1
|
Long Z, Bing T, Zhang N, Zu S, Sheng J, Zhang X, Liu X, Shangguan D. DNA aptamer targeting zinc transporters ZIP10 and ZIP6 on cancer cells. Talanta 2025; 292:128000. [PMID: 40132409 DOI: 10.1016/j.talanta.2025.128000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Cell-SELEX is an effective method for generating aptamers that specifically bind molecules in their native state on live cells. It not only uncovers novel potential biomarkers but also provides robust molecular recognition tools for a wide spectrum of applications. In this work, we generate a high affinity aptamer, HL15, through Cell-SELEX. A refined sequence HL15a demonstrated a strong binding affinity to target cells, with a minimal dissociation constant (Kd) of just 1.90 ± 0.49 nM. Subsequent truncation and mutation assays revealed that the core sequence of HL15a forms an antiparallel G-quadruplex structure. Furthermore, the target proteins of aptamer HL15a were identified and confirmed to be ZIP10 and ZIP6, both members of the zinc transporter ZIP family with high homology. Using HL15a as a molecular probe, we detected a range of universal binding affinities to the majority of tumor cells in the 48 cell lines evaluated. Furthermore, HL15a was effectively applied to distinguish high malignancy cancer tissues from both normal and low malignancy tissues in the pathological sections of breast and prostate cancers. Given that ZIP10 and ZIP6 play crucial roles in regulating zinc homeostasis and are implicated in numerous diseases, the aptamer HL15a offers a powerful tool for the study and potential therapeutic intervention of these two proteins.
Collapse
Affiliation(s)
- Zhenhao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shuang Zu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jing Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Bio-systems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
2
|
Wu Z, Yao W, Chen J, Chen Y, Li Z, Ding W, He L, Hu P. Droplet digital PCR-based single aptamer selection. Talanta 2025; 292:127924. [PMID: 40088766 DOI: 10.1016/j.talanta.2025.127924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Aptamers are potent alternatives to antibodies in applications including diagnostics and disease treatment. These synthetic molecules are generated from sequences identified through specific targets within an aptamer pool of random sequences, approximately 10^15 in size, via the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process. Nevertheless, SELEX encompasses repetitive, time/money-consuming and stochastic methodologies. In this study, we introduce a method for the direct acquisition of target aptamers in a single step, rapidly identifying the aptamers of interest. Single molecules of aptamers are first encapsulated into droplets and amplified therein, and the fluorescence in the droplets will be active upon binding between the aptamers with the target with good affinity. Subsequent identification and sorting of these fluorescing droplets enable the immediate acquisition of desired aptamers without the need for synthesizing them based on selected sequences. This digital selection process bypasses traditional sequencing, thereby reducing stochastic events and costs associated with repeated sequencing, as well as mitigating the uncertainties tied to the synthesis of aptamers. Our proof-of-concept findings suggest that this straightforward yet effective strategy can directly yield aptamers, thereby enhancing the exploration of aptamer biology and promoting the development of aptamer-based applications.
Collapse
Affiliation(s)
- Zerui Wu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Wanjun Yao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Jinyu Chen
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Yonghao Chen
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China.
| | - Peng Hu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
3
|
Zhang X, Yang Y, Tian Z, Du Z, Zhou W, Fu T, Zheng L, Luo C, Peng R, Tan W. Programmable Loading of a Multivalent LRPPRC Aptamer onto a Rectangular DNA Tile Inhibits the Proliferation of Lung Adenocarcinoma Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23722-23730. [PMID: 40223205 DOI: 10.1021/acsami.5c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Since cancer biomarkers for lung adenocarcinoma can lead to early intervention and treatment, they have been the focus of much research attention. DNA aptamers, which are functional oligonucleotides, exhibit high specificity and binding affinity to different types of cancer biomarkers. Through DNA aptamer screening, a leucine-rich PPR-motif-containing protein (LRPPRC) was discovered as a potential biomarker for lung adenocarcinoma therapeutics. It is an RNA-binding protein that helps in regulating post-transcriptional gene expression in mitochondria. Interestingly, the first LRPPRC-targeted small-molecule drug showed significant antitumor effects. Apart from biomarker discovery, DNA aptamers have also shown promise in cancer therapeutics, but challenges in the programmable delivery of aptamers have limited applications. Herein, we have addressed these challenges in two steps. First, after obtaining purified protein LRPPRC, we verified aptamer R14 as its high-affinity binding ligand. Second, for programmable delivery, a rectangular DNA tile (RDT) was constructed to improve cellular internalization. In particular, DNA handles on the surface of this DNA nanostructure serve as overhangs for loading multivalent R14, and both A549 and PC9 cells treated with R14-RDT targeted to LRPPRC showed significant inhibition of cancer cell proliferation. We then investigated the molecular mechanism(s) underlying the interaction between multivalent aptamer R14 loaded on an RDT and its cognate target protein such that the result is inhibition of cancer cell proliferation. Based on our findings, we hypothesized that R14-RDT-LRPPRC interaction triggers significant gene transcription and RNA processing events that result in inhibiting mitochondria-related genes and RNA transcriptional processing, while causing an immune inflammatory response that ultimately leads to the inhibition of cancer cell proliferation. Therefore, this research offers an instructive paradigm for programmable loading of a multivalent aptamer onto a two-dimensional DNA nanostructure to improve targeted cancer therapeutics through intervening with the cell's transcriptome.
Collapse
Affiliation(s)
- Xinna Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Zhan Tian
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Ziyan Du
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Wei Zhou
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ting Fu
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Linfeng Zheng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Cong Luo
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
4
|
Sun C, Xie F, Zhang H, Feng L, Wang Y, Huang C, Cui Z, Luo C, Zhang L, Wang Q. Paclitaxel/Luteolin Coloaded Dual-Functional Liposomes for Esophageal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411930. [PMID: 40265971 DOI: 10.1002/advs.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Combination therapy integrating chemotherapeutic agents with natural bioactive ingredients represents an attractive strategy for esophageal squamous cell carcinoma (ESCC) treatment, yet achieving tumor-specific co-delivery remains a critical challenge. Herein, we report that the combination of luteolin (LUT) and paclitaxel (PTX) exerts a remarkable synergy in ESCC treatment, while concurrently alleviating PTX-induced hepatotoxicity; EA2 aptamer has been identified for its exceptional specificity and strong affinity toward Catenin Alpha 1 protein (CTNNA1) in ESCC cells. Leveraging this specificity, nanosized EA2-modified pH-sensitive liposomes (EA2-PSL-PTX/LUT) are successfully developed with effective co-loading, controlled release, and good biostability. EA2-PSL-PTX/LUT exhibits stimuli-triggered release in the acidic tumor microenvironment and facilitates specific cellular uptake and endosomal escape in ESCC cells. In vivo imaging confirms precise tumor localization, deep tumor penetration, and prolonged retention of the nanocarrier. In vitro and in vivo findings validate that the nanocarrier potentiates synergistic inhibitions of PTX and LUT. Notably, EA2-PSL-PTX/LUT significantly activates the tumor microenvironment by promoting dendritic cell maturation and T cell infiltration. And the immunosuppressive microenvironment has been remodeled by decreasing myeloid-derived suppressor cells and regulatory T cell accumulation. This study provides a strategy for precise delivery of combinational chemotherapeutic drugs for ESCC targeted therapy.
Collapse
Affiliation(s)
- Congyong Sun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Fei Xie
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, China
| | - Lulu Feng
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Yuting Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Chaofan Huang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Zhizhen Cui
- Department of Acute Infectious Disease Control and Prevention, Huai'an Center for Disease Control and Prevention, Huai'an, Jiangsu, 223003, China
| | - Chao Luo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Li Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Qilong Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| |
Collapse
|
5
|
Gui Y, Hou R, Huang Y, Zhou Y, Liu S, Meng L, Li Y, Sang Lam F, Ding R, Cao Y, Li G, Lu X, Li X. Discovering Cell-Targeting Ligands and Cell-Surface Receptors by Selection of DNA-Encoded Chemical Libraries against Cancer Cells without Predefined Targets. Angew Chem Int Ed Engl 2025; 64:e202421172. [PMID: 39794292 DOI: 10.1002/anie.202421172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Small molecules that can bind to specific cells have broad application in cancer diagnosis and treatment. Screening large chemical libraries against live cells is an effective strategy for discovering cell-targeting ligands. The DNA-encoded chemical library (DEL or DECL) technology has emerged as a robust tool in drug discovery and has been successfully utilized in identifying ligands for biological targets. However, nearly all DEL selections have predefined targets, while target-agnostic DEL selections interrogating the entire cell surface remain underexplored. Herein, we systematically optimized a cell-based DEL selection method against cancer cells without predefined targets. A 104.96-million-member DEL was selected against MDA-MB-231 and MCF-7 breast cancer cells, representing high and low metastatic properties, respectively, which led to the identification of cell-specific small molecules. We further demonstrated cell-targeting applications of these ligands in cancer photodynamic therapy and targeted drug delivery. Finally, leveraging the DNA tag of DEL compounds, we identified α-enolase (ENO1) as the cell surface receptor of one of the ligands targeting the more aggressive MDA-MB-231 cells. Overall, this work offers an efficient approach for discovering cell-targeting small molecule ligands by using DELs and demonstrates that DELs can be a useful tool to identify specific surface receptors on cancer cells.
