGF-21) analogue had a higher surface under the cumulative ranking curve (SUCRA = 76.6, 73.0, 72.0 and 71.6) regarding NASH resolution. Improvement of liver fibrosis stage (≥ 1) was observed with obeticholic acid 25 mg/day (OR 2.01, 95% CI 1.35-2.98), lanifibranor 1200 mg/day (OR 2.39, 95% CI 1.19-4.82) and silymarin (OR 4.54, 95% CI 1.18-17.43) in traditional meta-analysis. CONCLUSIONS The results of the comprehensive analysis suggested hypoglycemic drug therapy as an effective intervention for NAFLD, with or without diabetes mellitus. A prioritized selection of TZDs, vitamin E plus pioglitazone, GLP-1 receptor agonists and FGF-21 analogue may be considered for NASH resolution. Obeticholic acid, lanifibranor and silymarin could be considered for the improvement of liver fibrosis. Each medication was relatively safe compared with placebo.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - He Yi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Weixia Sun
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hekai Yu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wenxuan Tao
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaojin Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Dianrong Jia
- Department of Endocrinology, Taizhou Jiangyan Hospital of Traditional Chinese Medicine, Taizhou, 225500, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Basic and Translational Pancreatic Research, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, 210009, China.
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
18
|
Omari MB, Naseri S, Hassan AJ. Drug Safety Evaluation of Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Comorbid Patients by Review of Systemic Extraglycemic Effects. Diabetes Metab Syndr Obes 2024; 17:1131-1141. [PMID: 38465348 PMCID: PMC10924842 DOI: 10.2147/dmso.s448670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose The aim of this study is to evaluate the safety of this drug in diabetic patients with comorbidities of all systems. Method In this review, the beneficial effects of this drug and its mechanism on the disorders of every system of humans in relation to diabetes have been studied, and finally, its adverse effects have also been discussed. The search for relevant information is carried out in the PubMed and Google Scholar databases by using the following terms: diabetes mellitus type 2, SGLT, SGLT2 inhibitors, (SGLT2 inhibitors) AND (Pleiotropic effects). All English-published articles from 2016 to 2023 have been used in this study. It should be noted that a small number of articles published before 2016 have been used in the introduction and general informations. Results Its beneficial effects on improving cardiovascular disease risk factors and reducing adverse events caused by cardiovascular and renal diseases have proven in most large clinical studies that these effects are almost certain. It also has beneficial effects on other human systems such as the respiratory system, the gastrointestinal system, the circulatory system, and the nervous system; more of them are at the level of clinical and pre-clinical trials but have not been proven in large clinical trials or meta-analyses. Conclusion With the exception of a few adverse effects, this drug is considered a good choice and safe for all diabetic patients with comorbidities of all systems.
Collapse
Affiliation(s)
- Mohammad Belal Omari
- Department of Endocrinology, Hematology and Rheumatology, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| | - Shafiqullah Naseri
- Cardio-Pulmonary Department, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| | - Abdul Jalil Hassan
- Department of Infectious Disease and Tuberculosis, Ali Abad Teaching Hospital, Kabul University of Medical Sciences "Abu Ali Ibn Sina", Kabul, Afghanistan
| |
Collapse
|
19
|
Ayres ABS, Carneiro CRG, Gestic MA, Utrini MP, Chaim FDM, Callejas-Neto F, Chaim EA, Cazzo E. Identification of Predictors of Non-alcoholic Steatohepatitis and Its Severity in Individuals Undergoing Bariatric Surgery. Obes Surg 2024; 34:456-466. [PMID: 38097891 DOI: 10.1007/s11695-023-06986-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND As obesity reached epidemic proportions, non-alcoholic fatty liver disease (NAFLD) also had a worrisome parallel increase. The non-invasive differentiation of non-alcoholic steatohepatitis (NASH) from uncomplicated NAFLD remains an important challenge in current clinical practice. OBJECTIVE To identify predictors of the occurrence and severity of NAFLD and NASH. METHODS This is an analytical cross-sectional study which included individuals undergoing bariatric surgery. Participants were histologically classified according to the presence NASH and severity of NAFLD. Demographic, clinical, anthropometric, and biochemical aspects were analyzed and compared. RESULTS Out of 171 individuals, 87.7% were female and the mean age was 38.4±9.3 years. The average BMI was 38±3.0 kg/m2. NAFLD was histologically confirmed in 74.9%; the commonest histopathological abnormalities were macrovesicular steatosis (74.9%) and ballooning (40.4%). Simple steatosis occurred in 30.4%, 44.4% presented with NASH, and 31% had severe NAFLD. NASH associated with higher levels of ALT (0.03), ALP (0.02), and glucose (0.02). Cutoff values were, respectively, 23 U/L, 67 U/L, and 81 mg/dL. Their concomitant use provided an 83.1% specificity for NASH. Severe NAFLD associated with diabetes (p=0.02), higher BMI (p=0.01), AST (p=0.04), ALT (p<0.01), ALP (p=0.01), glucose (p=0.02), and ferritin (p<0.01). BMI over 39.3 kg/m2 and ferritin over 178 ng/mL concomitantly provided a 70.5% accuracy for severe NAFLD. CONCLUSIONS NASH and severe NAFLD associated with higher levels of ALT, ALP, and glucose. Severe NAFLD associated with higher BMI and higher ferritin levels in this group. The concomitant evaluation of these laboratory tests could help ruling out NASH and safely screening severe NAFLD.
Collapse
Affiliation(s)
- Arthur Balestra Silveira Ayres
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | | | - Martinho Antonio Gestic
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | - Murillo Pimentel Utrini
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | - Felipe David Mendonça Chaim
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | - Francisco Callejas-Neto
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | - Elinton Adami Chaim
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil
| | - Everton Cazzo
- Dept. of Surgery-School of Medical Sciences-State University of Campinas (UNICAMP), Rua Alexander Fleming, s/no, Campinas, (SP), Brazil.
- Cidade Universitária Zeferino Vaz, Campinas, (SP), CEP 13085-000, Brazil.
| |
Collapse
|
20
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
21
|
Song Y, Chen B, Jiang L, Zhao F, Feng X. Global Trends of Treatment for NAFLD from 2012 to 2021: A Bibliometric and Mapping Analysis. Endocr Metab Immune Disord Drug Targets 2024; 24:573-584. [PMID: 37855283 DOI: 10.2174/0118715303230418230925060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/02/2023] [Accepted: 08/06/2023] [Indexed: 10/20/2023]
Abstract
AIM The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a multi-system metabolic disorder involving the liver. Thousands of papers have been published on the treatment of NAFLD, but no comprehensive statistical and intuitive analysis has been made. The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. OBJECTIVE (1) The pathogenesis of NAFLD and the possible treatment mechanism; (2) prevalence, risk factors, and traditional therapies for NAFLD; (3) frontier therapies for NAFLD. Method; This paper conducted a bibliometric analysis based on the Web of Science Core Collection (WoSCC). The knowledge map was constructed by VOS viewer v.1.6.10 to visualize the annual publication number, the distribution of countries, international collaborations, author productivity, source journals, cited references, and keywords in this field. RESULTS From 2012 to 2021, 2,437 peer-reviewed publications on the treatment of NAFLD were retrieved. China contributed the most publications, while the United States received the most citations. Journal of Hepatology was the most prolific journal in this field. Prof. Rohit Loomba. CONCLUSION Our study provides a comprehensive and objective analysis of NAFLD treatment that allows researchers to quickly locate research hotspots in a large number of relevant literatures. Meanwhile, it may also provide valuable information for researchers looking for potential partners and institutions.
