1
|
Iliev P, McCutcheon C, Admas TH, Reithmeier A, Lopez McDonald M, van Outryve A, Hanke D, Brown JI, Haraldsson M, Toillon RA, Frank DA, Page BDG. Challenging the "Undruggable"─Targeting STAT3 but Identifying Potent TrkA-Targeted Inhibitors. J Med Chem 2025; 68:9501-9524. [PMID: 40245441 DOI: 10.1021/acs.jmedchem.5c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a promising yet challenging anticancer drug target due to its complex signaling and limited "druggability". To this end, we herein highlight a target engagement-focused screening and optimization pipeline pursuing the discovery of novel STAT3 inhibitors. From a STAT3 differential scanning fluorimetry high-throughput screen, we identified compounds that appeared to stabilize STAT3 toward thermal aggregation and moderately inhibited cellular STAT3 activity. Subsequent evaluation using complementary and orthogonal assays revealed their high affinity for tropomyosin receptor kinase A (TrkA). Applying a similar target engagement-inspired approach, we refined inhibitor binding and selectivity toward TrkA, showing efficacy in cellular TrkA cancer models. Top compound, PI-15, demonstrated successful target engagement in a cellular thermal shift assay and potently inhibited TrkA activity in cancer cells. These approaches highlight the importance of prioritizing rigorous target engagement validation early in the drug discovery pipeline, resulting in promising new inhibitors.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Conall McCutcheon
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Tizita H Admas
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Anja Reithmeier
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Melanie Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Alexandre van Outryve
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille F-59000, France
| | - Danielle Hanke
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Robert-Alain Toillon
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille F-59000, France
| | - David A Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver V6T 1Z3, Canada
| |
Collapse
|
2
|
Díaz I, Salido S, Nogueras M, Cobo J. Synthesis of Ethyl Pyrimidine-Quinolincarboxylates Selected from Virtual Screening as Enhanced Lactate Dehydrogenase (LDH) Inhibitors. Int J Mol Sci 2024; 25:9744. [PMID: 39273691 PMCID: PMC11396203 DOI: 10.3390/ijms25179744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The inhibition of the hLDHA (human lactate dehydrogenase A) enzyme has been demonstrated to be of great importance in the treatment of cancer and other diseases, such as primary hyperoxalurias. In that regard, we have designed, using virtual docking screening, a novel family of ethyl pyrimidine-quinolinecarboxylate derivatives (13-18)(a-d) as enhanced hLDHA inhibitors. These inhibitors were synthesised through a convergent pathway by coupling the key ethyl 2-aminophenylquinoline-4-carboxylate scaffolds (7-12), which were prepared by Pfitzinger synthesis followed by a further esterification, to the different 4-aryl-2-chloropyrimidines (VIII(a-d)) under microwave irradiation at 150-170 °C in a green solvent. The values obtained from the hLDHA inhibition were in line with the preliminary of the preliminary docking results, the most potent ones being those with U-shaped disposition. Thirteen of them showed IC50 values lower than 5 μM, and for four of them (16a, 18b, 18c and 18d), IC50 ≈ 1 μM. Additionally, all compounds with IC50 < 10 μM were also tested against the hLDHB isoenzyme, resulting in three of them (15c, 15d and 16d) being selective to the A isoform, with their hLDHB IC50 > 100 μM, and the other thirteen behaving as double inhibitors.
Collapse
Affiliation(s)
| | | | | | - Justo Cobo
- Facultad de Ciencias Experimentales, Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, E-23071 Jaén, Spain; (I.D.); (S.S.); (M.N.)
| |
Collapse
|
3
|
Ding P, Yang K, Wang H, Kuang L, Gao L, Luo J, Tuo X. Exploring the therapeutic potential of rutin through investigating its inhibitory mechanism on lactate dehydrogenase: Multi-spectral methods and computer simulation. Bioorg Chem 2024; 149:107503. [PMID: 38823312 DOI: 10.1016/j.bioorg.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel β-sheet, and β-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.
Collapse
Affiliation(s)
- Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Kaiyu Yang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Huixiao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Lin Kuang
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jiaqing Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
4
|
Chen J, Chen C, Zhang Z, Zeng F, Zhang S. Exploring the Key Amino Acid Residues Surrounding the Active Center of Lactate Dehydrogenase A for the Development of Ideal Inhibitors. Molecules 2024; 29:2029. [PMID: 38731521 PMCID: PMC11085338 DOI: 10.3390/molecules29092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.
Collapse
Affiliation(s)
- Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Zhengfu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| | - Fancai Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong 637009, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.C.); (C.C.); (Z.Z.)
| |
Collapse
|
5
|
Abstract
Significance: Cancer-associated tissue-specific lactic acidosis stimulates and mediates tumor invasion and metastasis and is druggable. Rarely, malignancy causes systemic lactic acidosis, the role of which is poorly understood. Recent Advances: The understanding of the role of lactate has shifted dramatically since its discovery. Long recognized as only a waste product, lactate has become known as an alternative metabolism substrate and a secreted nutrient that is exchanged between the tumor and the microenvironment. Tissue-specific lactic acidosis is targeted to improve the host body's anticancer defense and serves as a tool that allows the targeting of anticancer compounds. Systemic lactic acidosis is associated with poor survival. In patients with solid cancer, systemic lactic acidosis is associated with an extremely poor prognosis, as revealed by the analysis of 57 published cases in this study. Although it is considered a pathology worth treating, targeting systemic lactic acidosis in patients with solid cancer is usually inefficient. Critical Issues: Research gaps include simple questions, such as the unknown nuclear pH of the cancer cells and its effects on chemotherapy outcomes, pH sensitivity of glycosylation in cancer cells, in vivo mechanisms of response to acidosis in the absence of lactate, and overinterpretation of in vitro results that were obtained by using cells that were not preadapted to acidic environments. Future Directions: Numerous metabolism-targeting anticancer compounds induce lactatemia, lactic acidosis, or other types of acidosis. Their potential to induce acidic environments is largely overlooked, although the acidosis might contribute to a substantial portion of the observed clinical effects. Antioxid. Redox Signal. 37, 1130-1152.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Di Magno L, Coluccia A, Bufano M, Ripa S, La Regina G, Nalli M, Di Pastena F, Canettieri G, Silvestri R, Frati L. Discovery of novel human lactate dehydrogenase inhibitors: Structure-based virtual screening studies and biological assessment. Eur J Med Chem 2022; 240:114605. [PMID: 35868126 DOI: 10.1016/j.ejmech.2022.114605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Most cancer cells switch their metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis to generate ATP and precursors for the biosynthesis of key macromolecules. The aerobic conversion of pyruvate to lactate, coupled to oxidation of the nicotinamide cofactor, is a primary hallmark of cancer and is catalyzed by lactate dehydrogenase (LDH), a central effector of this pathological reprogrammed metabolism. Hence, inhibition of LDH is a potential new promising therapeutic approach for cancer. In the search for new LDH inhibitors, we carried out a structure-based virtual screening campaign. Here, we report the identification of a novel specific LDH inhibitor, the pyridazine derivative 18 (RS6212), that exhibits potent anticancer activity within the micromolar range in multiple cancer cell lines and synergizes with complex I inhibition in the suppression of tumor growth. Altogether, our data support the conclusion that compound 18 deserves to be further investigated as a starting point for the development of LDH inhibitors and for novel anticancer strategies based on the targeting of key metabolic steps.