Collapse
Grants
- 2023A1515010711 Basic and Applied Basic Research Foundation of Guangdong Province
- AoE/P-705/16, 17301118, 17111319, 17303220, 17300321, 17300423, C7005-20G, C7016-22G, C7035-23G, N_HKU702/23, and T12-705-24-R Research Grants Council, University Grants Committee
- SZBL2020090501008 Shenzhen Bay Laboratory
- 91953203, 22377139 National Natural Science Foundation of China
- Major Project Science and Technology Commission of Shanghai Municipality
- Laboratory for Synthetic Chemistry and Chemical Biology Innovation and Technology Commission
Collapse
Affiliation(s)
- Yuhan Gui
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Rui Hou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Yuchen Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhou
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
- Present address: Institute of Translational Medicine & School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China, 211198
| | - Shihao Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ling Meng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ying Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Fong Sang Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| | - Ruoyun Ding
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaoyu Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units, 1503-1511, 15/F., Building 17 W, Hong Kong SAR, China
| |
Collapse
|
6
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025; 25:1047-1080. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Hsu YW, Ma L, Tang Y, Li M, Zhou C, Geng Y, Zhang C, Wang T, Guo W, Li M, Wang Y. The application of aptamers in the repair of bone, nerve, and vascular tissues. J Mater Chem B 2025; 13:1872-1889. [PMID: 39760465 DOI: 10.1039/d4tb02180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair. In comparison to other bioactive agents, aptamers exhibit superior specificity and affinity, are more readily accessible, and can be chemically modified, thereby presenting a promising avenue for the functionalization of tissue engineering materials in tissue repair applications. This review delineates the properties of aptamers and examines the methodologies and advancements related to aptamer-functionalized hydrogels, nanoparticles, and electrospun materials. It categorizes the four primary functions of aptamers in tissue repair, namely regeneration, delivery systems, anti-inflammatory actions, and pro-coagulation effects. Furthermore, the review explores the utilization of aptamer-functionalized tissue engineering materials in the repair of bone, nerve, and vascular tissues, highlighting the mechanisms by which aptamers facilitate tissue growth and repair through regenerative properties and their role in transporting substances that promote repair. Lastly, the review addresses the future prospects and challenges associated with the application of aptamers in tissue repair, offering novel insights and directions for further research and application in this domain.
Collapse
Affiliation(s)
- Yu-Wei Hsu
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China.
| | - Le Ma
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ye Tang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Mengen Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Chengkai Zhou
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yan Geng
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Chenxi Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China.
| | - Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China.
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
8
|
Yang K, Zhao J, Huang Y, Sheng H, Wang Z. Combining array-assisted SERS microfluidic chips and machine learning algorithms for clinical leukemia phenotyping. Talanta 2025; 283:127148. [PMID: 39492140 DOI: 10.1016/j.talanta.2024.127148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The disease progression and treatment options of leukemia between different subtypes vary considerably, emphasizing the importance of phenotyping. However, early typing of leukemia remains challenging due to the lack of highly sensitive and specific analytical tools. Herein, we propose a SERS-based platform for the classification of acute lymphoblastic T-cell leukemia (T-ALL) and chronic myeloid leukemia (CML) through the combination of machine learning and microfluidic chips. The ordered arrays in microfluidic channels reshape the microscopic flow field and contacting interfaces, facilitating the uniform and efficient capture of tumor cells. To enable phenotypic analysis, spectrally orthogonal SERS aptamer nanoprobes were applied, providing composite spectral signatures of individual cells in accordance with surface protein expression. Further, machine learning algorithms were employed to analyze the SERS signatures automatically, resulting in an accuracy of 98.6 % for 73 clinical blood samples. The results demonstrate that this platform holds promising potential for clinical leukemia diagnosis and precision medicine.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jinjin Zhao
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Huang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Hai Sheng
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
9
|
Du Y, Ma C, Zeng Y, Liu Y, Zhao Z, Lyu Y. Reducing Measurement Deviation by Metastable DNA Probes for Aptamer Thermodynamic Characterization. Anal Chem 2025; 97:1870-1878. [PMID: 39801262 DOI: 10.1021/acs.analchem.4c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
DNA reaction equilibrium-based calculations have great potential in thermodynamic characterization, but their widespread applications are hindered by significant measurement deviation of equilibrium concentration. Here, we report the advantages of metastable DNA hybridization in reducing quantification deviation of equilibrium concentration and propose a universal and standardized strategy for measuring aptamer binding energy, termed metastable DNA reference calorimetry (MDRC). We built different MDRC-based algorithms tailored to different aptamer binding models, enabling the calculation of thermodynamic parameters for aptamers with one or more binding sites. Our correlative model, considering the cross-effects between different binding sites, showed that for ATP aptamers with two binding sites, binding of the first ATP molecule would decrease its affinity for the second at low temperatures and even completely inhibit this binding at high temperatures. Moreover, the thermodynamic parameters of protein-specific aptamers were calculated to elucidate the universality of the method. The successful analysis of cell-specific aptamers further demonstrated MDRC's applicability in complex biological systems.
Collapse
Affiliation(s)
- Yulin Du
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| |
Collapse
|
10
|
Yang J, Xu X, Yang L, Tian Y, Wang J, Han D. Dynamic Genomic Imaging and Tracking in Living Cells by a DNA Origami-Based CRISPR‒dCas9 System. SMALL METHODS 2025:e2401559. [PMID: 39828625 DOI: 10.1002/smtd.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated system has displayed promise in visualizing the dynamics of target loci in living cells, which is important for studying genome regulation. However, developing a cell-friendly and rapid transfection method for achieving dynamic and long-term genomic imaging in living cells with high specificity and accuracy is still challenging. Herein, a robust and versatile method is presented that employs a barrel-shaped DNA nanostructure (TUBE) modified with aptamers for loading, protecting, and delivering CRISPR-Cas9 to visualize specific genomic loci in living cells. This approach enables dynamic tracking of target genomic regions (Chr3q29, a repetitive region of chromosome 3) throughout the mitotic process and captures variations in their spatial distribution and quantity accurately. Distinct dynamic behaviors between the Chr3q29 and telomeres are observed, which are linked to their unique chromosomal positions and levels of mobility. High-resolution multicolor labeling of the target genes is achieved, with a high degree of colocalization between the enhanced green fluorescent protein and cyanine-5 channels, facilitating precise imaging of target loci. This method not only supports dynamic genomic imaging but also enables multiplexed tracking, providing a powerful visualization tool for studying cellular processes and genetic interactions in real time within living cells.
Collapse
Affiliation(s)
- Jiao Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuemei Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linlin Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Tian
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junyan Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Da Han
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
11
|
Huang Z, Du Z, Li J, Han D, He J, Yang Y, Wang D, Liang Y, Yang Y, Peng R, Tan W. Aptamer-Based Activatable Tyramide Signal Amplification for Low-Background Detection of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2025; 97:328-336. [PMID: 39699559 DOI: 10.1021/acs.analchem.4c04225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection posed a significant threat to public health and the global economy, in vitro diagnosis of the SARS-CoV-2 nucleocapsid protein proved to be an effective way for SARS-CoV-2 infection control in the past years. Tyramide signal amplification (TSA) has been extensively utilized in tissue imaging and pathological diagnosis owing to the powerful signal enhancement. However, the elevated "ALWAYS ON" fluorescence background limited the accuracy and sensitivity of the conventional TSA assay. To achieve an activated "TURN ON" signal, herein, a small molecule, termed dichlorodihydrofluorescein tyramide (T-DCFH), was synthesized for activatable TSA. Under the catalysis of horseradish peroxidase (HRP) with hydrogen peroxide (H2O2), this T-DCFH facilitates the "TURN ON" fluorescence signal. Additionally, as a recognition tool, DNA aptamer has been used for developing in vitro diagnostic approaches. Hence, based on HRP-labeled aptamers binding with SARS-CoV-2 nucleocapsid protein, we achieved aptamers-based activatable TSA detection with a higher signal-to-noise ratio than that of fluorescent dye (FITC)-labeled aptamers, while showing lower background than traditional fluorescein tyramide with "ALWAYS ON". The results demonstrated that the activated T-DCFH significantly enhances the fluorescence signal while diminishing the background noise. By employing multiple aptamers targeting, we offered a timely and accurate in vitro diagnostic approach for future emergent infectious diseases.