Collapse
Affiliation(s)
- Yuling Song
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Boru Chen
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Lu Jiang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Fangkun Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xiuqin Feng
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| |
Collapse
|
22
|
Fang Y, Zhang J, Ji L, Zhu C, Xiao Y, Gao Q, Song W, Wei L. GLP1R rs3765467 Polymorphism Is Associated with the Risk of Early Onset Type 2 Diabetes. Int J Endocrinol 2023; 2023:8729242. [PMID: 38131033 PMCID: PMC10735718 DOI: 10.1155/2023/8729242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/19/2023] [Accepted: 04/18/2023] [Indexed: 12/23/2023] Open
Abstract
Objective To investigate the relationship between glucagon-like peptide-1 receptor gene polymorphisms and susceptibility to early onset type 2 diabetes. Methods Samples from 316 type 2 diabetes patients with early onset type 2 diabetes (n = 137) and late-onset type 2 diabetes (n = 179) and 145 nondiabetic individuals were analyzed. Multiplex PCR combined with resequencing Hi-Reseq technology was used to detect single nucleotide polymorphisms of the glucagon-like peptide-1 receptor gene, and the allele frequency, genotype distribution, and clinical parameters were analyzed between each diabetes subgroup and the control group. Results Sixteen single nucleotide polymorphisms were identified in the exonic region of the glucagon-like peptide-1 receptor gene according to the minor allele frequency (MAF > 0.05) in the participants. Among these, the glucagon-like peptide-1 receptor rs3765467 (G⟶A) mutation was statistically associated with early onset type 2 diabetes. Compared with that of the GG carriers, carriers of genotype AA at rs3765467 had a decreased risk of early onset type 2 diabetes after adjusting for sex and body mass index. In the dominant model, the frequencies of the rs3765467 AA + GA genotype were significantly decreased in the early onset type 2 diabetes group, and carriers of genotype AA + GA at rs3765467 had a decreased risk of early onset type 2 diabetes after adjusting for sex and body mass index. Moreover, fasting C peptide levels were significantly higher in GA + AA genotype carriers than those in GG genotype carriers. Conclusion The glucagon-like peptide 1 receptor rs3765467 polymorphism was significantly associated with age at type 2 diabetes diagnosis and thus may be used as a marker to screen and detect individuals at risk of developing early onset type 2 diabetes.
Collapse
Affiliation(s)
- Yunyun Fang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
| | - Linlin Ji
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Chaoyu Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Qingge Gao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Wenjing Song
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
23
|
Moreira RO, Valerio CM, Villela-Nogueira CA, Cercato C, Gerchman F, Lottenberg AMP, Godoy-Matos AF, Oliveira RDA, Brandão Mello CE, Álvares-da-Silva MR, Leite NC, Cotrim HP, Parisi ER, Silva GF, Miranda PAC, Halpern B, Pinto Oliveira C. Brazilian evidence-based guideline for screening, diagnosis, treatment, and follow-up of metabolic dysfunction-associated steatotic liver disease (MASLD) in adult individuals with overweight or obesity: A joint position statement from the Brazilian Society of Endocrinology and Metabolism (SBEM), Brazilian Society of Hepatology (SBH), and Brazilian Association for the Study of Obesity and Metabolic Syndrome (Abeso). ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230123. [PMID: 38048417 DOI: 10.20945/2359-4292-2023-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Nonalcoholic fatty liver disease (NAFLD), is one of the most common hepatic diseases in individuals with overweight or obesity. In this context, a panel of experts from three medical societies was organized to develop an evidence-based guideline on the screening, diagnosis, treatment, and follow-up of MASLD. MATERIAL AND METHODS A MEDLINE search was performed to identify randomized clinical trials, meta-analyses, cohort studies, observational studies, and other relevant studies on NAFLD. In the absence of studies on a certain topic or when the quality of the study was not adequate, the opinion of experts was adopted. Classes of Recommendation and Levels of Evidence were determined using prespecified criteria. RESULTS Based on the literature review, 48 specific recommendations were elaborated, including 11 on screening and diagnosis, 9 on follow-up,14 on nonpharmacologic treatment, and 14 on pharmacologic and surgical treatment. CONCLUSION A literature search allowed the development of evidence-based guidelines on the screening, diagnosis, treatment, and follow-up of MASLD in individuals with overweight or obesity.
Collapse
Affiliation(s)
- Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil,
- Faculdade de Medicina de Valença,Centro Universitário de Valença, Valença, RJ, Brasil
- Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Cynthia Melissa Valerio
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Cristiane Alves Villela-Nogueira
- Departamento de Clínica Médica, Faculdade de Medicina e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Cintia Cercato
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Gerchman
- Programa de Pós-graduação em Ciências Médicas (Endocrinologia), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Divisão de Endocrinologia e Metabolismo, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Ana Maria Pita Lottenberg
- Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| | | | | | - Carlos Eduardo Brandão Mello
- Departamento de Clínica Médica e da Disciplina de Gastroenterologia Clínica e Cirúrgica, Escola de Medicina e Cirurgia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Departamento de Clínica Médica e Serviço de Hepatologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Mãrio Reis Álvares-da-Silva
- Serviço de Gastroenterologia, Hospital das Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Nathalie Carvalho Leite
- Serviço de Clínica Médica e Serviço de Hepatologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Edison Roberto Parisi
- Disciplina de Gastroenterologia e Hepatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Giovanni Faria Silva
- Departamento de Clínica Médica da Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil
| | | | - Bruno Halpern
- Grupo de Obesidade, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Claudia Pinto Oliveira
- Laboratório de Investigação Médica (LIM07), Departamento de Gastroenterologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
24
|
Kasahara N, Imi Y, Amano R, Shinohara M, Okada K, Hosokawa Y, Imamori M, Tomimoto C, Kunisawa J, Kishino S, Ogawa J, Ogawa W, Hosooka T. A gut microbial metabolite of linoleic acid ameliorates liver fibrosis by inhibiting TGF-β signaling in hepatic stellate cells. Sci Rep 2023; 13:18983. [PMID: 37923895 PMCID: PMC10624680 DOI: 10.1038/s41598-023-46404-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-β-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.
