1
|
Navale A, Deshpande A. Salivary Biomarkers for Oral Cancer Detection: Insights from Human DNA and RNA Analysis. Cardiovasc Hematol Agents Med Chem 2024; 22:249-257. [PMID: 38275030 DOI: 10.2174/0118715257269271231201094946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 01/27/2024]
Abstract
Oral cancer is a significant global health concern, with a high mortality rate mainly due to late-stage diagnosis. Early detection plays a critical role in improving patient outcomes, highlighting the need for non-invasive and accessible screening methods. Salivary biomarkers have emerged as a promising avenue for oral cancer detection, leveraging advancements in human DNA and RNA analysis. Several DNA-based biomarkers, such as genetic mutations, chromosomal aberrations, and epigenetic alterations, have shown promise in detecting oral cancer at various stages. Likewise, RNA-based biomarkers, including microRNAs, long non-coding RNAs, and messenger RNAs, have demonstrated potential for diagnosing oral cancer and predicting treatment outcomes. The integration of high-throughput sequencing technologies, such as next-generation sequencing and transcriptomic profiling, has enabled the identification of novel biomarkers and provided deeper insights into the molecular mechanisms underlying oral cancer development and progression. Despite the promising results, challenges remain in standardizing sample collection, establishing robust biomarker panels, and validating their clinical utility. Nevertheless, salivary biomarkers hold great promise as a non-invasive, cost-effective, and accessible approach for oral cancer detection, ultimately leading to improved patient outcomes through early diagnosis and intervention. The analysis of genetic material obtained from saliva offers several advantages, including ease of collection, non-invasiveness, and the potential for repeated sampling. Furthermore, saliva reflects the physiological and pathological status of the oral cavity, making it an ideal source for biomarker discovery and validation. This article presents a comprehensive review of the current research on salivary biomarkers for oral cancer detection, focusing on insights gained from human DNA and RNA analysis.
Collapse
Affiliation(s)
- Archana Navale
- Department of Pharmacology, Parul University, Parul Institute of Pharmacy, Vadodara, India
| | - Atharva Deshpande
- Department of Pharmacology, Parul University, Parul Institute of Pharmacy, Vadodara, India
| |
Collapse
|
2
|
Rajthala S, Parajuli H, Dongre HN, Ljøkjel B, Hoven KM, Kvalheim A, Lybak S, Neppelberg E, Sapkota D, Johannessen AC, Costea DE. MicroRNA-138 Abates Fibroblast Motility With Effect on Invasion of Adjacent Cancer Cells. Front Oncol 2022; 12:833582. [PMID: 35371970 PMCID: PMC8968121 DOI: 10.3389/fonc.2022.833582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Background Recent studies have shown aberrant expression of micro-RNAs in cancer-associated fibroblasts (CAFs). This study aimed to investigate miR-138 dysregulation in CAFs in oral squamous cell carcinoma (OSCC) and its effects on their phenotype and invasion of adjacent OSCC cells. Methods Expression of miR-138 was first investigated in OSCC lesions (n = 53) and OSCC-derived CAFs (n = 15). MiR-138 mimics and inhibitors were used to functionally investigate the role of miR-138 on CAF phenotype and the resulting change in their ability to support OSCC invasion. Results Expression of miR-138 showed marked heterogeneity in both OSCC tissues and cultured fibroblasts. Ectopic miR-138 expression reduced fibroblasts’ motility and collagen contraction ability and suppressed invasion of suprajacent OSCC cells, while its inhibition resulted in the opposite outcome. Transcript and protein examination after modulation of miR-138 expression showed changes in CAF phenotype-specific molecules, focal adhesion kinase axis, and TGFβ1 signaling pathway. Conclusions Despite its heterogeneous expression, miR-138 in OSCC-derived CAFs exhibits a tumor-suppressive function.
Collapse
Affiliation(s)
- Saroj Rajthala
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Himalaya Parajuli
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harsh Nitin Dongre
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Borghild Ljøkjel
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | | | | | - Stein Lybak
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | - Evelyn Neppelberg
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
- Department of Oral Surgery, Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Anne Christine Johannessen
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Daniela-Elena Costea
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Daniela-Elena Costea,
| |
Collapse
|
3
|
Sais D, Munger K, Tran N. The dynamic interactome of microRNAs and the human papillomavirus in head and neck cancers. Curr Opin Virol 2021; 51:87-95. [PMID: 34627109 DOI: 10.1016/j.coviro.2021.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The Human Papillomavirus type 16 is a major etiologic factor for a subset of Head and Neck cancers. These cancers of the oropharyngeal region are growing, and it is expected to exceed cervical cancers in the near future. The major oncogenes E6 and E7 mediate many of the early transformation stages targeting p53 and other tumour suppressor genes. The majority of this regulation is centred on protein coding genes but more recently small non-coding RNAs, such as miRNAs are also regulated by HPV16. However, the system-wide impact of HPV16 on miRNAs is yet to be fully understood. To fully gauge the overall relationship between HPV16 and miRNAs, several studies have devised dynamic interactomes which encompass viral oncogenes, miRNAs and gene targets. These interactomes map potential pathways which permit the identification of possible mechanistic links. Our review will discuss the latest developments in using viral interactomes to understand viral mechanisms and how these approaches may aid in the elucidation of potential druggable pathways.
Collapse
Affiliation(s)
- Dayna Sais
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Karl Munger
- Biochemistry Program, Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nham Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; The Sydney Head and Neck Cancer Institute, Sydney Cancer Centre, Royal Prince Alfred Hospital, New South Wales, Australia.
| |
Collapse
|
4
|
Profiling and Functional Analysis of microRNA Deregulation in Cancer-Associated Fibroblasts in Oral Squamous Cell Carcinoma Depicts an Anti-Invasive Role of microRNA-204 via Regulation of Their Motility. Int J Mol Sci 2021; 22:ijms222111960. [PMID: 34769388 PMCID: PMC8584862 DOI: 10.3390/ijms222111960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Knowledge on the role of miR changes in tumor stroma for cancer progression is limited. This study aimed to investigate the role of miR dysregulation in cancer-associated fibroblasts (CAFs) in oral squamous cell carcinoma (OSCC). Methodology: CAF and normal oral fibroblasts (NOFs) were isolated from biopsies of OSCC patients and healthy individuals after informed consent and grown in 3D collagen gels. Total RNA was extracted. Global miR expression was profiled using Illumina version 2 panels. The functional impact of altered miR-204 expression in fibroblasts on their phenotype and molecular profile was investigated using mimics and inhibitors of miR-204. Further, the impact of miR-204 expression in fibroblasts on invasion of adjacent OSCC cells was assessed in 3D-organotypic co-cultures. Results: Unsupervised hierarchical clustering for global miR expression resulted in separate clusters for CAF and NOF. SAM analysis identified differential expression of twelve miRs between CAF and NOF. Modulation of miR-204 expression did not affect fibroblast cell proliferation, but resulted in changes in the motility phenotype, expression of various motility-related molecules, and invasion of the adjacent OSCC cells. 3′ UTR miR target reporter assay showed ITGA11 to be a direct target of miR-204. Conclusions: This study identifies differentially expressed miRs in stromal fibroblasts of OSCC lesions compared with normal oral mucosa and it reveals that one of the significantly downregulated miRs in CAF, miR-204, has a tumor-suppressive function through inhibition of fibroblast migration by modulating the expression of several different molecules in addition to directly targeting ITGA11.
Collapse
|
5
|
Yoon AJ, Santella RM, Wang S, Kutler DI, Carvajal RD, Philipone E, Wang T, Peters SM, Stewart CR, Momen-Heravi F, Troob S, Levin M, AkhavanAghdam Z, Shackelford AJ, Canterbury CR, Shimonosono M, Hernandez BY, McDowell BD, Nakagawa H. MicroRNA-Based Cancer Mortality Risk Scoring System and hTERT Expression in Early-Stage Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:8292453. [PMID: 33510789 PMCID: PMC7822680 DOI: 10.1155/2021/8292453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
We have previously constructed a novel microRNA (miRNA)-based prognostic model and cancer-specific mortality risk score formula to predict survival outcome in oral squamous cell carcinoma (OSCC) patients who are already categorized into "early-stage" by the TNM staging system. A total of 836 early-stage OSCC patients were assigned the mortality risk scores. We evaluated the efficacy of various treatment regimens in terms of survival benefit compared to surgery only in patients stratified into high (risk score ≥0) versus low (risk score <0) mortality risk categories. For the high-risk group, surgery with neck dissection significantly improved the 5-year survival to 75% from 46% with surgery only (p < 0.001); a Cox proportional hazard model on time-to-death demonstrated a hazard ratio of 0.37 for surgery with neck dissection (95% CI: 0.2-0.6; p=0.0005). For the low-risk group, surgery only was the treatment of choice associated with 5-year survival benefit. Regardless of treatment selected, those with risk score ≥2 may benefit from additional therapy to prevent cancer relapse. We also identified hTERT (human telomerase reverse transcriptase) as a gene target common to the prognostic miRNAs. There was 22-fold increase in the hTERT expression level in patients with risk score ≥2 compared to healthy controls (p < 0.0005). Overexpression of hTERT was also observed in the patient-derived OSCC organoid compared to that of normal organoid. The DNA cancer vaccine that targets hTERT-expressing cells currently undergoing rigorous clinical evaluation for other tumors can be repurposed to prevent cancer recurrence in these high-risk early-stage oral cancer patients.