Collapse
Affiliation(s)
- Laura Di Magno
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy.
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy.
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Silvia Ripa
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Fiorella Di Pastena
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy
| | - Gianluca Canettieri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy.
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy.
| | - Luigi Frati
- Institute Pasteur Italy - Cenci Bolognetti Foundation, Via Regina Elena 291, I-00161, Rome, Italy; IRCCS Neuromed S.p.A., Via Atinense 18, Pozzilli, Isernia, Italy.
| |
Collapse
|
7
|
Moya-Garzon MD, Rodriguez-Rodriguez B, Martin-Higueras C, Franco-Montalban F, Fernandes MX, Gomez-Vidal JA, Pey AL, Salido E, Diaz-Gavilan M. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur J Med Chem 2022; 237:114396. [DOI: 10.1016/j.ejmech.2022.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
|
8
|
Du M, Yu T, Zhan Q, Li H, Zou Y, Geng M, Meng T, Xie Z. Development of a novel LDHA inhibitor with potent antitumor activity and immune activation. Cancer Sci 2022; 113:2974-2985. [PMID: 35722994 PMCID: PMC9459323 DOI: 10.1111/cas.15468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Lactate accumulation in the tumor microenvironment was shown to be closely related to tumor growth and immune escape, and suppression of lactate production by inhibiting lactate dehydrogenase A (LDHA) has been pursued as a potential novel antitumor strategy. However, only a few potent LDHA inhibitors have been developed and most of them did not show potent antitumor effects in vivo. To this end, we designed new LDHA inhibitors and obtained a novel potent LDHA inhibitor, ML‐05. ML‐05 inhibited cellular lactate production and tumor cell proliferation, which was associated with inhibition of ATP production and induction of reactive oxygen species and G1 phase arrest. In a mouse B16F10 melanoma model, intratumoral injection of ML‐05 significantly reduced lactate production, inhibited tumor growth, and released antitumor immune response of T cell subsets (Th1 and GMZB+CD8 T cells) in the tumor microenvironment. Moreover, ML‐05 treatment combined with programmed cell death‐1 Ab or stimulator of interferon genes protein (STING) could sensitize the antitumor activity in B16F10 melanoma model. Collectively, we developed a novel potent LDHA inhibitor, ML‐05, that elicited profound antitumor activity when injected locally, and was associated with the activation of antitumor immunity. In addition, ML‐05 could sensitize immunotherapies, which suggests great translational value.
Collapse
Affiliation(s)
- Mengyan Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ting Yu
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qinjinge Zhan
- Jiangxi Key Laboratory of Active Ingredients of Natural Drugs, Yichun University, Yichun, 336000, China
| | - Han Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yiping Zou
- Jiangxi Key Laboratory of Active Ingredients of Natural Drugs, Yichun University, Yichun, 336000, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tao Meng
- Division of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021; 237:1902-1922. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+ ) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any "smart decision-making" or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of "lactic acidosis" (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Vijay Nirusimhan
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Abhinav Parashar
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Jesucastin Edward
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
10
|
Nadal-Bufi F, Mason JM, Chan LY, Craik DJ, Kaas Q, Troeira Henriques S. Designed β-Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. J Med Chem 2021; 64:3767-3779. [PMID: 33765386 DOI: 10.1021/acs.jmedchem.0c01898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a β-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating β-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
12
|
Rai G, Urban DJ, Mott BT, Hu X, Yang SM, Benavides GA, Johnson MS, Squadrito GL, Brimacombe KR, Lee TD, Cheff DM, Zhu H, Henderson MJ, Pohida K, Sulikowski GA, Dranow DM, Kabir M, Shah P, Padilha E, Tao D, Fang Y, Christov PP, Kim K, Jana S, Muttil P, Anderson T, Kunda NK, Hathaway HJ, Kusewitt DF, Oshima N, Cherukuri M, Davies DR, Norenberg JP, Sklar LA, Moore WJ, Dang CV, Stott GM, Neckers L, Flint AJ, Darley-Usmar VM, Simeonov A, Waterson AG, Jadhav A, Hall MD, Maloney DJ. Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. J Med Chem 2020; 63:10984-11011. [PMID: 32902275 PMCID: PMC7830743 DOI: 10.1021/acs.jmedchem.0c00916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.