Collapse
Affiliation(s)
- Zhiyong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ziyan Du
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Juan Li
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Da Han
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yunben Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Dan Wang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yu Liang
- Department of Urology Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi 337000, P. R. China
| | - Yunshan Yang
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
12
|
Liu Q, Xing H, Xiong M, Zhang XB. Specifically Editing Cancer Sialoglycans for Enhanced In Vivo Immunotherapy through Aptamer-Enzyme Chimeras. Angew Chem Int Ed Engl 2025; 64:e202414327. [PMID: 39324841 DOI: 10.1002/anie.202414327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated remarkable clinical success in treating cancer. However, their objective response rate remains suboptimal because current therapies rely on limited immune checkpoints that fail to cover the multiple immune evasion pathways of cancer. To explore potential ICB strategies, we propose a glycoimmune checkpoint elimination (glycoICE) therapy based on targeted editing of sialoglycans on the tumor cell surface using an aptamer-enzyme chimera (ApEC). The ApEC can be readily generated via a one-step bioorthogonal procedure, allowing for large-scale and uniform production. It specifically targets and desialylates cancer cells, disrupting the sialoglycan-Siglec axis to activate immune cells and enhance immunotherapy efficacy, while its high tumor selectivity minimizes side effects from indiscriminate desialylation of normal tissues. Furthermore, the ApEC has the potential to be a versatile platform for specific editing of sialoglycans in different tumor models by adjusting the aptamer sequences to target specific protein markers. This research not only introduces a novel molecular tool for the effective editing of sialoglycans in complex environments, but also provides valuable insights for advancing DNA-based drugs towards in vivo and clinical applications.
Collapse
Affiliation(s)
- Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| |
Collapse
|
13
|
Zheng X, Huang Z, Zhang Q, Li G, Song M, Peng R. Aptamer-functionalized nucleic acid nanotechnology for biosensing, bioimaging and cancer therapy. NANOSCALE 2025; 17:687-704. [PMID: 39585179 DOI: 10.1039/d4nr04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Nucleic acids have enabled the fabrication of self-assemblies and dynamic operations. Among different functional nucleic acids, aptamers can specifically bind to a wide range of targets, including proteins, viral antigens, living cells and even tissues, and have thus emerged as molecular recognition tools in molecular medicine. Hence, aptamer-functionalized nucleic acid nanotechnology offers applications of biosensing, bioimaging, and cancer therapy. In this review, after a brief overview of nucleic acid nanotechnology, we focus on the integration of aptamers with nucleic acid nanotechnology, including self-assembly constructions and dynamic molecular manipulations. The emerging applications in molecular medicine are subsequently reviewed with aptamer-based self-assemblies and aptamer-involved dynamic molecular manipulation. For convenience, applications are broadly categorized into biosensing, bioimaging, and cancer therapy. Finally, challenges and potential development of nucleic acid nanotechnology are discussed.
Collapse
Affiliation(s)
- Xiaofang Zheng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, P. R. China
| | - Zhiyong Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, P. R. China
| | - Minghui Song
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
| | - Ruizi Peng
- Zhejiang Cancer Hospital, Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
14
|
Wang Y, Yuan Z, Zhai L, Lv M, Iqbal H, Ur-Rehman U, Ning X, Jin Z, Yi Z, Xiao R. An overview of Sgc8 aptamer as a potential theranostic agent for cancer with PTK7 oncogenic target. Sci Prog 2025; 108:368504251325385. [PMID: 40033943 DOI: 10.1177/00368504251325385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Aptamers have attracted exceptional attention in medical field due to their intrinsic properties equivalent to antibodies such as high target affinity, low immunogenicity and toxicity, cost-effectiveness and ease of synthesis and modification, and good stability under extreme conditions, thereby providing new avenues for basic research and clinical application. Protein tyrosine kinase 7 (PTK7) has been proved to be closely linked with the progression of many types of cancer. The aberrant expression of PTK7 has positioned it as a potential theranostic biomarker for multiple cancers. Aptamer sgc8 was initially identified for its high-affinity binding to PTK7 on the T-cell acute lymphoblastic leukemia cell line (CCRF-CEM) through cell-SELEX (systematic evolution of ligands by exponential enrichment) and subsequently has demonstrated the ability to effectively recognize many types of cancer cells that express PTK7 oncogenic target. The easily modifiable nature of sgc8 facilitates its conjugation with functional agents and drugs. This identification mode and modification approach of aptamers against cancer cells provides a potential strategy for cancer diagnosis and treatment. In this review, we discuss the potential of sgc8 aptamers in early cancer diagnosis and targeted therapy, focusing specifically on their interaction with the oncogenic biomarker PTK7.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Tianjin University, Tianjin University, Tianjin, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ziyin Yuan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lina Zhai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Man Lv
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- School of Life Science, Tianjin University, Tianjin, China
| | - Haroon Iqbal
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Uzair Ur-Rehman
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xin Ning
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Zihui Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Run Xiao
- Medical College of Tianjin University, Tianjin University, Tianjin, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Han Y, Zhang R, Bao H, Yang M, Gao Y, Gao X, Wang R, Tan W, Ji D. Molecular Programming Design of Glyconucleic Acid Aptamer with High Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408168. [PMID: 39630080 PMCID: PMC11775523 DOI: 10.1002/advs.202408168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Indexed: 01/30/2025]
Abstract
Functional nucleic acids (FNAs), possessing specific biological functions beyond their informational roles, have gained widespread attention in disease therapeutics. However, their clinical application is severely limited by their low serum stability in complex physiological environments. In this work, a precise molecular programming strategy is explored to prepare glyconucleic acid aptamers (GNAAs) with high serum stability. Four glyconucleic acid modules compatible with commercial solid-phase synthesis are designed and synthesized. Through precise molecular design, the accurate modification of four different carbohydrate ligands at specific sites of DNA aptamers is achieved. It is demonstrated that glycosylation modification can significantly increase DNA aptamers' serum stability while maintaining their structures and high affinity. The stabilization effect is superior to that of currently commonly used commercial chemical modifications. Moreover, it is confirmed that this approach displays insignificant effects on the DNA aptamers' tumor-targeting ability and metabolism in vivo. This method offers a simple, economical, and efficient strategy for precise glycosylation modification of nucleic acids. This allows to prepare glycosyl functional nucleic acids with high serum stability, which can expand the application scope of functional nucleic acids and promote the practical transformation of functional nucleic acids.
Collapse
Affiliation(s)
- Yongqi Han
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Rongjun Zhang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Hong‐Liang Bao
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Mei Yang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Yuan Gao
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Xiaobo Gao
- Department of Anatomy and PhysiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)The Chinese Academy of SciencesHangzhouZhejiang310022China
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan University ChangshaHunan410082China
| | - Ding‐Kun Ji
- Institute of Molecular Medicine (IMM)Renji HospitalState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200240China
| |
Collapse
|
16
|
Agrawal SS, Baliga V, Londhe VY. Liposomal Formulations: A Recent Update. Pharmaceutics 2024; 17:36. [PMID: 39861685 PMCID: PMC11769406 DOI: 10.3390/pharmaceutics17010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/27/2025] Open
Abstract
Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use. Scientists have developed new liposomal carrier medication release control and encapsulation methods to address these limits. Drug encapsulation can be optimized by creating lipid compositions that match a drug's charge and hydrophobicity. By selecting lipids and adding co-solvents or surfactants, scientists have increased drug loading in liposomal formulations while maintaining stability. Nanotechnology has also created multifunctional liposomes with triggered release and personalized drug delivery. Surface modification methods like PEGylation and ligand conjugation can direct liposomes to disease regions, improving therapeutic efficacy and reducing off-target effects. In addition to drug loading, researchers have focused on spatiotemporal modulation of liposomal carrier medication release. Stimuli-responsive liposomes release drugs in response to bodily signals. Liposomes can be pH- or temperature-sensitive. To improve therapeutic efficacy and reduce systemic toxicity, researchers added stimuli-responsive components to liposomal membranes to precisely control drug release kinetics. Advanced drug delivery technologies like magnetic targeting and ultrasound. Pro Drug, RNA Liposomes approach may improve liposomal medication administration. Magnetic targeting helps liposomes aggregate at illness sites and improves drug delivery, whereas ultrasound-mediated drug release facilitates on-demand release of encapsulated medicines. This review also covers recent preclinical and clinical research showing the therapeutic promise of next-generation liposomal formulations for cancer, infectious diseases, neurological disorders and inflammatory disorders. The transfer of these innovative liposomal formulations from lab to clinical practice involves key difficulties such scalability, manufacturing difficulty, and regulatory limits.
