1
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Xiao B, Wang S, Pan Y, Zhi W, Gu C, Guo T, Zhai J, Li C, Chen YQ, Wang R. Development, opportunities, and challenges of siRNA nucleic acid drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102437. [PMID: 39897581 PMCID: PMC11787428 DOI: 10.1016/j.omtn.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Small interfering RNA (siRNA) drugs were first proposed in 1999. They have reached the market for administration to patients after more than 20 years of development. The US Food and Drug Administration has approved six siRNA drugs in recent years: patisiran, givosiran, lumasiran, vutrisiran, inclisiran, and nedosiran. siRNA drugs are based on the post-transcriptional gene regulation mechanism of RNA interference. These drugs have gained widespread attention for their effectiveness, low dosage, and low frequency of administration. Theoretically, siRNA drugs have great potential due to their ability to silence almost any target gene. However, drug delivery, especially the extrahepatic one, remains a major challenge. Currently, all approved drugs target the liver. The high blood flow, natural filtration function, and drug delivery methods of the liver overall ensure high efficacy and stability of the drugs themselves. This review summarizes the history of siRNA drug development and the mechanisms of action, with a focus on the drug targets, indications, and key clinical trial results to introduce the status of both marketed drugs and those currently in clinical trials. Additionally, this review provides a brief analysis of several key stages of the commercialization process of siRNA drugs.
Collapse
Affiliation(s)
- Bowen Xiao
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Shaopeng Wang
- Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Yu Pan
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Wenjun Zhi
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chensheng Gu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Guo
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiaqi Zhai
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Chenxu Li
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yong Q. Chen
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rong Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Boutary S, Khalaf G, Landesman Y, Madani ME, Desmaële D, Piguet F, Alonso R, Banchi EG, Adams D, Massaad C, Massaad-Massade L. Therapeutic potential of siRNA PMP22-SQ nanoparticles for Charcot-Marie-Tooth 1A neuropathy in rodents and non-human primates. Int J Pharm 2025; 671:125234. [PMID: 39855282 DOI: 10.1016/j.ijpharm.2025.125234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Small interfering RNA (siRNA) has shown promising results for the treatment of Charcot-Marie-Tooth disease 1A (CMT1A) caused by overexpression of peripheral myelin protein (PMP22), leading to myelin dysfunction and axonal damage. Recently, we developed siRNA PMP22-squalene (SQ) nanoparticles (NPs) for intravenous use. Three consecutive injections of siRNA PMP22-SQ NPs at a cumulative dose of 1.5 mg/kg restored motor function in C61 transgenic mouse models. Pharmacokinetic studies showed a long half-life of antisense siRNA PMP22 in the sciatic nerve, and spinal cord, indicating targeted release potential. We further assessed the efficiency and safety of siRNA PMP22-SQ NPs in two healthy male non-human primates (Macaca fascicularis) after administering four escalating doses (0.1, 0.5, 2.5 and 4.5 mg/kg at one week interval). Interestingly, the siRNA PMP22-SQ NPs reduced PMP22 mRNA expression by approximately 70 % and probably induced an early-stage hereditary neuropathy with pressure palsies (HNPP)-like condition in two normal NHP. No preliminary toxicity was observed in organs or blood parameters of the two NHPs. Interestingly, the nerve conduction velocity decreased after the third injection of siRNA PMP22-SQ NPS. These results demonstrate the therapeutic potential of siRNA PMP22-SQ NPs, supporting advancement to further pre-clinical testing.
Collapse
Affiliation(s)
- Suzan Boutary
- Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France; Université Paris Cité, INSERM UMR_S 1124, 75006 Paris, France
| | - Guy Khalaf
- Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France
| | - Yosef Landesman
- NEXGEN BIOPHARMA SOLUTIONS INC, Brookline, Massachusetts, USA
| | - Mevidette El Madani
- Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France; National Research Centre, Cairo, Egypt
| | - Didier Desmaële
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 17 avenue des Sciences, 91400 Orsay, France
| | - Françoise Piguet
- Technological Innovation and Development Unit (TIDU) for Gene and Cell Therapy, TIDU GENOV, ICM, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Rafael Alonso
- Technological Innovation and Development Unit (TIDU) for Gene and Cell Therapy, TIDU GENOV, ICM, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Elena-Gaia Banchi
- Technological Innovation and Development Unit (TIDU) for Gene and Cell Therapy, TIDU GENOV, ICM, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - David Adams
- Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Université Paris-Saclay and French Reference Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre University Hospital, Le Kremlin-Bicêtre, France
| | - Charbel Massaad
- Université Paris Cité, INSERM UMR_S 1124, 75006 Paris, France
| | - Liliane Massaad-Massade
- Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
5
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2025; 16:525-544. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
6
|
Harumoto T, Kawai R, Motosawa K, Iwano J, Koda Y, Hirata Y, Uehara K. Effect of pH-Responsive Ligands on mRNA Knockdown in EGFR-Targeting Ligand-Conjugated siRNAs. ACS Chem Biol 2025. [PMID: 39898496 DOI: 10.1021/acschembio.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ligand-conjugated small interfering RNAs (siRNAs) have emerged as a powerful approach to developing nucleic acid-based medicines. To achieve efficient mRNA knockdown, it is important to select targeting receptors with high expression and ligands that exhibit rapid internalization. However, the key characteristics of ligand-receptor sets involved in the postinternalization process remain largely unclear. In this study, we investigated the effect of ligand-receptor binding dissociation under low pH conditions, known as a postendocytic environment. Specifically, we chemically synthesized several modified epidermal growth factor (EGF) ligands that showed a variety of binding activities to the EGF receptor (EGFR) at low pH. Among these modified ligands, the siRNA conjugate with chemically synthesized EGF H10Y/H16Y, which is a less pH-responsive variant, exhibited reduced internalization and mRNA knockdown activity at high concentrations in EGFR-expressing cells. Additionally, we explored the use of antibody-related molecules (anti-EGFR IgG and Fab) as targeting moieties for siRNA conjugates. The anti-EGFR Fab-siRNA, which showed dissociation of EGF under low pH conditions, demonstrated stronger internalization and mRNA knockdown activity compared to the anti-EGFR IgG-siRNA, which strongly binds EGF at low pH. These data emphasize the importance of intracellular ligand-receptor dissociation and provide insights for future advancements in the field.
Collapse
Affiliation(s)
- Toshimasa Harumoto
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryohei Kawai
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiichi Motosawa
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junko Iwano
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yasuo Koda
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yuuki Hirata
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiji Uehara
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
7
|
Kulus M, Farzaneh M, Sheykhi-Sabzehpoush M, Ghaedrahmati F, Mehravar F, Józkowiak M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Podhorska-Okołów M, Zabel M, Mozdziak P, Dzięgiel P, Kempisty B. Exosomes and non-coding RNAs: Exploring their roles in human myocardial dysfunction. Biomed Pharmacother 2025; 183:117853. [PMID: 39827809 DOI: 10.1016/j.biopha.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs. ncRNAs are known to play critical roles in gene regulation through diverse mechanisms, impacting oxidative stress, fibrosis, and other factors associated with myocardial dysfunction. Dysregulation of these molecules correlates with disease progression, presenting opportunities for therapeutic interventions. This review explores the mechanistic interplay between exosomes and ncRNAs, underscoring their potential as biomarkers and therapeutic agents in myocardial dysfunction. Emerging evidence supports the use of engineered exosomes and modified ncRNAs to enhance cardiac repair by targeting signaling pathways associated with fibrosis, apoptosis, and angiogenesis. Despite promising preclinical results, delivery, stability, and immunogenicity challenges remain. Further research is needed to optimize clinical translation. Understanding these intricate mechanisms may drive the development of innovative strategies for diagnosing and treating myocardial dysfunction, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mehravar
- Department of Biostatistics and Epidemiology, School of Health, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Marzenna Podhorska-Okołów
- Department of Human Morphology and Embryology, Division of Ultrastructure Research, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland; Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Fan J, Xiao Z, Dong Y, Ye F, Qiu Y, Zhang C, Yin X, Li Y, Wang T. Nanocarrier-Mediated RNA Delivery Platform as a Frontier Strategy for Hepatic Disease Treatment: Challenges and Opportunities. Adv Healthc Mater 2025; 14:e2402933. [PMID: 39723654 DOI: 10.1002/adhm.202402933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Hepatic diseases cause serious public health problems worldwide, and there is an urgent need to develop effective therapeutic agents. In recent years, significant progress is made in RNA therapy, and RNA molecules, such as mRNAs, siRNAs, miRNAs, and RNA aptamers, are shown to provide significant advantages in the treatment of hepatic diseases. However, the drawbacks of RNAs, such as their poor biological stability, easy degradation by nucleases in vivo, low bioavailability, and low concentrations in target tissues, significantly limit the clinical application of RNA-based drugs. Therefore, exploring and developing effective nanoscale delivery platforms for RNA therapeutics are of immense value. This review focuses on the different types of hepatic diseases and RNA therapeutics, summarizing various nanoscale delivery platforms and their strengths and weaknesses. Finally, the current status and future prospects of nanoscale delivery systems for RNA therapy are discussed.