Collapse
Affiliation(s)
- Nanaho Kasahara
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Yukiko Imi
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Reina Amano
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Department of Future Medicine Sciences, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kumiko Okada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yusei Hosokawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Makoto Imamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | | | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, 567-0085, Japan.
| |
Collapse
|
25
|
Tilg H, Byrne CD, Targher G. NASH drug treatment development: challenges and lessons. Lancet Gastroenterol Hepatol 2023; 8:943-954. [PMID: 37597527 DOI: 10.1016/s2468-1253(23)00159-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 08/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Although NAFLD is tightly linked to obesity and type 2 diabetes, this liver disease also affects individuals who do not have obesity. NAFLD increases the risk of developing cardiovascular disease, chronic kidney disease, and certain extrahepatic cancers. There is currently no licensed pharmacotherapy for NAFLD, despite numerous clinical trials in the past two decades. Currently, the reason so few drugs have been successful in the treatment of NAFLD in a trial setting is not fully understood. As cardiovascular disease is the predominant cause of mortality in people with NAFLD, future pharmacotherapies for NAFLD must consider associated cardiometabolic risk factors. The successful use of glucose-lowering drugs in the treatment of type 2 diabetes in patients with NAFLD indicates that this strategy is important, and worth developing further. Greater public awareness of NAFLD is needed because collaboration between all stakeholders is vital to enable a holistic approach to successful treatment.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| | - Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Verona, Verona, Italy; IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| |
Collapse
|
26
|
Yang R, Fan JG. Non-alcoholic fatty liver disease and risk of cardiovascular diseases: clinical association, pathophysiological mechanisms, and management. CARDIOLOGY PLUS 2023; 8:217-226. [DOI: 10.1097/cp9.0000000000000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a fatty liver disease associated with metabolic dysfunction in genetically susceptible individuals due to over-nutrition and lack of exercise. With the prevalence of obesity, metabolic syndrome, and type 2 diabetes mellitus, NAFLD has become the most common cause of chronic liver disease worldwide. NAFLD shares many risk factors with cardiovascular diseases (CVDs). NAFLD is associated with increased risk of major cardiovascular events and other cardiac complications even after adjustment for traditional cardiovascular risk factors. The primary pathology of NAFLD is within the liver, but the most common cause of deaths in patients with NAFLD is CVDs. This review summarizes the epidemiological evidence for the association between NAFLD and CVD risk and the pathophysiological mechanisms underlying this association. Current treatment strategies for NAFLD and their potential impact on CVD risk are also discussed.
Collapse
Affiliation(s)
- Rong Yang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
27
|
Ciardullo S, Vergani M, Perseghin G. Nonalcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: Screening, Diagnosis, and Treatment. J Clin Med 2023; 12:5597. [PMID: 37685664 PMCID: PMC10488336 DOI: 10.3390/jcm12175597] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD) affects ~70% of patients with type 2 diabetes (T2D), with ~20% showing signs of advanced liver fibrosis. Patients with T2D are at an increased risk of developing cirrhosis, liver failure, and hepatocellular carcinoma and their liver-related mortality is doubled compared with non-diabetic individuals. Nonetheless, the condition is frequently overlooked and disease awareness is limited both among patients and among physicians. Given recent epidemiological evidence, clinical practice guidelines recommend screening for NAFLD/MASLD and advanced liver fibrosis in patients with T2D. While many drugs are currently being tested for the treatment of NAFLD/MASLD, none of them have yet received formal approval from regulatory agencies. However, several classes of antidiabetic drugs (namely pioglitazone, sodium-glucose transporter 2 inhibitors, glucagon-like peptide 1 receptor agonists, and multi-agonists) have shown favorable effects in terms of liver enzymes, liver fat content and, in some occasions, on histologic features such as inflammation and fibrosis. Therefore, diabetologists have the opportunity to actively treat NAFLD/MASLD, with a concrete possibility of changing the natural history of the disease. In the present narrative review, we summarize evidence and clinical recommendations for NAFLD/MAFLD screening in the setting of T2D, as well as on the effect of currently available glucose-lowering drugs on hepatic endpoints.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900 Monza, MB, Italy; (M.V.); (G.P.)
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, MI, Italy
| | - Michela Vergani
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900 Monza, MB, Italy; (M.V.); (G.P.)
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, MI, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza, Via Modigliani 10, 20900 Monza, MB, Italy; (M.V.); (G.P.)
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milan, MI, Italy
| |
Collapse
|
28
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
29
|
Scheen AJ. Pharmacokinetic, toxicological, and clinical considerations for the treatment of type 2 diabetes in patients with liver disease: a comprehensive update. Expert Opin Drug Metab Toxicol 2023; 19:543-553. [PMID: 37620287 DOI: 10.1080/17425255.2023.2252333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Type 2 diabetes and liver disease, mainly metabolic-associated fatty liver disease (MAFLD) and more rarely cirrhosis, coexist in many patients. This duality has direct implications for the physician when choosing glucose-lowering agents, with classical concerns but also recent new hopes. AREAS COVERED This updated comprehensive review will consider the pharmacokinetics, the tolerance/safety profile, the benefit/risk balance in cirrhosis, the effects on MAFLD and the risk of hepatocellular carcinoma of old and new glucose-lowering compounds in patients with liver disease, with a special focus on glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. EXPERT OPINION We are currently facing a new paradigm in the management of patients with diabetes and liver disease. From previous reluctance when using antidiabetic agents (except insulin) in diabetic patients with hepatic impairment because of safety concerns, the commercialization of novel glucose-lowering agents has changed the scene. These agents, which have a good safety profile, are associated with weight loss and pleiotropic effects. They have proven their efficacy in improving MAFLD. However, more specific studies are still needed to prove their efficacy in preventing the progression to fibrosis/cirrhosis and confirm this new opportunity for the management of patients with diabetes and liver disease.
Collapse
Affiliation(s)
- André J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium
| |
Collapse
|
30
|
Scheen AJ. Comparative effects between old and new antidiabetic agents on metabolic- associated fatty liver disease (MAFLD). DIABETES EPIDEMIOLOGY AND MANAGEMENT 2023; 11:100145. [DOI: 10.1016/j.deman.2023.100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Loosen SH, Krieg S, Krieg A, Qvartskhava N, Luedde T, Kostev K, Roderburg C. Non-alcoholic fatty liver disease is associated with an increased risk of type 2 diabetes. Eur J Gastroenterol Hepatol 2023; 35:662-667. [PMID: 37115964 DOI: 10.1097/meg.0000000000002555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease worldwide and represents the leading cause of liver-related morbidity and mortality. Its all-cause mortality is often driven by co-existing metabolic diseases such as type 2 diabetes (T2DM), which share many pathophysiological characteristics. The risk of developing T2DM among NAFLD patients in Germany is only poorly described. METHODS A cohort of 17 245 NAFLD patients and a propensity score-matched cohort of equal size were identified from the Disease Analyzer database (IQVIA) between 2005 and 2020. The incidence of T2DM was evaluated as a function of NAFLD during a 5-year study period using Cox-regression models. RESULTS Within 5 years of the index date, 18.8% and 11.7% of individuals with and without NAFLD were diagnosed with T2DM ( P < 0.001). Regression analysis revealed a hazard ratio of 1.77 [95% confidence interval (CI), 1.68-1.88] for the development of T2DM among NAFLD patients. Subgroup analyses confirmed this association for all age groups (18-50, 51-60, 61-70 and >70 years), male and female patients, as well as normal weight (BMI < 25 kg/m 2 ), overweighted (BMI 25-30 kg/m 2 ) and obese (BMI > 30 kg/m 2 ) patients. CONCLUSION Our data revealed a significantly increased incidence of T2DM among NAFLD patients in Germany. Given the dramatically increasing global relevance of NAFLD, we believe that prevention and regular screening programs for T2DM in NAFLD patients could help to reduce its high mortality and morbidity in the future.