Collapse
Affiliation(s)
- Angela J. Yoon
- Columbia University Irving Medical Center, New York, NY, USA
| | | | - Shuang Wang
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | | | | | - Tian Wang
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Scott M. Peters
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | - Scott Troob
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | | | | | - Brenda Y. Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | |
Collapse
|
6
|
Ou L, Sun T, Liu M, Zhang Y, Zhou Z, Zhan X, Lu L, Zhao Q, Lai R, Shao L. Efficient miRNA Inhibitor Delivery with Graphene Oxide-Polyethylenimine to Inhibit Oral Squamous Cell Carcinoma. Int J Nanomedicine 2020; 15:1569-1583. [PMID: 32210552 PMCID: PMC7069571 DOI: 10.2147/ijn.s220057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are widely believed to be promising targets for oral squamous cell carcinoma (OSCC) gene therapy. miR-214 has been identified as a promoter of OSCC aggression and metastasis. Methods Graphene oxide-polyethylenimine (GO-PEI) complexes were prepared and loaded with a miRNA inhibitor at different N/P ratios. The transfection efficiency of GO-PEI-inhibitor was tested in Cal27 and SCC9 cells. Moreover, the tumor inhibition ability of GO-PEI-inhibitor was measured in an OSCC xenograft mouse model by intratumoral injection. Results Here, we show that a GO-PEI complex efficiently delivers a miR-214 inhibitor into OSCC cells and controls the intracellular release of the miR-214 inhibitor. These results indicate that the GO-PEI-miR-214 inhibitor complex efficiently inhibited cellular miR-214, resulting in a decrease in OSCC cell invasion and migration and an increase in cell apoptosis by targeting PTEN and p53. In the xenograft mouse model, the GO-PEI-miR-214 inhibitor complex significantly prevented tumor volume growth. Conclusion This study indicates that functionalized GO-PEI with low toxicity has promising potential for miRNA delivery for the treatment of OSCC.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Minyi Liu
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Ye Zhang
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Zhiying Zhou
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Xiaozhen Zhan
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Lihong Lu
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Qingtong Zhao
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Renfa Lai
- The First Affiliated Hospital of Jinan University, Department of Stomatology, Guangzhou 510632, People's Republic of China
| | - Longquan Shao
- Stomatological Hospital of Southern Medical University, Department of Prosthodontics, Guangzhou 510260, People's Republic of China
| |
Collapse
|
7
|
Yoon AJ, Wang S, Kutler DI, Carvajal RD, Philipone E, Wang T, Peters SM, LaRoche D, Hernandez BY, McDowell BD, Stewart CR, Momen-Heravi F, Santella RM. MicroRNA-based risk scoring system to identify early-stage oral squamous cell carcinoma patients at high-risk for cancer-specific mortality. Head Neck 2020; 42:1699-1712. [PMID: 31981257 PMCID: PMC7369212 DOI: 10.1002/hed.26089] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background For early‐stage oral squamous cell carcinoma (OSCC), there is no existing risk‐stratification modality beyond conventional TNM staging system to identify patients at high risk for cancer‐specific mortality. Methods A total of 568 early‐stage OSCC patients who had surgery only and also with available 5‐year clinical outcomes data were identified. Signature microRNAs (miRNAs) were discovered using deep sequencing analysis and validated by qRT‐PCR. The final 5‐plex prognostic marker panel was utilized to generate a cancer‐specific mortality risk score using the multivariate Cox regression analyses. The prognostic markers were validated in the internal and external validation cohorts. Results The risk score from the 5‐plex marker panel consisting of miRNAs‐127‐3p, 4736, 655‐3p, TNM stage and histologic grading stratified patients into four risk categories. Compared to the low‐risk group, the high‐risk group had 23‐fold increased mortality risk (hazard ratio 23, 95% confidence interval 13‐42), with a median time‐to‐recurrence of 6 months and time‐to‐death of 11 months (vs >60 months for each among low‐risk patient; p < .001). Conclusion The miRNA‐based 5‐plex marker panel driven mortality risk score formula provides clinically practical and reliable measures to assess the prognosis of patients assigned to an early‐stage OSCC.
Collapse
Affiliation(s)
- Angela J Yoon
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, New York
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, New York
| | - Richard D Carvajal
- Department of Medical Hematology and Oncology, Columbia University Irving Medical Center, New York, New York
| | - Elizabeth Philipone
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, New York
| | - Tian Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Scott M Peters
- Division of Oral and Maxillofacial Pathology, Department of Pathology & Cell Biology, Columbia University College of Dental Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Brenda Y Hernandez
- Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu, Hawaii
| | | | - Claire R Stewart
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, New York
| | - Fatemeh Momen-Heravi
- Division of Periodontics, Columbia University College of Dental Medicine, New York, New York
| | - Regina M Santella
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
8
|
Wan Y, Vagenas D, Salazar C, Kenny L, Perry C, Calvopiña D, Punyadeera C. Salivary miRNA panel to detect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget 2017; 8:99990-100001. [PMID: 29245955 PMCID: PMC5725146 DOI: 10.18632/oncotarget.21725] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/26/2017] [Indexed: 01/20/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a heterogeneous group of tumours that originate predominantly from the oral cavity, pharynx and larynx. Our aim was to determine whether salivary miRNA expression levels can diagnose these cancer subtypes. Saliva samples were collected from healthy controls (n=113, smoker and non-smokers), HPV-positive (n=54) and HPV-negative (n=47) HNSCC patients. The miRNA expression levels in saliva was quantified using qPCR. The potential of salivary miRNAs to discriminate these groups of patients was evaluated using multiple logistic regression with ROC analysis and a 10-fold cross-validation analysis. Salivary miRNA-9, -127, -134, -191, -222 and -455 were shown to discriminate a control group from a HPV-negative HNSCC patient group with a sensitivity of 60% and a specificity of 94%; whilst salivary miRNA-9,-134, -196b, -210, and -455 were the most parsimonious subset discriminating a control group from a HPV-positive HNSCC group, with a sensitivity of 65% and a specificity of 95%. Furthermore, miRNA-9, -134, -196b, -210 and -455 as a panel, was the most parsimonious subset to discriminate HPV-positive HNSCC patients from HPV-negative HNSCC patients. In addition, the expression levels of miRNA-9, -127, -196a, -196b, -210, -222 and -455 were significantly increased in the saliva collected from early stage HNSCC patients compared to controls. A future multi-centre confirmatory study is warranted to test the diagnostic performance of these salivary miRNA prior to clinical implementation.