Collapse
Affiliation(s)
- Jinhui Fan
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Zhicheng Xiao
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yafen Dong
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Fei Ye
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Yan Qiu
- Department of Pharmacy, Shanghai Pudong New Area People's Hospital, Shanghai, 201200, China
| | - Chuan Zhang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Xiaolan Yin
- Cancer center, Shanghai 411 hospital, China RongTong Medical Healthcare Group Co. Ltd./411 Hospital, Shanghai University, Shanghai, 200081, China
| | - Yi Li
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, 411 Hospital of Shanghai University, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Fortuna A, Sorarù G. Cervical lower motor neuron syndromes: A diagnostic challenge. J Neurol Sci 2025; 468:123357. [PMID: 39740575 DOI: 10.1016/j.jns.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Cervical lower motor neuron (LMN) syndromes, also known as brachial paresis, are characterized by muscle atrophy, weakness, and decreased reflexes in the upper limbs, devoid of sensory symptoms. These syndromes can stem from various factors, including degenerative conditions, immune-mediated diseases, infections, toxic exposures, metabolic disorders, and vascular anomalies.1 Clinical presentations vary, with motor neuron involvement potentially limited to the cervical area or extending to other regions, affecting prognosis. Misdiagnosis is a significant issue, particularly in lower motor neuron presentations, with an error rate nearing 20 %.2 This review proposes a classification system based on magnetic resonance imaging (MRI) findings, the onset timing of symptoms (acute, subacute, or chronic), the symmetry and distribution of atrophy, and the etiology (sporadic or hereditary). Acute conditions may include spinal ischemia,3 whereas subacute or chronic forms can manifest as symmetric (e.g., cervical spondylogenic myelopathy)4 or asymmetric (e.g., Hirayama disease)5 presentations. Neurophysiological assessments and cervical MRI are crucial for accurate diagnosis, as they reveal patterns that provide lesion localization and additional clues to the underlying cause. A systematic diagnostic approach is essential for navigating the complexities of these syndromes.
Collapse
Affiliation(s)
- Andrea Fortuna
- Veneto Regional Center Motor Neuron Diseases, Department of Neurosciences, University Hospital of Padova, Italy.
| | - Gianni Sorarù
- Veneto Regional Center Motor Neuron Diseases, Department of Neurosciences, University Hospital of Padova, Italy
| |
Collapse
|
10
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
11
|
Bhasuran B, Schmolly K, Kapoor Y, Jayakumar NL, Doan R, Amin J, Meninger S, Cheng N, Deering R, Anderson K, Beaven SW, Wang B, Rudrapatna VA. Reducing diagnostic delays in acute hepatic porphyria using health records data and machine learning. J Am Med Inform Assoc 2025; 32:63-70. [PMID: 38946554 PMCID: PMC11648717 DOI: 10.1093/jamia/ocae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Acute hepatic porphyria (AHP) is a group of rare but treatable conditions associated with diagnostic delays of 15 years on average. The advent of electronic health records (EHR) data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. However, prediction models can be difficult to train given the limited case numbers, unstructured EHR data, and selection biases intrinsic to healthcare delivery. We sought to train and characterize models for identifying patients with AHP. METHODS This diagnostic study used structured and notes-based EHR data from 2 centers at the University of California, UCSF (2012-2022) and UCLA (2019-2022). The data were split into 2 cohorts (referral and diagnosis) and used to develop models that predict (1) who will be referred for testing of acute porphyria, among those who presented with abdominal pain (a cardinal symptom of AHP), and (2) who will test positive, among those referred. The referral cohort consisted of 747 patients referred for testing and 99 849 contemporaneous patients who were not. The diagnosis cohort consisted of 72 confirmed AHP cases and 347 patients who tested negative. The case cohort was 81% female and 6-75 years old at the time of diagnosis. Candidate models used a range of architectures. Feature selection was semi-automated and incorporated publicly available data from knowledge graphs. Our primary outcome was the F-score on an outcome-stratified test set. RESULTS The best center-specific referral models achieved an F-score of 86%-91%. The best diagnosis model achieved an F-score of 92%. To further test our model, we contacted 372 current patients who lack an AHP diagnosis but were predicted by our models as potentially having it (≥10% probability of referral, ≥50% of testing positive). However, we were only able to recruit 10 of these patients for biochemical testing, all of whom were negative. Nonetheless, post hoc evaluations suggested that these models could identify 71% of cases earlier than their diagnosis date, saving 1.2 years. CONCLUSIONS ML can reduce diagnostic delays in AHP and other rare diseases. Robust recruitment strategies and multicenter coordination will be needed to validate these models before they can be deployed.
Collapse
Affiliation(s)
- Balu Bhasuran
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Katharina Schmolly
- David Geffen School of Medicine & Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yuvraaj Kapoor
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Nanditha Lakshmi Jayakumar
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Raymond Doan
- Alnylam Pharmaceuticals, Cambridge, MA 02142, United States
| | - Jigar Amin
- Alnylam Pharmaceuticals, Cambridge, MA 02142, United States
| | | | - Nathan Cheng
- Alnylam Pharmaceuticals, Cambridge, MA 02142, United States
| | - Robert Deering
- Alnylam Pharmaceuticals, Cambridge, MA 02142, United States
| | - Karl Anderson
- Division of Gastroenterology and Hepatology, University of Texas Medical Branch, School of Medicine, Galveston, TX 77555, United States
| | - Simon W Beaven
- David Geffen School of Medicine & Pfleger Liver Institute, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Bruce Wang
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Vivek A Rudrapatna
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, United States
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
12
|
Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D. Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction. Int J Mol Sci 2024; 26:300. [PMID: 39796153 PMCID: PMC11719919 DOI: 10.3390/ijms26010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme. Polyfluoro compounds are characterized by unique properties that have prompted their extensive application both in industry and in scientific research. We report herein the synthesis and isolation of novel oligodeoxyribonucleotides incorporating internucleotidic perfluoro-1-octanesulfonyl phosphoramidate or 2,2,2-trifluoroethanesulfonyl phosphoramidate groups. In addition, novel oligonucleotide derivatives with fluorinated zwitterionic phosphate mimics were synthesized by a tandem methodology, which involved (a) the introduction of a carboxylic ester group at the internucleotidic position via the Staudinger reaction with methyl 2,2-difluoro-3-azidosulfonylacetate; and (b) treatment with an aliphatic diamine, e.g., 1,1-dimethylethylenediamine or 1,3-diaminopropane. It was further shown that the polyfluoro oligonucleotides obtained were able to form complementary duplexes with either DNA or RNA, which were not significantly differing in stability from the natural counterparts. Long-chain perfluoroalkyl oligonucleotides were taken up into cultured human cells in the absence of a transfection agent. It may be concluded that the polyfluoro oligonucleotides described here can represent a useful platform for designing oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alyona Zakhryamina
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Meinhard S, Erdmann F, Lucas H, Krabbes M, Krüger S, Wölk C, Mäder K. T14diLys/DOPE Liposomes: An Innovative Option for siRNA-Based Gene Knockdown? Pharmaceutics 2024; 17:25. [PMID: 39861674 PMCID: PMC11769127 DOI: 10.3390/pharmaceutics17010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane. The current study explores the performance of the innovative, ionizable lipid 2-Tetradecylhexadecanoic acid-(2-bis{[2-(2,6-diamino-1-oxohexyl)amino]ethyl}aminoethyl)-amide (T14diLys), in combination with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), for siRNA delivery and the impact of the production method (sonication vs. extrusion) on the particle properties. METHODS Liposomes were produced either with sonication or extrusion and characterized. The extruded liposomes were combined with siRNA at different N/P ratios and investigated in terms of size zeta potential, encapsulation efficiency, lipoplex stability against RNase A, and knockdown efficiency using enhanced green fluorescent protein (eGFP)-marked colon adenocarcinoma cells. RESULTS The liposomes prepared by extrusion were smaller and had a narrower size distribution than the sonicated ones. The combination of siRNA and liposomes at a nitrogen-to-phosphate (N/P) ratio of 5 had optimal particle properties, high encapsulation efficiency, and lipoplex stability. Gene knockdown tests confirmed this assumption. CONCLUSIONS Liposomes produced with extrusion were more reproducible and provided enhanced particle properties. The physicochemical characterization and in vitro experiments showed that an N/P ratio of 5 was the most promising ratio for siRNA delivery.