Collapse
Affiliation(s)
- Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf
| | - Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf
| | - Andreas Krieg
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Duesseldorf
| | - Natalia Qvartskhava
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf
| | | | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf
| |
Collapse
|
32
|
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13:metabo13040517. [PMID: 37110175 PMCID: PMC10141666 DOI: 10.3390/metabo13040517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most widespread chronic liver disease worldwide, confers a significant burden on health systems and leads to increased mortality and morbidity through several extrahepatic complications. NAFLD comprises a broad spectrum of liver-related disorders, including steatosis, cirrhosis, and hepatocellular carcinoma. It affects almost 30% of adults in the general population and up to 70% of people with type 2 diabetes (T2DM), sharing common pathogenetic pathways with the latter. In addition, NAFLD is closely related to obesity, which acts in synergy with other predisposing conditions, including alcohol consumption, provoking progressive and insidious liver damage. Among the most potent risk factors for accelerating the progression of NAFLD to fibrosis or cirrhosis, diabetes stands out. Despite the rapid rise in NAFLD rates, identifying the optimal treatment remains a challenge. Interestingly, NAFLD amelioration or remission appears to be associated with a lower risk of T2DM, indicating that liver-centric therapies could reduce the risk of developing T2DM and vice versa. Consequently, assessing NAFLD requires a multidisciplinary approach to identify and manage this multisystemic clinical entity early. With the continuously emerging new evidence, innovative therapeutic strategies are being developed for the treatment of NAFLD, prioritizing a combination of lifestyle changes and glucose-lowering medications. Based on recent evidence, this review scrutinizes all practical and sustainable interventions to achieve a resolution of NAFLD through a multimodal approach.
Collapse
Affiliation(s)
- Georgios Tsamos
- Division of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Vassiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
33
|
Lavin B, Eykyn TR, Phinikaridou A, Xavier A, Kumar S, Buqué X, Aspichueta P, Sing-Long C, Arrese M, Botnar RM, Andia ME. Characterization of hepatic fatty acids using magnetic resonance spectroscopy for the assessment of treatment response to metformin in an eNOS -/- mouse model of metabolic nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. NMR IN BIOMEDICINE 2023:e4932. [PMID: 36940044 DOI: 10.1002/nbm.4932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Liver biopsy remains the gold standard for diagnosis and staging of disease. There is a clinical need for noninvasive diagnostic tools for risk stratification, follow-up, and monitoring treatment response that are currently lacking, as well as preclinical models that recapitulate the etiology of the human condition. We have characterized the progression of NAFLD in eNOS-/- mice fed a high fat diet (HFD) using noninvasive Dixon-based magnetic resonance imaging and single voxel STEAM spectroscopy-based protocols to measure liver fat fraction at 3 T. After 8 weeks of diet intervention, eNOS-/- mice exhibited significant accumulation of intra-abdominal and liver fat compared with control mice. Liver fat fraction measured by 1 H-MRS in vivo showed a good correlation with the NAFLD activity score measured by histology. Treatment of HFD-fed NOS3-/- mice with metformin showed significantly reduced liver fat fraction and altered hepatic lipidomic profile compared with untreated mice. Our results show the potential of in vivo liver MRI and 1 H-MRS to noninvasively diagnose and stage the progression of NAFLD and to monitor treatment response in an eNOS-/- murine model that represents the classic NAFLD phenotype associated with metabolic syndrome.
Collapse
Affiliation(s)
- Begoña Lavin
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Thomas R Eykyn
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Alkystis Phinikaridou
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Aline Xavier
- Biomedical Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Santiago, Chile
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
| | - Shravan Kumar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
| | - Xabier Buqué
- Physiology Department, School of Medicine and Nursing, Universidad del País Vasco UPV/EHU, Vizcaya, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Patricia Aspichueta
- Physiology Department, School of Medicine and Nursing, Universidad del País Vasco UPV/EHU, Vizcaya, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- CIBER de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Carlos Sing-Long
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- Gastroenterology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering Imaging Sciences, King's College London, London, UK
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo E Andia
- ANID - Millennium Science Initiative Program - Millennium Institute Intelligent Healthcare Engineering, Santiago, Chile
- School of Medicine and Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Wang J, Wang L, Zhang XJ, Zhang P, Cai J, She ZG, Li H. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Translation Medicine Research Center, Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Translation Medicine Research Center, Yangtze University, Huanggang, China.
| |
Collapse
|
35
|
Maestri M, Santopaolo F, Pompili M, Gasbarrini A, Ponziani FR. Gut microbiota modulation in patients with non-alcoholic fatty liver disease: Effects of current treatments and future strategies. Front Nutr 2023; 10:1110536. [PMID: 36875849 PMCID: PMC9978194 DOI: 10.3389/fnut.2023.1110536] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently associated with metabolic disorders, being highly prevalent in obese and diabetic patients. Many concomitant factors that promote systemic and liver inflammation are involved in NAFLD pathogenesis, with a growing body of evidence highlighting the key role of the gut microbiota. Indeed, the gut-liver axis has a strong impact in the promotion of NAFLD and in the progression of the wide spectrum of its manifestations, claiming efforts to find effective strategies for gut microbiota modulation. Diet is among the most powerful tools; Western diet negatively affects intestinal permeability and the gut microbiota composition and function, selecting pathobionts, whereas Mediterranean diet fosters health-promoting bacteria, with a favorable impact on lipid and glucose metabolism and liver inflammation. Antibiotics and probiotics have been used to improve NAFLD features, with mixed results. More interestingly, medications used to treat NAFLD-associated comorbidities may also modulate the gut microbiota. Drugs for the treatment of type 2 diabetes mellitus (T2DM), such as metformin, glucagon-like peptide-1 (GLP-1) agonists, and sodium-glucose cotransporter (SGLT) inhibitors, are not only effective in the regulation of glucose homeostasis, but also in the reduction of liver fat content and inflammation, and they are associated with a shift in the gut microbiota composition towards a healthy phenotype. Even bariatric surgery significantly changes the gut microbiota, mostly due to the modification of the gastrointestinal anatomy, with a parallel improvement in histological features of NAFLD. Other options with promising effects in reprogramming the gut-liver axis, such as fecal microbial transplantation (FMT) and next-generation probiotics deserve further investigation for future inclusion in the therapeutic armamentarium of NAFLD.
