1
|
Fakeeha G, AlHarbi S, Auda S, Balto H. The Impact of Silver Nanoparticles' Size on Biofilm Eradication. Int Dent J 2025; 75:1213-1222. [PMID: 39266402 PMCID: PMC11976549 DOI: 10.1016/j.identj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION Efficient intracanal disinfection is required for a successful regenerative endodontic treatment. Thus, this study aimed to identify the silver nanoparticles' (NPs) size (AgNPs) with the highest antibiofilm efficacy when mixed with calcium hydroxide [Ca(OH)2] to eradicate an in vitro endodontic biofilm. METHODS The various sizes of AgNPs and mixtures were characterized by scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible spectroscopy. A total of 168 dentin root segments were prepared, sterilized, and inoculated for 3 weeks with Actinomyces naeslundii and Fusobacterium nucleatum. Samples were randomly allocated to 4 experimental groups (n = 28/group): 2 nm AgNPs + 35% Ca(OH)2, 5 nm AgNPs + 35% Ca(OH)2, 10 nm AgNPs + 35% Ca(OH)2, and 35% Ca(OH)2 alone. Samples exposed to saline and triple antibiotic paste (TAP) acted as negative and positive control groups, respectively. After 1 and 2 weeks, samples were stained with LIVE/DEAD BacLight dye and examined under a confocal laser scanning microscope to determine the proportion of dead bacteria. RESULTS The characterization procedure revealed a spherical NP's structure with minor aggregations. Except for Ca(OH)2 group, all groups had significantly higher antibiofilm efficacy at 2 weeks. Both the 10 nm mixture (99.5%) and TAP (99.2%) exhibited the highest antibiofilm efficacy at 2 weeks and were not significantly different from one another (P > .05). No significant difference was noted between the 2 and 5 nm mixtures at 1 week (81% and 84%) and 2 weeks (89% and 91%). CONCLUSION The 10 nm AgNPs (0.02%) + 35% Ca(OH)2 mixture exhibited the highest antibiofilm efficacy at 2 weeks compared to all other mixtures at both observation periods. Interestingly, the 10 nm mixture performed similarly to TAP at 2 weeks. Excluding Ca(OH)2 group, longer application significantly improved the antibiofilm efficacy of all tested medicaments. CLINICAL RELEVANCE The 10 nm AgNPs + 35% Ca(OH)2 mixture revealed promising results as an intracanal medicament in the regenerative endodontic treatment protocol.
Collapse
Affiliation(s)
- Ghazal Fakeeha
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sarah AlHarbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sayed Auda
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
El-Kaliuoby MI, Morsy A, Abdel-Salam AH, Morsy A, El-Khatib AM, Khalil AM. Novelty of harnessing electromagnetic fields to boost graphene oxide nano particles antibacterial potency. Sci Rep 2025; 15:9524. [PMID: 40108229 PMCID: PMC11923208 DOI: 10.1038/s41598-025-91408-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
The urge need for innovative integration between Electromagnetic Waves (EMWs) and nanotechnology offers exciting possibilities for improving antimicrobial treatments to combat antibacterial resistant bacterial infections. This study explores how EMWs at range below 300 Hz can enhance the antibacterial efficacy of Graphene Oxide Nanoparticles (GONPs) against Pseudomonas aeruginosa, a significant pathogen in antibiotic resistance. EMWs at range below 300 Hz, interact with bacterial cell membranes to affect ion channels, permeability, and cellular signaling, offering a non-invasive method to amplify antimicrobial effects. GONPs synthesized through glucose pyrolysis and characterized by X-ray diffraction, UV-visible spectroscopy, high-resolution transmission electron microscopy, and Fourier-transform infrared spectroscopy, exhibit potent antibacterial properties due to their sharp edges, large surface area, and ability to generate Reactive Oxygen Species (ROS). These nanoparticles disrupt bacterial membranes, form biofilms, and damage cellular components through oxidative stress. The study examines how those EMWs can enhance GONP penetration into bacterial cells, increase ROS production, and disrupt biofilms. By optimizing EMWs parameters such as frequency, intensity, and duration this research aims to develop new, non-invasive antibacterial therapies. The results could lead to advanced antimicrobial strategies, integrating nanotechnology with electromagnetic field exposure, offering innovative solutions to address antibiotic-resistant infections and improve treatment efficacy. This approach represents a significant step toward more effective, targeted antibacterial therapies.
Collapse
Affiliation(s)
- Mai I El-Kaliuoby
- Physics and Chemistry Department, Faculty of Education, Alexandria University, Alexandria, 21544, Egypt
| | - Ashraf Morsy
- Faculty of Engineering, Petrochemical Department, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt.
- Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horreya Avenue, El-Shatby, Alexandria, Egypt.
| | - Ahmed H Abdel-Salam
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed Morsy
- Faculty of Dentistry and Oral Surgery, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Ahmed M El-Khatib
- Physics Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Alaa M Khalil
- Basic Sciences Department, Faculty of Engineering, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
3
|
Hodkovicova N, Machacek M, Cahova J, Consolacion J, Siwicki A, Pejsak Z, Svoboda M. The use of silver nanoparticles in pigs - An invited review. VET MED-CZECH 2025; 70:77-92. [PMID: 40248331 PMCID: PMC12001875 DOI: 10.17221/101/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in veterinary medicine due to their unique properties, including enhanced stability, greater antimicrobial efficacy, and reduced toxicity compared to traditional silver salts. Their applications span various areas of veterinary practice, such as dermatology, wound management, infection prevention, drug delivery, and disinfection. This review explores their use in pigs, highlighting their role as feed additives to prevent diarrhoea, as antibacterial agents in semen extenders, and veterinary dermatology. AgNPs possess broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria, positioning them as a promising alternative to antibiotics in addressing antibiotic resistance. Additionally, AgNPs have shown antiviral potential, though the exact mechanism of action remains unclear. The review examines the antibacterial and antiviral properties of AgNPs, their utility in facility sanitation, and their potential toxicity to pigs. While AgNPs offer significant benefits in veterinary applications, concerns about their toxicity persist. Efforts to reduce this toxicity, such as surface modifications or combining AgNPs with other substances, are under investigation. Further research is essential to fully understand the potential applications and safety of AgNPs in pig medicine.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Miroslav Machacek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jana Cahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jerico Consolacion
- Department of Agricultural Sciences, College of Agriculture, Forestry, and Environmental Sciences, Mindanao State University at Naawan, Naawan, Philippines
- Department of Animal Science and Food Processing, Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Zygmunt Pejsak
- Faculty of Veterinary Medicine, Agriculture University, Krakow, Poland
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Amara H, Alam F, El Turk S, Butt H. 3D-printed and In-situ prepared hydrogel anti-bacterial wound patch with silver nanoparticle embedded matrix. Heliyon 2025; 11:e42186. [PMID: 40028552 PMCID: PMC11867285 DOI: 10.1016/j.heliyon.2025.e42186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
The application of wearable hydrogel wound patches has great potential in advancing the field of medicine. However, for high reach and large-scale utilization, the fabrication process of wearable hydrogel wound patches needs to be low-cost, reliable, and have high throughput. Therefore, the incorporation of 3D-printing technology helps in providing a starting point for flexible, high throughput, mechanically enhanced, low-cost, and reliable antibacterial wound patches. 3D-printed patches can perform antibacterial behavior while exhibiting a fast fabrication process in a time range of less than 3 h. The fabricated patch exhibited good water retention, water vapor transmission rates a porosity values indicating that it has a promising potential to be commercialized as a wound patch.
Collapse
Affiliation(s)
- Hanin Amara
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Biosystems and Machines, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Said El Turk
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Al-Shemy MT, El-Demerdash AS, Marzec A, Dawwam GE. Biocontrol of virulent Listeria monocytogenes using green carboxylated cellulose nanocrystals-silver nano-biohybrids. Int J Biol Macromol 2025; 290:139012. [PMID: 39708864 DOI: 10.1016/j.ijbiomac.2024.139012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
L. monocytogenes is a Gram-positive bacterial pathogen, known to cause food poisoning and systemic disease, specifically listeriosis. This species has shown resistance to many commonly used antibiotics, making the search for new alternative therapies is a pressing matter. A facile and eco-friendly sono-co-method was developed to produce Ag nanoparticles from palm sheath fiber agricultural waste, using carboxylated cellulose nanocrystals (CCNs). Spectroscopic analysis, including UV-visible, TEM, FTIR, and EDS, confirmed the successful synthesis of the CCN-Ag nano-biohybrids. The nano-biohybrids exhibited potent antibacterial activity against various L.monocytogenes strains, with inhibition zones ranging from 16 to 19 mm. Concentrations of the CCN-Ag suspension between 0.25 and 1 μg/mL were found to completely prevent the growth of L.monocytogenes. Conventional PCR analysis revealed the presence of several virulence genes, including actA, inlA, inlB, plcA, iap, and hlyA, in all the tested strains. Notably, CCN-Ag treatment significantly downregulated these genes, indicating a reduction in virulence and potential for biocontrol applications. The novelty of this research lies in the development of a sustainable and eco-friendly method for producing potent antimicrobial nanohybrids from agricultural waste. These nanohybrids' ability to effectively inhibit L.monocytogenes' growth and downregulate its virulence genes offers a promising avenue for combating this pathogenic bacterium.