Collapse
Affiliation(s)
- Sophie Meinhard
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
| | - Frank Erdmann
- Department of Pharmaceutical Pharmacology and Toxicology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany;
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Henrike Lucas
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Maria Krabbes
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Stephanie Krüger
- Biocenter, Microscopy Unit, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany;
| | - Christian Wölk
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
14
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Barber HM, Pater AA, Gagnon KT, Damha MJ, O'Reilly D. Chemical engineering of CRISPR-Cas systems for therapeutic application. Nat Rev Drug Discov 2024:10.1038/s41573-024-01086-0. [PMID: 39690326 DOI: 10.1038/s41573-024-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/19/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.
Collapse
Affiliation(s)
- Halle M Barber
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Adrian A Pater
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Keith T Gagnon
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - Daniel O'Reilly
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
16
|
Wahane A, Kasina V, Pathuri M, Marro-Wilson C, Gupta A, Slack FJ, Bahal R. Development of bioconjugate-based delivery systems for nucleic acids. RNA (NEW YORK, N.Y.) 2024; 31:1-13. [PMID: 39477529 DOI: 10.1261/rna.080273.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acids are a class of drugs that can modulate gene and protein expression by various mechanisms, namely, RNAi, mRNA degradation by RNase H cleavage, splice modulation, and steric blocking of protein binding or mRNA translation, thus exhibiting immense potential to treat various genetic and rare diseases. Unlike protein-targeted therapeutics, the clinical use of nucleic acids relies on Watson-Crick sequence recognition to regulate aberrant gene expression and impede protein translation. Though promising, targeted delivery remains a bottleneck for the clinical adoption of nucleic acid-based therapeutics. To overcome the delivery challenges associated with nucleic acids, various chemical modifications and bioconjugation-based delivery strategies have been explored. Currently, liver targeting by N-acetyl galactosamine (GalNAc) conjugation has been at the forefront for the treatment of rare and various metabolic diseases, which has led to FDA approval of four nucleic acid drugs. In addition, various other bioconjugation strategies have been explored to facilitate active organ and cell-enriched targeting. This review briefly covers the different classes of nucleic acids, their mechanisms of action, and their challenges. We also elaborate on recent advances in bioconjugation strategies in developing a diverse set of ligands for targeted delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Vishal Kasina
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mounika Pathuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ciara Marro-Wilson
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, Connecticut 06033, USA
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
17
|
Purewal JS, Doshi GM. RNAi in psoriasis: A melodic exploration of miRNA, shRNA, and amiRNA with a spotlight on siRNA. Eur J Pharmacol 2024; 985:177083. [PMID: 39481628 DOI: 10.1016/j.ejphar.2024.177083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterised by well-demarcated, red plaques covered in silver scales. It affects people of all ages and can be passed down through generations. Genetics play an important role in determining vulnerability to develop Pso. Several large-scale genome-wide association studies have identified over 80 genetic loci associated with Pso susceptibility. Gene expression can be regulated via RNA interference (RNAi). RNAi suppresses gene expression by degrading mRNA molecules. Since its discovery, RNAi has generated considerable excitement over its potential therapeutic benefits. RNAi is mediated by endogenous small RNA molecules like microRNA (miRNA) or exogenous small RNA molecules like small interfering RNA (siRNA), short hairpin RNA (shRNA), and artificial micro RNA (amiRNA). These small RNA molecules can silence a disease-related gene in a sequence-specific manner. Targeting RNAi pathways can help modify disease-related biological processes in various medical conditions, including autoimmune disorders. In Pso, RNAi can downregulate the expression of molecules involved in the pathophysiology of the disease. Significant progress has been made in the field of RNAi therapeutics. However, further research is needed to fine-tune the design and delivery of RNAi therapeutics in humans. In this review, we discuss various effectors of RNAi, some challenges related to RNAi therapeutics (emphasizing siRNA) and strategies to overcome these challenges. Furthermore, we have discussed some studies that employ RNAi therapeutics for Pso.
Collapse
|
18
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
19
|
Abbasi Dezfouli S, Michailides ME, Uludag H. Delivery Aspects for Implementing siRNA Therapeutics for Blood Diseases. Biochemistry 2024; 63:3059-3077. [PMID: 39388611 DOI: 10.1021/acs.biochem.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hematological disorders result in significant health consequences, and traditional therapies frequently entail adverse reactions without addressing the root cause. A potential solution for hematological disorders characterized by gain-of-function mutations lies in the emergence of small interfering RNA (siRNA) molecules as a therapeutic option. siRNAs are a class of RNA molecules composed of double-stranded RNAs that can degrade specific mRNAs, thereby inhibiting the synthesis of underlying disease proteins. Therapeutic interventions utilizing siRNA can be tailored to selectively target genes implicated in diverse hematological disorders, including sickle cell anemia, β-thalassemia, and malignancies such as lymphoma, myeloma, and leukemia. The development of efficient siRNA silencers necessitates meticulous contemplation of variables such as the RNA backbone, stability, and specificity. Transportation of siRNA to specific cells poses a significant hurdle, prompting investigations of diverse delivery approaches, including chemically modified forms of siRNA and nanoparticle formulations with various biocompatible carriers. This review delves into the crucial role of siRNA technology in targeting and treating hematological malignancies and disorders. It sheds light on the latest research, development, and clinical trials, detailing how various pharmaceutical approaches leverage siRNA against blood disorders, mainly concentrating on cancers. It outlines the preferred molecular targets and physiological barriers to delivery while emphasizing the growing potential of various therapeutic delivery methods. The need for further research is articulated in the context of overcoming the shortcomings of siRNA in order to enrich discussions around siRNA's role in managing blood disorders and aiding the scientific community in advancing more targeted and effective treatments.
