1
|
Wang SY, Zhou SW, Gao J, Wang L. Primary vitreoretinal lymphoma: diagnosis, treatment, and prognosis-a review of current knowledge and future directions. BLOOD SCIENCE 2025; 7:e00233. [PMID: 40322320 PMCID: PMC12047895 DOI: 10.1097/bs9.0000000000000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
Primary vitreoretinal lymphoma (PVRL), a rare subtype of primary central nervous system lymphoma (PCNSL), can lead to permanent vision loss and central nervous system (CNS) involvement, resulting in a poor prognosis. PVRL often masquerades as uveitis, and its partial response to topical corticosteroids further complicates the diagnosis. The gold standard for diagnosis is cytological analysis; however, owing to its low sensitivity, cytokine profiling and genetic testing may serve as supplementary diagnostic tools. There is no universally accepted consensus regarding PVRL treatment protocols. Combined systemic high-dose intravenous methotrexate (MTX) and intravitreal therapy may help manage bilateral ocular lesions, although this combination's ability to delay CNS relapse remains controversial. For relapsed or refractory (R/R) PVRL patients aged <60 years, intensive consolidation chemotherapy followed by autologous stem cell transplantation may be considered. Novel targeted therapies such as ibrutinib and lenalidomide have demonstrated efficacy in R/R cases. Large-scale multicenter prospective studies are urgently needed to determine optimal treatment strategies.
Collapse
Affiliation(s)
- Si-Yu Wang
- Capital Medical University, Beijing, China
| | - Suo-Wang Zhou
- Aier Eye Hospital, Jinan University, Guangzhou 510071, China
| | - Jing Gao
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Darragh A, Hanna AM, Lipner JH, King AJ, Servant NB, Jahic M. Comprehensive Characterization of Bruton's Tyrosine Kinase Inhibitor Specificity, Potency, and Biological Effects: Insights into Covalent and Noncovalent Mechanistic Signatures. ACS Pharmacol Transl Sci 2025; 8:917-931. [PMID: 40242575 PMCID: PMC11997881 DOI: 10.1021/acsptsci.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 04/18/2025]
Abstract
Uncovering a drug's mechanism of action and possible adverse effects are critical components in drug discovery and development. Moreover, it provides evidence for why some drugs prove more effective than others and how to design better drugs altogether. Here, we demonstrate the utility of a high-throughput in vitro screening platform along with a comprehensive panel to aid in the characterization of 15 Bruton's tyrosine kinase (BTK) inhibitors that are either approved by the FDA or presently under clinical evaluation. To compare the potency of these drugs, we measured the binding affinity of each to wild-type BTK as well as a clinically relevant resistance mutant of BTK (BTK C481S). In doing so, we discovered a considerable difference in the selectivity and potency of these BTK inhibitors to the wild-type and mutant proteins. Some of this potentially contributes to the adverse effects experienced by patients undergoing therapy using these drugs. Overall, noncovalent BTK inhibitors showed stronger potency for both the wild-type and mutant BTK when compared with that of covalent inhibitors, with the majority demonstrating a higher specificity and less off-target modulation. Additionally, we compared biological outcomes for four of these inhibitors in human cell-based models. As expected, we found different phenotypic profiles for each inhibitor. However, the two noncovalent inhibitors had fewer off-target biological effects when compared with the two covalent inhibitors. This and similar in-depth preclinical characterization of drug candidates can provide critical insights into the efficacy and mechanism of action of a compound that may affect its safety in a clinical setting.
Collapse
Affiliation(s)
- Antonia
C. Darragh
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Andrew M. Hanna
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Justin H. Lipner
- Eurofins
Panlabs, 6 Research Park
Drive, St. Charles, Missouri 63304, United States
| | - Alastair J. King
- Eurofins
Panlabs, 6 Research Park
Drive, St. Charles, Missouri 63304, United States
| | - Nicole B. Servant
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Mirza Jahic
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| |
Collapse
|
3
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z, Cai J. From mechanisms to medicine: Ferroptosis as a Therapeutic target in liver disorders. Cell Commun Signal 2025; 23:125. [PMID: 40055721 PMCID: PMC11889974 DOI: 10.1186/s12964-025-02121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
In recent 10 years, ferroptosis has become a hot research direction in the scientific research community as a new way of cell death. Iron toxicity accumulation and lipotoxicity are unique features. Several studies have found that ferroptosis is involved in the regulation of the hepatic microenvironment and various hepatic metabolisms, thereby mediating the progression of related liver diseases. For example, NRF2 and FSP1, as important regulatory proteins of ferroptosis, are involved in the development of liver tumors and liver failure. In this manuscript, we present the mechanisms involved in ferroptosis, the concern of ferroptosis with the liver microenvironment and the progression of ferroptosis in various liver diseases. In addition, we summarize recent clinical advances in targeted ferroptosis therapy for related diseases. We expect that this manuscript can provide a new perspective for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yuqi He
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfeng Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Xiaoxia Nie
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Hong Sun
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Changyun Xu
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Zhongyu Han
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| | - Juan Cai
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| |
Collapse
|
6
|
Karube K, Satou A, Kato S. New classifications of B-cell neoplasms: a comparison of 5th WHO and International Consensus classifications. Int J Hematol 2025; 121:331-341. [PMID: 38805112 DOI: 10.1007/s12185-024-03781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In 2024, the World Health Organization (WHO) launched a new classification of lymphoid neoplasms, a revision of the previously used Revised 4th Edition of their classification (WHO-4R). However, this means that two classifications are now in simultaneous use: the 5th Edition of the WHO classification (WHO-5) and the International Consensus Classification (ICC). Instead of a comprehensive review of each disease entity, as already described elsewhere, this review focuses on revisions made in both the WHO-5 and ICC from WHO-4R and discrepancies between them regarding B-cell neoplasms. Similarities include cutaneous marginal zone lymphoma, cold agglutinin disease, non-primary effusion lymphoma-type effusion-based lymphoma, and gray zone lymphoma. Differences include plasma cell neoplasms, high-grade B-cell lymphoma (double hit lymphoma), follicular lymphoma, LPD with immune deficiency and dysregulation, extranodal large B-cell lymphoma, transformations of indolent B-cell lymphomas, and diffuse large B-cell lymphoma, not otherwise specified. Understanding the similarities and differences between the two latest classifications will aid daily diagnostic practice and future research on lymphoid neoplasms.
Collapse
Affiliation(s)
- Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University, Aichi, Japan.
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Seiichi Kato
- Center for Clinical Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
7
|
Rather N, Williams M, Elkhalil A, Sharmin R, Juanez K, Clark G, Shaham S, Ghose P. EOR-1/PLZF-regulated WAH-1/AIF sequentially promotes early and late stages of non-apoptotic corpse removal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.04.626465. [PMID: 39677785 PMCID: PMC11642882 DOI: 10.1101/2024.12.04.626465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Programmed cell death (PCD) is a crucial, genetically-encoded, and evolutionarily-conserved process required for development and homeostasis. We previously identified a genetically non-apoptotic, highly ordered, and stereotyped killing program called Compartmentalized Cell Elimination (CCE) in the C. elegans tail-spike epithelial cell (TSC). Here we identify the transcription factor EOR-1/PLZF as an important coordinator of CCE. Loss of EOR-1 results in a large, persisting, un-engulfed soma with enlarged nuclei. We find that EOR-1 and its partners positively regulate the transcription of the Apoptosis Inducing Factor AIF homolog, WAH-1/AIF. We report stereotyped and sequential spatiotemporal dynamics of WAH-1/AIF1 during phagocytosis, with defined roles acting early and late, within the dying cells. Mitochondria to plasma membrane translocation within the TSC soma is required its internalization by its phagocyte, and plasma membrane to nuclear translocation is required for DNA degradation and ultimately, corpse resolution. Our study suggests that EOR-1 serves as a master regulator for the transcriptional control of DNA degradation is essential for changes in nuclear morphology required for cellular dismantling and infers that tight spatiotemporal regulation of WAH-1/AIF is required for this function.