Collapse
Affiliation(s)
- Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel J. Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Michelle S. Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Giuseppe L. Squadrito
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David M. Dranow
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Elias Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pavan Muttil
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Tamara Anderson
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Nitesh K. Kunda
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Helen J. Hathaway
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Donna F. Kusewitt
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Murali Cherukuri
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Douglas R. Davies
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Jeffrey P. Norenberg
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Larry A. Sklar
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - William J. Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Chi V. Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Ludwig Institute for Cancer Research, New York, New York 10017, United States
| | - Gordon M. Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Andrew J. Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United State
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
13
|
Development of dual inhibitors targeting pyruvate dehydrogenase kinases and human lactate dehydrogenase A: High-throughput virtual screening, synthesis and biological validation. Eur J Med Chem 2020; 203:112579. [DOI: 10.1016/j.ejmech.2020.112579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
14
|
Friberg A, Rehwinkel H, Nguyen D, Pütter V, Quanz M, Weiske J, Eberspächer U, Heisler I, Langer G. Structural Evidence for Isoform-Selective Allosteric Inhibition of Lactate Dehydrogenase A. ACS OMEGA 2020; 5:13034-13041. [PMID: 32548488 PMCID: PMC7288559 DOI: 10.1021/acsomega.0c00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 05/11/2023]
Abstract
Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumors, thereby sustaining high glycolysis rates, tumor growth, and chemoresistance. High-throughput screening resulted in the identification of phthalimide and dibenzofuran derivatives as novel lactate dehydrogenase inhibitors, selectively inhibiting the activity of the LDHA isoenzyme. Cocrystallization experiments confirmed target engagement in addition to demonstrating binding to a novel allosteric binding site present in all four LDHA subunits of the LDH5 homotetramer.
Collapse
Affiliation(s)
- Anders Friberg
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| | - Hartmut Rehwinkel
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Duy Nguyen
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Vera Pütter
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Maria Quanz
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Jörg Weiske
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Uwe Eberspächer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Iring Heisler
- Bayer
AG, Pharmaceuticals, R&D, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Gernot Langer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| |
Collapse
|
15
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
16
|
Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH. The Biochemical and Clinical Perspectives of Lactate Dehydrogenase: An Enzyme of Active Metabolism. Endocr Metab Immune Disord Drug Targets 2020; 20:855-868. [PMID: 31886754 DOI: 10.2174/1871530320666191230141110] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lactate dehydrogenase (LDH) is a group of oxidoreductase isoenzymes catalyzing the reversible reaction between pyruvate and lactate. The five isoforms of this enzyme, formed from two subunits, vary in isoelectric points and these isoforms have different substrate affinity, inhibition constants and electrophoretic mobility. These diverse biochemical properties play a key role in its cellular, tissue and organ specificity. Though LDH is predominantly present in the cytoplasm, it has a multi-organellar location as well. OBJECTIVE The primary objective of this review article is to provide an update in parallel, the previous and recent biochemical views and its clinical significance in different diseases. METHODS With the help of certain inhibitors, its active site three-dimensional view, reactions mechanisms and metabolic pathways have been sorted out to a greater extent. Overexpression of LDH in different cancers plays a principal role in anaerobic cellular metabolism, hence several inhibitors have been designed to employ as novel anticancer agents. DISCUSSION LDH performs a very important role in overall body metabolism and some signals can induce isoenzyme switching under certain circumstances, ensuring that the tissues consistently maintain adequate ATP supply. This enzyme also experiences some posttranslational modifications, to have diversified metabolic roles. Different toxicological and pathological complications damage various organs, which ultimately result in leakage of this enzyme in serum. Hence, unusual LDH isoform level in serum serves as a significant biomarker of different diseases. CONCLUSION LDH is an important diagnostic biomarker for some common diseases like cancer, thyroid disorders, tuberculosis, etc. In general, LDH plays a key role in the clinical diagnosis of various common and rare diseases, as this enzyme has a prominent role in active metabolism.
Collapse
Affiliation(s)
- Amjad A Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| | - Sivakumar J T Gowder
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City,
Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Vietnam
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
17
|
Identification of human lactate dehydrogenase A inhibitors with anti-osteosarcoma activity through cell-based phenotypic screening. Bioorg Med Chem Lett 2019; 30:126909. [PMID: 31879209 DOI: 10.1016/j.bmcl.2019.126909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022]
Abstract
Human lactate dehydrogenase A plays a key role in the glycolytic process, the inhibition of the enzyme is therefore considered of interest in developing anticancer therapeutics. However, due to the highly polar nature of hLDHA binding pocket, it is very challenge to discover potent cellular active hLDHA inhibitor. Combined a cell-based phenotypic screening assay with a primary enzymatic assay, we discovered three cellular active hLDHA inhibitors, namely 38, 63, and 374, which reduced MG-63 cell proliferation with IC50 values of 6.47, 2.93, and 6.10 µM, respectively, and inhibited hLDHA with EC50 values of 3.03, 0.63, and 3.26 µM, respectively.
Collapse
|
18
|
LDHA Suppression Altering Metabolism Inhibits Tumor Progress by an Organic Arsenical. Int J Mol Sci 2019; 20:ijms20246239. [PMID: 31835667 PMCID: PMC6940739 DOI: 10.3390/ijms20246239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Based on the potential therapeutic value in targeting metabolism for the treatment of cancer, an organic arsenical PDT-BIPA was fabricated, which exerted selective anti-cancer activity in vitro and in vivo via targeting lactate dehydrogenase A (LDHA) to remodel the metabolic pathway. In details, the precursor PDT-BIPA directly inhibited the function of LDHA and converted the glycolysis to oxidative phosphorylation causing ROS burst and mitochondrial dysfunction. PDT-BIPA also altered several gene expression, such as HIF-1α and C-myc, to support the metabolic remodeling. All these changes lead to caspase family-dependent cell apoptosis in vivo and in vitro without obvious side effect. Our results provided this organic arsenical precursor as a promising anticancer candidate and suggested metabolism as a target for cancer therapies.
Collapse
|
19
|
Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. JOURNAL OF ONCOLOGY 2019; 2019:2084195. [PMID: 31781212 PMCID: PMC6875281 DOI: 10.1155/2019/2084195] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/13/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Although immunotherapy plays a significant role in tumor therapy, its efficacy is impaired by an immunosuppressive tumor microenvironment. A molecule that contributes to the protumor microenvironment is the metabolic product lactate. Lactate is produced in large amounts by cancer cells in response to either hypoxia or pseudohypoxia, and its presence in excess alters the normal functioning of immune cells. A key enzyme involved in lactate metabolism is lactate dehydrogenase (LDH). Elevated baseline LDH serum levels are associated with poor outcomes of current anticancer (immune) therapies, especially in patients with melanoma. Therefore, targeting LDH and other molecules involved in lactate metabolism might improve the efficacy of immune therapies. This review summarizes current knowledge about lactate metabolism and its role in the tumor microenvironment. Based on that information, we develop a rationale for deploying drugs that target lactate metabolism in combination with immune checkpoint inhibitors to overcome lactate-mediated immune escape of tumor cells.