Collapse
Affiliation(s)
- Marta Maestri
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
36
|
Park J, Kim G, Kim H, Lee J, Jin SM, Kim JH. The associations between changes in hepatic steatosis and heart failure and mortality: a nationwide cohort study. Cardiovasc Diabetol 2022; 21:287. [PMID: 36564787 PMCID: PMC9789584 DOI: 10.1186/s12933-022-01725-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a well-known risk factor for cardiovascular (CV) disease (CVD) and mortality. However, whether the progression or regression of NAFLD can increase or decrease the risk of heart failure (HF) and mortality has not been fully evaluated. We investigated the association between changes in hepatic steatosis and the risks of incident HF (iHF), hospitalization for HF (hHF), and mortality including CV- or liver-related mortality. METHODS Using a database from the National Health Insurance Service in Korea from January 2009 to December 2012, we analyzed 240,301 individuals who underwent health check-ups at least twice in two years. Hepatic steatosis was assessed using the fatty liver index (FLI), with an FLI ≥ 60 considered to indicate the presence of hepatic steatosis. According to FLI changes, participants were divided into four groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using multivariable Cox proportional hazards regression models. RESULTS Persistent hepatic steatosis increased the risk of iHF, hHF, and mortality including CV- and liver-related mortality compared with the group that never had steatosis (all P < 0.05). Incident hepatic steatosis was associated with increased risk for iHF and mortality including CV- or liver-related mortality (all P < 0.05). Compared with persistent steatosis, regression of hepatic steatosis was associated with decreased risk for iHF, hHF, and liver-related mortality (iHF, HR [95% CI], 0.800 [0.691-0.925]; hHF, 0.645 [0.514-0.810]; liver-related mortality, 0.434 [0.223-0.846]). CONCLUSIONS FLI changes were associated with increased or decreased risk of HF outcomes and mortality.
Collapse
Affiliation(s)
- Jiyun Park
- grid.410886.30000 0004 0647 3511Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496 Republic of Korea ,grid.264381.a0000 0001 2181 989XSungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyuri Kim
- grid.264381.a0000 0001 2181 989XDepartment of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Hasung Kim
- grid.488317.10000 0004 0626 1869Data Science Team, Hanmi Pharm. Co. Ltd, Seoul, Republic of Korea
| | - Jungkuk Lee
- grid.488317.10000 0004 0626 1869Data Science Team, Hanmi Pharm. Co. Ltd, Seoul, Republic of Korea
| | - Sang-Man Jin
- grid.264381.a0000 0001 2181 989XDepartment of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Jae Hyeon Kim
- grid.264381.a0000 0001 2181 989XDepartment of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea ,Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
37
|
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022; 65:1925-1966. [PMID: 36151309 PMCID: PMC9510507 DOI: 10.1007/s00125-022-05787-2] [Citation(s) in RCA: 456] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the previous consensus statements on the management of hyperglycaemia in type 2 diabetes in adults, published since 2006 and last updated in 2019. The target audience is the full spectrum of the professional healthcare team providing diabetes care in the USA and Europe. A systematic examination of publications since 2018 informed new recommendations. These include additional focus on social determinants of health, the healthcare system and physical activity behaviours including sleep. There is a greater emphasis on weight management as part of the holistic approach to diabetes management. The results of cardiovascular and kidney outcomes trials involving sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, including assessment of subgroups, inform broader recommendations for cardiorenal protection in people with diabetes at high risk of cardiorenal disease. After a summary listing of consensus recommendations, practical tips for implementation are provided.
Collapse
Affiliation(s)
- Melanie J Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK.
- Leicester National Institute for Health Research (NIHR) Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - Vanita R Aroda
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Billy S Collins
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Jennifer Green
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nisa M Maruthur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tsvetalina Tankova
- Department of Endocrinology, Medical University - Sofia, Sofia, Bulgaria
| | - Apostolos Tsapas
- Diabetes Centre, Clinical Research and Evidence-based Medicine Unit, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| | - John B Buse
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Josloff K, Beiriger J, Khan A, Gawel RJ, Kirby RS, Kendrick AD, Rao AK, Wang RX, Schafer MM, Pearce ME, Chauhan K, Shah YB, Marhefka GD, Halegoua-DeMarzio D. Comprehensive Review of Cardiovascular Disease Risk in Nonalcoholic Fatty Liver Disease. J Cardiovasc Dev Dis 2022; 9:419. [PMID: 36547416 PMCID: PMC9786069 DOI: 10.3390/jcdd9120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is a growing global phenomenon, and its damaging effects in terms of cardiovascular disease (CVD) risk are becoming more apparent. NAFLD is estimated to affect around one quarter of the world population and is often comorbid with other metabolic disorders including diabetes mellitus, hypertension, coronary artery disease, and metabolic syndrome. In this review, we examine the current evidence describing the many ways that NAFLD itself increases CVD risk. We also discuss the emerging and complex biochemical relationship between NAFLD and its common comorbid conditions, and how they coalesce to increase CVD risk. With NAFLD's rising prevalence and deleterious effects on the cardiovascular system, a complete understanding of the disease must be undertaken, as well as effective strategies to prevent and treat its common comorbid conditions.
Collapse
Affiliation(s)
- Kevan Josloff
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard J. Gawel
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard S. Kirby
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Aaron D. Kendrick
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Abhinav K. Rao
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Roy X. Wang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michelle M. Schafer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Margaret E. Pearce
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Yash B. Shah
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Gregary D. Marhefka
- Department of Internal Medicine, Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
39
|
Huang CF, Tiao MM, Lin IC, Huang LT, Sheen JM, Tain YL, Hsu CN, Tsai CC, Lin YJ, Yu HR. Maternal Metformin Treatment Reprograms Maternal High-Fat Diet-Induced Hepatic Steatosis in Offspring Associated with Placental Glucose Transporter Modifications. Int J Mol Sci 2022; 23:ijms232214239. [PMID: 36430717 PMCID: PMC9694630 DOI: 10.3390/ijms232214239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Maternal high-fat (HF) diet exposure in utero may affect fetal development and cause metabolic problems throughout life due to lipid dysmetabolism and oxidative damage. Metformin has been suggested as a potential treatment for body weight reduction and nonalcoholic fatty liver disease, but its reprogramming effect on offspring is undetermined. This study assesses the effects of maternal metformin treatment on hepatic steatosis in offspring caused by maternal HF diet. Female rats were fed either a control or an HF diet before conception, with or without metformin treatment during gestation, and placenta and fetal liver tissues were collected. In another experiment, the offspring were fed a control diet until 120 d (adult stage). Metformin treatment during pregnancy ameliorates placental oxidative stress and enhances placental glucose transporter 1 (GLUT1), GLUT3, and GLUT4 expression levels through 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Maternal metformin treatment was shown to reprogram maternal HF diet-induced changes in offspring fatty liver with the effects observed in adulthood as well. Further validation is required to develop maternal metformin therapy for clinical applications.