Collapse
Affiliation(s)
- Saba Abbasi Dezfouli
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| | | | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 2V2, Canada
| |
Collapse
|
20
|
Tan YF, Hii LW, Lim WM, Cheong SK, Leong CO, Yee MSL, Mai CW. Polyethylene glycol-phospholipid functionalized single-walled carbon nanotubes for enhanced siRNA systemic delivery. Sci Rep 2024; 14:30098. [PMID: 39627280 PMCID: PMC11615393 DOI: 10.1038/s41598-024-80646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Small interfering RNAs (siRNA) technology has emerged as a promising therapeutic tool for human health conditions like cancer due to its ability to regulate gene silencing. Despite FDA-approved, their delivery remains localized and limiting their systemic use. This study used single-walled carbon nanotubes (SWNTs) functionalized with polyethylene glycolated (PEGylated) phospholipids (PL-PEG) derivatives for systemic siRNA delivery. We developed an siRNA systemic delivery vehicle (SWNT-siRNA) by conjugating SWNT functionalized with PL-PEG containing either amine (PA) or maleimide (MA). The functionalized SWNT with a lower molecular weight of PA produced the SWNT-siRNA conjugate system with the highest stability and high siRNA loading quantity. The system delivered siRNA to a panel of tumour cell lines of different organs (i.e. HeLa, H1299 and MCF-7) and a non-cancerous human embryonic kidney 293 cells (HEK293T) with high biocompatibility and low toxicity. The cellular uptake of SWNT-siRNA conjugates by epithelial cells was found to be energy dependent. Importantly, the presence of P-glycoprotein, a marker for drug resistance, did not inhibit SWNT-mediated siRNA delivery. Mouse xenograft model further confirmed the potential of SWNT-siRNA conjugates with a significant gene knock-down without signs of acute toxicity. These findings pave the way for potential gene therapy applications using SWNTs as delivery vehicles.
Collapse
Affiliation(s)
- Yuen-Fen Tan
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Postgraduate Studies, IMU University, Kuala Lumpur, 57000, Malaysia
- Cytovision Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
| | - Wei-Meng Lim
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, Monash University Malaysia, Shah Alam, 47500, Selangor, Malaysia
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Shah Alam, 43000, Selangor, Malaysia
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia
- School of Pharmacy, IMU University, Kuala Lumpur, 57000, Malaysia
- AGTC Genomics Sdn. Bhd, Kuala Lumpur, 57000, Malaysia
| | - Maxine Swee-Li Yee
- Nanotechnology Research Group, Center for Nanotechnology and Advanced Materials, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur, 57000, Malaysia.
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
21
|
Repkova M, Mazurkov O, Filippova E, Protsenko M, Mazurkova N, Meschaninova M, Levina A, Zarytova V. Effect of modification of siRNA molecules delivered with aminopropylsilanol nanoparticles on suppression of A/H5N1 virus in cell culture. Biochim Biophys Acta Gen Subj 2024; 1868:130727. [PMID: 39437973 DOI: 10.1016/j.bbagen.2024.130727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
The application of siRNAs as antiviral agents is limited by several obstacles including their poor penetration into cells and instability in biological media. To overcome these problems, we used non-agglomerated aminopropylsilanol nanoparticles (NP) to deliver siRNA into cells. All studied siRNAs had identical nucleoside sequences comprising phosphodiester or phosphorothioate (PS) internucleotide groups and the 2'-OMe and/or 2'-F groups in nucleoside units at different positions of RNA. The siRNA molecules were attached to NP, thus forming the NP-siRNA nanocomplexes. We studied the effect of siRNA modification in the nanocomplexes on suppressing the highly pathogenic influenza A/H5N1 virus replication. The results demonstrated that all siRNA-containing nanocomplexes inhibited the replication of the A/H5N1 virus by 1-3 orders of magnitude. The nanocomplexes containing partially modified siRNAs exhibited the most pronounced inhibition with an efficacy of 900-fold. This result was achieved by using siRNA consisting of the canonical 19-bp RNA duplex with the 3'-dTdT dangling ends, with the antisense strand in this duplex being protected from endonucleases (one UMeA site within the strand). The additional modifications of siRNA reduce their antiviral activity. Promising sense strands for loading into the RISC complex are likely to be phosphodiester sequences that contain dTdT at the 3' end (such as S4) to be protected against exonucleases. The sense strands of this type can probably be the most suitable for designing siRNAs as therapeutic agents. The proposed NP-siRNA nanocomplexes that consisted of low toxic and non-agglomerated aminopropylsilanol nanoparticles and siRNA molecules could be hopeful agents for gene silencing.
Collapse
Affiliation(s)
- Marina Repkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Oleg Mazurkov
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Ekaterina Filippova
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maria Protsenko
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Natalia Mazurkova
- FBRI State Research Center of Virology and Biotechnology "Vector" Rospotrebnadzor, Koltsovo, Novosibirsk 630559, Russia
| | - Maria Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia
| | - Valentina Zarytova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, pr. Lavrent'eva 8, Novosibirsk 630090, Russia.
| |
Collapse
|
22
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
23
|
Bauer IA, Dmitrienko EV. Amphiphilic Oligonucleotide Derivatives-Promising Tools for Therapeutics. Pharmaceutics 2024; 16:1447. [PMID: 39598570 PMCID: PMC11597563 DOI: 10.3390/pharmaceutics16111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in genetics and nucleic acid chemistry have created fundamentally new tools, both for practical applications in therapy and diagnostics and for fundamental genome editing tasks. Nucleic acid-based therapeutic agents offer a distinct advantage of selectively targeting the underlying cause of the disease. Nevertheless, despite the success achieved thus far, there remain unresolved issues regarding the improvement of the pharmacokinetic properties of therapeutic nucleic acids while preserving their biological activity. In order to address these challenges, there is a growing focus on the study of safe and effective delivery methods utilising modified nucleic acid analogues and their lipid bioconjugates. The present review article provides an overview of the current state of the art in the use of chemically modified nucleic acid derivatives for therapeutic applications, with a particular focus on oligonucleotides conjugated to lipid moieties. A systematic analysis has been conducted to investigate the ability of amphiphilic oligonucleotides to self-assemble into micelle-like structures, as well as the influence of non-covalent interactions of such derivatives with serum albumin on their biodistribution and therapeutic effects.
Collapse
Affiliation(s)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
24
|
Prabhakaran R, Thamarai R, Sivasamy S, Dhandayuthapani S, Batra J, Kamaraj C, Karthik K, Shah MA, Mallik S. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Epigenetics Chromatin 2024; 17:31. [PMID: 39415281 PMCID: PMC11484394 DOI: 10.1186/s13072-024-00554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer has arisen from both genetic mutations and epigenetic changes, making epigenetics a crucial area of research for innovative cancer prevention and treatment strategies. This dual perspective has propelled epigenetics into the forefront of cancer research. This review highlights the important roles of DNA methylation, histone modifications and non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs, which are key regulators of cancer-related gene expression. It explores the potential of epigenetic-based therapies to revolutionize patient outcomes by selectively modulating specific epigenetic markers involved in tumorigenesis. The review examines promising epigenetic biomarkers for early cancer detection and prognosis. It also highlights recent progress in oligonucleotide-based therapies, including antisense oligonucleotides (ASOs) and antimiRs, to precisely modulate epigenetic processes. Furthermore, the concept of epigenetic editing is discussed, providing insight into the future role of precision medicine for cancer patients. The integration of nanomedicine into cancer therapy has been explored and offers innovative approaches to improve therapeutic efficacy. This comprehensive review of recent advances in epigenetic-based cancer therapy seeks to advance the field of precision oncology, ultimately culminating in improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | - Rajkumar Thamarai
- UGC Dr. D.S. Kothari Postdoctoral Fellow, Department of Animal Science, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, 627012, India
| | - Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India
| | | | - Jyoti Batra
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, UP, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnasamy Karthik
- Department of Mechanical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, 1001, Kabul, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Saurav Mallik
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, Massachusetts, 02115, United States.
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
25
|
Ban J, Seo BK, Yu Y, Kim M, Choe J, Park JH, Park SY, Lee DK, Kim SH. Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA). Drug Metab Dispos 2024; 52:1262-1270. [PMID: 39168524 DOI: 10.1124/dmd.124.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT: This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.