Collapse
|
20
|
He S, Wang Q. Discovery of human lactate dehydrogenase 5 inhibitors (hLDH5) with anti-lung cancer activity through an in silico method and biological validation. Bioorg Med Chem Lett 2019; 29:2459-2463. [PMID: 31345633 DOI: 10.1016/j.bmcl.2019.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023]
Abstract
Human lactate dehydrogenase 5 (hLDH5) is an important metabolic enzyme playing critical roles in the anaerobic glycolysis. Herein, we employed an in silico method and biological validation to identify a novel hLDH5 inhibitor with a promising cellular activity under hypoxia condition. The identified compound 9 bound to hLDH5 with a Kd value of 1.02 µM, and inhibited the enzyme with an EC50 value of 0.7 µM. Compound 9 exhibited a weak potency against NCI-H1975 cell proliferation under normal condition (IC50 = 36.5 µM), while dramatically increased to 5.7 µM under hypoxia condition. In line with the observation, hLDH5 expression in NCI-H1975 cell under hypoxia condition is much higher as compared to the normal oxygenated condition, indicating the hLDH5 inhibition may contribute to the cancer cell death.
Collapse
Affiliation(s)
- Shaozhong He
- Department of Oncology, The 5th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518102, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China.
| | - Qun Wang
- Department of Oncology, The 5th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518102, China
| |
Collapse
|
21
|
The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Sci Rep 2019; 9:10897. [PMID: 31350520 PMCID: PMC6659708 DOI: 10.1038/s41598-019-47329-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
The controversial anti-proliferative effects of Echinacea purpurea (L.) Moench (Asteraceae) might be related to different plant metabolites contained in plant samples, extracts and products. The influence of bacterial endophytes on the synthesis of bioactive compounds in the medicinal plants has been previously demonstrated but there are only few studies addressing anticancer effects and mechanisms of E. purpurea extracts following endophytic colonization. The present study aimed to test and compare the lactate dehydrogenase (LDH) inhibition potential of n-hexane and methanol extracts from in vitro endophyte non-inoculated and inoculated E. purpurea plants. An in vitro model was previously set up to perform the infection of axenic E. purpurea plants with bacterial endophytic strains isolated from E. purpurea aerial part. Only methanol extracts showed LDH5 inhibition, in particular the richest in chicoric acid and most strongly inhibiting extract was obtained from inoculated stem and leaves of E. purpurea (IC50 = 0.9 mg/ml). Chicoric acid showed an IC50 value (66.7 µM) in enzymatic assays better than that of the reference compound galloflavin. Modeling studies were carried out to suggest the putative interaction mode of chicoric acid in the enzyme active site. This in vitro model on plant-bacterial interaction may lead to obtain extracts from plants enriched in bioactive compounds and it is a new approach for the discovery of novel anticancer compounds.
Collapse
|
22
|
Zhou Y, Tao P, Wang M, Xu P, Lu W, Lei P, You Q. Development of novel human lactate dehydrogenase A inhibitors: High-throughput screening, synthesis, and biological evaluations. Eur J Med Chem 2019; 177:105-115. [PMID: 31129449 DOI: 10.1016/j.ejmech.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 12/25/2022]
Abstract
Human lactate dehydrogenase A (LDHA) plays a critical role in the glycolytic process, making the enzyme an ideal of anti-cancer drug target. Herein, we report the discovery of novel potent LDHA inhibitors by screening an in-house library. The hit-to-lead modification enabled us to identify compound 24c, which inhibited LDHA activity with an EC50 value of 90 nM, and reduced MiaPaCa-2 cancer cell proliferation with an IC50 value of 2.1 μM. In line with the in vitro anticancer activity, 24c suppressed the tumor growth at a dose of 10 mg/kg in a MiaPaCa-2 cells xenograft model, but with little effect to the mice weight. Moreover, 24c strongly inhibited MiaPaCa-2 cell colonies formation, induced MiaPaCa-2 cell apoptosis, and arrested MiaPaCa-2 cell cycle at G2 phase. In addition, the mitochondrial bioenergetics analysis suggested that 24c could reprogram cancer cell metabolic pathways from glycolysis to oxidation phosphorylation, which verified by decreasing the extracellular acidification rates and lactate formation, and increasing oxygen consumption rate in cancer cell. All these results indicate 24c is a promising metabolic modulator for the anticancer drug development.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Pingde Tao
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Meigui Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Peng Xu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Pan Lei
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China
| | - Qiuyun You
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, PR China; College of Pharmacy, Hubei University of Traditional Chinese Medicine, No. 1 West Road, Huangjiahu University Town, Hongshan District, Wuhan City, 430065, Hubei Province, PR China.
| |
Collapse
|
23
|
Lukac I, Abdelhakim H, Ward RA, St-Gallay SA, Madden JC, Leach AG. Predicting protein-ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chem Sci 2019; 10:2218-2227. [PMID: 30881647 PMCID: PMC6388092 DOI: 10.1039/c8sc04564j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Accurately computing the geometry and energy of host-guest and protein-ligand interactions requires a physically accurate description of the forces in action. Quantum mechanics can provide this accuracy but the calculations can require a prohibitive quantity of computational resources. The size of the calculations can be reduced by including only the atoms of the receptor that are in close proximity to the ligand. We show that when combined with log P values for the ligand (which can be computed easily) this approach can significantly improve the agreement between computed and measured binding energies. When the approach is applied to lactate dehydrogenase A, it can make quantitative predictions about conformational, tautomeric and protonation state preferences as well as stereoselectivity and even identifies potential errors in structures deposited in the Protein Data Bank for this enzyme. By broadening the evidence base for these structures from only the diffraction data, more chemically realistic structures can be proposed.