Collapse
|
8
|
Shao X, Yokomori R, Ong JZL, Shen H, Kappei D, Chen L, Yeoh AEJ, Tan SH, Sanda T. Transcriptional regulatory program controlled by MYB in T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:2573-2584. [PMID: 39488662 DOI: 10.1038/s41375-024-02455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The transcription factor MYB is frequently upregulated in T-cell acute lymphoblastic leukemia (T-ALL), a hematological malignancy originating from T-cell precursors. Here, we demonstrate that MYB plays a crucial role by regulating genes essential for T-ALL pathogenesis. Integrative analysis reveals a long MYB isoform, ENST00000367814.8, which is dominantly expressed and confers a proliferative advantage in T-ALL cells. Rapid depletion of MYB via dTAG-mediated protein degradation affects a large number of genes, which can be classified into early response or late response genes based on their kinetics. Early response genes include many genes involved in hematopoiesis, such as TAL1, RUNX1, GATA3, IKZF2, and CXCR4. Their expression can be recovered at later time-points, suggesting the presence of a negative feedback loop mechanism. In contrast, late response genes, which are continuously downregulated after MYB depletion, includes many genes involved in cell proliferation as well as TAL1 targets, thereby affecting the cellular phenotype.
Collapse
Affiliation(s)
- Xiaoman Shao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jolynn Zu Lin Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University of Singapore, Singapore, Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
9
|
Tomkins O, D’Sa S. Review of BCL2 inhibitors for the treatment of Waldenström's macroglobulinaemia and non-IgM lymphoplasmacytic lymphoma. Front Oncol 2024; 14:1490202. [PMID: 39558954 PMCID: PMC11570586 DOI: 10.3389/fonc.2024.1490202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is a relatively rare form of indolent B-cell non-Hodgkin's lymphoma, termed Waldenström's macroglobulinaemia (WM) in the presence of an IgM paraprotein. Although traditionally treated with combination chemoimmunotherapy, the management is evolving in the era of targeted molecular therapies including Bruton's tyrosine kinase inhibitors (BTKi). However, intolerance and refractoriness to BTKi mean newer agents are required, and the prognosis of so-called quadruple-refractory patients is poor. BCL2 is an anti-apoptotic, pro-survival protein that promotes lymphoma cell survival. Inhibition of BCL2 using first-in-class agent venetoclax has already altered the treatment paradigm in other conditions, including chronic lymphocytic leukaemia (CLL). In-vivo inhibition of BCL2 has been shown to lead to apoptosis of LPL/WM cells. Five studies have published results on the use of BCL2 inhibitors in WM to date, including oblimersen sodium, venetoclax, and sonrotoclax. Fixed-duration venetoclax resulted in high response rates, but many patients relapsed following the completion of therapy. The combination of venetoclax with ibrutinib resulted in higher and relatively deep response rates, but unexpected deaths due to ventricular events mean this combination cannot be explored. Two pivotal trials are currently evaluating the use of fixed-duration venetoclax, either in combination with rituximab or pirtobrutinib, whereas another multi-arm study is studying the use of continuous sonrotoclax monotherapy for R/R WM or in fixed-duration combination with Zanubrutinib for treatment-naïve patients. The potential role of BCL2 inhibitors in WM/LPL remains under study, with many hopeful that they may provide an additional chemotherapy-free oral alternative for patients requiring treatment. In an indolent condition with existing effective treatment regimens, including CIT and cBTKi, cost-effectiveness and toxicity profile will be key, although an additional treatment modality for quadruple-refractory patients with limited treatment options is urgently required.
Collapse
Affiliation(s)
| | - Shirley D’Sa
- UCLH Centre for Waldenström’s Macroglobulinaemia and Related Conditions, Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Shen S, Zhuang H. Homoharringtonine in the treatment of acute myeloid leukemia: A review. Medicine (Baltimore) 2024; 103:e40380. [PMID: 39496012 PMCID: PMC11537654 DOI: 10.1097/md.0000000000040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the accumulation of immature myeloid precursor cells. Over half of AML patients fail to achieve long-term disease-free survival under existing therapy, and the overall prognosis is poor, necessitating the urgent development of novel therapeutic approaches. The plant alkaloid homoharringtonine (HHT), which has anticancer properties, was first identified more than 40 years ago. It works in a novel method of action that prevents the early elongation phase of protein synthesis. HHT has been widely utilized in the treatment of AML, with strong therapeutic effects, few toxic side effects, and the ability to enhance AML patients' prognoses. In AML, HHT can induce cell apoptosis through multiple pathways, exerting synergistic antitumor effects, according to clinical and pharmacological research. About its modes of action, some findings have been made recently. This paper reviews the development of research on the mechanisms of HHT in treating AML to offer insights for further research and clinical therapy.
Collapse
Affiliation(s)
- Siyu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
11
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Urrutia S, Takahashi K. Precision medicine in AML: overcoming resistance. Int J Hematol 2024; 120:439-454. [PMID: 39085680 DOI: 10.1007/s12185-024-03827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The development of molecularly targeted therapy for acute myeloid leukemia is progressing at an accelerated pace. Therapies targeting FLT3, IDH1, IDH2, and BCL2 have been approved in the last 5 years. As we exploit these biological vulnerabilities, various mechanisms of resistance arise. Emergence of competing clones with different genetic drivers and acquisition of constitutional mutations in the target renders therapies ineffective, and enzymatic isoform changes can lead to reappearance of the disease phenotype. Understanding the timing and circumstances of resistance origination will allow clinicians to develop combinatorial and sequential therapeutic approaches to deepen responses and improve survival. The objective of this review is to illustrate the biological underpinnings of each therapy and the landscape of resistance mechanisms and discuss strategies to overcome on- and off-target resistance.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, 4SCR6.2085, Houston, TX, 77030-4009, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
13
|
Yapryntseva MA, Zhivotovsky B, Gogvadze V. Permeabilization of the outer mitochondrial membrane: Mechanisms and consequences. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167317. [PMID: 38909847 DOI: 10.1016/j.bbadis.2024.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Permeabilization of the outer mitochondrial membrane is а physiological process that can allow certain molecules to pass through it, such as low molecular weight solutes required for cellular respiration. This process is also important for the development of various modes of cell death. Depending on the severity of this process, cells can die by autophagy, apoptosis, or necrosis/necroptosis. Distinct types of pores can be opened at the outer mitochondrial membrane depending on physiological or pathological stimuli, and different mechanisms can be activated in order to open these pores. In this comprehensive review, all these types of permeabilization, the mechanisms of their activation, and their role in various diseases are discussed.
Collapse
Affiliation(s)
- Maria A Yapryntseva
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Boris Zhivotovsky
- Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Vladimir Gogvadze
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Pu Y, Liu Y, Zhou XY, Song BQ, Zhang J, Yan WH, Wang Q, Cen JN, Shen HJ, Wang QR, Chen SN, Pan JL, Qiu HY. [Clinical analysis of 7 cases of acute B cell lymphoblastic leukemia with t (17;19) (q21-22;p13)/TCF3-HLF fusion]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:867-871. [PMID: 39414614 PMCID: PMC11518915 DOI: 10.3760/cma.j.cn121090-20240220-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 10/18/2024]
Abstract
A retrospective analysis of the clinical data of seven acute B-lymphoblastic leukemia (B-ALL) patients with TCF3-HLF fusion gene-positive admitted to the First Affiliated Hospital of Soochow University from June 2017 to August 2022 was conducted to summarize their clinical features and prognoses. The seven B-ALL patients comprised four males and three females, with a median age of 18 (11-33) years. Five patients tested positive for CD33 expression, and four patients had a normal karyotype. Two patients had hypercalcemia at the initial diagnosis, and one patient developed hypercalcemia at relapse. Six patients presented with coagulation dysfunction at diagnosis. After induction chemotherapy, five out of seven patients achieved complete remission, of which four subsequently relapsed. Two patients did not achieve remission even after two rounds of induction chemotherapy, with one achieving complete remission after treatment with blinatumomab immunotherapy. Three patients underwent chimeric antigen receptor T cell therapy, whereas three patients subsequently underwent hematopoietic stem cell transplantation. Five patients died, while two patients survived with sustained complete remission. TCF3-HLF-positive B-ALL is rare and has a high relapse rate and poor prognosis.