Collapse
Affiliation(s)
- Jihye Ban
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Bong Kyo Seo
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Yunmi Yu
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Minkyeong Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Jeongyong Choe
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - June Hyun Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Shin-Young Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Dong-Ki Lee
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - So Hee Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| |
Collapse
|
26
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Nomura K, An S, Kobayashi Y, Kondo J, Shi T, Murase H, Nakamoto K, Kimura Y, Abe N, Ui-Tei K, Abe H. Synthesis of 2'-formamidonucleoside phosphoramidites for suppressing the seed-based off-target effects of siRNAs. Nucleic Acids Res 2024; 52:10754-10774. [PMID: 39231537 PMCID: PMC11472056 DOI: 10.1093/nar/gkae741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we report the synthesis of 2'-formamidonucleoside phosphoramidite derivatives and their incorporation into siRNA strands to reduce seed-based off-target effects of small interfering RNAs (siRNAs). Formamido derivatives of all four nucleosides (A, G, C and U) were synthesized in 5-11 steps from commercial compounds. Introducing these derivatives into double-stranded RNA slightly reduced its thermodynamic stability, but X-ray crystallography and CD spectrum analysis confirmed that the RNA maintained its natural A-form structure. Although the introduction of the 2'-formamidonucleoside derivative at the 2nd position in the guide strand of the siRNA led to a slight decrease in the on-target RNAi activity, the siRNAs with different sequences incorporating 2'-formamidonucleoside with four kinds of nucleobases into any position other than 2nd position in the seed region revealed a significant suppression of off-target activity while maintaining on-target RNAi activity. This indicates that 2'-formamidonucleosides represent a promising approach for mitigating off-target effects in siRNA therapeutics.
Collapse
Affiliation(s)
- Kohei Nomura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Seongjin An
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Yoshiaki Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo, Japan
| | - Ting Shi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kosuke Nakamoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kumiko Ui-Tei
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi464-8601, Japan
| |
Collapse
|
28
|
Panda K, Alagarasu K, Tagore R, Paingankar M, Kumar S, Jeengar MK, Cherian S, Parashar D. RNAi-Induced Gene Silencing against Chikungunya and COVID-19: What Have We Learned So Far, and What Is the Way Forward? Viruses 2024; 16:1489. [PMID: 39339965 PMCID: PMC11437507 DOI: 10.3390/v16091489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
RNA interference (RNAi) is a process in which small RNA molecules (such as small interfering RNAs or siRNAs) bind to specific messenger RNAs (mRNAs), leading to its degradation and inhibition of protein synthesis. Our studies have shown that RNAi can effectively silence genes involved in the replication of the Chikungunya virus (CHIKV) in cells. However, these investigations were performed only in laboratory settings and have yet to be tested in human clinical trials. Researchers need to conduct more research to determine the safety and efficacy of RNAi-based therapies as a therapeutic agent to treat viral infections. In this review, the history of evolution of siRNA as an inhibitor of protein synthesis, along with its current developments, is discussed based on our experience. Moreover, this review examines the hurdles and future implications associated with siRNA based therapeutic approaches.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Kalichamy Alagarasu
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Rajarshee Tagore
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Mandar Paingankar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Satyendra Kumar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Manish Kumar Jeengar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
| | - Sarah Cherian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- Bioinformatics Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Deepti Parashar
- Dengue & Chikungunya Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (K.P.); (K.A.); (R.T.); (M.P.); (S.K.); (M.K.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
29
|
Alameh MG, Tavakoli Naeini A, Dwivedi G, Lesage F, Buschmann MD, Lavertu M. Chitosan siRNA Nanoparticles Produce Significant Non-Toxic Functional Gene Silencing in Kidney Cortices. Polymers (Basel) 2024; 16:2547. [PMID: 39274180 PMCID: PMC11398103 DOI: 10.3390/polym16172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Chitosan shows effective nucleic acid delivery. To understand the influence of chitosan's molecular weight, dose, payload, and hyaluronic acid coating on in vivo toxicity, immune stimulation, biodistribution and efficacy, precisely characterized chitosans were formulated with unmodified or chemically modified siRNA to control for innate immune stimulation. The hemocompatibility, cytokine induction, hematological and serological responses were assessed. Body weight, clinical signs, in vivo biodistribution and functional target knockdown were monitored. Hemolysis was found to be dose- and MW-dependent with the HA coating abrogating hemolysis. Compared to cationic lipid nanoparticles, uncoated and HA-coated chitosan nanoparticles did not induce immune stimulation or hematologic toxicity. Liver and kidney biomarkers remained unchanged with chitosan formulations, while high doses of cationic lipid nanoparticles led to increased transaminase levels and a decrease in body weight. Uncoated and HA-coated nanoparticles accumulated in kidneys with functional knockdown for uncoated chitosan formulations reaching 60%, suggesting potential applications in the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mohamad-Gabriel Alameh
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Ashkan Tavakoli Naeini
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Garima Dwivedi
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Frederic Lesage
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Michael D Buschmann
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Marc Lavertu
- Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
30
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2024:01515467-990000000-00569. [PMID: 37725757 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
32
|
Lei JJ, Li S, Dong BX, Yang J, Ren Y. Acute intermittent porphyria: a disease with low penetrance and high heterogeneity. Front Genet 2024; 15:1374965. [PMID: 39188285 PMCID: PMC11345236 DOI: 10.3389/fgene.2024.1374965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Acute intermittent porphyria (AIP) is caused by mutations in the gene encoding hydroxymethylbilane synthase (HMBS), a key enzyme in the heme biosynthesis pathway. AIP is an autosomal dominant disorder characterized by low penetrance and a highly heterogenous clinical presentation. The estimated prevalence of AIP is 5-10 cases per 100,000 persons, with acute attacks manifesting in less than 1% of the at-risk population. This low frequency of attacks suggests significant roles for oligogenic inheritance and environmental factors in the pathogenesis of the disease. In recent years, identification of several modifier genes has advanced our understanding of the factors influencing AIP penetrance and disease severity. This review summarizes these factors including the impact of specific HMBS mutations, oligogenic inheritance, mitochondrial DNA copy number, age, sex, the influence of sex hormones, and the role of environmental factors. Further studies into the etiology of AIP disease penetrance should inform pathogenesis, potentially allowing for the development of more precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Jia Lei
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Shuang Li
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Bai-Xue Dong
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Ren
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Ferraresso F, Leung J, Kastrup CJ. RNA therapeutics to control fibrinolysis: review on applications in biology and medicine. J Thromb Haemost 2024; 22:2103-2114. [PMID: 38663489 PMCID: PMC11269028 DOI: 10.1016/j.jtha.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Regulation of fibrinolysis, the process that degrades blood clots, is pivotal in maintaining hemostasis. Dysregulation leads to thrombosis or excessive bleeding. Proteins in the fibrinolysis system include fibrinogen, coagulation factor XIII, plasminogen, tissue plasminogen activator, urokinase plasminogen activator, α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, plasminogen activator inhibitor-1, α2-macroglobulin, and others. While each of these is a potential therapeutic target for diseases, they lack effective or long-acting inhibitors. Rapid advances in RNA-based technologies are creating powerful tools to control the expression of proteins. RNA agents can be long-acting and tailored to either decrease or increase production of a specific protein. Advances in nucleic acid delivery, such as by lipid nanoparticles, have enabled the delivery of RNA to the liver, where most proteins of coagulation and fibrinolysis are produced. This review will summarize the classes of RNA that induce 1) inhibition of protein synthesis, including small interfering RNA and antisense oligonucleotides; 2) protein expression, including messenger RNA and self-amplifying RNA; and 3) gene editing for gene knockdown and precise editing. It will review specific examples of RNA therapies targeting proteins in the coagulation and fibrinolysis systems and comment on the wide range of opportunities for controlling fibrinolysis for biological applications and future therapeutics using state-of-the-art RNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Blood Research Institute, Versiti Wisconsin, Milwaukee, Wisconsin, USA; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada; Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
34
|