Collapse
Affiliation(s)
- Yunxia Wan
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Australia
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Woolloongabba, Queensland, Australia
| | - Carolina Salazar
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, The Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liz Kenny
- The School of Medicine, University of Queensland, Queensland, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Central Integrated Regional Cancer Service, Queensland Health, Woolloongabba, Queensland, Australia
| | - Chris Perry
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Diego Calvopiña
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, The Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Australia
| |
Collapse
|
9
|
Koshizuka K, Hanazawa T, Kikkawa N, Arai T, Okato A, Kurozumi A, Kato M, Katada K, Okamoto Y, Seki N. Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer. Cancer Sci 2017; 108:1681-1692. [PMID: 28612520 PMCID: PMC5543473 DOI: 10.1111/cas.13298] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 01/07/2023] Open
Abstract
For patients with head and neck squamous cell carcinoma (HNSCC), survival rates have not improved due to local recurrence and distant metastasis. Current targeted molecular therapies do not substantially benefit HNSCC patients. Therefore, it is necessary to use advanced genomic approaches to elucidate the molecular mechanisms underlying the aggressiveness of HNSCC cells. Analysis of our microRNA (miRNA) expression signature by RNA sequencing showed that the miR‐199 family (miR‐199a‐5p, miR‐199a‐3p, miR‐199b‐5p and miR‐199b‐3p) was significantly reduced in cancer tissues. Ectopic expression of mature miRNA demonstrated that all members of the miR‐199 family inhibited cancer cell migration and invasion by HNSCC cell lines (SAS and HSC3). These findings suggested that both passenger strands and guide strands of miRNA are involved in cancer pathogenesis. In silico database and genome‐wide gene expression analyses revealed that the gene coding for integrin α3 (ITGA3) was regulated by all members of the miR‐199 family in HNSCC cells. Knockdown of ITGA3 significantly inhibited cancer cell migration and invasion by HNSCC cells. Moreover, overexpression of ITGA3 was confirmed in HNSCC specimens, and high expression of ITGA3 predicted poorer survival of the patients (P = 0.0048). Our data revealed that both strands of pre‐miR‐199a (miR‐199a‐5p and miR‐199a‐3p) and pre‐miR‐199b (miR‐199b‐5p and miR‐199b‐3p) acted as anti‐tumor miRNA in HNSCC cells. Importantly, the involvement of passenger strand miRNA in the regulation of cellular processes is a novel concept in RNA research. Novel miRNA‐based approaches for HNSCC can be used to identify potential targets for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koji Katada
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
10
|
Karatas OF, Oner M, Abay A, Diyapoglu A. MicroRNAs in human tongue squamous cell carcinoma: From pathogenesis to therapeutic implications. Oral Oncol 2017; 67:124-130. [DOI: 10.1016/j.oraloncology.2017.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/21/2017] [Accepted: 02/19/2017] [Indexed: 02/07/2023]
|
11
|
Yan ZY, Luo ZQ, Zhang LJ, Li J, Liu JQ. Integrated Analysis and MicroRNA Expression Profiling Identified Seven miRNAs Associated With Progression of Oral Squamous Cell Carcinoma. J Cell Physiol 2017; 232:2178-2185. [PMID: 27935034 DOI: 10.1002/jcp.25728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs have been used as diagnostic and prognostic biomarkers for many cancers including oral squamous cell carcinoma (OSCC). Several studies have been shown that microRNA (miRNA) play important roles during the progression of OSCC. However, the results vary largely in different studies due to different platforms and sample sizes. In this study, we systematically evaluated a large scale of miRNA profiles from current qualified OSCC samples, and further investigated the functions of genes regulated by these key miRNAs as well as the signaling pathways through which these miRNA effect carcinogenesis. Seven key miRNAs were identified, and of which three were significantly upregulated, including hsa-miR-21, hsa-miR-31, hsa-miR-338, and four were downregulated, namely hsa-miR-125b, hsa-miR-133a, hsa-miR-133b, and hsa-miR-139. The function enrichment analysis revealed that target genes of upregulated miRNAs were associated with cellular protein metabolic process, macromolecule metabolic process, and TGF-beta pathway, while the targets of downregulated were enriched in negative regulation of macromolecule biosynthetic process and gene expression, and p53, long-term potentiation and adherens junction pathways. Transcription factor analysis revealed that there were 67 (51.1%) transcription factors influenced by both up and downregulated miRNAs. In summary, seven key miRNAs were found to play essential role in progression of OSCC, as well as the target genes and transcription factors of these miRNAs. The potential functions of these target genes identified in our study may be profitable to diagnosis and prognostic prediction of OSCC as biomarkers. J. Cell. Physiol. 232: 2178-2185, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhong-Yi Yan
- Department of Stomatology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Zhi-Qing Luo
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Lai-Jian Zhang
- Department of Stomatology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jia Li
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jia-Qiang Liu
- Department of Oral and Cranio-Maxillofacial, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, Shpitzer T. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett 2016; 12:1729-1736. [PMID: 27602107 PMCID: PMC4998201 DOI: 10.3892/ol.2016.4892] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Oral cavity squamous cell carcinoma may be more aggressive at presentation and recurrence in young patients compared with older patients. Dysregulation of microRNAs (miRNAs or miRs) has been associated with the development and prognosis of oral cavity cancer. The present study investigated miRNA expression in carcinoma of the oral tongue in young patients. miRNA expression profiles were evaluated in formalin-fixed, paraffin-embedded samples of tumor and normal mucosa from 12 patients aged <30 years old with squamous cell carcinoma of the tongue. The levels of let-7f-5p, miR-30b-5p and let-7e-5p were upregulated in tumors (P<0.05). The expression of let-7f-5p was upregulated in non-aggressive tumors, while the expression of let-7e-5p was upregulated in aggressive tumors, compared with the corresponding normal tissue. Aggressive tumors had higher levels of let-7c, miR-130a-3p, miR-361-5p, miR-99a-5p, miR-29c-3p and let-7d-5p than non-aggressive tumors (P<0.05). The findings remained significant for let-7c upon false-discovery rate correction. An excellent correlation was noticed on validation of NanoString counts by quantitative polymerase chain reaction. The comparison with published findings in adults demonstrated a unique miRNA signature in young patients with aggressive disease. Aggressive oral cavity cancer in patients <30 years old is associated with a distinctive expression pattern of the let-7 family. Larger studies including direct comparison with older patients are warranted.
Collapse
Affiliation(s)
- Ohad Hilly
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Pillar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sagit Stern
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yulia Strenov
- Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Gideon Bachar
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Thomas Shpitzer
- Department of Otolaryngology, Rabin Medical Center, Petah Tikva 49100, Israel; Department of Head and Neck Surgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Dahiya K, Dhankhar R. Updated overview of current biomarkers in head and neck carcinoma. World J Methodol 2016; 6:77-86. [PMID: 27018324 PMCID: PMC4804254 DOI: 10.5662/wjm.v6.i1.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/20/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
Squamous cell cancer is the most common type of malignancy arising from the epithelial cells of the head and neck region. Head and neck squamous cell carcinoma (HNSCC) is one of the predominant causes of cancer related casualties worldwide. Overall prognosis in this disease has improved to some extent with the advancements in therapeutic modalities but detection of primary tumor at its initial stage and prevention of relapse are the major targets to be achieved for further improvement in terms of survival rate of patients. Latest achievements in basic research regarding molecular characterization of the disease has helped in better perception of the molecular mechanisms involved in HNSCC progression and also in recognizing and targeting various molecular biomarkers associated with HNSCC. In the present article, we review the information regarding latest and potential biomarkers for the early detection of HNSCC. A detailed molecular characterization, ultimately, is likely to improve the development of new therapeutic strategies, potentially relevant to diagnosis and prognosis of head and neck cancers. The need for more accurate and timely disease prediction has generated enormous research interests in this field.
Collapse
|
14
|
Lim Y, Sun CX, Tran P, Punyadeera C. Salivary epigenetic biomarkers in head and neck squamous cell carcinomas. Biomark Med 2016; 10:301-13. [DOI: 10.2217/bmm.16.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early detection of head and neck squamous cell carcinoma (HNSCC) continues to be a challenge to the clinician. Saliva as a diagnostic medium carries significant advantages including its close proximity to the region of interest, ease of collection and noninvasive nature. While the identification of biomarkers continues to carry significant diagnostic and prognostic utility in HNSCC, epigenetic alterations present a novel opportunity to serve this purpose. With the developments of novel and innovative technologies, epigenetic alterations are now emerging as attractive candidates in HNSCC. As such, this review will focus on two commonly aberrant epigenetic alterations: DNA methylation and microRNA expression in HNSCC and their potential clinical utility. Identification and validation of these salivary epigenetic biomarkers would not only enable early diagnosis but will also facilitate in the clinical management.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| | - Charles Xiaohang Sun
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Peter Tran
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| |
Collapse
|
15
|
MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:186904. [PMID: 26504785 PMCID: PMC4609509 DOI: 10.1155/2015/186904] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Oral cancer, represented mainly by oral squamous cell carcinoma (OSCC), is the eighth most common type of human cancer worldwide. The number of new OSCC cases is increasing worldwide, especially in the low-income countries, and the prognosis remains poor in spite of recent advances in the diagnostic and therapeutic modalities. MicroRNAs (miRNAs), 18–25 nucleotides long noncoding RNA molecules, have recently gained significant attention as potential regulators and biomarkers for carcinogenesis. Recent data show that several miRNAs are deregulated in OSCC, and they have either a tumor suppressive or an oncogenic role in oral carcinogenesis. This review summarizes current knowledge on the role of miRNAs as tumor promotors or tumor suppressors in OSCC development and discusses their potential value as diagnostic and prognostic markers in OSCC.