Collapse
Affiliation(s)
- Y Pu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Y Liu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - X Y Zhou
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - B Q Song
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J Zhang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - W H Yan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Q Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J N Cen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - H J Shen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - Q R Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - S N Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - J L Pan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| | - H Y Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou 215006, China
| |
Collapse
|
15
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Cauwelier C, de Ridder I, Bultynck G. Recent advances in canonical versus non-canonical Ca 2+-signaling-related anti-apoptotic Bcl-2 functions and prospects for cancer treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119713. [PMID: 38521468 DOI: 10.1016/j.bbamcr.2024.119713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cell fate is tightly controlled by a continuous balance between cell survival and cell death inducing mechanisms. B-cell lymphoma 2 (Bcl-2)-family members, composed of effectors and regulators, not only control apoptosis at the level of the mitochondria but also by impacting the intracellular Ca2+ homeostasis and dynamics. On the one hand, anti-apoptotic protein Bcl-2, prevents mitochondrial outer membrane permeabilization (MOMP) by scaffolding and neutralizing proapoptotic Bcl-2-family members via its hydrophobic cleft (region composed of BH-domain 1-3). On the other hand, Bcl-2 suppress pro-apoptotic Ca2+ signals by binding and inhibiting IP3 receptors via its BH4 domain, which is structurally exiled from the hydrophobic cleft by a flexible loop region (FLR). As such, Bcl-2 prevents excessive Ca2+ transfer from ER to mitochondria. Whereas regulation of both pathways requires different functional regions of Bcl-2, both seem to be connected in cancers that overexpress Bcl-2 in a life-promoting dependent manner. Here we discuss the anti-apoptotic canonical and non-canonical role, via calcium signaling, of Bcl-2 in health and cancer and evolving from this the proposed anti-cancer therapies with their shortcomings. We also argue how some cancers, with the major focus on diffuse large B-cell lymphoma (DLBCL) are difficult to treat, although theoretically prime marked for Bcl-2-targeting therapeutics. Further work is needed to understand the non-canonical functions of Bcl-2 also at organelles beyond the mitochondria, the interaction partners outside the Bcl-2 family as well as their ability to target or exploit these functions as therapeutic strategies in diseases.
Collapse
Affiliation(s)
- Claire Cauwelier
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
17
|
Guo X, He L, Xu W, Wang W, Feng X, Fu Y, Zhang X, Ding RB, Qi X, Bao J, Luo S. αO-Conotoxin GeXIVA[1,2] Suppresses In Vivo Tumor Growth of Triple-Negative Breast Cancer by Inhibiting AKT-mTOR, STAT3 and NF-κB Signaling Mediated Proliferation and Inducing Apoptosis. Mar Drugs 2024; 22:252. [PMID: 38921563 PMCID: PMC11205035 DOI: 10.3390/md22060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is one of the leading causes of cancer mortality worldwide, and triple-negative breast cancer (TNBC) is the most problematic subtype. There is an urgent need to develop novel drug candidates for TNBC. Marine toxins are a valuable source for drug discovery. We previously identified αO-conotoxin GeXIVA[1,2] from Conus generalis, which is a selective antagonist of α9 nicotinic acetylcholine receptors (nAChRs). Recent studies indicated that α9 nAChR expression is positively correlated with breast cancer development; thus, α9 nAChR could serve as a therapeutic target for breast cancer. In this study, we aimed to investigate the in vivo antitumor effects of GeXIVA[1,2] on TNBC and to elucidate its underlying anticancer mechanism. Our data showed that GeXIVA[1,2] effectively suppressed 4T1 tumor growth in vivo at a very low dose of 0.1 nmol per mouse. Our results uncovered that the antitumor mechanism of GeXIVA[1,2] simultaneously induced apoptosis and blocked proliferation. Further investigations revealed that GeXIVA[1,2]-induced Caspase-3-dependent apoptosis was achieved through regulating Bax/Bcl-2 balance, and GeXIVA[1,2]-inhibited proliferation was mediated by the downregulation of the AKT-mTOR, STAT3 and NF-κB signaling pathways. Our study provides valuable arguments to demonstrate the potential of GeXIVA[1,2] as a novel marine-derived anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Weifeng Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Wanrong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Xiaoli Feng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Xiaofan Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (X.G.); (L.H.); (W.X.); (W.W.); (X.F.); (Y.F.); (X.Z.); (R.-B.D.); (X.Q.)
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Gassib N, Issa H, Loubaki L, Behaz S, Almutairi MH, Rouabhia M, Semlali A. Cellular mechanisms mediating the anti-cancer effects of carnosol on gingiva carcinoma. Sci Rep 2024; 14:12266. [PMID: 38806527 PMCID: PMC11133392 DOI: 10.1038/s41598-024-60797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Carnosol, a rosemary polyphenol, displays anticancer properties and is suggested as a safer alternative to conventional surgery, radiotherapy, and chemotherapy. Given that its effects on gingiva carcinoma have not yet been investigated, the aim of this study was to explore its anti-tumor selectivity and to unravel its underlying mechanisms of action. Hence, oral tongue and gingiva carcinoma cell lines exposed to carnosol were analyzed to estimate cytotoxicity, cell viability, cell proliferation, and colony formation potential as compared with those of normal cells. Key cell cycle and apoptotic markers were also measured. Finally, cell migration, oxidative stress, and crucial cell signaling pathways were assessed. Selective anti-gingiva carcinoma activity was disclosed. Overall, carnosol mediated colony formation and proliferation suppression in addition to cytotoxicity induction. Cell cycle arrest was highlighted by the disruption of the c-myc oncogene/p53 tumor suppressor balance. Carnosol also increased apoptosis, oxidative stress, and antioxidant activity. On a larger scale, the alteration of cell cycle and apoptotic profiles was also demonstrated by QPCR array. This was most likely achieved by controlling the STAT5, ERK1/2, p38, and NF-ĸB signaling pathways. Lastly, carnosol reduced inflammation and invasion ability by modulating IL-6 and MMP9/TIMP-1 axes. This study establishes a robust foundation, urging extensive inquiry both in vivo and in clinical settings, to substantiate the efficacy of carnosol in managing gingiva carcinoma.
Collapse
Affiliation(s)
- Nassima Gassib
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Hawraa Issa
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Lionel Loubaki
- Héma-Québec, 1070, Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| | - Sarah Behaz
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Abdelhabib Semlali
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
19
|
Guo Y, Xue H, Hu N, Liu Y, Sun H, Yu D, Qin L, Shi G, Wang F, Xin L, Sun W, Zhang F, Song X, Li S, Wei Q, Guo Y, Li Y, Liu X, Chen S, Zhang T, Wu Y, Su D, Zhu Y, Xu A, Xu H, Yang S, Zheng Z, Liu J, Yang X, Yuan X, Hong Y, Sun X, Guo Y, Zhou C, Liu X, Wang L, Wang Z. Discovery of the Clinical Candidate Sonrotoclax (BGB-11417), a Highly Potent and Selective Inhibitor for Both WT and G101V Mutant Bcl-2. J Med Chem 2024; 67:7836-7858. [PMID: 38695063 PMCID: PMC11129194 DOI: 10.1021/acs.jmedchem.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024]
Abstract
The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.
Collapse
Affiliation(s)
- Yunhang Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hai Xue
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Nan Hu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ye Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Hanzi Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Desheng Yu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ling Qin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Gongyin Shi
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lei Xin
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Weihua Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Fan Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaomin Song
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuran Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Qiang Wei
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Ying Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yong Li
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xiaoxin Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shuaishuai Chen
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Taichang Zhang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yue Wu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Dan Su
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yutong Zhu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Aiying Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Haipeng Xu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Shasha Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhijun Zheng
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Junhua Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuefei Yang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xi Yuan
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yuan Hong
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuebing Sun
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Yin Guo
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Changyou Zhou
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Xuesong Liu
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Lai Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| | - Zhiwei Wang
- Department
of Medicinal Chemistry, Department of Molecular Science, Department of Discovery
Biology, Department of In Vivo Pharmacology, and Department of DMPK-BA, BeiGene (Beijing) Co., Ltd., Beijing 102206, People’s Republic of China
| |
Collapse
|
20
|
Fowler-Shorten DJ, Hellmich C, Markham M, Bowles KM, Rushworth SA. BCL-2 inhibition in haematological malignancies: Clinical application and complications. Blood Rev 2024; 65:101195. [PMID: 38523032 DOI: 10.1016/j.blre.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
B-cell lymphoma-2 (BCL-2) family proteins are fundamental regulators of the intrinsic apoptotic pathway which modulate cellular fate. In many haematological malignancies, overexpression of anti-apoptotic factors (BCL-2, BCL-XL and MCL-1) circumvent apoptosis. To address this cancer hallmark, a concerted effort has been made to induce apoptosis by inhibiting BCL-2 family proteins. A series of highly selective BCL-2 homology 3 (BH3) domain mimetics are in clinical use and in ongoing clinical trials for acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM). These inhibitors serve as promising candidates, both as single agents or in combination therapy to improve patient outcomes. In other diseases such as follicular lymphoma, efficacy has been notably limited. There are also clinical problems with BCL-2 family inhibition, including drug resistance, disease relapse, tumour lysis syndrome, and clinically relevant cytopenias. Here, we provide a balanced view on both the clinical benefits of BCL-2 inhibition as well as the associated challenges.