Sun H, Wang X, Li Y, Shen Y, Zhang L, Xu Y, Liu J, Fan X. Targeting Liver Xor by GalNAc-siRNA Is an Effective Strategy for Hyperuricemia Therapy. Pharmaceutics 2024; 16:938. [PMID: 39065635 PMCID: PMC11279964 DOI: 10.3390/pharmaceutics16070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Hyperuricemia, i.e., increased plasma uric acid concentration, is a common problem in clinical practice, leading to gout or nephrolithiasis, and is associated with other disorders, such as metabolic syndrome, cardiovascular disease, and chronic renal disease. Xanthine oxidoreductase (XOR) is a critical rate-limiting enzyme involved in uric acid synthesis and a promising target for hyperuricemia therapy. However, XOR inhibitors currently face clinical problems such as a short half-life and side effects. Here, we found that specifically targeting liver Xor with GalNAc-siRNAs had a good therapeutic effect on hyperuricemia. First, siRNAs were designed to target various sites in the homologous region between Homo sapiens and Mus musculus Xor mRNA and were screened in primary mouse hepatocytes. Then, the siRNAs were modified to increase their stability in vivo and conjugated with GalNAc for liver-specific delivery. The effects of GalNAc-siRNAs were evaluated in three hyperuricemia mouse models, including potassium oxonate and hypoxanthine administration in WT and humanized XDH mice and Uox knockout mice. Febuxostat, a specific XOR inhibitor used for hyperuricemia treatment, was used as a positive control. Targeting liver Xor with GalNAc-siRNAs by subcutaneous administration reduced plasma uric acid levels, uric acid accumulation in the kidney, renal inflammation, and fibrosis, thereby alleviating kidney damage in hyperuricemia mouse models without hepatoxicity. The results demonstrated that targeting liver Xor with GalNAc-siRNAs was a promising strategy for hyperuricemia therapy.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongqiang Li
- Shanghai Synvida Biotechnology Co., Ltd., Shanghai 201203, China
| | - Yingzhi Shen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Synvida Biotechnology Co., Ltd., Shanghai 201203, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
Sun J, Lu S, Xiao J, Xu N, Li Y, Xu J, Deng M, Xuanyuan H, Zhang Y, Wu F, Jin W, Liu K. Inhibition of SARS-CoV-2 Replication by Self-Assembled siRNA Nanoparticles Targeting Multiple Highly Conserved Viral Sequences. Viruses 2024; 16:1072. [PMID: 39066234 PMCID: PMC11281333 DOI: 10.3390/v16071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory virus type 2 (SARS-CoV-2), has caused a global public health crisis. As an RNA virus, the high gene mutability of SARS-CoV-2 poses significant challenges to the development of broad-spectrum vaccines and antiviral therapeutics. There remains a lack of specific therapeutics directly targeting SARS-CoV-2. With the ability to efficiently inhibit the expression of target genes in a sequence-specific way, small interfering RNA (siRNA) therapy has exhibited significant potential in antiviral and other disease treatments. In this work, we presented a highly effective self-assembled siRNA nanoparticle targeting multiple highly conserved regions of SARS-CoV-2. The siRNA sequences targeting viral conserved regions were first screened and evaluated by their thermodynamic features, off-target effects, and secondary structure toxicities. RNA motifs including siRNA sequences were then designed and self-assembled into siRNA nanoparticles. These siRNA nanoparticles demonstrated remarkable uniformity and stability and efficiently entered cells directly through cellular endocytic pathways. Moreover, these nanoparticles effectively inhibited the replication of SARS-CoV-2, exhibiting a superior inhibitory effect compared to free siRNA. These results demonstrated that these self-assembled siRNA nanoparticles targeting highly conserved regions of SARS-CoV-2 represent highly effective antiviral candidates for the treatment of infections, and are promisingly effective against current and future viral variants.
Collapse
Affiliation(s)
- Jianan Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Siya Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Jizhen Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Nuo Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Xu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maohua Deng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hanlu Xuanyuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yushi Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Fangli Wu
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weibo Jin
- College of Life Sciences & Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kuancheng Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
36
|
Traber GM, Yu AM. The Growing Class of Novel RNAi Therapeutics. Mol Pharmacol 2024; 106:13-20. [PMID: 38719476 PMCID: PMC11187687 DOI: 10.1124/molpharm.124.000895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro), lumasiran (Oxlumo), inclisiran (Leqvio), vutrisiran (Amvuttra), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action. SIGNIFICANCE STATEMENT: The common and unique chemistry and molecular pharmacology of six FDA-approved siRNA therapeutics are summarized, in which nedosiran is newly approved. We point out rather a surprisingly mechanistic action as miRNAs for five siRNA therapeutics and discuss the differences and similarities between siRNAs and miRNAs that supports using a general and unified term "RNAi" therapeutics to align with current drug nomenclature criteria in pharmacology based on mechanism of action and embraces broader forms and growing number of novel RNAi therapeutics.
Collapse
Affiliation(s)
- Gavin M Traber
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California - Davis, Sacramento, California
| |
Collapse
|
37
|
Motamedi H, Ari MM, Alvandi A, Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: a comprehensive review. Front Microbiol 2024; 15:1393646. [PMID: 38939184 PMCID: PMC11208694 DOI: 10.3389/fmicb.2024.1393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
While significant progress has been made in understanding and applying gene silencing mechanisms and the treatment of human diseases, there have been still several obstacles in therapeutic use. For the first time, ONPATTRO, as the first small interfering RNA (siRNA) based drug was invented in 2018 for treatment of hTTR with polyneuropathy. Additionally, four other siRNA based drugs naming Givosiran, Inclisiran, Lumasiran, and Vutrisiran have been approved by the US Food and Drug Administration and the European Medicines Agency for clinical use by hitherto. In this review, we have discussed the key and promising advances in the development of siRNA-based drugs in preclinical and clinical stages, the impact of these molecules in bacterial and viral infection diseases, delivery system issues, the impact of administration methods, limitations of siRNA application and how to overcome them and a glimpse into future developments.
Collapse
Affiliation(s)
- Hamid Motamedi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhoushang Alvandi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Hariharan VN, Nakamura T, Shin M, Tang Q, Sontakke V, Caiazzi J, Hildebrand S, Khvorova A, Yamada K. Phosphatidylcholine head group chemistry alters the extrahepatic accumulation of lipid-conjugated siRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102230. [PMID: 38938759 PMCID: PMC11209015 DOI: 10.1016/j.omtn.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Small interfering RNAs (siRNAs) are revolutionizing the treatment of liver-associated indications. Yet, robust delivery to extrahepatic tissues remains a challenge. Conjugating lipids (e.g., docosanoic acid [DCA]) to siRNA supports extrahepatic delivery, but tissue accumulation remains lower than that achieved in liver by approved siRNA therapeutics. Early evidence suggests that functionalizing DCA with a head group (e.g., phosphatidylcholine [PC]) may enhance delivery to certain tissues. Here, we report the first systematic evaluation of the effect of PC head group chemistry on the extrahepatic distribution of DCA-conjugated siRNAs. We show that functionalizing DCA with a PC head group enhances siRNA accumulation in heart, muscle, lung, pancreas, duodenum, urinary bladder, and fat. Varying the size of the linker between the phosphate and choline moiety of the PC head group altered the extrahepatic accumulation of siRNA, with the optimal linker length being different for different tissues. Increasing PC head group valency also improved extrahepatic accumulation in a tissue-specific manner. This study demonstrates the structural impact of the PC moiety on the biodistribution of lipid-conjugated siRNA and introduces multiple novel PC variants for the chemical optimization of DCA-conjugated siRNA. These chemical variants can be used in the context of other lipids to increase the repertoire of conjugates for the extrahepatic distribution of siRNAs.
Collapse
Affiliation(s)
- Vignesh N. Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Takahiro Nakamura
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Minwook Shin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Vyankat Sontakke
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jillian Caiazzi
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samuel Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
39
|
Hwang G, Kwon M, Seo D, Kim DH, Lee D, Lee K, Kim E, Kang M, Ryu JH. ASOptimizer: Optimizing antisense oligonucleotides through deep learning for IDO1 gene regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102186. [PMID: 38706632 PMCID: PMC11066473 DOI: 10.1016/j.omtn.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Recent studies have highlighted the effectiveness of using antisense oligonucleotides (ASOs) for cellular RNA regulation, including targets that are considered undruggable; however, manually designing optimal ASO sequences can be labor intensive and time consuming, which potentially limits their broader application. To address this challenge, we introduce a platform, the ASOptimizer, a deep-learning-based framework that efficiently designs ASOs at a low cost. This platform not only selects the most efficient mRNA target sites but also optimizes the chemical modifications for enhanced performance. Indoleamine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by depleting tryptophan and producing kynurenine, leading to immunosuppression through the aryl-hydrocarbon receptor (Ahr) pathway within the tumor microenvironment. We used ASOptimizer to identify ASOs that target IDO1 mRNA as potential cancer therapeutics. Our methodology consists of two stages: sequence engineering and chemical engineering. During the sequence-engineering stage, we optimized and predicted ASO sequences that could target IDO1 mRNA efficiently. In the chemical-engineering stage, we further refined these ASOs to enhance their inhibitory activity while reducing their potential cytotoxicity. In conclusion, our research demonstrates the potential of ASOptimizer for identifying ASOs with improved efficacy and safety.