Collapse
|
16
|
Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C. miR-205 in situ expression and localization in head and neck tumors - a tissue array study. Asian Pac J Cancer Prev 2015; 15:9071-5. [PMID: 25422181 DOI: 10.7314/apjcp.2014.15.21.9071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined. MATERIALS AND METHODS miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology. RESULTS miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues. CONCLUSIONS LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.
Collapse
Affiliation(s)
- Ab Mutalib Nurul-Syakima
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia E-mail :
| | | | | |
Collapse
|
17
|
Hauser B, Zhao Y, Pang X, Ling Z, Myers E, Wang P, Califano J, Gu X. Functions of MiRNA-128 on the regulation of head and neck squamous cell carcinoma growth and apoptosis. PLoS One 2015; 10:e0116321. [PMID: 25764126 PMCID: PMC4357443 DOI: 10.1371/journal.pone.0116321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
Background Incidence of head and neck squamous cell carcinoma (HNSCC) has continuously increased in past years while its survival rate has not been significantly improved. There is a critical need to better understand the genetic regulation of HNSCC tumorigenesis and progression. In this study, we comprehensively analyzed the function of miRNA-128 (miR-128) in the regulation of HNSCC growth and its putative targets in vitro and in vivo systems. Methods The function and targets of miR-128 were investigated in human HNSCC cell lines (JHU-13 and JHU-22), which were stably transfected with the miR-128 gene using a lentiviral delivery system. The expression levels of miR-128 and its targeted proteins were analyzed with qRT-PCR, Western blotting and flow cytometry. The binding capacity of miRNA-128 to its putative targets was determined using a luciferase report assay. MTT, colony formation, and a tumor xenograft model further evaluated the effects of miR-128 on HNSCC growth. Results We generated two miR-128 stably transfected human HNSCC cell lines (JHU-13miR-128 and JHU-22miR-128). Enforced expression of miR-128 was detected in both cultured JHU-13miR-128 and JHU-22miR-128 cell lines, approximately seventeen to twenty folds higher than in vector control cell lines. miRNA-128 was able to bind with the 3′-untranslated regions of BMI-1, BAG-2, BAX, H3f3b, and Paip2 mRNAs, resulting in significant reduction of the targeted protein levels. We found that upregulated miR-128 expression significantly inhibited both JHU-13miR-128 and JHU-22miR-128 cell viability approximately 20 to 40%, and the JHU-22miR-128 tumor xenograft growth compared to the vector control groups. Conclusions miR-128 acted as a tumor suppressor inhibiting the HNSCC growth by directly mediating the expression of putative targets. Our results provide a better understanding of miRNA-128 function and its potential targets, which may be valuable for developing novel diagnostic markers and targeted therapy.
Collapse
Affiliation(s)
- Belinda Hauser
- Department of Genetics and Human Genetics, Howard University, Washington, DC, United States of America
| | - Yuan Zhao
- Department of Oral Pathology, Howard University, Washington DC, United States of America
| | - Xiaowu Pang
- Department of Oral Pathology, Howard University, Washington DC, United States of America
| | | | - Ernest Myers
- Department of Otolaryngology-Head and Neck Surgery, Howard University, Washington, DC, United States of America
| | - Paul Wang
- Department of Radiology, Howard University, Washington DC, United States of America
- Cancer Center, Howard University, Washington, District of Columbia, United States of America
| | - Joseph Califano
- Departments of Otolaryngology-Head and Neck Surgery, and Head & Neck Research Division, Johns Hopkins University, Baltimore, Maryland, United states of America
| | - Xinbin Gu
- Department of Genetics and Human Genetics, Howard University, Washington, DC, United States of America
- Department of Oral Pathology, Howard University, Washington DC, United States of America
- Cancer Center, Howard University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Gao Y, Liu Y, Liu GL, Ran LK, Zeng F, Wu JY, Song FZ. Association between the pre-mir-218 polymorphism and cancer risk in the Chinese population: a meta-analysis. Asian Pac J Cancer Prev 2015; 15:2517-22. [PMID: 24761857 DOI: 10.7314/apjcp.2014.15.6.2517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several recent studies have explored associations between pre-mir-218 polymorphism (rs11134527) and cancer risk. However, published data are still inconclusive. To obtain a more precise estimation of the relationship in the Chinese population, we carried out a meta-analysis for the first time. MATERIALS AND METHODS Through retrieval from the PubMed, Medline, Embase, Web of Science databases, China National Knowledge Infrastructure and the Chinese BioMedical Literature Database, a total of four studies were analyzed with 3,561 cases and 3,628 controls for SNP pre-mir-218 rs11134527. We calculated odds ratios (ORs) and 95% confidence intervals (95%CIs) to explore the strength of associations. RESULTS The results showed that the rs11134527 polymorphism was associated with decreased cancer risk in GG versus AA and GG versus AA+AG models tested ( GG vs AA: OR=0.82, 95%CI: 0.71-0.94; GG vs AA+AG: OR=0.84, 95%CI: 0.74-0.96), and significantly decreased cervical cancer risk was observed in GG versus AA and GG versus AA+AG models (GG vs AA: OR=0.79, 95%CI: 0.66-0.94; GG vs AA+AG: OR=0.80, 95%CI: 0.68-0.94). However, no significant association between the rs11134527 polymorphism and hepatocellular carcinoma risk was observed in all comparison models tested (AG vs AA: OR=0.94, 95%CI: 0.79-1.11; GG vs AA: OR=0.88, 95%CI: 0.70-1.10; GG+AG vs AA: OR=0.92, 95%CI: 0.79-1.08; GG vs AA+AG: OR=0.91, 95%CI: 0.75-1.11). CONCLUSION The findings suggest that pre-miR-218 rs11134527 polymorphism may have some relation to cancer development in Chinese. However, well-designed studies with larger sample size and more detailed data are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Yue Gao
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
19
|
MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin. Int J Mol Sci 2014; 15:22128-41. [PMID: 25474084 PMCID: PMC4284698 DOI: 10.3390/ijms151222128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 12/12/2022] Open
Abstract
microRNAs have been shown to play critical roles in regulating the chemosensitivity of cancer cells. As a member of the oncogenic miRNAs (oncomiRs), miR-222 has been reported to drive the oncogenesis of many types of malignancies. However, little is known concerning the specific role of miR-222 in human oral squamous cell carcinoma (OSCC). The present study explored the role and mechanism of miR-222 in increasing the expression of p53 up-regulated modulator of apoptosis (PUMA) and enhancing the sensitivity of OSCC to cisplatin (CDDP). Results showed that antisense (As)-miR-222 inhibits the expression of miR-222. In contrast, PUMA was dramaticallyup-regulated. IC50 values were significantly decreased in cells treated with As-miR-222 combined with CDDP, to a greater extent than in cells treated with CDDP alone. Furthermore, As-miR-222 enhanced apoptosis and inhibited the invasiveness of UM1 cells. Analysis of the above data suggested that, in UM1 cells, there might be a regulatory loop between miR-222 and PUMA, and that miR-222 inhibition increased the chemosensitivity to CDDP. These findings demonstrated that down-regulation of miR-222 could enhance the chemosensitivity of human OSCC cells to CDDP, and that the combination of As-miR-222 and CDDP could be an effective therapeutic strategy by boosting the expression of PUMA for controlling the growth of OSCC.
Collapse
|
20
|
Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol 2014; 12:11-26. [PMID: 25403939 DOI: 10.1038/nrclinonc.2014.192] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Head and neck cancer (HNC) broadly includes carcinomas arising from the mucosal epithelia of the head and neck region as well as various cell types of salivary glands and the thyroid. As reflected by the multiple sites and histologies of HNC, the molecular characteristics and clinical outcomes of this disease vary widely. In this Review, we focus on established and emerging biomarkers that are most relevant to nasopharyngeal carcinoma and head and neck squamous-cell carcinoma (HNSCC), which includes primary sites in the oral cavity, oropharynx, hypopharynx and larynx. Applications and limitations of currently established biomarkers are discussed along with examples of successful biomarker development. For emerging biomarkers, preclinical or retrospective data are also described in the context of recently completed comprehensive molecular analyses of HNSCC, which provide a broad genetic landscape and molecular classification beyond histology and clinical characteristics. We will highlight the ongoing effort that will see a shift from prognostic to predictive biomarker development in HNC with the goal of delivering individualized cancer therapy.