Collapse
Affiliation(s)
- Iva Lukac
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Hend Abdelhakim
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Richard A Ward
- Chemistry, Oncology, IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Stephen A St-Gallay
- Sygnature Discovery Ltd , Bio City, Pennyfoot St , Nottingham , NG1 1GF , UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , L3 3AF , UK .
| |
Collapse
|
24
|
Zhang SL, He Y, Tam KY. Targeting cancer metabolism to develop human lactate dehydrogenase ( h LDH)5 inhibitors. Drug Discov Today 2018; 23:1407-1415. [DOI: 10.1016/j.drudis.2018.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
25
|
Poli G, Granchi C, Aissaoui M, Minutolo F, Tuccinardi T. Three-Dimensional Analysis of the Interactions between hLDH5 and Its Inhibitors. Molecules 2017; 22:molecules22122217. [PMID: 29236080 PMCID: PMC6149858 DOI: 10.3390/molecules22122217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/08/2023] Open
Abstract
Inhibitors of human lactate dehydrogenase (hLDH5)—the enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD+—are promising therapeutic agents against cancer because this enzyme is generally found to be overexpressed in most invasive cancer cells and is linked to their vitality especially under hypoxic conditions. Consequently, significant efforts have been made for the identification of small-molecule hLDH5 inhibitors displaying high inhibitory potencies. X-ray structure of hLDH5 complexes as well as molecular modeling studies contribute to identify and explain the main binding modes of hLDH5 inhibitors reported in literature. The purpose of this review is to analyze the main three-dimensional interactions between some of the most potent inhibitors and hLDH5, in order to provide useful suggestions for the design of new derivatives.
Collapse
Affiliation(s)
- Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy.
| | | | - Mohamed Aissaoui
- Department of Chemistry, University of Badji Mokhtar, Sidi Amar-Annaba-B.P. 12, Annaba 23000, Algeria.
| | | | | |
Collapse
|
26
|
Rai G, Brimacombe KR, Mott BT, Urban DJ, Hu X, Yang SM, Lee TD, Cheff DM, Kouznetsova J, Benavides GA, Pohida K, Kuenstner EJ, Luci DK, Lukacs CM, Davies DR, Dranow DM, Zhu H, Sulikowski G, Moore WJ, Stott GM, Flint AJ, Hall MD, Darley-Usmar VM, Neckers LM, Dang CV, Waterson AG, Simeonov A, Jadhav A, Maloney DJ. Discovery and Optimization of Potent, Cell-Active Pyrazole-Based Inhibitors of Lactate Dehydrogenase (LDH). J Med Chem 2017; 60:9184-9204. [PMID: 29120638 PMCID: PMC5894102 DOI: 10.1021/acs.jmedchem.7b00941] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.
Collapse
Affiliation(s)
- Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Daniel J. Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Katie Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Eric J. Kuenstner
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | | | - Douglas R. Davies
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA, 98110
| | - David M. Dranow
- Beryllium Discovery Corp, 7869 Day Rd West, Bainbridge Island, WA, 98110
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Gary Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - William J. Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Gordon M. Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Andrew J. Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland, 20892
| | - Chi V. Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadephia, Pennsylvania, 19104
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, 37232
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, 20850
| |
Collapse
|
27
|
Khalifa MMA, Bakr AG, Osman AT. Protective effects of phloridzin against methotrexate-induced liver toxicity in rats. Biomed Pharmacother 2017; 95:529-535. [PMID: 28866420 DOI: 10.1016/j.biopha.2017.08.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Liver is the largest internal organ concerning with metabolism, hormonal balance and clarifying of the toxins. One of the main complications of methotrexate (MTX) therapy was the hepatic injury. OBJECTIVE This study was conducted to elucidate the possible protective effects of phloridzin (PHL) against MTX-induced hepatotoxicity as compared to standard agent N-acetylcysteine (NAC). MATERIALS AND METHODS Rats were randomly divided into a normal control group, a respective group (PHL 40mg/kg/day orally (p.o.) for 10 consecutive days), a hepatotoxicity control group (MTX 20mg/kg, i.p., once), and three treated groups received NAC (150mg/kg/day; a reference standard), PHL (40mg/kg/day) and PHL (80mg/kg/day) p.o. for 10 consecutive days, at the end of the day 3 of the experiment rats were administered MTX. Assessed biomarkers included serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) as liver function parameters, serum tumor necrosis factor-α (TNF-α) and cyclooxygenase-II (COX-II), as inflammatory biomarkers, hepatic total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), glutathione reduced (GSH), nitrite (NO2-), catalase (CAT), glutathione-S-transferase (GST) and superoxide dismutase (SOD) as oxidative stress biomarkers. Furthermore, hepatic caspase-3 expression was assessed. Biochemical and molecular estimations reinforced by histopathological findings. RESULTS Rats pre-treated with PHL significantly reduced hepatic injury, evidenced by significant reductions in ALT, AST and LDH, TNF-α and COX-II levels, significant reductions in hepatic NO2- and TBARS levels, and significant elevations in hepatic TAC, GSH, GST, CAT and SOD levels. Additionally, downregulation of hepatic caspase-3 expression. Finally, histopathological results consistent with our previous findings. CONCLUSION PHL protects against hepatic injury in rats mainly through mitigation of oxidative stress, inflammation and apoptosis in hepatic tissues and may be promising to alleviate and early treatment of MTX-induced hepatoxicity in man.
Collapse
Affiliation(s)
- Mohamed M A Khalifa
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Minia University, Minia 61511, Egypt
| | - Adel G Bakr
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut 71524, Egypt.
| | - Adel T Osman
- Faculty of Pharmacy, Department of Pharmacology & Toxicology, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
28
|
De Leo M, Peruzzi L, Granchi C, Tuccinardi T, Minutolo F, De Tommasi N, Braca A. Constituents of Polygala flavescens ssp. flavescens and Their Activity as Inhibitors of Human Lactate Dehydrogenase. JOURNAL OF NATURAL PRODUCTS 2017; 80:2077-2087. [PMID: 28692289 DOI: 10.1021/acs.jnatprod.7b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four new flavonol glycosides (1-4), two oligosaccharides (5, 6), one α-ionone (7), and three triterpenoid saponins (8-10), together with four known secondary metabolites (11-14), were isolated from the aerial parts of Polygala flavescens ssp. flavescens. All structures were elucidated on the basis of their spectroscopic and spectrometric data. The isolates were assayed for their inhibitory activity against isoform 5 of human lactate dehydrogenase, and compound 11 (3,6'-di-O-sinapoylsucrose) showed an IC50 value of 90.4 μM. Modeling studies were carried out to suggest the putative interaction mode of compound 11 in the enzyme active site.