Collapse
Affiliation(s)
- Dominic J Fowler-Shorten
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Matthew Markham
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Kristian M Bowles
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK; Department of Haematology, Norfolk and Norwich University Hospital NHS Trust, Colney Lane, Norwich NR4 7UY, UK
| | - Stuart A Rushworth
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
21
|
Abstract
Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.
Collapse
Affiliation(s)
- Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Dimitry Ofengeim
- Sanofi, Rare and Neurological Diseases Research, Cambridge, MA, USA.
| |
Collapse
|
22
|
Di Pasqua LG, Abdallah MM, Feletti F, Vairetti M, Ferrigno A. Venetoclax-Related Neutropenia in Leukemic Patients: A Comprehensive Review of the Underlying Causes, Risk Factors, and Management. Pharmaceuticals (Basel) 2024; 17:484. [PMID: 38675444 PMCID: PMC11054081 DOI: 10.3390/ph17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Venetoclax is a Bcl-2 homology domain 3 (BH3) mimetic currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) that has proven to be highly effective in reinstating apoptosis in leukemic cells through the highly selective inhibition of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2). Clinically, venetoclax has provided lasting remissions through the inhibition of CLL and AML blasts. However, this activity has often come at the cost of grade III/IV neutropenia due to hematopoietic cells' dependence on Bcl-2 for survival. As life-threatening infections are an important complication in these patients, an effective management of neutropenia is indispensable to maximize patient outcomes. While there is general consensus over dose reduction and scheduling modifications to minimize the risk of neutropenia, the impact of these modifications on survival is uncertain. Moreover, guidelines do not yet adequately account for patient-specific and disease-specific risk factors that may predict toxicity, or the role combination treatment plays in exacerbating neutropenia. The objective of this review is to discuss the venetoclax-induced mechanism of hematological toxicity, the potential predictive risk factors that affect patient vulnerability to neutropenia, and the current consensus on practices for management of neutropenia.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
Dohle E, Parkhoo K, Bennardo F, Schmeinck L, Sader R, Ghanaati S. Immunomodulation of Cancer Cells Using Autologous Blood Concentrates as a Patient-Specific Cell Culture System: A Comparative Study on Osteosarcoma and Fibrosarcoma Cell Lines. Bioengineering (Basel) 2024; 11:303. [PMID: 38671725 PMCID: PMC11048113 DOI: 10.3390/bioengineering11040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding that tumor cells might evade immunity through various mutations and the potential of an augmented immune system to eliminate abnormal cells led to the idea of utilizing platelet-rich fibrin (PRF), a blood concentrate containing the body's immune elements as an adjunctive therapy for localized tumors. This study is the first that evaluated the effect of PRF generated with different relative centrifugal forces (RCFs) on osteoblastic and fibroblastic tumor cell lines MG63 and HT1080 with regard to cell viability, cytokine and growth factor release, and the gene expression of factors related to the cell cycle and apoptosis. Our findings could demonstrate decreased cell proliferation of MG63 and HT1080 when treated indirectly with PRF compared to cell cultures without PRF. This effect was more distinct when the cells were treated with low-RCF PRF, where higher concentrations of growth factors and cytokines with reduced RCFs can be found. Similar patterns were observed when assessing the regulation of gene expression related to the cell cycle and apoptosis in both MG63 and HT1080 cells treated with PRF. Despite variations, there was a consistent trend of an up-regulation of tumor-suppressive genes and a down-regulation of anti-apoptotic genes in both cell types following treatment with high- and, particularly, low-RCF PRF formulations.
Collapse
Affiliation(s)
- Eva Dohle
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Kamelia Parkhoo
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Francesco Bennardo
- School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lena Schmeinck
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Robert Sader
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| | - Shahram Ghanaati
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (K.P.); (L.S.); (R.S.); (S.G.)
| |
Collapse
|
24
|
Li F, Liu J, Liu C, Liu Z, Peng X, Huang Y, Chen X, Sun X, Wang S, Chen W, Xiong D, Diao X, Wang S, Zhuang J, Wu C, Wu D. Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-X L by engaging a single-residue discrepancy. Nat Commun 2024; 15:1476. [PMID: 38368459 PMCID: PMC10874388 DOI: 10.1038/s41467-024-45848-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Fengwei Li
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Junjie Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Liu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Ziyan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Yinyue Huang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Chen
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiangnan Sun
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sen Wang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Chen
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China
| | - Dan Xiong
- Xiamen Lifeint Technology Company Ltd., Xiamen, 361005, China
| | - Xiaotong Diao
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., Shanghai, 200030, China
| | - Jingjing Zhuang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Marine College, Shandong University, Weihai, 264209, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
25
|
Bhatia K, Sandhu V, Wong MH, Iyer P, Bhatt S. Therapeutic biomarkers in acute myeloid leukemia: functional and genomic approaches. Front Oncol 2024; 14:1275251. [PMID: 38410111 PMCID: PMC10894932 DOI: 10.3389/fonc.2024.1275251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is clinically and genetically a heterogeneous disease characterized by clonal expansion of abnormal hematopoietic progenitors. Genomic approaches to precision medicine have been implemented to direct targeted therapy for subgroups of AML patients, for instance, IDH inhibitors for IDH1/2 mutated patients, and FLT3 inhibitors with FLT3 mutated patients. While next generation sequencing for genetic mutations has improved treatment outcomes, only a fraction of AML patients benefit due to the low prevalence of actionable targets. In recent years, the adoption of newer functional technologies for quantitative phenotypic analysis and patient-derived avatar models has strengthened the potential for generalized functional precision medicine approach. However, functional approach requires robust standardization for multiple variables such as functional parameters, time of drug exposure and drug concentration for making in vitro predictions. In this review, we first summarize genomic and functional therapeutic biomarkers adopted for AML therapy, followed by challenges associated with these approaches, and finally, the future strategies to enhance the implementation of precision medicine.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Mei Hsuan Wong
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024; 187:235-256. [PMID: 38242081 DOI: 10.1016/j.cell.2023.11.044] [Citation(s) in RCA: 321] [Impact Index Per Article: 321.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Andreas Strasser
- WEHI: Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Physiological Chemistry Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Panjan M, Boltezar L, Novakovic S, Kokovic I, Jezersek Novakovic B. Correlation of t(14;18) translocation breakpoint site with clinical characteristics in follicular lymphoma. Radiol Oncol 2023; 57:487-492. [PMID: 37439703 PMCID: PMC10690741 DOI: 10.2478/raon-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND t(14;18)(q32;q21) translocation is an important genetic feature of follicular lymphoma resulting in antiapoptotic B-cell lymphoma 2 (BCL2) protein overexpression. On chromosome 18 breakpoint-site variation is high but does not affect BCL2. Breakpoint most commonly occurs at major breakpoint region (MBR) but may happen at minor cluster region (mcr) and between MBR and mcr at 3'MBR and 5'mcr. The aim of this study was to analyze the correlation of t(14;18)(q32;q21) breakpoint site with clinical characteristics in follicular lymphoma. PATIENTS AND METHODS We included patients diagnosed with follicular lymphoma who received at least 1 cycle of systemic treatment and had the t(14;18)(q32;q21) translocation detected by polymerase chain reaction (PCR) at MBR, mcr or 3'MBR prior to first treatment. Among patients with different breakpoints, sex, age, disease grade, stage, B-symptoms, follicular lymphoma international prognostic index (FLIPI), presence of bulky disease, progression free survival and overall survival were compared. RESULTS Of 84 patients, 63 had breakpoint at MBR, 17 at mcr and 4 at 3'MBR. At diagnosis, the MBR group had a significantly lower disease stage than the mcr group. Although not significant, in the MBR group we found a higher progression-free survival (PFS) and overall survival (OS), lower grade, age, FLIPI, and less B-symptoms. CONCLUSIONS Compared to patients with mcr breakpoint, those with MBR breakpoint seem to be characterised by more favourable clinical characteristics. However, a larger study would be required to support our observation.