Collapse
Affiliation(s)
- Hyunseok Kang
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1650 Orleans Street, CRB-1 Room 344, Baltimore, MD 21287-0013, USA
| | - Ana Kiess
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1650 Orleans Street, CRB-1 Room 344, Baltimore, MD 21287-0013, USA
| | - Christine H Chung
- 1] Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1650 Orleans Street, CRB-1 Room 344, Baltimore, MD 21287-0013, USA. [2] Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, 1650 Orleans Street, CRB-1 Room 344, Baltimore, MD 21287-0013, USA
| |
Collapse
|
21
|
Masood Y, Kqueen CY, Rajadurai P. Role of miRNA in head and neck squamous cell carcinoma. Expert Rev Anticancer Ther 2014; 15:183-97. [DOI: 10.1586/14737140.2015.978294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Salazar C, Calvopiña D, Punyadeera C. miRNAs in human papilloma virus associated oral and oropharyngeal squamous cell carcinomas. Expert Rev Mol Diagn 2014; 14:1033-40. [PMID: 25222489 DOI: 10.1586/14737159.2014.960519] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer in the world with 600,000 new cases diagnosed annually. Tobacco and alcohol use have been associated as the principal etiological factors of this pathogenesis. The incidence of smoking-associated HNSCC has declined, while human papilloma virus (HPV)-associated HNSCC is on the rise. There are currently no clinically validated biomarkers to detect this cancer at an early stage (cancers independent of HPV status). It is well-established that the aberrant expression of miRNAs can lead to tumorigenesis. miRNA expression differences have also been demonstrated in HPV-positive and HPV-negative HNSCC tumor tissues as well as in body fluids. Therefore, miRNAs have the potential to provide an unprecedented insight into the pathogenesis of HNSCC and serve as potential biomarkers. This review addresses HNSCC disease burden and the regulation of miRNA by HPV viral oncoproteins, potential miRNA biomarkers and future perspectives. miRNA provides an unique opportunity to fulfill the current clinical challenge in HNSCC patient management by enabling early detection followed by targeted interventions, leading to a significant reduction in mortality and morbidity.
Collapse
Affiliation(s)
- Carolina Salazar
- Saliva Translational Research Group, The Translational Research Institute, The University of Queensland Diamantina Institute, Level 6, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | | | | |
Collapse
|
23
|
KIKKAWA NAOKO, KINOSHITA TAKASHI, NOHATA NIJIRO, HANAZAWA TOYOYUKI, YAMAMOTO NORIKO, FUKUMOTO ICHIRO, CHIYOMARU TAKESHI, ENOKIDA HIDEKI, NAKAGAWA MASAYUKI, OKAMOTO YOSHITAKA, SEKI NAOHIKO. microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int J Oncol 2014; 44:2085-92. [DOI: 10.3892/ijo.2014.2349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/28/2014] [Indexed: 11/06/2022] Open
|
24
|
Chen T, Xi QY, Ye RS, Cheng X, Qi QE, Wang SB, Shu G, Wang LN, Zhu XT, Jiang QY, Zhang YL. Exploration of microRNAs in porcine milk exosomes. BMC Genomics 2014; 15:100. [PMID: 24499489 PMCID: PMC4008308 DOI: 10.1186/1471-2164-15-100] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/31/2014] [Indexed: 01/07/2023] Open
Abstract
Background Breast milk contains complex nutrients and facilitates the maturation of various biological systems in infants. Exosomes, membranous vesicles of endocytic origin found in different body fluids such as milk, can mediate intercellular communication. We hypothesized that microRNAs (miRNAs), a class of non-coding small RNAs of 18–25 nt which are known to be packaged in exosomes of human, bovine and porcine milk, may play important roles in the development of piglets. Results In this study, exosomes of approximately 100 nm in diameter were isolated from porcine milk through serial centrifugation and ultracentrifugation procedures. Total RNA was extracted from exosomes, and 5S ribosomal RNA was found to be the major RNA component. Solexa sequencing showed a total of 491 miRNAs, including 176 known miRNAs and 315 novel mature miRNAs (representing 366 pre-miRNAs), which were distributed among 30 clusters and 35 families, and two predicted novel miRNAs were verified targeting 3’UTR of IGF-1R by luciferase assay. Interestingly, we observed that three miRNAs (ssc-let-7e, ssc-miR-27a, and ssc-miR-30a) could be generated from miRNA-offset RNAs (moRNAs). The top 10 miRNAs accounted for 74.5% (67,154 counts) of total counts, which were predicted to target 2,333 genes by RNAhybrid software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses using DAVID bioinformatics resources indicated that the identified miRNAs targeted genes enriched in transcription, immunity and metabolism processes, and 14 of the top 20 miRNAs possibly participate in regulation of the IgA immune network. Conclusions Our findings suggest that porcine milk exosomes contain a large number of miRNAs, which potentially play an important role in information transfer from sow milk to piglets. The predicted miRNAs of porcine milk exosomes in this study provide a basis for future biochemical and biophysical function studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-100) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yong-Liang Zhang
- Guandong Provincial Key Lab of Agro-Animal Genomics And Molecular Breeding, College of Animal Science, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center For Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Jiang F, Zhao W, Zhou L, Zhang L, Liu Z, Yu D. miR-222 regulates the cell biological behavior of oral squamous cell carcinoma by targeting PUMA. Oncol Rep 2014; 31:1255-62. [PMID: 24452416 DOI: 10.3892/or.2014.2985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/27/2013] [Indexed: 11/05/2022] Open
Abstract
Previous reports have shown that low expression of p53 upregulated modulator of apoptosis (PUMA) and abnormal expression patterns of a number of miRNAs may be associated with poor prognosis in various types of human malignancies. As a member of the oncomiRs, miR-222 has been found to be upregulated in oral squamous cell carcinoma (OSCC). We hypothesized that there was an important relationship between miR-222 and PUMA in OSCC based on the prediction of the target genes of miR-222. In the present study, Pre-miR-222, As-miR-222 and the empty vector, were used to treat OSCC cells, respectively. Using the non-transfected cells as blank control, the expression levels of miR-222 and the PUMA gene were evaluated by RT-PCR and western blotting. Cell proliferation and migration abilities were analyzed by MTT and Transwell assays. Cell cycle distribution and apoptosis were assessed by flow cytometry. Our results demonstrated that, when compared with the blank control group, OSCC cells in the Pre-miR-222 transfection group showed increased expression of miR-222 and decreased expression of PUMA, enhanced proliferation and invasion abilities, and decreased apoptosis. In contrast, the above indices in the As-miR-222 transfection group confirmed the opposite results when compared with those in the Pre-miR-222 transfection group. In addition, no significant differences between the empty vector transfection group and the control group were noted. Our results suggest that miR-222 targets the expression of PUMA in OSCC cells and affects cell growth, invasive and apoptotic abilities. Thus, PUMA may be a possible new target for the treatment of OSCC.
Collapse
Affiliation(s)
- Fangfang Jiang
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Wei Zhao
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lijie Zhou
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Lin Zhang
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Zifeng Liu
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Dongsheng Yu
- Institute of Stomatological Research, Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
26
|
Severino P, Brüggemann H, Andreghetto FM, Camps C, Klingbeil MDFG, de Pereira WO, Soares RM, Moyses R, Wünsch-Filho V, Mathor MB, Nunes FD, Ragoussis J, Tajara EH. MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation. BMC Cancer 2013; 13:533. [PMID: 24209638 PMCID: PMC3826519 DOI: 10.1186/1471-2407-13-533] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/24/2013] [Indexed: 12/27/2022] Open
Abstract
Background Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. Methods MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Results Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Conclusions Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA alterations in HNSCC is an essential step to the mechanistic understanding of tumor formation and could lead to the discovery of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Severino P, Oliveira LS, Torres N, Andreghetto FM, Klingbeil MDFG, Moyses R, Wünsch-Filho V, Nunes FD, Mathor MB, Paschoal AR, Durham AM. High-throughput sequencing of small RNA transcriptomes reveals critical biological features targeted by microRNAs in cell models used for squamous cell cancer research. BMC Genomics 2013; 14:735. [PMID: 24160351 PMCID: PMC3870990 DOI: 10.1186/1471-2164-14-735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 10/17/2013] [Indexed: 11/11/2022] Open
Abstract
Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.