Collapse
Affiliation(s)
- Surendra S. Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (M), Wardha 442001, Maharashtra, India;
| | - Vrinda Baliga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Vaishali Y. Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| |
Collapse
|
17
|
Yang H, Niu H, Zhao C, Zhang S, Sun S, Shi P. A rolling circle amplification-based DNAzyme walker against intracellular degradation for imaging tumor cells' microRNA. Chem Commun (Camb) 2024; 61:294-297. [PMID: 39629542 DOI: 10.1039/d4cc05440g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We present a novel DNA molecular machine (RCA-D-Walker) that integrates a DNAzyme-based molecular beacon with RCA-based vectors for miRNA imaging in tumor cells. It can accurately target tumor cells through the sgc8 aptamer. The target miRNA can restore the DNAzyme's ability to cleave the substrate, which in turn produces an amplified fluorescent signal. The RCA-D-Walker exhibits enhanced tumor cell targeting, improved cell permeability, and greater resistance to nuclease degradation. Utilizing this strategy, we achieved accurate and efficient imaging of miRNA-21 in tumor cells.
Collapse
Affiliation(s)
- Haoqi Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Huimin Niu
- Fujian Key Laboratory of Aptamer Technology, Fuzhou General Clinical Medical School, Fujian Medical University (the 900th Hospital), Fuzhou 350025, P. R. China
| | - Chenxiao Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P. R. China.
| |
Collapse
|
18
|
Peng L, Gu S, Hou M, Hou X. DNA Hydrogels for Cancer Diagnosis and Therapy. Chembiochem 2024; 25:e202400494. [PMID: 39166348 DOI: 10.1002/cbic.202400494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Nucleic acids, because of their precise pairing and simple composition, have emerged as excellent materials for the formation of gels. The application of DNA hydrogels in the diagnosis and therapy of cancer has expanded significantly through research on the properties and functions of nucleic acids. Functional nucleic acids (FNAs) such as aptamers, Small interfering RNA (siRNA), and DNAzymes have been incorporated into DNA hydrogels to enhance their diagnostic and therapeutic capabilities. This review discusses various methods for forming DNA hydrogels, with a focus on pure DNA hydrogels. We then explore the innovative applications of DNA hydrogels in cancer diagnosis and therapy. DNA hydrogels have become essential biomedical materials, and this review provides an overview of current research findings and the status of DNA hydrogels in the diagnosis and therapy of cancer, while also exploring future research directions.
Collapse
Affiliation(s)
- Li Peng
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Shuang Gu
- Oncology, The Affiliated XiangTan Central Hospital of Hunan University, Xiangtan 411199, P. R. China, Changsha 410082, China
| | - Min Hou
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Xiaohua Hou
- Neurology, Ningxiang City Hospital of Traditional Chinese Medicine, Changsha, 410600, P. R. China
| |
Collapse
|
19
|
Guo B, Sun X, Tao S, Tian T, Lei H. Utilizing DNA Logic Device for Precise Detection of Circulating Tumor Cells via High Catalytic Activity Au Nanoparticle Anchoring. Anal Chem 2024; 96:19430-19438. [PMID: 39576332 DOI: 10.1021/acs.analchem.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
As medical advancements turn most cancers into manageable chronic diseases, new challenges arise in cancer recurrence monitoring. Detecting circulating tumor cells (CTCs) is crucial for monitoring cancer recurrence, but the current methods are cumbersome and costly. This study developed a new CTC detection system combining DNA aptamer recognition, hybridization chain reaction (HCR) technology, and DNA logic devices, enabling the one-step recognition of CTCs by identifying multiple membrane proteins. After catalytically active Au nanoparticles were attached through reduction synthesis in situ onto the DNA hybridization strands of the CTCs surface, a 3,3',5,5'-tetramethylbenzidine (TMB) colorimetric reaction was used to detect CTCs concentration via peroxidase-like catalysis. With this CTCs detection reporting system, we achieved an LOD of 4 cells/mL using an ultraviolet-visible (UV-vis) spectrophotometer. At certain concentrations, CTCs could even be detected visually without the need for an instrument. The development of this CTCs detection reporting system provided a convenient, reliable, and cost-effective detection strategy for widespread CTCs-based cancer recurrence monitoring.
Collapse
Affiliation(s)
- Bin Guo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China
| | - Xiaofei Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shan Tao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tian Tian
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haozhi Lei
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
20
|
Lai Z, Jin D, Tian Y, Chen X, Han D, Chen H, Wang J, Yang Y. Enhanced Sensitivity of Cell Identification in Complex Environments Using Chirally Inverted L-DNA-Based Logic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410642. [PMID: 39401418 PMCID: PMC11615743 DOI: 10.1002/advs.202410642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Indexed: 12/06/2024]
Abstract
Accurate identification and isolation of target cells are crucial for precision diagnosis and treatment. DNA aptamer-based logic devices provide a distinct advantage in this context, as they can logically analyze multiple cell surface markers with high efficiency. However, the susceptibility of natural DNA (D-DNA) to degradation can compromise the sensitivity and specificity of these devices, potentially leading to false-positive and false-negative results, particularly in complex biological environments. To address this issue, dual- and triple-aptamer-based cell-surface logic devices are designed and developed using mirror-image L-DNA, a chiral molecule of D-DNA with high biostability. These devices allow for simultaneous analysis of multiple cell surface proteins, achieving greater specificity in cell identification and isolation than D-DNA-based logic devices. The L-DNA probes realized 98.7% and 70.5% sensitivities in FBS buffer with dual- and triple-aptamer-based logic devices for target cell identification, while D-DNA probes only showed 27.9% and 0.1%. It is believed that the high stability of L-DNA and the high efficiency of the devices for labeling cell subpopulations will have broad applications in the life sciences, biomedical engineering, and personalized medicine.
Collapse
Affiliation(s)
- Zixi Lai
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Di Jin
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yuan Tian
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Xiaoxing Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Da Han
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haige Chen
- Institute of Molecular Medicine (IMM) and Department of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Junyan Wang
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Yang
- Shanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200092China
- Central LaboratoryShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- School of Materials Science and EngineeringTongji UniversityShanghai201804China
| |
Collapse
|
21
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
22
|
Ghosh P. Deciphering the Cell Surface Sugar-Coating via Biochemical Pathways. Chemistry 2024; 30:e202401983. [PMID: 39215611 DOI: 10.1002/chem.202401983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cell surface components, specifically glycans, play a significant role in several biological functions like cell structure, crosstalk between cells, and eventual target recognition of the cells for therapeutics. The dense layer of glycans, i. e., glycocalyx, could differ in taxon, species, and cell type. Glycans are coupled with lipids and proteins to form glycolipids, glycoproteins, proteoglycans, and glycosylphosphatidylinositol-anchored proteins, making their study challenging. However, understanding glycosylation at the cellular level is vital for fundamental research and advancing glycan-targeted therapy. Among different pathways, metabolic glycan labelling uses the natural metabolic processes of the cell to introduce abiotic functionality into glycan residues. The Bertozzi group pioneered metabolic oligosaccharide engineering using glycan salvage pathways to convert monosaccharides with unnatural modifications. This eventually results in the probe becoming part of the complex cellular glycan structures via click chemistry using copper. On the other hand, the boronic acid-based probe can recognise carbohydrates in a single step without any chemical modification of the surface. This review discusses the significance of glycans as biomarkers for different diseases and the necessity to evaluate them in situ within the physiological environment. The review also discusses the prospect of this field and its potential applications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
23
|
Tang H, Zhang Y, Wu Y, Fu T, Cui C, Wang Z, Xie S, Wu Q, Tan W. The Emerging Era of Molecular Medicine. ACS NANO 2024; 18:30911-30918. [PMID: 39475564 DOI: 10.1021/acsnano.4c07969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The era of molecular medicine arose as we began to diagnose and treat diseases based on understanding how genes, proteins, and cells work, providing optimal therapeutic care through molecular profiling. Central to molecular medicine is molecular recognition, which is underpinned by techniques involving omics analysis, gene editing, and targeted agents. Recent advancements in these tools not only expand our understanding of biological processes but also aid in the development of diagnostic and treatment modalities at the molecular level, thus bridging the gap between medical research and clinical applications. This perspective traces the development of molecular tools, highlighting, along the way, their pivotal role in advancing molecular medicine for the global health of people.