Collapse
Affiliation(s)
- Gyeongjo Hwang
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Mincheol Kwon
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dongjin Seo
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Daehwan Lee
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Kiwon Lee
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Eunyoung Kim
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Mingeun Kang
- Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
- BIORCHESTRA US., Inc., 1 Kendall Square, Building 200, Suite 2-103, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Sun N, Lei Q, Wu M, Gao S, Yang Z, Lv X, Wei R, Yan F, Cai L. Metal-organic framework-mediated siRNA delivery and sonodynamic therapy for precisely triggering ferroptosis and augmenting ICD in osteosarcoma. Mater Today Bio 2024; 26:101053. [PMID: 38654934 PMCID: PMC11035110 DOI: 10.1016/j.mtbio.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The complex genomics, immunosuppressive tumor microenvironment (TME), and chemotherapeutic resistance of osteosarcoma (OS) have resulted in limited therapeutic effects in the clinic. Ferroptosis is involved in tumor progression and is regulated mainly by glutathione peroxidase 4 (GPX4). Small interfering RNA (siRNA)-based RNA interference (RNAi) can precisely target any gene. However, achieving effective siRNA delivery is highly challenging. Here, we fabricated a TME-responsive metal-organic framework (MOF)-based biomimetic nanosystem (mFeP@si) with siGPX4 delivery and sonodynamic therapy (SDT) to treat OS by targeting ferroptosis. Under ultrasound (US) irradiation, mFeP@si achieves lysosomal escape via singlet oxygen (1O2)-mediated lysosomal membrane disruption and then accelerates ROS generation and glutathione (GSH) depletion. Meanwhile, siGPX4 silences GPX4 expression by binding to GPX4 mRNA and leads to the accumulation of toxic phospholipid hydroperoxides (PL-OOH), further magnifying the ROS storm and triggering ferroptosis. Notably, synergistic therapy remarkably enhances antitumor effects, improves the immunosuppressive TME by inducing potent immunogenic cell death (ICD), and increases the sensitivity of chemotherapy-resistant OS cells to cisplatin. Overall, this novel nanosystem, which targets ferroptosis by integrating RNAi and SDT, exhibits strong antitumor effects both in vitro and in vivo, providing new insights for treating OS.
Collapse
Affiliation(s)
- Ningxiang Sun
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Xuan Lv
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| |
Collapse
|
41
|
Saw PE, Song E. Advancements in clinical RNA therapeutics: Present developments and prospective outlooks. Cell Rep Med 2024; 5:101555. [PMID: 38744276 PMCID: PMC11148805 DOI: 10.1016/j.xcrm.2024.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
RNA molecules have emerged as promising clinical therapeutics due to their ability to target "undruggable" proteins or molecules with high precision and minimal side effects. Nevertheless, the primary challenge in RNA therapeutics lies in rapid degradation and clearance from systemic circulation, the inability to traverse cell membranes, and the efficient intracellular delivery of bioactive RNA molecules. In this review, we explore the implications of RNAs in diseases and provide a chronological overview of the development of RNA therapeutics. Additionally, we summarize the technological advances in RNA-screening design, encompassing various RNA databases and design platforms. The paper then presents an update on FDA-approved RNA therapeutics and those currently undergoing clinical trials for various diseases, with a specific emphasis on RNA medicine and RNA vaccines.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan 528200, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
42
|
Xie R, Yuan S, Hu G, Zhan J, Jin K, Tang Y, Fan J, Zhao Y, Wang F, Chen C, Wang DW, Li H. Nuclear AGO2 promotes myocardial remodeling by activating ANKRD1 transcription in failing hearts. Mol Ther 2024; 32:1578-1594. [PMID: 38475992 PMCID: PMC11081878 DOI: 10.1016/j.ymthe.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Heart failure (HF) is manifested by transcriptional and posttranscriptional reprogramming of critical genes. Multiple studies have revealed that microRNAs could translocate into subcellular organelles such as the nucleus to modify gene expression. However, the functional property of subcellular Argonaute2 (AGO2), the core member of the microRNA machinery, has remained elusive in HF. AGO2 was found to be localized in both the cytoplasm and nucleus of cardiomyocytes, and robustly increased in the failing hearts of patients and animal models. We demonstrated that nuclear AGO2 rather than cytosolic AGO2 overexpression by recombinant adeno-associated virus (serotype 9) with cardiomyocyte-specific troponin T promoter exacerbated the cardiac dysfunction in transverse aortic constriction (TAC)-operated mice. Mechanistically, nuclear AGO2 activates the transcription of ANKRD1, encoding ankyrin repeat domain-containing protein 1 (ANKRD1), which also has a dual function in the cytoplasm as part of the I-band of the sarcomere and in the nucleus as a transcriptional cofactor. Overexpression of nuclear ANKRD1 recaptured some key features of cardiac remodeling by inducing pathological MYH7 activation, whereas cytosolic ANKRD1 seemed cardioprotective. For clinical practice, we found ivermectin, an antiparasite drug, and ANPep, an ANKRD1 nuclear location signal mimetic peptide, were able to prevent ANKRD1 nuclear import, resulting in the improvement of cardiac performance in TAC-induced HF.
Collapse
Affiliation(s)
- Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Feng Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
43
|
Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. Lab Anim Res 2024; 40:17. [PMID: 38649954 PMCID: PMC11034049 DOI: 10.1186/s42826-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/25/2024] Open
Abstract
Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting. Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Animal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex biological processes. The selection of appropriate animal models is critical, considering factors such as physiological and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispensable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration of animal models and transparent reporting will contribute to the development of effective therapies for various genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.
Collapse
Affiliation(s)
- Parham Soufizadeh
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Biomedical Research Institute, University of Tehran, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Karthik S, Mohan S, Magesh I, Bharathy A, Kolipaka R, Ganesamoorthi S, Sathiya K, Shanmugavadivu A, Gurunathan R, Selvamurugan N. Chitosan nanocarriers for non-coding RNA therapeutics: A review. Int J Biol Macromol 2024; 263:130361. [PMID: 38395284 DOI: 10.1016/j.ijbiomac.2024.130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Non-coding RNA (ncRNA)-based therapies entail delivering ncRNAs to cells to regulate gene expression and produce proteins that combat infections, cancer, neurological diseases, and bone abnormalities. Nevertheless, the therapeutic potential of these ncRNAs has been limited due to the difficulties in delivering them to specific cellular targets within the body. Chitosan (CS), a biocompatible cationic polymer, interacts with negatively charged RNA molecules to form stable complexes. It is a promising biomaterial to develop nanocarriers for ncRNA delivery, overcoming several disadvantages of traditional delivery systems. CS-based nanocarriers can protect ncRNAs from degradation and target-specific delivery by surface modifications and intracellular release profiles over an extended period. This review briefly summarizes the recent developments in CS nanocarriers' synthesis and design considerations and their applications in ncRNA therapeutics for treating various diseases. We also discuss the challenges and limitations of CS-based nanocarriers for ncRNA therapeutics and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- S Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sahithya Mohan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Srinidhi Ganesamoorthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - K Sathiya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Raghav Gurunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
45
|
Chen Y, Li Y, Li C, Zhang D, Liu Y, Zhang J, Guan S, Ding X, Xiao Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev Res 2024; 85:e22164. [PMID: 38411296 DOI: 10.1002/ddr.22164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.