Collapse
Affiliation(s)
- Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yan B, Broek RV, Saleh AD, Mehta A, Van Waes C, Chen Z. Signaling Networks of Activated Oncogenic and Altered Tumor Suppressor Genes in Head and Neck Cancer. JOURNAL OF CARCINOGENESIS & MUTAGENESIS 2013; Suppl 7:4. [PMID: 25587491 PMCID: PMC4289631 DOI: 10.4172/2157-2518.s7-004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the upper aerodigestive tract and is the six most common cancers worldwide. HNSCC is associated with high morbidity and mortality, as standard surgery, radiation, and chemotherapy can cause significant disfigurement and only provide 5-year survival rates of ~50-60%. The heterogeneity of HNSCC subsets with different potentials for recurrence and metastasis challenges the traditional pathological classification system, thereby increasing demand for the development of new diagnostic, prognostic, and therapeutic tools based on global molecular signatures of HNSCC. Historically, using classical biological techniques, it has been extremely difficult and time-consuming to survey hundreds or thousands of genes in a given disease. However, the development of high throughput technologies and high-powered computation throughout the last two decades has enabled us to investigate hundreds or thousands of genes simultaneously. Using high throughput technologies, our laboratory has identified the gene signatures and protein networks, which significantly affect HNSCC malignant phenotypes, including TP53/p63/p73 family members, IL-1/TNF-β/NF-κB, PI3K/AKT/mTOR, IL-6/IL-6R/JAK/STAT3, EGFR/MAPK/AP1, HGF/cMET/EGR1, and TGFβ/TGFβR/TAK1/SMAD pathways. This review summarizes the results from high-throughput technological assays conducted on HNSCC samples, including microarray, DNA methylation, miRNA profiling, and protein array, using primarily experimental data and conclusions generated in our own laboratory. The use of bioinformatics and integrated analyses of data sets from different platforms, as well as meta-analysis of large datasets pulled from multiple publicly available studies, provided significantly higher statistical power to extract biologically relevant information. The data suggested that the heterogeneity of HNSCC genotype and phenotype are much more complex than we previously thought. Understanding of global molecular signatures and disease classification for specific subsets of HNSCC will be essential to provide accurate diagnoses for targeted therapy and personalized treatment, which is an important effort toward improving patient outcomes.
Collapse
Affiliation(s)
- Bin Yan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
- NIH Medical Research Scholars Program, Bethesda, MD USA
| | - Anthony D Saleh
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Arpita Mehta
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD USA
| |
Collapse
|
29
|
Mitani Y, Roberts DB, Fatani H, Weber RS, Kies MS, Lippman SM, El-Naggar AK. MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome. PLoS One 2013; 8:e66778. [PMID: 23825564 PMCID: PMC3692530 DOI: 10.1371/journal.pone.0066778] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/13/2013] [Indexed: 12/12/2022] Open
Abstract
Background Salivary adenoid cystic carcinoma (ACC) is a rare relentlessly progressive malignant tumor. The molecular events associated with ACC tumorigenesis are poorly understood. Variable microRNAs (miRNA) have been correlated with tumorigenesis of several solid tumors but not in ACC. To investigate the association of miRNAs with the development and/or progression of ACC, we performed a comparative analysis of primary ACC specimens and matched normal samples and a pooled salivary gland standard and correlated the results with clinicopathologic factors and validated selected miRNAs in a separate set of 30 tumors. Methods MiRNA array platform was used for the identification of target miRNAs and the data was subjected to informatics and statistical interrelations. The results were also collected with the MYB-NFIB fusion status and the clinicopathologic features. Results Differentially dysregulated miRNAs in ACC were characterized in comparison to normal expression. No significant differences in miRNA expression were found between the MYB-NFIB fusion positive and -negative ACCs. Of the highly dysregulated miRNA in ACC, overexpression of the miR-17 and miR-20a were significantly associated with poor outcome in the screening and validation sets. Conclusion Our study indicates that the upregulation of miR-17-92 may play a role in the biology of ACC and could be potentially targeted in future therapeutic studies.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Dianna B. Roberts
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hanadi Fatani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Randal S. Weber
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Merrill S. Kies
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Scott M. Lippman
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Adel K. El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kaczkowski B, Morevati M, Rossing M, Cilius F, Norrild B. A Decade of Global mRNA and miRNA Profiling of HPV-Positive Cell Lines and Clinical Specimens. Open Virol J 2012; 6:216-31. [PMID: 23341857 PMCID: PMC3547333 DOI: 10.2174/1874357901206010216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
For more than a decade, global gene expression profiling has been extensively used to elucidate the biology of human papillomaviruses (HPV) and their role in cervical- and head-and-neck cancers. Since 2008, the expression profiling of miRNAs has been reported in multiple HPV studies. Two major strategies have been employed in the gene and miRNA profiling studies: In the first approach, HPV positive tumors were compared to normal tissues or to HPV negative tumors. The second strategy relied on analysis of cell cultures transfected with single HPV oncogenes or with HPV genomes compared to untransfected cells considered as models for the development of premalignant and malignant transformations.In this review, we summarize what we have learned from a decade of global expression profiling studies. We performed comprehensive analysis of the overlap of the lists of differentially expressed genes and microRNAs, in both tissue samples and cell culture based studies. The review focuses mainly on HPV16, however reports from other HPV species are used as references. We discuss the low degree of consensus among different studies and the limitation of differential expression analysis as well as the fragmented miRNA-mRNA target correlation evidence. Furthermore, we propose an approach for future research to include more comprehensive miRNA-mRNA target correlation analysis and to apply systems biology/gene networks methodology.
Collapse
Affiliation(s)
- Bogumil Kaczkowski
- The Bioinformatics Centre, Department of Biology and Biomedical Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
31
|
Chang KW, Chu TH, Gong NR, Chiang WF, Yang CC, Liu CJ, Wu CH, Lin SC. miR-370 modulates insulin receptor substrate-1 expression and inhibits the tumor phenotypes of oral carcinoma. Oral Dis 2012; 19:611-9. [PMID: 23231387 DOI: 10.1111/odi.12046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/25/2012] [Accepted: 11/08/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND MicroRNAs play important roles in carcinogenesis. A preliminary screening study suggested that down-regulation of miR-370 occurs in oral squamous cell carcinoma (OSCC) tissue. Insulin receptor substratre-1 (IRS-1) is the substrate of insulin-like growth factor receptor (IGFR), which modulates AKT/mTOR activation in malignancies. The relationship between miR-370 and IRS-1, and their functional roles in OSCC pathogenesis are unclear. MATERIALS AND METHODS Primary OSCC specimens were examined for miR-370 expression. Exogenous expression of miR-370 was established using both stable subclones and transient expression, and these were used to gain insights into miR-370's functions in OSCC cells. Knockdown of miR-370 and IRS-1 was also carried out in OSCC cells using a small interference oligonucleotide approach. RESULTS Squamous cell carcinoma tissues with perineural invasion had lowered miR-370 expression compared with contrasting OSCC. OSCC cells also exhibited lower miR-370 expression than normal oral keratinocytes, and this can be reversed by treatment with 5-aza-2'-deoxycytidine. Exogenous miR-370 expression decreases the migration and anchorage-independent growth of OSCC cells, which implies a suppressor role for miR-370. The enhancement of anchorage-independent growth of OSCC cells through miR-370 inhibiting can be reduced by knockdown of IRS-1 expression. CONCLUSION This study concludes that miR-370 is able to target IRS-1 for oral tumorigenesis.
Collapse
Affiliation(s)
- K-W Chang
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system.