Collapse
Affiliation(s)
- Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6 and 33, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa , Via del Borghetto 80, 56124 Pisa, Italy
| | - Lorenzo Peruzzi
- Dipartimento di Biologia, Università di Pisa , Via Derna 1, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa , Via del Borghetto 80, 56124 Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6 and 33, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6 and 33, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa , Via del Borghetto 80, 56124 Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6 and 33, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa , Via del Borghetto 80, 56124 Pisa, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno , Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6 and 33, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa , Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
29
|
Purkey HE, Robarge K, Chen J, Chen Z, Corson LB, Ding CZ, DiPasquale AG, Dragovich PS, Eigenbrot C, Evangelista M, Fauber BP, Gao Z, Ge H, Hitz A, Ho Q, Labadie SS, Lai KW, Liu W, Liu Y, Li C, Ma S, Malek S, O’Brien T, Pang J, Peterson D, Salphati L, Sideris S, Ultsch M, Wei B, Yen I, Yue Q, Zhang H, Zhou A. Cell Active Hydroxylactam Inhibitors of Human Lactate Dehydrogenase with Oral Bioavailability in Mice. ACS Med Chem Lett 2016; 7:896-901. [PMID: 27774125 DOI: 10.1021/acsmedchemlett.6b00190] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022] Open
Abstract
A series of trisubstituted hydroxylactams was identified as potent enzymatic and cellular inhibitors of human lactate dehydrogenase A. Utilizing structure-based design and physical property optimization, multiple inhibitors were discovered with <10 μM lactate IC50 in a MiaPaca2 cell line. Optimization of the series led to 29, a potent cell active molecule (MiaPaca2 IC50 = 0.67 μM) that also possessed good exposure when dosed orally to mice.
Collapse
Affiliation(s)
- Hans E. Purkey
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kirk Robarge
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jinhua Chen
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Zhongguo Chen
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Laura B. Corson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Z. Ding
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Antonio G. DiPasquale
- College
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peter S. Dragovich
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charles Eigenbrot
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Marie Evangelista
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Benjamin P. Fauber
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Zhenting Gao
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Hongxiu Ge
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Anna Hitz
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qunh Ho
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Sharada S. Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Wenfeng Liu
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Yajing Liu
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Chiho Li
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Shuguang Ma
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shiva Malek
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas O’Brien
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David Peterson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Laurent Salphati
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steve Sideris
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Mark Ultsch
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - BinQing Wei
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ivana Yen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qin Yue
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Huihui Zhang
- WuXi AppTec Co., Ltd. 288
Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, P. R. China
| | - Aihe Zhou
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
30
|
Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat Chem Biol 2016; 12:779-86. [PMID: 27479743 DOI: 10.1038/nchembio.2143] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.
Collapse
|
31
|
Sharma A, Luxami V, Paul K. Csp 2-O and C-C Bond Formation via Pd-Catalyzed Coupling Reaction of 2,4-Dichloroquinazoline. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alka Sharma
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry; Thapar University; Patiala 147004 India
| |
Collapse
|
32
|
Identification of a potent inhibitor targeting human lactate dehydrogenase A and its metabolic modulation for cancer cell line. Bioorg Med Chem Lett 2015; 26:72-5. [PMID: 26597536 DOI: 10.1016/j.bmcl.2015.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/19/2015] [Accepted: 11/09/2015] [Indexed: 01/08/2023]
Abstract
Targeting LDHA represents a promising strategy for the development of new anti-cancer agents. We report herein the identification of a potent compound as a direct LDHA inhibitor. The in vitro enzymatic assay revealed that the VS-2 had good inhibitory potency (IC50=0.25μM) to LDHA. Cytotoxic assay suggested that the VS-2 could inhibit MCF-7 cancer cell growth, with the IC50 value low to 1.54μM. The seahorse XF24 experiment validated that the VS-2 served as a modulator to reprogram MCF-7 cancer cell metabolism from glycolysis to mitochondrial respiration.
Collapse
|
33
|
Rani R, Kumar V. Recent Update on Human Lactate Dehydrogenase Enzyme 5 (hLDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy. J Med Chem 2015; 59:487-96. [PMID: 26340601 DOI: 10.1021/acs.jmedchem.5b00168] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human lactate dehydrogenase (hLDH5), a glycolytic enzyme responsible for the conversion of pyruvate to lactate coupled with oxidation of NADH to NAD(+), plays a crucial role in the promotion of glycolysis in invasive tumor cells. Recently, hLDH5 has been considered a vital therapeutic target for invasive cancers. Selective inhibition of hLDH5 using small molecules holds potential prospects for the treatment of cancer and associated diseases. Consequently, significant progress has been made in the discovery of selective small-molecule hLDH5 inhibitors displaying remarkable inhibitory potencies. The purpose of this review is to discuss briefly the roles of hLDH isoforms and to compile small hLDH5 inhibitors into groups based on their chemical classes and pharmacological applications.
Collapse
Affiliation(s)
- Reshma Rani
- Department of Translational Research, National Cancer Institute-CRO , Via Franco Gallini 2, Aviano 33081, Italy
| | - Vinit Kumar
- Department of Translational Research, National Cancer Institute-CRO , Via Franco Gallini 2, Aviano 33081, Italy
| |
Collapse
|
34
|
Bader A, Tuccinardi T, Granchi C, Martinelli A, Macchia M, Minutolo F, De Tommasi N, Braca A. Phenylpropanoids and flavonoids from Phlomis kurdica as inhibitors of human lactate dehydrogenase. PHYTOCHEMISTRY 2015; 116:262-268. [PMID: 25890391 PMCID: PMC4466035 DOI: 10.1016/j.phytochem.2015.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 05/17/2023]
Abstract
Two flavonoids, jaceosidin 7-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (1) and hispidulin 7-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (2), and one phenylpropanoid, 3,3'-dimethyl-lunariifolioside (3), along with 11 known compounds (4-14), were isolated from the aerial parts of Phlomis kurdica growing in Jordan. Structures of 1-3 were elucidated on the basis of spectroscopic data. These isolated compounds were assayed for their inhibitory activity against isoform 5 of human lactate dehydrogenase. Compound 4, luteolin 7-O-β-d-glucopyranoside, showed an IC50 value comparable to that of galloflavin, used as reference compound. Docking studies were carried out to hypothesize the interaction mode of compound 4 in the enzyme active site.