Collapse
Affiliation(s)
- Mona T Al-Shemy
- National Research Centre, Cellulose and Paper Department, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 126220, Giza, Egypt
| | - Azza S El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt.
| | - Anna Marzec
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-537 Lodz, Poland
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
6
|
Aldayel MF. Biofabrication of Silver Nanoparticles Using Pergularia tomentosa Extract and Evaluation of Their Antibacterial, Antioxidant, and Cytotoxic Properties. Life (Basel) 2024; 14:1639. [PMID: 39768346 PMCID: PMC11677515 DOI: 10.3390/life14121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The biosynthesis of silver nanoparticles using plant extracts is a promising field of research because of the useful biomedical applications of metal nanoparticles. In this study, the antibacterial and antioxidant properties of silver nanoparticles biosynthesized with the aqueous leaf extract of Pergularia tomentosa were defined using a simple, eco-friendly, consistent, and cost-effective method. The leaf extract of Pergularia tomentosa (PT) served as a capping and reducing agent to biosynthesize silver nanoparticles. The effects of several parameters, such as the concentration of AgNO3, ratio of AgNO3 to extract, pH, and incubation time, were examined to optimize the synthesis process. In total, 5 mM of AgNO3, a 1:0.06 ratio of AgNO3 to Pergularia tomentosa extract, pH 9.0, and reaction mixture incubation for 24 h were found to be the ideal parameters for biosynthesizing silver nanoparticles (AgNPs). UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to characterize the biosynthesized Pergularia tomentosa silver nanoparticles (PT-AgNPs). Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (Salmonella enteritides and Escherichia coli) were used to test the PT-AgNPs' antibacterial activity. The presence of different functional groups was determined using FTIR. The AgNPs were hexagon shaped. The nanoparticles were more toxic against S. enteritides than both B. cereus and E. coli. In antioxidant analyses, the AgNPs were found to be as strong at free radical scavenging as gallic acid (standard), with IC50 values of 0.69 and 22.30 μg/mL for DPPH and ABTS radicals, respectively. Interestingly, the PT-AgNPs displayed increased anti-inflammatory activity compared with the P. tomentosa leaf extract (79% vs. 59% at 500 µg/mL). The PT-AgNPs did not display any cytotoxicity against the MCF-7 cell line at the MIC. In conclusion, silver nanoparticles fortified with Pergularia tomentosa extract exhibited potential as effective antibacterial, anti-inflammatory, and antioxidant agents, suggesting their viability as alternatives to commercially available products.
Collapse
Affiliation(s)
- Munirah F Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
7
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L. Advances in Metal and Metal Oxide Nanomaterials for Topical Antimicrobial Applications: Insights and Future Perspectives. Molecules 2024; 29:5551. [PMID: 39683711 PMCID: PMC11643765 DOI: 10.3390/molecules29235551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles as antibacterial, antifungal, and antiviral agents, particularly focusing on their topical applications and their role in chronic wound therapy. We explore their use in various forms, including coated, encapsulated, and incorporated in hydrogels or as complexes, proposing them as topical antimicrobials with promising properties. Some studies have shown that metal and metal oxide nanoparticles can exhibit cytotoxic and genotoxic effects, while others have found no such properties. These effects depend on factors such as nanoparticle size, shape, concentration, and other characteristics. It is essential to establish the dose or concentration associated with potential toxic effects and to investigate the severity of these effects to determine a threshold below which metal or metal oxide nanoparticles will not produce negative outcomes. Therefore, further research should focus on safety assessments, ensuring that metal and metal oxide nanoparticles can be safely used as therapeutics in biomedical sciences.