Collapse
Affiliation(s)
- Matej Panjan
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Lucka Boltezar
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Srdjan Novakovic
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana, Slovenia
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ira Kokovic
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Barbara Jezersek Novakovic
- Division of Medical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Medical Faculty Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
AbouAitah K, Hassan HA, Ammar NM, Abou Baker DH, Higazy IM, Shaker OG, Elsayed AAA, Hassan AME. Novel delivery system with a dual–trigger release of savory essential oil by mesoporous silica nanospheres and its possible targets in leukemia cancer cells: in vitro study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Introduction
Essential oils (EOs) are complex structures and possess several pharmacological effects. Nanomedicine offers a solution for their major limitations, including poor solubility, volatility, and non–controlled release, preventing their clinical use.
Methods
Here, we developed a novel delivery system by nanoformulations that were prepared by impregnating savory essential oil (SA) into mesoporous silica nanoparticles (MSNs). The nanoformulations were characterized and examined for their anticancer activities on cancer cells (HepG2 liver and HL60 leukemia cells) and MRC5 normal cells. We further tested the mechanisms of action and possible molecular targets against HL60 cells.
Results
The results demonstrated that SA was governed by nanoformulations under the dual–trigger release of pH/glutathione, and it typically fit the Korsmeyer–Peppas kinetic model. The nanoformulations enhanced the anticancer effect against HepG2 cells and HL60 cells compared to SA but were less cytotoxic to MRC5 normal cells and regulated various molecular pathways of apoptosis. Most importantly, new results were obtained on the genetic regulation principle through the high inhibition of long noncoding RNAs (HOTAIR, HULC, CCAT1, and H19) and matrix metalloproteinases (MMP–2 and MMP–9), providing a novel leukemia target.
Conclusions
These results suggest potential impacts for nanoformulations composed of SA with a sustained release pattern controlled by dual–trigger release of pH/GSH that enhanced anticancer cells. This approach may offer a new route for using EOs as new targets for cancers and open the door for deep preclinical investigations.
Collapse
|
30
|
Kulkarni M, Hardwick JM. Programmed Cell Death in Unicellular Versus Multicellular Organisms. Annu Rev Genet 2023; 57:435-459. [PMID: 37722687 PMCID: PMC11491101 DOI: 10.1146/annurev-genet-033123-095833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Programmed cell death (self-induced) is intrinsic to all cellular life forms, including unicellular organisms. However, cell death research has focused on animal models to understand cancer, degenerative disorders, and developmental processes. Recently delineated suicidal death mechanisms in bacteria and fungi have revealed ancient origins of animal cell death that are intertwined with immune mechanisms, allaying earlier doubts that self-inflicted cell death pathways exist in microorganisms. Approximately 20 mammalian death pathways have been partially characterized over the last 35 years. By contrast, more than 100 death mechanisms have been identified in bacteria and a few fungi in recent years. However, cell death is nearly unstudied in most human pathogenic microbes that cause major public health burdens. Here, we consider how the current understanding of programmed cell death arose through animal studies and how recently uncovered microbial cell death mechanisms in fungi and bacteria resemble and differ from mechanisms of mammalian cell death.
Collapse
Affiliation(s)
- Madhura Kulkarni
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ,
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Banerjee SM, Acedo P, El Sheikh S, Harati R, Meecham A, Williams NR, Gerard G, Keshtgar MRS, MacRobert AJ, Hamoudi R. Combination of verteporfin-photodynamic therapy with 5-aza-2'-deoxycytidine enhances the anti-tumour immune response in triple negative breast cancer. Front Immunol 2023; 14:1188087. [PMID: 38022682 PMCID: PMC10664979 DOI: 10.3389/fimmu.2023.1188087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Triple negative breast cancer (TNBC) is a subtype of breast cancer characterised by its high tumourigenic, invasive, and immunosuppressive nature. Photodynamic therapy (PDT) is a focal therapy that uses light to activate a photosensitizing agent and induce a cytotoxic effect. 5-aza-2'-deoxycytidine (5-ADC) is a clinically approved immunomodulatory chemotherapy agent. The mechanism of the combination therapy using PDT and 5-ADC in evoking an anti-tumour response is not fully understood. Methods The present study examined whether a single dose of 5-ADC enhances the cytotoxic and anti-tumour immune effect of low dose PDT with verteporfin as the photosensitiser in a TNBC orthotopic syngeneic murine model, using the triple negative murine mammary tumour cell line 4T1. Histopathology analysis, digital pathology and immunohistochemistry of treated tumours and distant sites were assessed. Flow cytometry of splenic and breast tissue was used to identify T cell populations. Bioinformatics were used to identify tumour immune microenvironments related to TNBC patients. Results Functional experiments showed that PDT was most effective when used in combination with 5-ADC to optimize its efficacy. 5-ADC/PDT combination therapy elicited a synergistic effect in vitro and was significantly more cytotoxic than monotherapies on 4T1 tumour cells. For tumour therapy, all types of treatments demonstrated histopathologically defined margins of necrosis, increased T cell expression in the spleen with absence of metastases or distant tissue destruction. Flow cytometry and digital pathology results showed significant increases in CD8 expressing cells with all treatments, whereas only the 5-ADC/PDT combination therapy showed increase in CD4 expression. Bioinformatics analysis of in silico publicly available TNBC data identified BCL3 and BCL2 as well as the following anti-tumour immune response biomarkers as significantly altered in TNBC compared to other breast cancer subtypes: GZMA, PRF1, CXCL1, CCL2, CCL4, and CCL5. Interestingly, molecular biomarker assays showed increase in anti-tumour response genes after treatment. The results showed concomitant increase in BCL3, with decrease in BCL2 expression in TNBC treatment. In addition, the treatments showed decrease in PRF1, CCL2, CCL4, and CCL5 genes with 5-ADC and 5-ADC/PDT treatment in both spleen and breast tissue, with the latter showing the most decrease. Discussion To our knowledge, this is the first study that shows which of the innate and adaptive immune biomarkers are activated during PDT related treatment of the TNBC 4T1 mouse models. The results also indicate that some of the immune response biomarkers can be used to monitor the effectiveness of PDT treatment in TNBC murine model warranting further investigation in human subjects.
Collapse
Affiliation(s)
- Shramana M. Banerjee
- Breast Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Pilar Acedo
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom
| | - Soha El Sheikh
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Amelia Meecham
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Norman R. Williams
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Gareth Gerard
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Mohammed R. S. Keshtgar
- Breast Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Rifat Hamoudi
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Research Institute for Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
32
|
Bui I, Baritaki S, Libra M, Zaravinos A, Bonavida B. Cancer Resistance Is Mediated by the Upregulation of Several Anti-Apoptotic Gene Products via the Inducible Nitric Oxide Synthase/Nitric Oxide Pathway: Therapeutic Implications. Antioxid Redox Signal 2023; 39:853-889. [PMID: 37466477 DOI: 10.1089/ars.2023.0250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Significance: Several therapeutic strategies for cancer treatments have been developed with time, and significant milestones have been achieved recently. However, with these novel therapies, not all cancer types respond and in the responding cancer types only a subset is affected. The failure to respond is principally the result that these cancers develop several mechanisms of resistance. Thus, a focus of current research investigations is to unravel the various mechanisms that regulate resistance and identify suitable targets for new therapeutics. Recent Advances: Hence, many human cancer types have been reported to overexpress the inducible nitric oxide synthase (iNOS) and it has been suggested that iNOS/nitric oxide (NO) plays a pivotal role in the regulation of resistance. We have postulated that iNOS overexpression or NO regulates the overexpression of pivotal anti-apoptotic gene products such as B-cell lymphoma 2 (Bcl-2), B-cell lymphoma extra large (Bcl-xL), myeloid cell leukemia-1 (Mcl-1), and survivin. In this report, we describe the various mechanisms, transcriptional, post-transcriptional, and post-translational, by which iNOS/NO regulates the expression of the above anti-apoptotic gene products. Critical Issues: The iNOS/NO-mediated regulation of the four gene products is not the same with both specific and overlapping pathways. Our findings are, in large part, validated by bioinformatic analyses demonstrating, in several cancers, several direct correlations between the expression of iNOS and each of the four examined anti-apoptotic gene products. Future Directions: We have proposed that targeting iNOS may be highly efficient since it will result in the underexpression of multiple anti-apoptotic proteins and shifting the balance toward the proapoptotic gene products and reversal of resistance. Antioxid. Redox Signal. 39, 853-889.