Collapse
Affiliation(s)
- Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 13174, 21955 Makkah, Saudi Arabia
| | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Macchia
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, via Bonanno 6 and 33, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
35
|
Yue W, Wang H. Synthesis and biological evaluation of N-hydroxybenzimidazoles as potential anticancer agents targeting human lactate dehydrogenase A. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Granchi C, Capecchi A, Del Frate G, Martinelli A, Macchia M, Minutolo F, Tuccinardi T. Development and validation of a docking-based virtual screening platform for the identification of new lactate dehydrogenase inhibitors. Molecules 2015; 20:8772-90. [PMID: 25988609 PMCID: PMC6272605 DOI: 10.3390/molecules20058772] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
The human muscle isoform of lactate dehydrogenase (hLDH5) is one of the key enzymes of the glycolytic process. It is overexpressed in metastatic cancer cells and is linked to the vitality of tumors in hypoxic conditions. With the aim of identifying new hLDH5 inhibitors, a fully automated docking-based virtual screening platform was developed by considering different protein conformations and the consensus docking strategy. In order to verify the reliability of the reported platform, a small database of about 10,000 compounds was filtered by using this method, and the top-ranked compounds were tested for their hLDH5 inhibition activity. Enzymatic assays revealed that, among the ten selected compounds, two proved to efficiently inhibit enzyme activity with IC50 values in the micromolar range. These results demonstrate the validity of the methodologies we followed, encouraging the application of larger virtual screening studies and further refinements of the platform. Furthermore, the two active compounds herein described may be considered as interesting leads for the development of new and more efficient LDH inhibitors.
Collapse
Affiliation(s)
| | - Alice Capecchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | | |
Collapse
|
37
|
Kolappan S, Shen DL, Mosi R, Sun J, McEachern EJ, Vocadlo DJ, Craig L. Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms. ACTA ACUST UNITED AC 2015; 71:185-95. [PMID: 25664730 DOI: 10.1107/s1399004714024791] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
Abstract
Lactate dehydrogenase (LDH) is an essential metabolic enzyme that catalyzes the interconversion of pyruvate and lactate using NADH/NAD(+) as a co-substrate. Many cancer cells exhibit a glycolytic phenotype known as the Warburg effect, in which elevated LDH levels enhance the conversion of glucose to lactate, making LDH an attractive therapeutic target for oncology. Two known inhibitors of the human muscle LDH isoform, LDHA, designated 1 and 2, were selected, and their IC50 values were determined to be 14.4 ± 3.77 and 2.20 ± 0.15 µM, respectively. The X-ray crystal structures of LDHA in complex with each inhibitor were determined; both inhibitors bind to a site overlapping with the NADH-binding site. Further, an apo LDHA crystal structure solved in a new space group is reported, as well as a complex with both NADH and the substrate analogue oxalate bound in seven of the eight molecules and an oxalate only bound in the eighth molecule in the asymmetric unit. In this latter structure, a kanamycin molecule is located in the inhibitor-binding site, thereby blocking NADH binding. These structures provide insights into LDHA enzyme mechanism and inhibition and a framework for structure-assisted drug design that may contribute to new cancer therapies.
Collapse
Affiliation(s)
- Subramaniapillai Kolappan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 3Y6, Canada
| | - David L Shen
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, BC V5A 4B5, Canada
| | - Renee Mosi
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, BC V5A 4B5, Canada
| | - Jianyu Sun
- Alectos Therapeutics Inc., 8999 Nelson Way, Burnaby, BC V5A 4B5, Canada
| | | | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 3Y6, Canada
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 3Y6, Canada
| |
Collapse
|
38
|
Fauber BP, Dragovich PS, Chen J, Corson LB, Ding CZ, Eigenbrot C, Labadie S, Malek S, Peterson D, Purkey HE, Robarge K, Sideris S, Ultsch M, Wei B, Yen I, Yue Q, Zhou A. Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase. Bioorg Med Chem Lett 2014; 24:5683-5687. [DOI: 10.1016/j.bmcl.2014.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
39
|
Labadie S, Dragovich PS, Chen J, Fauber BP, Boggs J, Corson LB, Ding CZ, Eigenbrot C, Ge H, Ho Q, Lai KW, Ma S, Malek S, Peterson D, Purkey HE, Robarge K, Salphati L, Sideris S, Ultsch M, VanderPorten E, Wei B, Xu Q, Yen I, Yue Q, Zhang H, Zhang X, Zhou A. Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorg Med Chem Lett 2014; 25:75-82. [PMID: 25466195 DOI: 10.1016/j.bmcl.2014.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023]
Abstract
Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enone using structure-based design strategies resulted in inhibitors with considerable improvement in biochemical potency against human lactate dehydrogenase A (LDHA). These potent inhibitors were typically selective for LDHA over LDHB isoform (4–10 fold) and other structurally related malate dehydrogenases, MDH1 and MDH2 (>500 fold). An X-ray crystal structure of enzymatically most potent molecule bound to LDHA revealed two additional interactions associated with enhanced biochemical potency.
Collapse
Affiliation(s)
- Sharada Labadie
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Granchi C, Fancelli D, Minutolo F. An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg Med Chem Lett 2014; 24:4915-25. [PMID: 25288186 DOI: 10.1016/j.bmcl.2014.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 02/08/2023]
Abstract
Almost all invasive cancers, regardless of tissue origin, are characterized by specific modifications of their cellular energy metabolism. In fact, a strong predominance of aerobic glycolysis over oxidative phosphorylation (Warburg effect) is usually associated with aggressive tumour phenotypes. This metabolic shift offers a survival advantage to cancer cells, since they may continue to produce energy and anabolites even when they are exposed to either transient or permanent hypoxic conditions. Moreover, it ensures a high production rate of glycolysis intermediates, useful as building blocks for fast cell proliferation of cancer cells. This peculiar metabolic profile may constitute an ideal target for therapeutic interventions that selectively hit cancer cells with minimal residual systemic toxicity. In this review we provide an update about some of the most recent advances in the discovery of new bioactive molecules that are able to interfere with cancer glycolysis.