There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|
33
|
Kinoshita T, Hanazawa T, Nohata N, Kikkawa N, Enokida H, Yoshino H, Yamasaki T, Hidaka H, Nakagawa M, Okamoto Y, Seki N. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma. Oncotarget 2012; 3:1386-400. [PMID: 23159910 PMCID: PMC3717800 DOI: 10.18632/oncotarget.709] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022] Open
Abstract
Recent our microRNA (miRNA) expression signature revealed that expression of microRNA-218 (miR-218) was reduced in cancer tissues, suggesting a candidate of tumor suppressor in head and neck squamous cell carcinoma (HNSCC). The aim of this study was to investigate the functional significance of miR-218 and its mediated moleculer pathways in HNSCC. Restoration of miR-218 in cancer cells led to significant inhibition of cell migration and invasion activities in HNSCC cell lines (FaDu and SAS). Genome-wide gene expression analysis of miR-218 transfectants and in silico database analysis showed that focal adhesion pathway was a promising candidate of miR-218 target pathways. The laminins are an important and biologically active part of the basal lamina, the function of that are various such as influencing cell differentiation, migration and adhesion as well as proliferation and cell survival. Interestingly, all components of laminin-332 (LAMA3, LAMB3 and LAMC2) are listed on the candidate genes in focal adhesion pathway. Furthermore, we focused on LAMB3 which has a miR-218 target site and gene expression studies and luciferase reporter assays showed that LAMB3 was directly regulated by miR-218. Silencing study of LAMB3 demonstrated significant inhibition of cell migration and invasion. In clinical specimens with HNSCC, the expression levels of laminin-332 were significantly upregulated in cancer tissues compared to adjacent non-cancerous tissues. Our analysis data showed that tumor suppressive miR-218 contributes to cancer cell migration and invasion through regulating focal adhesion pathway, especially laminin-332. Tumor suppressive miRNA-mediated novel cancer pathways provide new insights into the potential mechanisms of HNSCC oncogenesis.
Collapse
Affiliation(s)
- Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba, Japan
- Department of Otorhinolaryngology / Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology / Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nijiro Nohata
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba, Japan
- Department of Otorhinolaryngology / Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology / Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takeshi Yamasaki
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideo Hidaka
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology / Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana Chuo-ku, Chiba, Japan
| |
Collapse
|
34
|
The functional significance of microRNA-375 in human squamous cell carcinoma: aberrant expression and effects on cancer pathways. J Hum Genet 2012; 57:556-63. [PMID: 22718022 DOI: 10.1038/jhg.2012.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules consisting of 19-22 nucleotides that are involved in a variety of biological processes, including development, differentiation, apoptosis and cell proliferation. In cancer research, a growing body of evidence has indicated that miRNAs are aberrantly expressed in many types of human cancers and can function either as tumor suppressors or oncogenes. Bioinformatic predictions suggest that miRNAs regulate more than 30% of protein-coding genes. Aberrant expression of miRNAs in cancer cells causes destruction of miRNA-regulated messenger RNA networks. Therefore, the identification of miRNA-regulated cancer pathways is important for understanding the molecular mechanisms of human cancer. Searching for the aberrant expression of miRNAs in cancer cells is the first step in the functional analysis of miRNAs in cancer cells. Genome-wide miRNA expression signatures can rapidly and precisely reveal aberrant expression of miRNA in cancers. The miRNA expression signatures of human cancers have revealed that miR-375 is significantly downregulated in cancer cells. Our recent data on maxillary sinus, hypopharyngeal and esophageal squamous cell carcinomas have suggested that miR-375 is frequently downregulated and functions as a tumor suppressor that targets several oncogenic genes in cancer cells. In this review, we focus on several types of human squamous cell carcinoma and describe the aberrant expression of miRNAs and the cancer pathways they regulate in these diseases.
Collapse
|
35
|
Odar K, Boštjančič E, Gale N, Glavač D, Zidar N. Differential expression of microRNAs miR-21, miR-31, miR-203, miR-125a-5p and miR-125b and proteins PTEN and p63 in verrucous carcinoma of the head and neck. Histopathology 2012; 61:257-65. [PMID: 22690848 DOI: 10.1111/j.1365-2559.2012.04242.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS To investigate the expression of microRNAs miR-21, miR-31, miR-203, miR-125a-5p and miR-125b and proteins phosphatase and tensin homologue (PTEN) and p63 in verrucous carcinoma (VC) of the head and neck. METHODS AND RESULTS Thirty cases of VC, 50 cases of conventional squamous cell carcinoma (SCC) and 30 samples of normal epithelium of the head and neck were included. Real-time polymerase chain reaction and immunohistochemistry were used to analyse the expression of microRNAs and proteins, respectively. In comparison to normal epithelium, miR-21 was overexpressed in both VC and SCC and miR-31 was overexpressed in VC and in well- and moderately differentiated SCC. Levels of miR-203 were elevated in VC but unaltered or reduced in SCC, and levels of miR-125a-5p and miR-125b were reduced in VC but unaltered in SCC. PTEN was down-regulated in both VC and SCC, whereas p63 was down-regulated in VC but up-regulated in SCC. Differential expression of p63 in VC correlated inversely with the expression of miR-21 and miR-203. CONCLUSIONS Differences between VC, SCC and normal epithelium in expression profiles of investigated molecules indicate their association with the pathogenesis and clinicopathological characteristics of VC. Our results suggest that some microRNAs and proteins, particularly miR-125b, miR-203 and p63, might be useful in the diagnosis of VC.
Collapse
Affiliation(s)
- Katarina Odar
- Medical Faculty, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
36
|
Andreghetto FM, Klingbeil MFG, Soares RM, Sitnik R, Pinto Junior DDS, Mathor MB, Nunes FD, Severino P. Evaluation of microRNA expression in head and neck squamous cell carcinoma cell lines and in primary culture of oral keratinocytes. EINSTEIN-SAO PAULO 2011; 9:442-8. [PMID: 26761243 DOI: 10.1590/s1679-45082011ao2149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/19/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Functional in vitro studies are fundamental to understand the role of microRNAs, small non coding RNA molecules that function as post-transcriptional regulators, in cancer. The objective of this study was to determine the applicability of head and neck squamous cell carcinoma cell lines and human oral keratinocytes as models for functional studies on microRNAs previously identified as deregulated in head and neck squamous cell carcinomas. METHODS The expression level of four microRNAs was assessed in cell lines and in primary cultures of oral keratinocytes using specific real-time polymerase chain reactions. The identity of oral squamous cell carcinoma cell lines was confirmed by means of STR (short tandem repeats) profiling. The possible impact of feeder-layer gene expression in global microRNA expression results from keratinocyte primary culture was also evaluated. RESULTS Significant differences in microRNA gene expression were observed among squamous cell carcinoma cell lines, particularly among cells lines from distinct subsites, as well as between primary culture of human keratinocytes and immortalized keratinocyte cell lines. CONCLUSIONS Primary cultures of human keratinocytes and diverse tumor cell lines are relatively easy to obtain. However, each cell model possesses a characteristic phenotype; whereas one may be useful for a specific study, it may be inappropriate for another. Therefore, it is imperative that suitable cell lines are cautiously selected for functional studies in cancer.
Collapse
Affiliation(s)
- Flavia Maziero Andreghetto
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | | | - Renata Machado Soares
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| | - Roberta Sitnik
- Laboratório de Técnicas Especiais, Hospital Israelita Albert Einstein - HIAE, São Paulo, SP, BR
| | | | - Monica Beatriz Mathor
- Centro de Tecnologia das Radiações, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, SP, BR
| | - Fabio Daumas Nunes
- Department of Estomatology, Faculdade de Odontologia, Universidade de São Paulo - USP, São Paulo, SP, BR
| | - Patricia Severino
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa Albert Einstein - IIEPAE, São Paulo, SP, BR
| |
Collapse
|
37
|
Minor J, Wang X, Zhang F, Song J, Jimeno A, Wang XJ, Lu X, Gross N, Kulesz-Martin M, Wang D, Lu SL. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 2011; 48:73-8. [PMID: 22133638 DOI: 10.1016/j.oraloncology.2011.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 01/04/2023]
Abstract
Detection of DNA methylation has produced promising results as biomarkers for head and neck squamous cell carcinoma (HNSCC). However, current panels are limited by an insufficient number of sensitive and specific tumor markers. MicroRNAs (miR) play an important role in tumorigenesis, and may represent a novel panel of molecules for the development of cancer biomarkers. We investigated methylation of three miRNA promoter sites of miR-9 (miR-9-1, miR-9-2, miR-9-3) in 107 human head and neck tissue samples and controls. We found methylations of miR-9-1 and miR-9-3 were higher in oral and oropharyngeal carcinomas than that in laryngeal carcinoma, achieving a combined sensitivity of 63% and 56%, respectively, for these two tumor types, compared to 21% for the laryngeal carcinoma. Quantitative PCR of miR-9 showed reduced expression associated with methylation of miR-9 in tumor tissues. To investigate the functional consequences of miR-9 methylation, we found that miR-9 methylation is correlated with miR-9 expression level in human HNSCC cell lines. Demethylation treatment using 5-aza-deoxycytidine restored its expression in a miR-9 methylated human HNSCC cell line UM-SCC22A. Furthermore, cell proliferation and viability was significantly inhibited, while PTEN expression was elevated after transfection of miR-9 into the UM-SCC22A cell line. In summary, our results suggest that methylations of miR-9-1 and miR-9-3 are sensitive and specific biomarkers for HNSCC, particularly for oral and oropharyngeal squamous cell carcinomas. In addition, miR-9 may function as a tumor suppressor in HNSCC through inhibition of cell proliferation and elevation of tumor suppressor PTEN.