Collapse
Affiliation(s)
- Indy Bui
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Department of Surgery, School of Medicine, University of Crete, Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Italian League Against Cancer, Catania, Italy
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
33
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
34
|
Tian Q, Zhang P, Wang Y, Si Y, Yin D, Weber CR, Fishel ML, Pollok KE, Qiu B, Xiao F, Chong AS. A novel triptolide analog downregulates NF-κB and induces mitochondrial apoptosis pathways in human pancreatic cancer. eLife 2023; 12:e85862. [PMID: 37877568 PMCID: PMC10861173 DOI: 10.7554/elife.85862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/24/2023] [Indexed: 10/26/2023] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, and despite advancements in disease management, the 5 -year survival rate stands at only 12%. Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic cancer, however poor solubility and toxicity limit their translation into clinical use. We synthesized a novel pro-drug of triptolide, (E)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide (CK21), which was formulated into an emulsion for in vitro and in vivo testing in rats and mice, and used human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids. A time-course transcriptomic profiling of tumor organoids treated with CK21 in vitro was conducted to define its mechanism of action, as well as transcriptomic profiling at a single time point post-CK21 administration in vivo. Intravenous administration of emulsified CK21 resulted in the stable release of triptolide, and potent anti-proliferative effects on human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids in vitro, and with minimal toxicity in vivo. Time course transcriptomic profiling of tumor organoids treated with CK21 in vitro revealed <10 differentially expressed genes (DEGs) at 3 hr and ~8,000 DEGs at 12 hr. Overall inhibition of general RNA transcription was observed, and Ingenuity pathway analysis together with functional cellular assays confirmed inhibition of the NF-κB pathway, increased oxidative phosphorylation and mitochondrial dysfunction, leading ultimately to increased reactive oxygen species (ROS) production, reduced B-cell-lymphoma protein 2 (BCL2) expression, and mitochondrial-mediated tumor cell apoptosis. Thus, CK21 is a novel pro-drug of triptolide that exerts potent anti-proliferative effects on human pancreatic tumors by inhibiting the NF-κB pathway, leading ultimately to mitochondrial-mediated tumor cell apoptosis.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Peng Zhang
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Yihan Wang
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Youhui Si
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Dengping Yin
- Department of Surgery, The University of ChicagoChicagoUnited States
| | | | - Melissa L Fishel
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Karen E Pollok
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Bo Qiu
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Fei Xiao
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Anita S Chong
- Department of Surgery, The University of ChicagoChicagoUnited States
| |
Collapse
|
35
|
Wyatt S, Glover K, Dasanna S, Lewison M, González-García M, Colbert CL, Sinha SC. Epstein-Barr Virus Encoded BCL2, BHRF1, Downregulates Autophagy by Noncanonical Binding of BECN1. Biochemistry 2023; 62:2934-2951. [PMID: 37776275 PMCID: PMC11166532 DOI: 10.1021/acs.biochem.3c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
γ-herpesviruses (γHVs) encode BCL2 homologues (vBCL2) that bind the Bcl-2 homology 3 domains (BH3Ds) of diverse proteins, inhibiting apoptosis and promoting host cell and virus survival. vBCLs encoded by Kaposi sarcoma-associated HV (KSHV) and γHV68 downregulate autophagy, a degradative cellular process crucial for homeostasis and innate immune responses to pathogens, by binding to a BH3D in BECN1, a key autophagy protein. Epstein-Barr virus (EBV) encodes a vBCL2 called BHRF1. Here we show that unlike the KSHV and γHV68 vBCL2s, BHRF1 does not bind the isolated BECN1 BH3D. We use yeast two-hybrid assays to identify the minimal region of BECN1 required and sufficient for binding BHRF1. We confirm that this is a direct, albeit weak, interaction via affinity pull-down assays and isothermal titration calorimetry. To understand the structural bases of BHRF1 specificity, we determined the 2.6 Å crystal structure of BHRF1 bound to the BID BH3D, which binds ∼400-times tighter to BHRF1 than does BECN1, and performed a detailed structural comparison with complexes of diverse BH3Ds bound to BHRF1 and to other antiapoptotic BCL2s. Lastly, we used mammalian cell autophagy assays to demonstrate that BHRF1 downregulates autophagy and that a cell-permeable peptide derived from the BID BH3D inhibits BHRF1-mediated downregulation of autophagy. In summary, our results suggest that BHRF1 downregulates autophagy by noncanonical binding of a flexible region of BECN1 that includes but is not limited to the BH3D and that BH3D-derived peptides that bind better to BHRF1 can block downregulation of autophagy by BHRF1.
Collapse
Affiliation(s)
- Samuel Wyatt
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Karen Glover
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Srinivasulu Dasanna
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Monica Lewison
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Sangita C. Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
36
|
Gregory CD. Hijacking homeostasis: Regulation of the tumor microenvironment by apoptosis. Immunol Rev 2023; 319:100-127. [PMID: 37553811 PMCID: PMC10952466 DOI: 10.1111/imr.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Cancers are genetically driven, rogue tissues which generate dysfunctional, obdurate organs by hijacking normal, homeostatic programs. Apoptosis is an evolutionarily conserved regulated cell death program and a profoundly important homeostatic mechanism that is common (alongside tumor cell proliferation) in actively growing cancers, as well as in tumors responding to cytotoxic anti-cancer therapies. Although well known for its cell-autonomous tumor-suppressive qualities, apoptosis harbors pro-oncogenic properties which are deployed through non-cell-autonomous mechanisms and which generally remain poorly defined. Here, the roles of apoptosis in tumor biology are reviewed, with particular focus on the secreted and fragmentation products of apoptotic tumor cells and their effects on tumor-associated macrophages, key supportive cells in the aberrant homeostasis of the tumor microenvironment. Historical aspects of cell loss in tumor growth kinetics are considered and the impact (and potential impact) on tumor growth of apoptotic-cell clearance (efferocytosis) as well as released soluble and extracellular vesicle-associated factors are discussed from the perspectives of inflammation, tissue repair, and regeneration programs. An "apoptosis-centric" view is proposed in which dying tumor cells provide an important platform for intricate intercellular communication networks in growing cancers. The perspective has implications for future research and for improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Christopher D. Gregory
- Centre for Inflammation ResearchInstitute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| |
Collapse
|
37
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
38
|
Balikó A, Szakács Z, Kajtár B, Ritter Z, Gyenesei A, Farkas N, Kereskai L, Vályi-Nagy I, Alizadeh H, Pajor L. Clinicopathological analysis of diffuse large B-cell lymphoma using molecular biomarkers: a retrospective analysis from 7 Hungarian centers. Front Oncol 2023; 13:1224733. [PMID: 37746254 PMCID: PMC10514474 DOI: 10.3389/fonc.2023.1224733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background The clinical and genetic heterogeneity of diffuse large B-cell lymphoma (DLBCL) presents distinct challenges in predicting response to therapy and overall prognosis. The main objective of this study was to assess the application of the immunohistochemistry- and interphase fluorescence in situ hybridization (FISH)-based molecular markers in the diagnosis of DLBCL and its prognostic value in patients treated with rituximab-based immunochemotherapy. Methods This is a multicenter, retrospective study, which analyzed data from 7 Hungarian hematology centers. Eligible patients were adults, had a histologically confirmed diagnosis of DLBCL, were treated with rituximab-based immunochemotherapy in the first line, and had available clinicopathological data including International Prognostic Index (IPI). On the specimens, immunohistochemistry and FISH methods were performed. Germinal center B-cell like (GCB) and non-GCB subtypes were classified by the Hans algorithm. Outcomes included overall survival (OS), event-free survival (EFS), and EFS at 2 years (EFS24). For survival analysis, we used Kaplan-Meier curves with the log-rank test and multivariate Cox regression. Results A total of 247 DLBCL cases were included. Cases were positive for MYC, BCL2, BCL6, and MUM1 expression in 52.1%, 66.2%, 72.6%, and 77.8%, respectively. BCL6 translocation, BCL2 gene copy number (GCN) gain, IGH::MYC translocation, MYC GCN gain, IGH::BCL2 translocation, and BCL6 GCN gain were detected in 21.4%, 14.1%, 7.3%, 1.8%, 7.3%, and 0.9%, respectively. At a median follow-up of 52 months, 140 patients (56.7%) had disease progression or relapse. The Kaplan-Meier estimate for EFS24 was 56.2% (CI: 50.4-62.8%). In univariate analysis, only IPI and BCL6 expression were significant predictors of both OS and EFS, whereas MUM1 predicted EFS only. In multivariate analysis, the IPI score was a significant independent negative, whereas MIB-1 and BCL6 protein expressions were significant independent positive predictors of both OS and EFS. Conclusion In our study, we found that only IPI, BCL6 protein expression and MIB-1 protein expression are independent predictors of survival outcomes in DLBCL. We did not find any difference in survival by GCB vs. non-GCB subtypes. These findings may improve prognostication in DLBCL and can contribute to designing further research in the area.