Collapse
Affiliation(s)
- Heming Tang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Zhang
- Department of Geriatric Endocrinology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanyuan Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zongping Wang
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sitao Xie
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qin Wu
- Department of Urology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
24
|
Li W, Gao T, Pei R. Selection of trophoblast cell surface antigen 2-targeted aptamer for the development of cytotoxic aptamer-drug conjugate. Int J Biol Macromol 2024; 279:135456. [PMID: 39250993 DOI: 10.1016/j.ijbiomac.2024.135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Trophoblast cell surface antigen 2 expressed in several malignant cancers promotes tumor growth and metastasis via several signal transduction pathways. Trop2 is reputed as a prospective biomarker and therapeutic target. Trophoblast cell surface antigen 2-targeted agents, including antibodies, antibody conjugates and therapeutic combinations, could be utilized to fight cancers. To develop an effective drug targeting strategy, we resorted to a new trophoblast cell surface antigen 2-targeted anticancer treatment through aptamer conjugated with chemotherapeutic drug. This study identified trophoblast cell surface antigen 2-specific ssDNA aptamers using engineered trophoblast cell surface antigen 2 overexpression cells for cell-SELEX. The obtained ssDNA aptamer bound to trophoblast cell surface antigen 2 overexpressed cells with nanomolar affinity and was specific for several tumor cell types which express trophoblast cell surface antigen 2 abundantly. Significant cytotoxicity against HT29 cell by the conjugate of trophoblast cell surface antigen 2 aptamer and Emtansine was observed while resulting negligible therapeutic effect on human normal intestinal epithelial cell line HIEC in vitro, indicating that the conjugate shows potential as a promising therapeutic agent. Furthermore, the isolated aptamer demonstrated the ability for the targeted delivery, resulting excellent therapeutic effectiveness of aptamer-drug conjugate for xenograft tumor model of mice with human colorectal cancer.
Collapse
Affiliation(s)
- Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
25
|
Singh SK, Kumar R, Mathur M, Kamboj H, Kaushik JK, Mohanty AK, Kumar S. Exploring aptamers for targeted enrichment of X sperm in bovine: unraveling selective potential. Anim Biotechnol 2024; 35:2323592. [PMID: 38770771 DOI: 10.1080/10495398.2024.2323592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Nucleic acid aptamers have been used in the past for the development of diagnostic methods against a number of targets such as bacteria, pesticides, cancer cells etc. In the present study, six rounds of Cell-SELEX were performed on a ssDNA aptamer library against X-enriched sperm cells from Sahiwal breed cattle. Sequencing was used to examine the aptamer sequences that shown affinity for sperm carrying the X chromosome in order to find any possible X-sperm-specific sequences. Out of 35 identified sequences, 14 were selected based on bioinformatics analysis like G-Score and Mfold structures. Further validation of their specificity was done via fluorescence microscopy. The interaction of biotinylated-aptamer with sperm was also determined by visualizing the binding of streptavidin coated magnetic beads on the head region of the sperm under bright field microscopy. Finally, a real-time experiment was designed for the validation of X-sperm enrichment by synthesized aptamer sequences. Among the studied sequences, aptamer 29a exhibited a higher affinity for X sperm compared to Y sperm in a mixed population of sperm cells. By using aptamer sequence 29a, we obtained an enrichment of 70% for X chromosome bearing sperm cells.
Collapse
Affiliation(s)
| | | | - Manya Mathur
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
| | - Himanshu Kamboj
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - Ashok Kumar Mohanty
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
- Central Institute for Research on Cattle, Meerut, Uttar Pradesh, India
| | - Sudarshan Kumar
- National Dairy Research Institute (ICAR), Karnal, Haryana, India
| |
Collapse
|
26
|
Mottard K, Cokaiko J, Rogister B, Neirinckx V. Therapeutic targeting of the protein tyrosine kinase-7 in cancer: an overview. Oncologist 2024:oyae290. [PMID: 39468753 DOI: 10.1093/oncolo/oyae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
The protein tyrosine kinase-7 (PTK7) is an evolutionarily conserved transmembrane receptor that has emerged as a potential therapeutic target for human tumors. PTK7 is a pseudokinase that is involved in the modulation of the Wnt signaling pathway through interactions with other receptors. These interactions result in targeted gene activation that regulates cell polarity, migration, and proliferation during embryogenesis. Aside of this role during development, PTK7 has been shown as overexpressed in numerous cancers including colon carcinoma, leukemia, neuroblastoma, hepatoma, and ovarian cancer. The activity of PTK7 and the direct correlation with poor prognosis have fostered preclinical investigations and phase I clinical trials, aiming at inhibiting PTK7 and inducing antitumoral effects. In this review, we provide an exhaustive overview of the diverse approaches that use PTK7 as a new molecular target for cancer therapy in different tumor types. We discuss current therapies and future strategies including chimeric antigen receptor-T cells, antibody-drug conjugates, aptamers, based on up-to-date literature and ongoing research progress.
Collapse
Affiliation(s)
- Kim Mottard
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Julie Cokaiko
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Neurology Department, University Hospital, University of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
27
|
Sima Y, Ai L, Wang L, Zhang P, Zhang Q, Wu S, Xie S, Zhao Z, Tan W. A DNA Molecular Logic Circuit for Precise Tumor Identification. NANO LETTERS 2024; 24:12070-12079. [PMID: 39315658 DOI: 10.1021/acs.nanolett.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Tumor-associated antigens (TAAs) are not exclusively expressed in cancer cells, inevitably causing the "on target, off tumor" effect of molecular recognition tools. To achieve precise recognition of cancer cells, by using protein tyrosine kinase 7 (PTK7) as a model TAA, a DNA molecular logic circuit Aisgc8 was rationally developed by arranging H+-binding i-motif, ATP-binding aptamer, and PTK7-targeting aptamer Sgc8c in a DNA sequence. Aisgc8 output the conformation of Sgc8c to recognize PTK7 on cells in a simulated tumor microenvironment characterized by weak acidity and abundant ATP, but not in a simulated physiological environment. Through in vitro and in vivo results, Aisgc8 demonstrated its ability to precisely recognize cancer cells and, as a result, displayed excellent performance in tumor imaging. Thus, our studies produced a simple and efficient strategy to construct DNA logic circuits, opening new possibilities to develop convenient and intelligent precision diagnostics by using DNA logic circuits.
Collapse
Affiliation(s)
- Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
28
|
Wu X, Liu Y, Zhang D, Yu J, Zhang M, Feng S, Zhang L, Fu T, Tan Y, Bing T, Tan W. Efficient Strategy to Discover DNA Aptamers Against Low Abundance Cell Surface Proteins in Scarce Samples. J Am Chem Soc 2024; 146:26667-26675. [PMID: 39297443 DOI: 10.1021/jacs.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Molecular recognition probes targeting cell surface proteins such as aptamers play crucial roles in precise diagnostics and therapy. However, the selection of aptamers against low-abundance proteins in situ on the cell surface, especially in scarce samples, remains an unmet challenge. In this study, we present a single-round, single-cell aptamer selection method by employing a digital DNA sequencing strategy, termed DiDS selection, to address this dilemma. This approach incorporates a molecular identification card for each DNA template, thereby mitigating biases introduced by multiple PCR amplifications and ensuring the accurate identification of aptamer candidates. Through DiDS selection, we successfully obtained a series of high-quality aptamers against cell lines, clinical specimens, and neurons. Subsequent analyses for target identification revealed that aptamers derived from DiDS selection exhibit recognition capabilities for proteins with varying abundance levels. In contrast, multiple rounds of selection resulted in the enrichment of only one aptamer targeting a high-abundance target. Moreover, the comprehensive profiling of cell surfaces at the single-cell level, utilizing an enriched aptamer pool, revealed unique molecular patterns for each cell line. This streamlined approach holds promise for the rapid generation of specific recognition molecules targeting cell surface proteins across a broad range of expression levels and expands its applications in cell profiling, specific probe identification, biomarker discovery, etc.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuqing Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dengwei Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingjing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Mingxin Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Shuwei Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lifei Zhang
- Zhejiang Cancer Hospital, the Hematology Department, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yamin Tan
- Zhejiang Cancer Hospital, the Hematology Department, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tao Bing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Diao N, Hou J, Peng X, Wang Y, He A, Gao H, Yang L, Guo P, Wang J, Han D. Multiplexed and Quantitative Imaging of Live-Cell Membrane Proteins by a Precise and Controllable DNA-Encoded Amplification Reaction. Angew Chem Int Ed Engl 2024; 63:e202406330. [PMID: 38979704 DOI: 10.1002/anie.202406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Amplifying DNA conjugated affinity ligands can improve the sensitivity and multiplicity of cell imaging and play a crucial role in comprehensively deciphering cellular heterogeneity and dynamic changes during development and disease. However, the development of one-step, controllable, and quantitative DNA amplification methods for multiplexed imaging of live-cell membrane proteins is challenging. Here, we introduce the template adhesion reaction (TAR) method for assembling amplifiable DNA sequences with different affinity ligands, such as aptamers or antibodies, for amplified and multiplexed imaging of live-cell membrane proteins with high quantitative fidelity. The precisely controllable TAR enables proportional amplification of membrane protein targets with variable abundances by modulating the concentration ratios of hairpin templates and primers, thus allowing sensitive visualization of multiple membrane proteins with enhanced signal-to-noise ratios (SNRs) without disturbing their original ratios. Using TAR, we achieved signal-enhanced imaging of six proteins on the same live-cell within 1-2 h. TAR represents an innovative and programmable molecular toolkit for multiplexed profiling of membrane proteins in live-cells.