Collapse
Affiliation(s)
- Chien-Fu Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ching-Chou Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8713)
| |
Collapse
|
40
|
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022; 45:2753-2786. [PMID: 36148880 PMCID: PMC10008140 DOI: 10.2337/dci22-0034] [Citation(s) in RCA: 786] [Impact Index Per Article: 262.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 02/07/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the previous consensus statements on the management of hyperglycemia in type 2 diabetes in adults, published since 2006 and last updated in 2019. The target audience is the full spectrum of the professional health care team providing diabetes care in the U.S. and Europe. A systematic examination of publications since 2018 informed new recommendations. These include additional focus on social determinants of health, the health care system, and physical activity behaviors, including sleep. There is a greater emphasis on weight management as part of the holistic approach to diabetes management. The results of cardiovascular and kidney outcomes trials involving sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists, including assessment of subgroups, inform broader recommendations for cardiorenal protection in people with diabetes at high risk of cardiorenal disease. After a summary listing of consensus recommendations, practical tips for implementation are provided.
Collapse
Affiliation(s)
- Melanie J. Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester, U.K
- Leicester National Institute for Health Research Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, U.K
| | - Vanita R. Aroda
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | | - Jennifer Green
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Nisa M. Maruthur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, U.K
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Apostolos Tsapas
- Diabetes Centre, Clinical Research and Evidence-Based Medicine Unit, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, U.K
| | - John B. Buse
- University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
41
|
Shah AS, Zeitler PS, Wong J, Pena AS, Wicklow B, Arslanian S, Chang N, Fu J, Dabadghao P, Pinhas-Hamiel O, Urakami T, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2022: Type 2 diabetes in children and adolescents. Pediatr Diabetes 2022; 23:872-902. [PMID: 36161685 DOI: 10.1111/pedi.13409] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 2018 ISPAD guidelines on this topic, follow-up of large cohorts from around the globe have continued informing the current incidence and prevalence of co-morbidities and complications in young adults with youth-onset type 2 diabetes (T2D). This chapter focuses on the risk factors, diagnosis and presentation of youth-onset T2D, the initial and subsequent management of youth-onset T2D, and management of co-morbidities and complications. We include key updates from the observational phase of the multi-center Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) clinical trial, the SEARCH for Diabetes in Youth (SEARCH) study and new data from the Restoring Insulin Secretion (RISE) study, a head-to-head comparison of youth onset vs adult-onset T2D. We also include an expanded section on risk factors associated with T2D, algorithms and tables for treatment, management, and assessment of co-morbidities and complications, and sections on recently approved pharmacologic therapies for the treatment of youth-onset T2D, social determinants of health, and settings of care given COVID-19 pandemic.
Collapse
Affiliation(s)
- Amy S Shah
- Division of Pediatric Endocrinology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, Ohio, USA
| | - Philip S Zeitler
- Division of Pediatric Endocrinology, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jencia Wong
- Department of Endocrinology, Royal Prince Alfred Hospital and Central Clinical School, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alexia S Pena
- The University of Adelaide, Robinson Research Institute, North Adelaide, South Australia, Australia
| | - Brandy Wicklow
- Division of Endocrinology, Winnipeg Children's Hospital and University of Manitoba, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Silva Arslanian
- Division of Pediatric Endocrinology, Metabolism, and Diabetes Mellitus, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nancy Chang
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Junfen Fu
- Division of Endocrinology, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Orit Pinhas-Hamiel
- Edmond and Lily Safra Children's Hospital, Sackler School of Medicine, Tel-Aviv, Israel
| | - Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Maria E Craig
- The Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
- Discipline of Pediatrics & Child Health, School of Clinical Medicine, University of NSW Medicine and Health, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Bischoff SC, Barazzoni R, Busetto L, Campmans-Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon-Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint ESPEN/UEG guideline. Clin Nutr 2022; 41:2364-2405. [PMID: 35970666 DOI: 10.1016/j.clnu.2022.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for ESPEN guidelines, following the Scottish Intercollegiate Guidelines Network (SIGN) grading system (A, B, 0, and good practice point (GPP)). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy.
| | - Luca Busetto
- Department of Medicine, University of Padova, Padova, Italy.
| | - Marjo Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, Groningen, the Netherlands.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Irit Chermesh
- Department of Gastroenterology, Rambam Health Care Campus, Affiliated with Technion-Israel Institute of Technology, Haifa, Israel.
| | - Ahad Eshraghian
- Department of Gastroenterology and Hepatology, Avicenna Hospital, Shiraz, Iran.
| | - Haluk Tarik Kani
- Department of Gastroenterology, Marmara University, School of Medicine, Istanbul, Turkey.
| | - Wafaa Khannoussi
- Hepato-Gastroenterology Department, Mohammed VI University Hospital, Oujda, Morocco; Laboratoire de Recherche des Maladies Digestives (LARMAD), Mohammed the First University, Oujda, Morocco.
| | - Laurence Lacaze
- Department of General Surgery, Mantes-la-Jolie Hospital, Mantes-la-Jolie, France; Department of Clinical Nutrition, Paul-Brousse-Hospital, Villejuif, France.
| | - Miguel Léon-Sanz
- Department of Endocrinology and Nutrition, University Hospital Doce de Octubre, Medical School, University Complutense, Madrid, Spain.
| | - Juan M Mendive
- La Mina Primary Care Academic Health Centre, Catalan Institute of Health (ICS), University of Barcelona, Barcelona, Spain.
| | - Michael W Müller
- Department of General and Visceral Surgery, Regionale Kliniken Holding, Kliniken Ludwigsburg-Bietigheim GGmbH, Krankenhaus Bietigheim, Bietigheim-Bissingen, Germany.
| | - Johann Ockenga
- Medizinische Klinik II, Klinikum Bremen-Mitte, Bremen FRG, Bremen, Germany.