Collapse
Affiliation(s)
- Yang Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Dandan Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Shan Guan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Shuai Q, Xie W, Chen S, Su H, Yan Y. Novel aromatic moieties-modified poly(glycidyl amine)s with potent siRNA delivery and cancer treatment effect. J Mater Chem B 2024; 12:3115-3128. [PMID: 38451094 DOI: 10.1039/d3tb02876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The development of safe and effective delivery systems is critical for the clinical applications of siRNA-based therapeutics. Polymer-based vectors have garnered significant attention owing to their structural flexibility and functional tunability. Polyethyleneimine (PEI) has been extensively studied for nucleic acid delivery; nevertheless, its high cytotoxicity has posed challenges for clinical applications. In this study, we have reported poly(glycidyl amine) (PGAm), a linear PEI analogue, demonstrating remarkable siRNA delivery efficacy and improved biocompatibility. By introducing three aromatic moieties (tyrosine, p-hydroxybenzenepropanoic acid, and phenylalanine) at varying ratios to further modify PGAms, we successfully constructed a library comprising 36 PGAm-based carriers. In vitro evaluations revealed that PGAm-based carriers exhibited significantly enhanced biocompatibility and reduced non-specific protein absorption in comparison to PEI25k. Among them, 10 modified PGAms achieved a knockdown of target gene expressions exceeding 80%, and 26 modified PGAms maintained over 70% cell viability when utilized for the in vitro delivery of siRNA to HeLa cells. Explorations into the structure-activity relationship of PGAm-based polyplex nanoparticles (NPs) indicated that the siRNA delivery efficacy of NPs depended on factors such as the molecular weight of PGAm precursors, the type of modifying moieties, and the modification ratio. Furthermore, it was demonstrated that two top-performing NPs, namely 2T100/siLuc and 2A50/siLuc, exhibited potent silencing of target genes in tumors following i.v. injection into mice bearing HeLa-Luc xenografts. The in vivo efficacy of the selected NPs was further validated by a remarkable anti-cancer effect when employed for the delivery of siRNA targeting polo-like kinase 1 (siPLK1) to mice with PC-3 xenograft tumors. The intravenous administration of NPs resulted in a substantial inhibition of tumor growth without significant toxicity. These findings demonstrate the feasibility of employing PGAm in siRNA delivery and provide valuable insights for the development of efficient siRNA carriers based on PGAm.
Collapse
Affiliation(s)
- Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wanxuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Siyuan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Huahui Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
47
|
Sawada H, Kakisawa Y, Ueno Y. Properties and synergistic effects of a nonionic backbone and aminoalkyl modified nucleosides in RNAs. Bioorg Chem 2024; 144:107143. [PMID: 38309000 DOI: 10.1016/j.bioorg.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
In this study, we report the synthesis of two formacetal (FA)-linked dimer building blocks, namely 2'-O-methyluridyl-2'-O-methyluridine and 2'-O-methyluridyl-2'-O-aminoethyluridine. We utilize the former dimer in combination with (S)-5'-C-aminopropyl-2'-O-methylnucleosides (5'-APs) as a neutral trimer unit, and the latter dimer as a cationic unit. Double-stranded RNA containing the neutral trimer unit exhibits greater stability compared to the cationic unit and maintains nuclease stability in a serum-containing buffer. Furthermore, this unit appears to establish additional hydrogen bonds with complementary bases, as supported by modeling simulations and mismatch melting temperature assays. Importantly, siRNAs modified with this unit enhance RNA interference activity in cultured cells. These findings suggest that the trimer unit holds promise for therapeutic siRNAs.
Collapse
Affiliation(s)
- Hibiki Sawada
- The Graduate School of Natural Science and Technology, Gifu University, Japan
| | - Yuri Kakisawa
- Faculty of Applied Biological Science, Gifu University, Japan
| | - Yoshihito Ueno
- The Graduate School of Natural Science and Technology, Gifu University, Japan; Faculty of Applied Biological Science, Gifu University, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
48
|
Pérez-Carrión MD, Posadas I, Ceña V. Nanoparticles and siRNA: A new era in therapeutics? Pharmacol Res 2024; 201:107102. [PMID: 38331236 DOI: 10.1016/j.phrs.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Since its discovery in 1998, the use of small interfering RNA (siRNA) has been increasing in biomedical studies because of its ability to very selectively inhibit the expression of any target gene. Thus, siRNAs can be used to generate therapeutic compounds for different diseases, including those that are currently 'undruggable'. This has led siRNA-based therapeutic compounds to break into clinical settings, with them holding the promise to potentially revolutionise therapeutic approaches. To date, the United States Food and Drug Administration (FDA) have approved 5 compounds for treating different diseases including hypercholesterolemia, transthyretin-mediated amyloidosis (which leads to polyneuropathy), hepatic porphyria, and hyperoxaluria. This current article presents an overview of the molecular mechanisms involved in the selective pharmacological actions of siRNA-based compounds. It also describes the ongoing clinical trials of siRNA-based therapeutic compounds for hepatic diseases, pulmonary diseases, atherosclerosis, hypertriglyceridemia, transthyretin-mediated amyloidosis, and hyperoxaluria, kidney diseases, and haemophilia, as well as providing a description of FDA-approved siRNA therapies. Because of space constraints and to provide an otherwise comprehensive review, siRNA-based compounds applied to cancer therapies have been excluded. Finally, we discuss how the use of lipid-based nanoparticles to deliver siRNAs holds promise for selectively targeting mRNA-encoding proteins associated with the genesis of different diseases. Thus, siRNAs can help reduce the cellular levels of these proteins, thereby contributing to disease treatment. As consequence, a marked increase in the number of marketed siRNA-based medicines is expected in the next two decades, which will likely open up a new era of therapeutics.
Collapse
Affiliation(s)
- María Dolores Pérez-Carrión
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Posadas
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada CSIC-UCLM Neurodeath. Instituto de Nanociencia Molecular (INAMOL). Universidad de Castilla-La Mancha, Albacete, Spain; CIBER, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Li X, Jin K, Cheng TC, Liao YC, Lee WJ, Bhullar AS, Chen LC, Rychahou P, Phelps MA, Ho YS, Guo P. RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity. Biomaterials 2024; 305:122432. [PMID: 38176263 PMCID: PMC10994150 DOI: 10.1016/j.biomaterials.2023.122432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
The field of RNA therapeutics has been emerging as the third milestone in pharmaceutical drug development. RNA nanoparticles have displayed motile and deformable properties to allow for high tumor accumulation with undetectable healthy organ accumulation. Therefore, RNA nanoparticles have the potential to serve as potent drug delivery vehicles with strong anti-cancer responses. Herein, we report the physicochemical basis for the rational design of a branched RNA four-way junction (4WJ) nanoparticle that results in advantageous high-thermostability and -drug payload for cancer therapy, including metastatic tumors in the lung. The 4WJ nanostructure displayed versatility through functionalization with an anti-cancer chemical drug, SN38, for the treatment of two different cancer models including colorectal cancer xenograft and orthotopic lung metastases of colon cancer. The resulting 4WJ RNA drug complex spontaneously targeted cancers effectively for cancer inhibition with and without ligands. The 4WJ displayed fast renal excretion, rapid body clearance, and little organ accumulation with undetectable toxicity and immunogenicity. The safety parameters were documented by organ histology, blood biochemistry, and pathological analysis. The highly efficient cancer inhibition, undetectable drug toxicity, and favorable Chemical, Manufacturing, and Control (CMC) production of RNA nanoparticles document a candidate with high potential for translation in cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan
| | - You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110031, Taiwan
| | - Wen-Jui Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Abhjeet S Bhullar
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung, 406040, Taiwan
| | - Piotr Rychahou
- Markey Cancer Center, Department of Surgery, University of Kentucky, Lexington, KY, 40536, USA
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuan Soon Ho
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Nanotechnology and Nanomedicine, The Ohio State University, Columbus, OH, 43210, USA; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
50
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|