Collapse
Affiliation(s)
- Nannan Diao
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jianing Hou
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyu Peng
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Yaru Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Axin He
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haiyan Gao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Linlin Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
30
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
31
|
Wang Z, Liu Z, Zhang W, Li Y, Feng Y, Lv S, Diao H, Luo Z, Yan P, He M, Li X. AptaDiff: de novo design and optimization of aptamers based on diffusion models. Brief Bioinform 2024; 25:bbae517. [PMID: 39431516 PMCID: PMC11491854 DOI: 10.1093/bib/bbae517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Aptamers are single-stranded nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using $in vitro$ methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff's superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, surface plasmon resonance experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of $87.9\%$ and $60.2\%$ in RU values, along with a 3.6-fold and 2.4-fold decrease in KD values for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers.
Collapse
Affiliation(s)
- Zhen Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Ziqi Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 Zhejiang, China
| | - Wei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
| | - Yanjun Li
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL 32610, United States
| | - Yizhen Feng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang, China
| | - Shaokang Lv
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- Department of Chemical Biology, Zhejiang University of Technology, Huzhou, 313200 Zhejiang, China
| | - Han Diao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- Department of Chemical Biology, Zhejiang University of Technology, Huzhou, 313200 Zhejiang, China
| | - Zhaofeng Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
| | - Pengju Yan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- ElasticMind Inc, Hangzhou, 310018 Zhejiang, China
| | - Min He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xiaolin Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018 Zhejiang, China
- ElasticMind Inc, Hangzhou, 310018 Zhejiang, China
| |
Collapse
|
32
|
Nemčeková K, Korčeková J, Svitková V, Baraniak D, Domšicová M, Melníková E, Hornychová M, Szebellaiová V, Gál M, Poturnayová A. Comparative Analysis of QCM and Electrochemical Aptasensors for SARS-CoV-2 Detection. BIOSENSORS 2024; 14:431. [PMID: 39329806 PMCID: PMC11429642 DOI: 10.3390/bios14090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The rapid and accurate detection of SARS-CoV-2, particularly its spike receptor-binding domain (S-RBD), was crucial for managing the COVID-19 pandemic. This study presents the development and optimization of two types of aptasensors: quartz crystal microbalance (QCM) and electrochemical sensors, both employing thiol-modified DNA aptamers for S-RBD detection. The QCM aptasensor demonstrated exceptional sensitivity, achieved by optimizing aptamer concentration, buffer composition, and pre-treatment conditions, with a limit of detection (LOD) of 0.07 pg/mL and a linear range from 1 pg/mL to 0.1 µg/mL, and a significant frequency change was observed upon target binding. The electrochemical aptasensor, designed for rapid and efficient preparation, utilized a one-step modification process that reduced the preparation time to 2 h while maintaining high sensitivity and specificity. Electrochemical impedance spectroscopy (EIS) enabled the detection of S-RBD concentrations as low as 132 ng/mL. Both sensors exhibited high specificity, with negligible non-specific interactions observed in the presence of competing proteins. Additionally, the QCM aptasensor's functionality and stability were verified in biological fluids, indicating its potential for real-world applications. This study highlights the comparative advantages of QCM and electrochemical aptasensors in terms of preparation time, sensitivity, and specificity, offering valuable insights for the development of rapid, sensitive, and specific diagnostic tools for the detection of SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Katarína Nemčeková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Jana Korčeková
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.K.); (M.D.)
| | - Veronika Svitková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Denis Baraniak
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia;
| | - Michaela Domšicová
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.K.); (M.D.)
| | - Eva Melníková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
| | - Michaela Hornychová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
| | - Viktória Szebellaiová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia; (K.N.); (V.S.); (E.M.); (V.S.)
| | - Alexandra Poturnayová
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia; (J.K.); (M.D.)
| |
Collapse
|
33
|
Qiu F, Xie D, Chen H, Wang Z, Huang J, Cao C, Liang Y, Yang X, He DY, Fu X, Lu A, Liang C. Generation of cytotoxic aptamers specifically targeting fibroblast-like synoviocytes by CSCT-SELEX for treatment of rheumatoid arthritis. Ann Rheum Dis 2024:ard-2024-225565. [PMID: 39237134 DOI: 10.1136/ard-2024-225565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is an autoimmune disease characterised by aggressive fibroblast-like synoviocytes (FLSs). Very few RA patients-derived FLSs (RA-FLSs)-specific surface signatures have been identified, and there is currently no approved targeted therapy for RA-FLSs. This study aimed to screen therapeutic aptamers with cell-targeting and cytotoxic properties against RA-FLSs and to uncover the molecular targets and mechanism of action of the screened aptamers. METHODS We developed a cell-specific and cytotoxic systematic evolution of ligands by exponential enrichment (CSCT-SELEX) method to screen the therapeutic aptamers without prior knowledge of the surface signatures of RA-FLSs. The molecular targets and mechanisms of action of the screened aptamers were determined by pull-down assays and RNA sequencing. The therapeutic efficacy of the screened aptamers was examined in arthritic mouse models. RESULTS We obtained an aptamer SAPT8 that selectively recognised and killed RA-FLSs. The molecular target of SAPT8 was nucleolin (NCL), a shuttling protein overexpressed on the surface and involved in the tumor-like transformation of RA-FLSs. Mechanistically, SAPT8 interacted with the surface NCL and was internalised to achieve lysosomal degradation of NCL, leading to the upregulation of proapoptotic p53 and downregulation of antiapoptotic B-cell lymphoma 2 (Bcl-2) in RA-FLSs. When administrated systemically to arthritic mice, SAPT8 accumulated in the inflamed FLSs of joints. SAPT8 monotherapy or its combination with tumour necrosis factor (TNF)-targeted biologics was shown to relieve arthritis in mouse models. CONCLUSIONS CSCT-SELEX could be a promising strategy for developing cell-targeting and cytotoxic aptamers. SAPT8 aptamer selectively ablates RA-FLSs via modulating NCL-p53/Bcl-2 signalling, representing a potential alternative or complementary therapy for RA.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Xu Yang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong-Yi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
34
|
Domsicova M, Kurekova S, Babelova A, Jakic K, Oravcova I, Nemethova V, Razga F, Breier A, Gal M, Poturnayova A. Advancements in Chronic Myeloid Leukemia detection: Development and evaluation of a novel QCM aptasensor for use in clinical practice. Biochem Biophys Rep 2024; 39:101816. [PMID: 39263318 PMCID: PMC11387267 DOI: 10.1016/j.bbrep.2024.101816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Oncological diseases represent a significant global health challenge, with high mortality rates. Early detection is crucial for effective treatment, and aptamers, which demonstrate superior specificity and stability compared to antibodies, offer a promising avenue for diagnostic advancement. This study presents the design, development and evaluation of a quartz crystal microbalance (QCM) sensor functionalized with the T2-KK1B10 aptamer for the sensitive and specific detection of Chronic Myeloid Leukemia (CML) K562 cells. The research focuses on optimizing the biorecognition layer by adjusting the aptamer conditions, demonstrating the sensor's ability to detect these CML cells with high specificity and sensitivity. The aptamer-modified QCM sensor operates on the principle of mass change detection upon binding of target cells. By employing the Langmuir isotherm model, the performance of the sensor was optimized for the capture of CML cells from biological samples with LOD of 263 K562 cells. The sensor was also successfully regenerated multiple times without sensitivity loss. Validation of the sensor's performance was conducted under controlled laboratory settings, followed by extensive testing utilizing human lyophilized plasma and clinical samples from patients. The sensor exhibited high sensitivity and specificity in the detection of CML cells within clinical specimens, thereby illustrating its potential for practical clinical deployment. This research presents a novel approach to the early diagnosis of CML, facilitating timely intervention and enhanced patient outcomes. The developed aptasensor demonstrates potential for broader application in cancer diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Simona Kurekova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Hněvotínska 3, 775 15, Olomouc, Czech Republic
| | - Andrea Babelova
- Biomedical Research Center, Department of Nanobiology, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Biomedical Research Center, Department of Nanobiology, Cancer Research Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Iveta Oravcova
- National Cancer Institute, Department of Oncohematology, Klenová 1, 833 10, Bratislava, Slovakia
| | - Veronika Nemethova
- Faculty of Medicine Comenius University in Bratislava, Špitálska 24, 813 72, Bratislava, Slovakia
- Selecta Biotech SE, Istrijská 6094/20, 841 07, Bratislava, Slovakia
| | - Filip Razga
- Faculty of Medicine Comenius University in Bratislava, Špitálska 24, 813 72, Bratislava, Slovakia
- Selecta Biotech SE, Istrijská 6094/20, 841 07, Bratislava, Slovakia
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| | - Miroslav Gal
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| |