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Anders Thorell
- Department of Clinical Science, Danderyds Hospital, Karolinska Institutet & Department of Surgery, Ersta Hospital, Stockholm, Sweden.
| | - Darija Vranesic Bender
- Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Arved Weimann
- Department of General, Visceral and Oncological Surgery, St. George Hospital, Leipzig, Germany.
| | - Cristina Cuerda
- Departamento de Medicina, Universidad Complutense de Madrid, Nutrition Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
43
|
Byrne CD. Banting memorial lecture 2022: 'Type 2 diabetes and nonalcoholic fatty liver disease: Partners in crime'. Diabet Med 2022; 39:e14912. [PMID: 35790023 PMCID: PMC9546361 DOI: 10.1111/dme.14912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) was first described in the 1980s, but in the 21st century, NAFLD has become a very common condition. The explanation for this relatively recent problem is in large part due to the recent epidemic of obesity and type 2 diabetes (T2DM) increasing the risk of NAFLD. NAFLD is a silent condition that may not become manifest until severe liver damage (fibrosis or cirrhosis) has occurred. Consequently, NAFLD and its complications often remain undiagnosed. Research evidence shows that NAFLD is extremely common and some estimates suggest that it occurs in up to 70% of people with T2DM. In the last 5 years, it has become evident that NAFLD not only increases the risk of cirrhosis, primary liver cancer and end-stage liver disease, but NAFLD is also an important multisystem disease that has major implications beyond the liver. NAFLD increases the risk of incident T2DM, cardiovascular disease, chronic kidney disease and certain extra-hepatic cancers, and NAFLD and T2DM form part of a vicious spiral of worsening diseases, where one condition affects the other and vice versa. Diabetes markedly increases the risk of liver fibrosis and liver fibrosis is the most important risk factor for hepatocellular carcinoma. It is now possible to diagnose liver fibrosis with non-invasive tools and therefore it is important to have clear care pathways for the management of NAFLD in patients with T2DM. This review summarises key recent research that was discussed as part of the Banting lecture at the annual scientific conference in 2022.
Collapse
Affiliation(s)
- Christopher D. Byrne
- Division of Endocrinology & MetabolismUniversity Hospital Southampton and University of SouthamptonSouthamptonUK
| |
Collapse
|
44
|
Bischoff SC, Barazzoni R, Busetto L, Campmans‐Kuijpers M, Cardinale V, Chermesh I, Eshraghian A, Kani HT, Khannoussi W, Lacaze L, Léon‐Sanz M, Mendive JM, Müller MW, Ockenga J, Tacke F, Thorell A, Vranesic Bender D, Weimann A, Cuerda C. European guideline on obesity care in patients with gastrointestinal and liver diseases - Joint European Society for Clinical Nutrition and Metabolism / United European Gastroenterology guideline. United European Gastroenterol J 2022; 10:663-720. [PMID: 35959597 PMCID: PMC9486502 DOI: 10.1002/ueg2.12280] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic gastrointestinal (GI) disease such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, gastroesophageal reflux disease (GERD), pancreatitis, and chronic liver disease (CLD) often suffer from obesity because of coincidence (IBD, IBS, celiac disease) or related pathophysiology (GERD, pancreatitis and CLD). It is unclear if such patients need a particular diagnostic and treatment that differs from the needs of lean GI patients. The present guideline addresses this question according to current knowledge and evidence. OBJECTIVE The objective of the guideline is to give advice to all professionals working in the field of gastroenterology care including physicians, surgeons, dietitians and others how to handle patients with GI disease and obesity. METHODS The present guideline was developed according to the standard operating procedure for European Society for Clinical Nutrition and Metabolism guidelines, following the Scottish Intercollegiate Guidelines Network grading system (A, B, 0, and good practice point [GPP]). The procedure included an online voting (Delphi) and a final consensus conference. RESULTS In 100 recommendations (3x A, 33x B, 24x 0, 40x GPP, all with a consensus grade of 90% or more) care of GI patients with obesity - including sarcopenic obesity - is addressed in a multidisciplinary way. A particular emphasis is on CLD, especially fatty liver disease, since such diseases are closely related to obesity, whereas liver cirrhosis is rather associated with sarcopenic obesity. A special chapter is dedicated to obesity care in patients undergoing bariatric surgery. The guideline focuses on adults, not on children, for whom data are scarce. Whether some of the recommendations apply to children must be left to the judgment of the experienced pediatrician. CONCLUSION The present guideline offers for the first time evidence-based advice how to care for patients with chronic GI diseases and concomitant obesity, an increasingly frequent constellation in clinical practice.
Collapse
Affiliation(s)
| | - Rocco Barazzoni
- Department of Medical, Technological and Translational SciencesUniversity of TriesteTriesteItaly
| | - Luca Busetto
- Department of MedicineUniversity of PadovaPadovaItaly
| | - Marjo Campmans‐Kuijpers
- Department of Gastroenterology and HepatologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Vincenzo Cardinale
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Irit Chermesh
- Department of GastroenterologyRambam Health Care CampusAffiliated with Technion‐Israel Institute of TechnologyHaifaIsrael
| | - Ahad Eshraghian
- Department of Gastroenterology and HepatologyAvicenna HospitalShirazIran
| | - Haluk Tarik Kani
- Department of GastroenterologyMarmara UniversitySchool of MedicineIstanbulTurkey
| | - Wafaa Khannoussi
- Hepato‐Gastroenterology DepartmentMohammed VI University HospitalOujdaMorocco
- Laboratoire de Recherche des Maladies Digestives (LARMAD)Mohammed the First UniversityOujdaMorocco
| | - Laurence Lacaze
- Department of NutritionRennes HospitalRennesFrance
- Department of general surgeryMantes‐la‐Jolie HospitalFrance
- Department of clinical nutritionPaul Brousse‐Hospital, VillejuifFrance
| | - Miguel Léon‐Sanz
- Department of Endocrinology and NutritionUniversity Hospital Doce de OctubreMedical SchoolUniversity ComplutenseMadridSpain
| | - Juan M. Mendive
- La Mina Primary Care Academic Health Centre. Catalan Institute of Health (ICS)University of BarcelonaBarcelonaSpain
| | - Michael W. Müller
- Department of General and Visceral SurgeryRegionale Kliniken HoldingKliniken Ludwigsburg‐Bietigheim gGmbHBietigheim‐BissingenGermany
| | - Johann Ockenga
- Medizinische Klinik IIKlinikum Bremen‐MitteBremenGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCharité Universitätsmedizin BerlinCampus Virchow‐Klinikum and Campus Charité MitteBerlinGermany
| | - Anders Thorell
- Department of Clinical ScienceDanderyds HospitalKarolinska InstitutetStockholmSweden
- Department of SurgeryErsta HospitalStockholmSweden
| | - Darija Vranesic Bender
- Department of Internal MedicineUnit of Clinical NutritionUniversity Hospital Centre ZagrebZagrebCroatia
| | - Arved Weimann
- Department of General, Visceral and Oncological SurgerySt. George HospitalLeipzigGermany
| | - Cristina Cuerda
- Departamento de MedicinaUniversidad Complutense de MadridNutrition UnitHospital General Universitario Gregorio MarañónMadridSpain
| |
Collapse
|
45
|
Krznaric Z. Burden of obesity in gastrointestinal and liver diseases. United European Gastroenterol J 2022; 10:629-630. [PMID: 36043444 PMCID: PMC9486488 DOI: 10.1002/ueg2.12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zeljko Krznaric
- Department of Gastroenterology, Hepatology and Nutrition, Clinical Hospital Centre & School of Medicine Zagreb, Zagreb, Croatia
| |
Collapse
|
46
|
Shi Y, Fan J. Therapeutic developments in metabolic dysfunction-associated fatty liver disease. Chin Med J (Engl) 2022; 135:1009-1018. [PMID: 35234696 PMCID: PMC9276260 DOI: 10.1097/cm9.0000000000002091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/25/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become one of the most prevalent chronic liver diseases worldwide, bringing risk of multiorgan disfunctions including cardiovascular events, complications of cirrhosis, and even malignance. In terms of health burden management, screening patients with high risk of MAFLD and providing individual comprehensive treatment is critical. Although there are numerous agents entering clinical trials for MAFLD treatment every year, there is still no effective approved drug. The nomenclature of MAFLD highlighted the concomitant metabolic disorders and obesity. MAFLD patients with type 2 diabetes had higher risk of developing liver cirrhosis and cancer, and would benefit from anti-hyperglycemic agents; overweight and obese patients may benefit more from weight loss therapies; for patients with metabolic syndrome, individual comprehensive management is needed to reduce the risk of adverse outcomes. In this review, we introduced the current status and advances of the treatment of MAFLD based on weight loss, improving insulin resistance, and management of cardiometabolic disorders, in order to provide individualized therapy approaches for patients with MAFLD.