Collapse
Affiliation(s)
- Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Daniele Fancelli
- Drug Discovery Program, Experimental Oncology Department, European Institute of Oncology IEO, Via Adamello 16, 20139 Milan, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
41
|
Qian Y, Wang X, Chen X. Inhibitors of glucose transport and glycolysis as novel anticancer therapeutics. World J Transl Med 2014; 3:37-57. [DOI: 10.5528/wjtm.v3.i2.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/25/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming and altered energetics have become an emerging hallmark of cancer and an active area of basic, translational, and clinical cancer research in the recent decade. Development of effective anticancer therapeutics may depend on improved understanding of the altered cancer metabolism compared to that of normal cells. Changes in glucose transport and glycolysis, which are drastically upregulated in most cancers and termed the Warburg effect, are one of major focuses of this new research area. By taking advantage of the new knowledge and understanding of cancer’s mechanisms, numerous therapeutic agents have been developed to target proteins and enzymes involved in glucose transport and metabolism, with promising results in cancer cells, animal tumor models and even clinical trials. It has also been hypothesized that targeting a pathway or a process, such as glucose transport or glucose metabolism, rather than a specific protein or enzyme in a signaling pathway may be more effective. This is based on the observation that cancer somehow can always bypass the inhibition of a target drug by switching to a redundant or compensatory pathway. In addition, cancer cells have higher dependence on glucose. This review will provide background information on glucose transport and metabolism in cancer, and summarize new therapeutic developments in basic and translational research in these areas, with a focus on glucose transporter inhibitors and glycolysis inhibitors. The daunting challenges facing both basic and clinical researchers of the field are also presented and discussed.
Collapse
|
42
|
Dragovich PS, Fauber BP, Boggs J, Chen J, Corson LB, Ding CZ, Eigenbrot C, Ge H, Giannetti AM, Hunsaker T, Labadie S, Li C, Liu Y, Liu Y, Ma S, Malek S, Peterson D, Pitts KE, Purkey HE, Robarge K, Salphati L, Sideris S, Ultsch M, VanderPorten E, Wang J, Wei B, Xu Q, Yen I, Yue Q, Zhang H, Zhang X, Zhou A. Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorg Med Chem Lett 2014; 24:3764-71. [DOI: 10.1016/j.bmcl.2014.06.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 02/08/2023]
|
43
|
Ross SJ, Critchlow SE. Emerging approaches to target tumor metabolism. Curr Opin Pharmacol 2014; 17:22-9. [PMID: 25048629 DOI: 10.1016/j.coph.2014.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022]
Abstract
Therapeutic exploitation of the next generation of drugs targeting the genetic basis of cancer will require an understanding of how cancer genes regulate tumor biology. Reprogramming of tumor metabolism has been linked with activation of oncogenes and inactivation of tumor suppressors. Well established and emerging cancer genes such as MYC, IDH1/2 and KEAP1 regulate tumor metabolism opening up opportunities to evaluate metabolic pathway inhibition as a therapeutic strategy in these tumors.
Collapse
Affiliation(s)
- Sarah J Ross
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Susan E Critchlow
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| |
Collapse
|
44
|
Dempster S, Harper S, Moses JE, Dreveny I. Structural characterization of the apo form and NADH binary complex of human lactate dehydrogenase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1484-90. [PMID: 24816116 PMCID: PMC4014127 DOI: 10.1107/s1399004714005422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/10/2014] [Indexed: 01/28/2023]
Abstract
Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1 Å in space group P4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors.
Collapse
Affiliation(s)
- Sally Dempster
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | - Stephen Harper
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, England
| | - John E. Moses
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | - Ingrid Dreveny
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, England
| |
Collapse
|
45
|
Human lactate dehydrogenase a inhibitors: a molecular dynamics investigation. PLoS One 2014; 9:e86365. [PMID: 24466056 PMCID: PMC3895040 DOI: 10.1371/journal.pone.0086365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that rely on anaerobic respiration even under normal oxygen concentrations. This renders LDHA a promising molecular target for the treatment of various cancers. Several efforts have been made recently to develop LDHA inhibitors with nanomolar inhibition and cellular activity, some of which have been studied in complex with the enzyme by X-ray crystallography. In this work, we present a molecular dynamics (MD) study of the binding interactions of selected ligands with human LDHA. Conventional MD simulations demonstrate different binding dynamics of inhibitors with similar binding affinities, whereas steered MD simulations yield discrimination of selected LDHA inhibitors with qualitative correlation between the in silico unbinding difficulty and the experimental binding strength. Further, our results have been used to clarify ambiguities in the binding modes of two well-known LDHA inhibitors.
Collapse
|
46
|
Calvaresi EC, Granchi C, Tuccinardi T, Di Bussolo V, Huigens RW, Lee HY, Palchaudhuri R, Macchia M, Martinelli A, Minutolo F, Hergenrother PJ. Dual targeting of the Warburg effect with a glucose-conjugated lactate dehydrogenase inhibitor. Chembiochem 2013; 14:2263-7. [PMID: 24174263 PMCID: PMC3919968 DOI: 10.1002/cbic.201300562] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 12/31/2022]
Abstract
Effective glucose diet: We report the development and activity of glucose-conjugated LDH-A inhibitors designed for dual targeting of the Warburg effect (elevated glucose uptake and glycolysis) in cancer cells. Glycoconjugation could be applied to inhibitors of many enzymes involved in glycolysis or tumor metabolism.
Collapse
Affiliation(s)
- Emilia C. Calvaresi
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Valeria Di Bussolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Robert W. Huigens
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
| | - Rahul Palchaudhuri
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Adriano Martinelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6,
56126 Pisa (Italy)
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
- Department of Biochemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (USA)
| |
Collapse
|
47
|
Buonfiglio R, Ferraro M, Falchi F, Cavalli A, Masetti M, Recanatini M. Collecting and assessing human lactate dehydrogenase-A conformations for structure-based virtual screening. J Chem Inf Model 2013; 53:2792-7. [PMID: 24138094 DOI: 10.1021/ci400543y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lactate dehydrogenase-A (LDHA) is emerging as a promising anticancer target. Up to now, structure-based investigations for identifying inhibitors of this enzyme have not explicitly accounted for active site flexibility. In the present study, by combining replica exchange molecular dynamics with network and cluster analyses, we identified reliable LDHA conformations for structure-based ligand design. The selected conformations were challenged and validated by retrospective virtual screening simulations.
Collapse
Affiliation(s)
- Rosa Buonfiglio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|