Collapse
|
35
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
36
|
Zhou P, Zhang S, Li L, Zhang R, Guo G, Zhang Y, Wang R, Liu M, Wang Z, Zhao H, Yang G, Xie S, Ran J. Targeted degradation of VEGF with bispecific aptamer-based LYTACs ameliorates pathological retinal angiogenesis. Theranostics 2024; 14:4983-5000. [PMID: 39267779 PMCID: PMC11388081 DOI: 10.7150/thno.98467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Neovascular ocular diseases (NODs) represent the leading cause of visual impairment globally. Despite significant advances in anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF), persistent challenges remain prevalent. As a proof-of-concept study, we herein demonstrate the effectiveness of targeted degradation of VEGF with bispecific aptamer-based lysosome-targeting chimeras (referred to as VED-LYTACs). Methods: VED-LYTACs were constructed with three distinct modules: a mannose-6-phosphate receptor (M6PR)-binding motif containing an M6PR aptamer, a VEGF-binding module with an aptamer targeting VEGF, and a linker essential for bridging and stabilizing the two-aptamer structure. The degradation efficiency of VED-LYTACs via the autophagy-lysosome system was examined using an enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining. Subsequently, the anti-angiogenic effects of VED-LYTACs were evaluated using in vitro wound healing assay, tube formation assay, three-dimensional sprouting assay, and ex vivo aortic ring sprouting assay. Finally, the potential therapeutic effects of VED-LYTACs on pathological retinal neovascularization and vascular leakage were tested by employing mouse models of NODs. Results: The engineered VED-LYTACs promote the interaction between M6PR and VEGF, consequently facilitating the translocation and degradation of VEGF through the lysosome. Our data show that treatment with VED-LYTACs significantly suppresses VEGF-induced angiogenic activities both in vitro and ex vivo. In addition, intravitreal injection of VED-LYTACs remarkably ameliorates abnormal vascular proliferation and leakage in mouse models of NODs. Conclusion: Our findings present a novel strategy for targeting VEGF degradation with an aptamer-based LYTAC system, effectively ameliorating pathological retinal angiogenesis. These results suggest that VED-LYTACs have potential as therapeutic agents for managing NODs.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Sai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Renshuai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guizhi Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yufei Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Runa Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miaoyuan Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhiyi Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
37
|
Didarian R, Ozbek HK, Ozalp VC, Erel O, Yildirim-Tirgil N. Enhanced SELEX Platforms for Aptamer Selection with Improved Characteristics: A Review. Mol Biotechnol 2024:10.1007/s12033-024-01256-w. [PMID: 39152308 DOI: 10.1007/s12033-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Abstract
This review delves into the advancements in molecular recognition through enhanced SELEX (Systematic Evolution of Ligands by Exponential Enrichment) platforms and post-aptamer modifications. Aptamers, with their superior specificity and affinity compared to antibodies, are central to this discussion. Despite the advantages of the SELEX process-encompassing stages like ssDNA library preparation, incubation, separation, and PCR amplification-it faces challenges, such as nuclease susceptibility. To address these issues and propel aptamer technology forward, we examine next-generation SELEX platforms, including microfluidic-based SELEX, capillary electrophoresis SELEX, cell-based aptamer selection, counter-SELEX, in vivo SELEX, and high-throughput sequencing SELEX, highlighting their respective merits and innovations. Furthermore, this article underscores the significance of post-aptamer modifications, particularly chemical strategies that enhance aptamer stability, reduce renal filtration, and expand their target range, thereby broadening their utility in diagnostics, therapeutics, and nanotechnology. By synthesizing these advanced SELEX platforms and modifications, this review illuminates the dynamic progress in aptamer research and outlines the ongoing efforts to surmount existing challenges and enhance their clinical applicability, charting a path for future breakthroughs in this evolving field.
Collapse
Affiliation(s)
- Reza Didarian
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye
| | - Hatice K Ozbek
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Veli C Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, 06830, Türkiye
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Nimet Yildirim-Tirgil
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye.
| |
Collapse
|
38
|
Wu S, Shang Y, Yan Y, Zhou A, Bing T, Zhao Z, Tan W. Aptamer-Based Enforced Phosphatase-Recruiting Chimeras Inhibit Receptor Tyrosine Kinase Signal Transduction. J Am Chem Soc 2024; 146:22445-22454. [PMID: 39087949 DOI: 10.1021/jacs.4c05665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Aberrant phosphorylation of receptor tyrosine kinases (RTKs) is usually involved in tumor initiation, progression, and metastasis. However, developing specific and efficient molecular tools to regulate RTK phosphorylation remains a considerable challenge. In this study, we reported novel aptamer-based chimeras to inhibit the phosphorylation of RTKs, such as c-Met and EGFR, by enforced recruitment of a protein tyrosine phosphatase receptor type F (PTPRF). Our studies revealed that aptamer-based chimeras displayed a generic and potent inhibitory effect on RTK phosphorylation induced by growth factor or auto-dimerization in different cell lines and modulated cell biological behaviors by recruiting PTPRF. Furthermore, based on angstrom accuracy of the DNA duplex, the maximum catalytic radius of PTPRF was determined as ∼25.84 nm, providing a basis for the development of phosphatase-recruiting strategies. Taken together, our study provides a generic methodology not only for selectively mediating RTK phosphorylation and cellular biological processes but also for developing novel therapeutic drugs.
Collapse
Affiliation(s)
- Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yanxue Shang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuping Yan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Aili Zhou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Tao Bing
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
39
|
Wong KY, Wong MS, Liu J. Aptamer-functionalized liposomes for drug delivery. Biomed J 2024; 47:100685. [PMID: 38081386 PMCID: PMC11340590 DOI: 10.1016/j.bj.2023.100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 12/05/2023] [Indexed: 07/26/2024] Open
Abstract
Among the various targeting ligands for drug delivery, aptamers have attracted much interest in recent years because of their smaller size compared to antibodies, ease of modification, and better batch-to-batch consistency. In addition, aptamers can be selected to target both known and even unknown cell surface biomarkers. For drug loading, liposomes are the most successful vehicle and many FDA-approved formulations are based on liposomes. In this paper, aptamer-functionalized liposomes for targeted drug delivery are reviewed. We begin with the description of related aptamers selection, followed by methods to conjugate aptamers to liposomes and the fate of such conjugates in vivo. Then a few examples of applications are reviewed. In addition to intravenous injection for systemic delivery and hoping to achieve accumulation at target sites, for certain applications, it is also possible to have aptamer/liposome conjugates applied directly at the target tissue such as intratumor injection and dropping on the surface of the eye by adhering to the cornea. While previous reviews have focused on cancer therapy, the current review mainly covers other applications in the last four years. Finally, this article discusses potential issues of aptamer targeting and some future research opportunities.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| |
Collapse
|
40
|
Cai D, Chen GL, Wang T, Zhang KH. Trends and frontiers in signal amplification for aptamer-based tumor detection: A bibliometric analysis. World J Clin Cases 2024; 12:4726-4741. [PMID: 39070802 PMCID: PMC11235479 DOI: 10.12998/wjcc.v12.i21.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Malignant tumors are one of the leading causes of death worldwide, imposing a substantial economic and social burden. Early detection is the key to improving cure rates and reducing mortality rates, which requires the development of sensitive early detection technologies. Signal amplification techniques play a crucial role in aptamer-based early detection of tumors and are increasingly garnering attention from researchers. AIM To investigate the current research status, developmental trajectories, and hotspots in signal amplification for aptamer-based tumor detection through bibliometric analysis. METHODS English publications pertaining to signal amplification in aptamer-based tumor detection were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace software were employed to analyze various information within this field, including countries, institutions, authors, co-cited authors, journals, co-cited journals, cited references, and keywords. RESULTS A total of 757 publications were included in this study. China accounted for 85.47% of all publications, with Nanjing University (China) emerging as the institution with the highest publication output. The most influential authors and journals were Hasanzadeh M. from Iran and "Biosensors and Bioelectronics", respectively. Exosomes and carcinoembryonic antigen (CEA) stood out as the most researched tumor-related molecules. Currently, the predominant signal amplification technique, nanomaterial, and signal transduction method were identified as hybridization chain reactions, gold nanoparticles, and electrochemical methods, respectively. Over the past 3 years, exosomes, CEA, electrochemical biosensors, and nanosheets have emerged as research hotspots, exhibiting a robust burst of intensity. CONCLUSION This study is the first bibliometric analysis of literature on signal amplification in aptamer-based tumor detection and elucidates the current status, hotspots, and prospective research directions within this realm. Additionally, it provides an important reference for researchers.