Collapse
Affiliation(s)
- Yiwen Shi
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jlao Tong University School of Medicine, Shanghai 200092, China
- Shanghal Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jlao Tong University School of Medicine, Shanghai 200092, China
- Shanghal Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
47
|
Skvortsov VV, Lunkov MV, Tinaeva RS, Skvortsova EM. Phospholipids in non-alcoholic fatty liver disease. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:92-99. [DOI: 10.21518/2079-701x-2022-16-6-92-99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Non-alcoholic fatty liver disease, or NAFLD – is a pathology that usually has a metabolic cause and is not caused by excessive alcohol consumption. NAFLD is the most frequent chronic liver disease worldwide and is accompanied by a high financial burden for the patient and the healthcare system. NAFLD is generally considered a “benign disease” with low progression to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Nevertheless, due to the large number of affected patients, the prevalence of cirrhosis of the liver has gradually increased, and in fact it represents the third cause of liver transplantation in the world. Moreover, even if the frequency of HCC in patients with NAFLD is lower than in patients with HCV/HBV cirrhosis, the absolute number of HCC associated with NASH is higher due to the higher number of patients with NAFLD. It is likely that the importance of this disease will continue to grow in the future, when new treatments and prevention programs for hepatitis C and B reduce the size of viral liver infections. Many aspects of the disease have yet to be solved. It is very important to understand the mechanisms underlying the occurrence and development of NAFLD, the features of the clinic and diagnosis, as well as the tactics of management and treatment of patients with non-alcoholic fatty liver disease. It is important for patients to get a complete understanding of NAFLD so that they can play an active role in the treatment of their disease.
Collapse
|
48
|
Lange NF, Graf V, Caussy C, Dufour JF. PPAR-Targeted Therapies in the Treatment of Non-Alcoholic Fatty Liver Disease in Diabetic Patients. Int J Mol Sci 2022; 23:ijms23084305. [PMID: 35457120 PMCID: PMC9028563 DOI: 10.3390/ijms23084305] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors of the nuclear hormone receptor superfamily, have been identified as key metabolic regulators in the liver, skeletal muscle, and adipose tissue, among others. As a leading cause of liver disease worldwide, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) cause a significant burden worldwide and therapeutic strategies are needed. This review provides an overview of the evidence on PPAR-targeted treatment of NAFLD and NASH in individuals with type 2 diabetes mellitus. We considered current evidence from clinical trials and observational studies as well as the impact of treatment on comorbid metabolic conditions such as obesity, dyslipidemia, and cardiovascular disease. Future areas of research, such as possible sexually dimorphic effects of PPAR-targeted therapies, are briefly reviewed.
Collapse
Affiliation(s)
- Naomi F. Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| | - Vanessa Graf
- Department of Diabetes, Endocrinology, Clinical Nutrition, and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Cyrielle Caussy
- Univ Lyon, CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69495 Pierre-Bénite, France;
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Jean-François Dufour
- Centre des Maladies Digestives, 1003 Lausanne, Switzerland
- Swiss NASH Foundation, 3011 Bern, Switzerland
- Correspondence: (N.F.L.); (J.-F.D.)
| |
Collapse
|
49
|
Byrne CD, Newsome PN, Noureddin M. Why are there no strategies for NAFLD? J Hepatol 2022; 76:763-764. [PMID: 34933023 DOI: 10.1016/j.jhep.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK; Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Tremona Road, Southampton, UK.
| | - Philip N Newsome
- National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, UK; Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Centre, Cedars Sinai Medical Centre, Los Angeles, California, USA
| |
Collapse
|
50
|
Mantovani A, Dalbeni A, Beatrice G, Cappelli D, Gomez-Peralta F. Non-Alcoholic Fatty Liver Disease and Risk of Macro- and Microvascular Complications in Patients with Type 2 Diabetes. J Clin Med 2022; 11:jcm11040968. [PMID: 35207239 PMCID: PMC8878156 DOI: 10.3390/jcm11040968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. To date, NAFLD is the most frequent chronic liver disease seen day by day in clinical practice across most high-income countries, affecting nearly 25–30% of adults in the general population and up to 70% of patients with T2DM. Over the last few decades, it clearly emerged that NAFLD is a “multisystemic disease” and that the leading cause of death among patients with NAFLD is cardiovascular disease (CVD). Indeed, several observational studies and some meta-analyses have documented that NAFLD, especially its advanced forms, is strongly associated with fatal and non-fatal cardiovascular events, as well as with specific cardiac complications, including sub-clinical myocardial alteration and dysfunction, heart valve diseases and cardiac arrhythmias. Importantly, across various studies, these associations remained significant after adjustment for established cardiovascular risk factors and other confounders. Additionally, several observational studies and some meta-analyses have also reported that NAFLD is independently associated with specific microvascular conditions, such as chronic kidney disease and distal or autonomic neuropathy. Conversely, data regarding a potential association between NAFLD and retinopathy are scarce and often conflicting. This narrative review will describe the current evidence about the association between NAFLD and the risk of macro- and microvascular manifestations of CVD, especially in patients with T2DM. We will also briefly discuss the biological mechanisms underpinning the association between NAFLD and its advanced forms and macro- and microvascular CVD.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (G.B.); (D.C.)
- Correspondence: (A.M.); (F.G.-P.)
| | - Andrea Dalbeni
- Section of General Medicine C and Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy;
| | - Giorgia Beatrice
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (G.B.); (D.C.)
| | - Davide Cappelli
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (G.B.); (D.C.)
| | - Fernando Gomez-Peralta
- Endocrinology and Nutrition Unit, Segovia General Hospital, 40002 Segovia, Spain
- Correspondence: (A.M.); (F.G.-P.)
| |
Collapse
|