Collapse
Affiliation(s)
- Anett Balikó
- Tolna County Balassa János Hospital, Szekszárd, ;Hungary
- PhD Doctoral School – Interdisciplinary Medical Sciences (D93), Medical School, University of Pécs, Pécs, ;Hungary
| | - Zsolt Szakács
- First Department of Medicine, Medical School, University of Pécs, Pécs, ;Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pécs, Pécs, ;Hungary
| | - Zsombor Ritter
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, ;Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, University of Pécs, Pécs, ;Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, ;Hungary
| | - László Kereskai
- Department of Pathology, Medical School, University of Pécs, Pécs, ;Hungary
| | - István Vályi-Nagy
- South-Pest Hospital Centre – National Institute for Infectology and Haematology, Budapest, ;Hungary
| | - Hussain Alizadeh
- First Department of Medicine, Medical School, University of Pécs, Pécs, ;Hungary
| | - László Pajor
- Department of Pathology, Medical School, University of Pécs, Pécs, ;Hungary
| |
Collapse
|
39
|
Ye F, Zhang W, Fan C, Dong J, Peng M, Deng W, Zhang H, Yang L. Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis. J Transl Med 2023; 21:606. [PMID: 37679782 PMCID: PMC10486003 DOI: 10.1186/s12967-023-04481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The identifying of B-cell lymphoma 2 (Bcl-2) as a therapeutic target has led to a paradigm shift in acute myeloid leukemia (AML) treatment. Pyroptosis is a novel antitumor therapeutic mechanism due to its cytotoxic and immunogenic effects. The combination of venetoclax and hypomethylating agents (HMAs) has been shown to lead to durable responses and significantly improve prognosis in patients with AML. However, our understanding of the mechanisms underlying this combinatorial activity is evolving. METHODS We investigated whether the Bcl-2 inhibitor venetoclax induces AML cell pyroptosis and identified pyroptosis effector proteins. Via using western blotting, immunoprecipitation, RNA interference, CCK8 assays, and LDH assays, we explored the mechanism underlying the pyroptotic effect. The relationship between the expression of the pyroptosis effector protein GSDME and AML prognosis was investigated. The effect of GSDME demethylation combined with venetoclax treatment on pyroptosis was investigated and confirmed in mouse models and clinical samples. RESULTS Venetoclax induces pyroptosis that is mediated by caspase-3-dependent GSDME cleavage. Mechanistically, venetoclax upregulates caspase-3 and GSDME cleavage by activating the intrinsic apoptotic pathway. GSDME is downregulated in AML by promoter methylation, and low GSDME expression is significantly associated with poor prognosis, based on public databases and patient sample analysis. In vivo and in vitro experiments showed that GSDME overexpression or HMAs-mediated restoration of GSDME expression significantly increased venetoclax-induced pyroptosis in AML. CONCLUSION GSDME-mediated pyroptosis may be a novel aspect of the antileukemic effect of Bcl-2 inhibitors. This finding offers new insights into potential biomarkers and therapeutic strategies, identifying an important mechanism explaining the clinical activity of venetoclax and HMAs in AML.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Chenying Fan
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Jiajia Dong
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Min Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Hui Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
40
|
Badr AM, El-Orabi NF, Mahran YF, Badr AM, Bayoumy NM, Hagar H, Elmongy EI, Atawia RT. In vivo and In silico evidence of the protective properties of carvacrol against experimentally-induced gastric ulcer: Implication of antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Chem Biol Interact 2023; 382:110649. [PMID: 37499997 DOI: 10.1016/j.cbi.2023.110649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Gastric ulcer is a serious disease that affects millions of individuals worldwide. Alcohol consumption is a major contributor to the disease pathogenesis and ethanol-induced ulcer in rats closely recapitulates the clinical pathology of ulcer. In this study, rats were pretreated with carvacrol (CAR,50 and 100 mg/kg, orally) 1 h before absolute ethanol administration to induce gastric ulcer. CAR prevented ethanol-induced increases in gastric volume and acidity while restored mucin content. The gastro-protective activity of CAR, particularly the higher dose (100 mg/kg), was further supported by histopathological examination, as manifested by reduced gastric lesions. Interestingly, oxidative stress is linked to early stages of ulcer development and progression. In this study, ethanol administration upregulated the levels of ROS-producing enzymes, NADPH oxidase homologs 1 and 4 (Nox1 and Nox4) and lipid peroxides while depleting the antioxidant defense mechanisms, including GSH, Glutathione Peroxidase (GPX) and catalase. Interestingly, these alterations were significantly ameliorated by CAR pretreatment. Additionally, CAR possesses anti-inflammatory and anti-apoptotic activities. Pretreatment with CAR blunted ethanol-induced increases in inflammatory cytokines (NF-κB and TNF-α) and rectified the apoptosis regulator (Bax/Bcl2 ratio) in gastric tissue. Moreover, the docking simulation of CAR illustrated good fitting and interactions with GPX, Nox1 and TNF-α through the formation of hydrogen and hydrophobic (pi-H) bonds with conservative amino acids, thus, further supporting the anti-inflammatory and antioxidant effects underlying the gastroprotective effects of CAR. In conclusion, this study elucidates, using in silico and in vivo models, that the gastroprotective activity of CAR is attributed, at least in part, to its mucin-secretagogue, antioxidative, anti-inflammatory, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naglaa F El-Orabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Amul M Badr
- Department of Medical Biochemistry and Molecular Biology, Kasr Al-Aini Faculty of Medicine, Cairo University, Egypt
| | | | - Hanan Hagar
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Reem T Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, United States.
| |
Collapse
|
41
|
Oliveira RC, Gama J, Casanova J. B-cell lymphoma 2 family members and sarcomas: a promising target in a heterogeneous disease. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:583-599. [PMID: 37720343 PMCID: PMC10501895 DOI: 10.37349/etat.2023.00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/14/2023] [Indexed: 09/19/2023] Open
Abstract
Targeting the B-cell lymphoma 2 (Bcl-2) family proteins has been the backbone for hematological malignancies with overall survival improvements. The Bcl-2 family is a major player in apoptosis regulation and, has captured the researcher's interest in the treatment of solid tumors. Sarcomas are a heterogeneous group of diseases, comprising several entities, with high morbidity and mortality and with few specific therapies available. The treatment for sarcomas is based on platinum regimens, with variable results and poor outcomes, especially in advanced lesions. The high number of different sarcoma entities makes treatment standardization as well as the performance of clinical trials difficult. The use of Bcl-2 family members modifiers has revealed promising results in in vitro and in vivo models and may be a valid option, especially when used in combination with chemotherapy. In this article, a revision of these results and possibilities for the use of Bcl-2 family members inhibitors in sarcomas was performed.