Collapse
Affiliation(s)
- Dan Cai
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, Jiangxi Province, China
| | - Gui-Lin Chen
- Department of Anorectal Surgery, The 908th Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Nanchang 330000, Jiangxi Province, China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, Jiangxi Province, China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
41
|
Zhang T, Yin K, Niu X, Bai X, Wang Z, Ji M, Yuan B. Development of Bivalent Aptamer-DNA Carrier-Doxorubicin Conjugates for Targeted Killing of Esophageal Squamous Cell Carcinoma Cells. Int J Mol Sci 2024; 25:7959. [PMID: 39063201 PMCID: PMC11276760 DOI: 10.3390/ijms25147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Esophageal cancer ranks the seventh in cancer incidence and the sixth in cancer death. Esophageal squamous cell carcinoma (ESCC) accounts for approximately 90% of the total cases of esophageal cancer. Chemotherapy is the most effective drug-based method for treatment of esophageal cancer. However, severe side effects of traditional chemotherapy limit its treatment efficacy. Targeted chemotherapy can deliver chemotherapeutic drugs to cancer cells and specifically kill these cells with reduced side effects. In the work, the bivalent aptamer-DNA carrier (BAD) was designed by using an ESCC cell-specific aptamer as the recognition molecule and a GC base-rich DNA sequence as the drug carrier. With doxorubicin (Dox) as chemotherapeutic drugs, the bivalent aptamer-DNA-Dox conjugate (BADD) was constructed for targeted killing of ESCC cells. Firstly, the truncated A2(35) aptamer with a retained binding ability was obtained through optimization of an intact A2(80) aptamer and was used to fuse with DNA carrier sequences for constructing the BAD through simple DNA hybridization. The results of gel electrophoresis and flow cytometry analysis showed that the BAD was successfully constructed and had a stronger binding affinity than monovalent A2(35). Then, the BAD was loaded with Dox drugs to construct the BADD through noncovalent intercalation. The results of fluorescence spectra and flow cytometry assays showed that the BADD was successfully constructed and can bind to target cells strongly. Confocal imaging further displayed that the BADD can be specifically internalized into target cells and release Dox. The results of CCK-8 assays, Calcein AM/PI staining, and wound healing assays demonstrated that the BADD can specifically kill target cells, but not control cells. Our results demonstrate that the developed BADD can specifically deliver doxorubicin to target ESCC cells and selectively kill these cells, offering a potentially effective strategy for targeted chemotherapy of ESCC.
Collapse
Affiliation(s)
- Tianlu Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Kai Yin
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xidong Niu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Xue Bai
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Zhaoting Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Mengmeng Ji
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
| | - Baoyin Yuan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (K.Y.); (X.N.); (X.B.); (Z.W.); (M.J.)
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
42
|
He A, Wan L, Zhang Y, Yan Z, Guo P, Han D, Tan W. Structure-based investigation of a DNA aptamer targeting PTK7 reveals an intricate 3D fold guiding functional optimization. Proc Natl Acad Sci U S A 2024; 121:e2404060121. [PMID: 38985770 PMCID: PMC11260122 DOI: 10.1073/pnas.2404060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
DNA aptamers have emerged as novel molecular tools in disease theranostics owing to their high binding affinity and specificity for protein targets, which rely on their ability to fold into distinctive three-dimensional (3D) structures. However, delicate atomic interactions that shape the 3D structures are often ignored when designing and modeling aptamers, leading to inefficient functional optimization. Challenges persist in determining high-resolution aptamer-protein complex structures. Moreover, the experimentally determined 3D structures of DNA molecules with exquisite functions remain scarce. These factors impede our comprehension and optimization of some important DNA aptamers. Here, we performed a streamlined solution NMR-based structural investigation on the 41-nt sgc8c, a prominent DNA aptamer used to target membrane protein tyrosine kinase 7, for cancer theranostics. We show that sgc8c prefolds into an intricate three-way junction (3WJ) structure stabilized by long-range tertiary interactions and extensive base-base stackings. Delineated by NMR chemical shift perturbations, site-directed mutagenesis, and 3D structural information, we identified essential nucleotides constituting the key functional elements of sgc8c that are centralized at the core of 3WJ. Leveraging the well-established structure-function relationship, we efficiently engineered two sgc8c variants by modifying the apical loop and introducing L-DNA base pairs to simultaneously enhance thermostability, biostability, and binding affinity for both protein and cell targets, a feat not previously attained despite extensive efforts. This work showcases a simplified NMR-based approach to comprehend and optimize sgc8c without acquiring the complex structure, and offers principles for the sophisticated structure-function organization of DNA molecules.
Collapse
Affiliation(s)
- Axin He
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Liqi Wan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Yuchao Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Zhenzhen Yan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang310022, China
| |
Collapse
|
43
|
Chen J, He J, Bing T, Feng Y, Lyu Y, Lei M, Tan W. Identification of the Binding Site between Aptamer sgc8c and PTK7. Anal Chem 2024; 96:10601-10611. [PMID: 38889444 DOI: 10.1021/acs.analchem.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Aptamers are single-stranded RNA or DNA molecules that can specifically bind to targets and have found broad applications in cancer early-stage detection, accurate drug delivery, and precise treatment. Although various aptamer screening methods have been developed over the past several decades, the accurate binding site between the target and the aptamer cannot be characterized during a typical aptamer screening process. In this research, we chose a widely used aptamer screened by our group, sgc8c, and its target protein tyrosine kinase 7 (PTK7) as the model aptamer and target and tried to determine the binding site between aptamer sgc8c and PTK7. Through sequential protein truncation, we confirmed that the exact binding site of sgc8c was within the region of Ig 3 to Ig 4 in the extracellular domain of PTK7. Using in vitro expressed Ig (3-4), we successfully acquired the crystal of an sgc8c-Ig (3-4) binding complex. The possible sgc8c-binding amino acid residues on PTK7 and PTK7-binding nucleotide residues on sgc8c were further identified and simulated by mass spectrometry and molecular dynamics simulation and finally verified by aptamer/protein truncation and mutation.
Collapse
Affiliation(s)
- Jianghuai Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Tao Bing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yawei Feng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| | - Ming Lei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
44
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
45
|
Li C, Wang M, Li PF, Sheng J, Fu Q. Construction of Smart DNA-Based Drug Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306257. [PMID: 38377302 DOI: 10.1002/smll.202306257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Junyue Sheng
- Qingdao No.58 High School of Shandong Province, 20 Jiushui Road, Qingdao, 266100, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
46
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
47
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
48
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
49
|
Mili M, Bachu V, Kuri PR, Singh NK, Goswami P. Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophys Chem 2024; 309:107218. [PMID: 38547671 DOI: 10.1016/j.bpc.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/17/2024] [Indexed: 04/22/2024]
Abstract
Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.
Collapse
Affiliation(s)
- Malaya Mili
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | - Pooja Rani Kuri
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India
| | | | - Pranab Goswami
- Department of Biosciences and Bioengineering, IIT Guwahati, 781039, Assam, India.
| |
Collapse
|
50
|
Zhou H, Li Y, Wu W. Aptamers: Promising Reagents in Biomedicine Application. Adv Biol (Weinh) 2024; 8:e2300584. [PMID: 38488739 DOI: 10.1002/adbi.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Indexed: 06/16/2024]
Abstract
Nucleic acid aptamers, often termed "chemical antibodies," are short, single-stranded DNA or RNA molecules, which are selected by SELEX. In addition to their high specificity and affinity comparable to traditional antibodies, aptamers have numerous unique advantages such as wider identification of targets, none or low batch-to-batch variations, versatile chemical modifications, rapid mass production, and lack of immunogenicity. These characteristics make aptamers a promising recognition probe for scientific research or even clinical application. Aptamer-functionalized nanomaterials are now emerged as a promising drug delivery system for various diseases with decreased side-effects and improved efficacy. In this review, the technological strategies for generating high-affinity and biostable aptamers are introduced. Moreover, the development of aptamers for their application in biomedicine including aptamer-based biosensors, aptamer-drug conjugates and aptamer functionalized nanomaterials is comprehensively summarized.
Collapse
Affiliation(s)
- Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, P. R. China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|