Collapse
Affiliation(s)
- Jacob Minor
- Department of Otolaryngology, University of Colorado Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nohata N, Sone Y, Hanazawa T, Fuse M, Kikkawa N, Yoshino H, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Shozu M, Okamoto Y, Seki N. miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget 2011; 2:29-42. [PMID: 21378409 PMCID: PMC3248152 DOI: 10.18632/oncotarget.213] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Based on the microRNA (miRNA) expression signatures of hypopharyngeal and esophageal squamous cell carcinoma, we found that miR-1 was significantly down-regulated in cancer cells. In this study, we investigated the functional significance of miR-1 in head and neck squamous cell carcinoma (HNSCC) cells and identified miR-1-regulated novel cancer pathways. Gain-of-function studies using miR-1 revealed significant decreases in HNSCC cell proliferation, invasion, and migration. In addition, the promotion of cell apoptosis and cell cycle arrest was demonstrated following miR-1 transfection of cancer cells. A search for the targets of miR-1 revealed that transgelin 2 (TAGLN2) was directly regulated by miR-1. Silencing of TAGLN2 significantly inhibited cell proliferation and invasion in HNSCC cells. Down-regulation of miR-1 and up-regulation of TAGLN2 were confirmed in HNSCC clinical specimens. Our data indicate that TAGLN2 may have an oncogenic function and may be regulated by miR-1, a tumor suppressive miRNA in HNSCC. The identification of novel miR-1-regulated cancer pathways could provide new insights into potential molecular mechanisms of HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Nijiro Nohata
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L, Kawakami K, Chiyomaru T, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC). J Hum Genet 2011; 56:595-601. [PMID: 21753766 DOI: 10.1038/jhg.2011.66] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our microRNA (miRNA) expression signatures of hypopharyngeal squamous cell carcinoma, maxillary sinus squamous cell carcinoma and esophageal squamous cell carcinoma revealed that miR-375 was significantly reduced in cancer tissues compared with normal epithelium. In this study, we focused on the functional significance of miR-375 in cancer cells and identification of miR-375-regulated novel cancer networks in head and neck squamous cell carcinoma (HNSCC). Restoration of miR-375 showed significant inhibition of cell proliferation and induction of cell apoptosis in SAS and FaDu cell lines, suggesting that miR-375 functions as a tumor suppressor. We adopted genome-wide gene expression analysis to search for miR-375-regulated molecular targets. Gene expression data and luciferase reporter assays revealed that AEG-1/MTDH was directly regulated by miR-375. Cancer cell proliferation was significantly inhibited in HNSCC cells transfected with si-AEG-1/MTDH. In addition, expression levels of AEG-1/MTDH were significantly upregulated in cancer tissues. Therefore, AEG-1/MTDH may function as an oncogene in HNSCC. The identification of novel tumor suppressive miRNA and its regulated cancer pathways could provide new insights into potential molecular mechanisms of HNSCC oncogenesis.
Collapse
Affiliation(s)
- Nijiro Nohata
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsai YS, Lin CS, Chiang SL, Lee CH, Lee KW, Ko YC. Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci 2011; 123:480-90. [PMID: 21750350 DOI: 10.1093/toxsci/kfr182] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previous investigations have shown that areca nut extracts (ANE) or arecoline (ARE) causes DNA damage, which in turn contributes to oral cell carcinogenesis. To understand the role of microRNA (miRNA) in ANE-associated carcinogenesis, miRNA expression profile was examined in ANE-treated normal human oral fibroblasts. Among the miRNAs changed by ANE exposure, we found that ANE-induced miR-23a overexpression was correlated with an increase of γ-H2AX, a DNA damage marker. In addition, DNA double-strand breaks (DSB) repair that was determined by an in vivo plasmid-based assay was reduced in ANE-treated or miR-23a-overexpressed cells, suggesting the role of miR-23a in DSB repair. FANCG is one of Fanconi anemia susceptibility genes that participate in DSB repair pathway to prevent chromosomal aberrations. FANCG was predicted as a candidate target of miR-23a by TargetScan algorithm. This was confirmed by ectopic overexpression or knockdown of miR-23a. The correlation between miR-23a overexpression and areca nut-chewing habit could also be found in oral cancer patients. Finally, we showed that ANE-induced/ARE-induced miRNAs were significantly associated with the functional categories of "genetic disorders" and "cancer" using network-based analyses. In conclusion, our data showed for the first time that ANE-induced miR-23a was correlated with a reduced FANCG expression and DSB repair, which might contribute to ANE-associated human malignancies.
Collapse
Affiliation(s)
- Yi-Shan Tsai
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, No. 100, Shi-Chuan 1stRoad, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
41
|
Current World Literature. Curr Opin Oncol 2011; 23:303-10. [DOI: 10.1097/cco.0b013e328346cbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Yu CC, Chen YW, Chiou GY, Tsai LL, Huang PI, Chang CY, Tseng LM, Chiou SH, Yen SH, Chou MY, Chu PY, Lo WL. MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol 2011; 47:202-10. [DOI: 10.1016/j.oraloncology.2010.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/07/2010] [Accepted: 12/07/2010] [Indexed: 11/30/2022]
|
43
|
MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. JOURNAL OF ONCOLOGY 2011; 2010:135632. [PMID: 21461395 PMCID: PMC3065009 DOI: 10.1155/2010/135632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/30/2010] [Indexed: 12/12/2022]
Abstract
MicroRNAs have emerged as important regulators of cell proliferation, development, cancer formation, stress responses, cell death, and other physiological conditions in the past decade. On the other hand, head and neck cancer is one of the top ten most common cancers worldwide. Recent advances in microRNAs have revealed their prominent role in regulating gene expression and provided new aspects of applications in diagnosis, prognosis, and therapeutic strategies in head and neck squamous carcinoma. In the present paper, we focus on microRNAs showing significant differences between normal and tumor cells or between cells with differential ability of metastasis. We also emphasize specific microRNAs that could modulate tumor cell properties, such as apoptosis, metastasis, and proliferation. These microRNAs possess the potential to be applied on clinical therapy in the future.
Collapse
|
44
|
Wang WX, Kyprianou N, Wang X, Nelson PT. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res 2010; 70:9137-42. [PMID: 20884628 PMCID: PMC2982932 DOI: 10.1158/0008-5472.can-10-1684] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Granulin (GRN) is a potent mitogen and growth factor implicated in many human cancers, but its regulation is poorly understood. Recent findings indicate that GRN is regulated strongly by the microRNA miR-107, which functionally overlaps with miR-15, miR-16, and miR-195 due to a common 5' sequence critical for target specificity. In this study, we queried whether miR-107 and paralogs regulated GRN in human cancers. In cultured cells, anti-argonaute RNA coimmunoprecipitation with downstream microarray analyses indicates that GRN mRNA is directly targeted by numerous miR-15/107 miRNAs. We further tested this association in human tumors. MiR-15 and miR-16 are known to be downregulated in chronic lymphocytic leukemia (CLL). Using pre-existing microarray datasets, we found that GRN expression is higher in CLL relative to nonneoplastic lymphocytes (P < 0.00001). By contrast, other prospective miR-15/miR-16 targets in the dataset (BCL-2 and cyclin D1) were not upregulated in CLL. Unlike in CLL, GRN was not upregulated in chronic myelogenous leukemia (CML) where miR-107 paralogs are not known to be dysregulated. Prior studies have shown that GRN is also upregulated, and miR-107 downregulated, in prostate carcinoma. Our results indicate that multiple members of the miR-107 gene group indeed repress GRN protein levels when transfected into prostate cancer cells. At least a dozen distinct types of cancer have the pattern of increased GRN and decreased miR-107 expression. These findings indicate for the first time that the mitogen and growth factor GRN is dysregulated via the miR-15/107 gene group in multiple human cancers, which may provide a potential common therapeutic target.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | | | |
Collapse
|