Collapse
Affiliation(s)
- Rui Caetano Oliveira
- Centro de Anatomia Patológica Germano de Sousa, 3000 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
| | - José Casanova
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
- Orthopedic Oncology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
42
|
Eltamany EE, Nafie MS, Hal DM, Abdel-Kader MS, Abu-Elsaoud AM, Ahmed SA, Ibrahim AK, Badr JM, Abdelhameed RFA. A New Saponin (Zygo-albuside D) from Zygophyllum album Roots Triggers Apoptosis in Non-Small Cell Lung Carcinoma (A549 Cells) through CDK-2 Inhibition. ACS OMEGA 2023; 8:30630-30639. [PMID: 37636931 PMCID: PMC10448641 DOI: 10.1021/acsomega.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Phytochemical study of the ethyl acetate root extract of Zygophyllum album has resulted in the isolation of a new saponin, Zygo-albuside D (1), along with two known compounds; (3-O-[β-D-quinovopyranosyl]-quinovic acid) (2), which is first reported in the root, and catechin (3), first reported in the genus. Their chemical structures were established by NMR and high-resolution mass spectrometry (HRMS). The new saponin (1) exhibited promising cytotoxicity with IC50 values of 3.5 and 5.52 μM on A549 and PC-3 cancer cell lines, respectively, compared to doxorubicin with IC50 values of 9.44 and 11.39 μM on A549 and PC-3 cancer cell lines, respectively. While it had an IC50 value of 46.8 μM against WISH cells. Investigating apoptosis-induction, compound 1 induced total apoptotic cell death in A549 lung cancer cells by 32-fold; 21.53% compared to 0.67% in the untreated control cells. Finally, it upregulated the pro-apoptotic genes and downregulated the antiapoptotic gene using gene expression levels. Compound 1 exhibited remarkable CDK-2 target inhibition by 96.2% with an IC50 value of 117.6 nM compared to Roscovitine. The molecular docking study further confirmed the binding affinity of compound 1 as CDK2 and Bcl2 inhibitors that led to apoptosis induction in A549 cancer cells. Hence, this study highlights the importance of compound 1 in the design of a new anticancer agent with specific mechanisms.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mohamed S. Nafie
- Department
of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M. Hal
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Maged S. Abdel-Kader
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21215, Egypt
| | - Abdelghafar M. Abu-Elsaoud
- Department
of Botany & Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Department
of Biology, College of Science, Imam Muhammad
bin Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Safwat A. Ahmed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Amany K. Ibrahim
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Jihan M. Badr
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Reda F. A. Abdelhameed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, Galala
University, New Galala 43713, Egypt
| |
Collapse
|
43
|
Werry F, Mazur E, Theyse LFH, Edlich F. Apoptosis Regulation in Osteoarthritis and the Influence of Lipid Interactions. Int J Mol Sci 2023; 24:13028. [PMID: 37685835 PMCID: PMC10488181 DOI: 10.3390/ijms241713028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in human and animal joints. The joints undergo several morphological and histological changes during the development of radiographically visible osteoarthritis. The most discussed changes include synovial inflammation, the massive destruction of articular cartilage and ongoing joint destruction accompanied by massive joint pain in the later stadium. Either the increased apoptosis of chondrocytes or the insufficient apoptosis of inflammatory macrophages and synovial fibroblasts are likely to underly this process. In this review, we discuss the current state of research on the pathogenesis of OA with special regard to the involvement of apoptosis.
Collapse
Affiliation(s)
- Frederike Werry
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Emilia Mazur
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Lars F. H. Theyse
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
44
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
45
|
Schou MD, Søgaard OS, Rasmussen TA. Clinical trials aimed at HIV cure or remission: new pathways and lessons learned. Expert Rev Anti Infect Ther 2023; 21:1227-1243. [PMID: 37856845 DOI: 10.1080/14787210.2023.2273919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The main barrier to finding a cure against HIV is the latent HIV reservoir, which persists in people living with HIV (PLWH) despite antiretroviral treatment (ART). Here, we discuss recent findings from interventional studies using mono- and combination therapies aimed at enhancing immune-mediated killing of the virus with or without activating HIV from latency. AREAS COVERED We discuss latency reversal agents (LRAs), broadly neutralizing antibodies, immunomodulatory therapies, and studies aimed at inducing apoptosis. EXPERT OPINION The landscape of clinical trials for HIV cure and remission has evolved considerably over the past 10 years. Several novel interventions such as immune checkpoint inhibitors, therapeutic vaccines, and broadly neutralizing antibodies have been tested either alone or in combination with LRAs but studies have so far not shown a meaningful impact on the frequency of latently infected cells. Immunomodulatory therapies could work differently in the setting of antigen expression, that is, during active viremia, and timing of interventions could therefore, be key to future therapeutic success. Lessons learned from clinical trials aimed at HIV cure indicate that while we are still far from reaching a complete eradication cure of HIV, clinical interventions capable of inducing enhanced control of HIV replication in the absence of ART might be a more feasible goal.
Collapse
Affiliation(s)
- Maya Dyveke Schou
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas Aagaard Rasmussen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Wei AH, Roberts AW. BCL2 Inhibition: A New Paradigm for the Treatment of AML and Beyond. Hemasphere 2023; 7:e912. [PMID: 37304937 PMCID: PMC10256369 DOI: 10.1097/hs9.0000000000000912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Altering the natural history of acute myeloid leukemia (AML) in unfit and older patients has proved a highly challenging hurdle, despite several decades of concerted clinical trial effort. The arrival of venetoclax (VEN) to the clinical stage represents the most important therapeutic advance to date for older patients with AML. In this review, we will explain how and why VEN works, summarize its remarkable pathway to regulatory approval, and highlight the key milestones that have been important for its successful development in AML. We also provide perspectives on some of the challenges associated with using VEN in the clinic, emerging knowledge regarding mechanisms of treatment failure, and current clinical research directions likely to shape how this drug and others in this new class of anticancer agents are used in the future.
Collapse
Affiliation(s)
- Andrew H Wei
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Benites J, Valderrama JA, Contreras Á, Enríquez C, Pino-Rios R, Yáñez O, Buc Calderon P. Discovery of New 2-Phenylamino-3-acyl-1,4-naphthoquinones as Inhibitors of Cancer Cells Proliferation: Searching for Intra-Cellular Targets Playing a Role in Cancer Cells Survival. Molecules 2023; 28:molecules28114323. [PMID: 37298798 DOI: 10.3390/molecules28114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/12/2023] Open
Abstract
A series of 2-phenylamino-3-acyl-1,4-naphtoquinones were evaluated regarding their in vitro antiproliferative activities using DU-145, MCF-7 and T24 cancer cells. Such activities were discussed in terms of molecular descriptors such as half-wave potentials, hydrophobicity and molar refractivity. Compounds 4 and 11 displayed the highest antiproliferative activity against the three cancer cells and were therefore further investigated. The in silico prediction of drug likeness, using pkCSM and SwissADME explorer online, shows that compound 11 is a suitable lead molecule to be developed. Moreover, the expressions of key genes were studied in DU-145 cancer cells. They include genes involved in apoptosis (Bcl-2), tumor metabolism regulation (mTOR), redox homeostasis (GSR), cell cycle regulation (CDC25A), cell cycle progression (TP53), epigenetic (HDAC4), cell-cell communication (CCN2) and inflammatory pathways (TNF). Compound 11 displays an interesting profile because among these genes, mTOR was significantly less expressed as compared to control conditions. Molecular docking shows that compound 11 has good affinity with mTOR, unraveling a potential inhibitory effect on this protein. Due to the key role of mTOR on tumor metabolism, we suggest that impaired DU-145 cells proliferation by compound 11 is caused by a reduced mTOR expression (less mTOR protein) and inhibitory activity on mTOR protein.
Collapse
Affiliation(s)
- Julio Benites
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Jaime A Valderrama
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Álvaro Contreras
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Ricardo Pino-Rios
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 73 Avenue E. Mounier, 1200 Brussels, Belgium
| |
Collapse
|
48
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
49
|
Correia C, Maurer MJ, McDonough SJ, Schneider PA, Ross PE, Novak AJ, Feldman AL, Cerhan JR, Slager SL, Witzig TE, Eckloff BW, Li H, Nowakowski GS, Kaufmann SH. Relationship between BCL2 mutations and follicular lymphoma outcome in the chemoimmunotherapy era. Blood Cancer J 2023; 13:81. [PMID: 37193683 PMCID: PMC10188323 DOI: 10.1038/s41408-023-00847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
How to identify follicular lymphoma (FL) patients with low disease burden but high risk for early progression is unclear. Building on a prior study demonstrating the early transformation of FLs with high variant allele frequency (VAF) BCL2 mutations at activation-induced cytidine deaminase (AICDA) sites, we examined 11 AICDA mutational targets, including BCL2, BCL6, PAX5, PIM1, RHOH, SOCS, and MYC, in 199 newly diagnosed grade 1 and 2 FLs. BCL2 mutations with VAF ≥20% occurred in 52% of cases. Among 97 FL patients who did not initially receive rituximab-containing therapy, nonsynonymous BCL2 mutations at VAF ≥20% were associated with increased transformation risk (HR 3.01, 95% CI 1.04-8.78, p = 0.043) and a trend toward shorter event-free survival (EFS, median 20 months with mutations versus 54 months without, p = 0.052). Other sequenced genes were less frequently mutated and did not increase the prognostic value of the panel. Across the entire population, nonsynonymous BCL2 mutations at VAF ≥20% were associated with decreased EFS (HR 1.55, 95% CI 1.02-2.35, p = 0.043 after correction for FLIPI and treatment) and decreased overall survival after median 14-year follow-up (HR 1.82, 95% CI 1.05-3.17, p = 0.034). Thus, high VAF nonsynonymous BCL2 mutations remain prognostic even in the chemoimmunotherapy era.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samantha J McDonough
- Medical Genome Facility, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paige E Ross
- Genomics Systems Unit, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anne J Novak
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Medical Genome Facility, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|