Collapse
Affiliation(s)
- Belmina Saric Medic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nikolina Tomic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece
| | - Lejla Pojskic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| |
Collapse
|
9
|
Bahrami M, Serati Shirazi P, Moradi F, Hadi N, Sabbaghi N, Eslaminezhad S. How nanomaterials act against bacterial structures? a narrative review focusing on nanoparticle molecular mechanisms. Microb Pathog 2024; 196:107002. [PMID: 39393474 DOI: 10.1016/j.micpath.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE In recent years, significant progress has been made in the field of nanotechnology for the treatment and prevention of biofilm formation and Multidrug-resistant bacteria (MDR). MDR bacteria challenges is hazardous when microorganisms induce the formation of biofilms, which amplify resistance to antibiotics and promote the development of multidrug-resistant conditions. The unique physicochemical properties of certain nanomaterials make nanotechnology a promising option for combating MDR infections. Several studies have introduced nanomaterials with different antibacterial mechanisms that can effectively destroy MDR bacteria and their biofilms. This study reviews the research results, focusing on the various nanoparticle mechanisms that target bacterial structures. METHOD To accomplish this study, we conducted investigations to gather articles and relevant studies from validated medical databases such as Scopus, PubMed, Google Scholar, and Web of Science. The selected publications from 2007 to 2023. In this review, we provide a brief overview of nanoparticles, their mechanisms, and how they function against the structure of bacteria. Furthermore, we discuss the recent advancements in using certain nanoparticles to combat infection-induced biofilms and complications caused by multidrug resistance. FINDING Our findings demonstrate that various nanoparticles have the potential to effectively overcome bacterial infectious diseases by targeting biofilms and antibiotic-resistant strains. Additionally, the development of a new drug delivery approach based on nanosystems shows promise in overcoming antibiotic resistance and biofilms.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Serati Shirazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Sabbaghi
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahba Eslaminezhad
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Pars Biotech Research & Development Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Karcher SC, Bearer A, Fletcher MP, Young LM, Beaschler R, Motz VA. Wash-In Silver Nanoparticle Laundry Additive Was Not Effective in Reducing Bacterial Load on Wrestling Apparel. J Athl Train 2024; 59:1126-1131. [PMID: 38835322 PMCID: PMC11611376 DOI: 10.4085/1062-6050-0084.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
CONTEXT The best practice for cleaning wrestling mats is using a residual disinfectant with continued antibacterial action. Recently available wash-in silver additives claim to confer a residual effect to fabric. OBJECTIVE To test the efficacy of laundering with a wash-in silver additive in reducing athletes' exposure to potentially infectious microbes on apparel. DESIGN A 4-part controlled laboratory study/parallel group comparison study. (1) To test whether fabrics in athletic clothing would be affected differently, we applied bacteria to control fabrics washed in detergent alone and test counterparts washed in detergent plus wash-in silver additive. Bacteria were applied to fabrics, extracted, plated, incubated, and counted. (2) To see if wash-in silver affected various bacteria differently, we washed cotton t-shirts with detergent alone or with detergent plus wash-in silver. We applied 4 bacterial species commonly found in the wrestling environment. Bacteria were extracted, plated, incubated, and counted. (3) To see if wash-in silver was effective in reducing bacterial contamination during practice, 32 collegiate wrestlers paired off with one wearing a test silver-treated t-shirt and their partner wearing a control shirt. Wrestler rotations exposed shirts to 2, 4, or 8 wrestlers. Identical swatches of fabric were cut from the t-shirts. Bacteria were extracted, plated, incubated, and counted. (4) We simulated prolonged/repeated bacterial exposure as occurs during tournaments by applying bacteria directly to silver-treated and untreated singlet material repeatedly over time. Test samples were taken at regular intervals to see if bacterial growth was inhibited by the presence of the silver nanoparticles. Bacteria were extracted, plated, incubated, and counted. SETTING Laboratory and practice. PARTICIPANTS Collegiate Division III wrestling team. MAIN OUTCOME MEASURE(S) Wash-in silver would be considered effective if a statistically significant reduction in bacterial count was observed at 95% confidence. RESULTS Wash-in silver reduced bacterial growth at low levels of contamination but did not significantly reduce bacterial growth at levels seen during contact sport competitions. This was true for all bacterial species and all fabrics tested. CONCLUSIONS The environmental and potential health risks in using a wash-in silver nanoparticle laundry additive in the wash cycle for clothing worn by wrestlers outweigh any potential infection control benefits to these athletes. We do not currently recommend adopting wash-in silver treatment as part of the laundering regimen for wrestling programs until further testing of alternate methods of silver impregnation into sports fabrics has been investigated.
Collapse
|
11
|
Gusta MF, Ernst LM, Moriones OH, Piella J, Valeri M, Bastus NG, Puntes V. Long-Term Intracellular Tracking of Label-Free Nanoparticles in Live Cells and Tissues with Confocal Microscopy. SMALL METHODS 2024; 8:e2301713. [PMID: 38564783 DOI: 10.1002/smtd.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.
Collapse
Affiliation(s)
- Muriel F Gusta
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Lena M Ernst
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
| | - Oscar H Moriones
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Piella
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Marta Valeri
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
| | - Neus G Bastus
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Vall d'Hebron Institut of Research (VHIR), Barcelona, 08035, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
12
|
Afolayan JS, Varney AM, Thomas JC, McLean S, Perry CC. A rapid microwave approach for 'one-pot' synthesis of antibiotic conjugated silver nanoparticles with antimicrobial activity against multi-drug resistant bacterial pathogens. Colloids Surf B Biointerfaces 2024; 245:114280. [PMID: 39362073 DOI: 10.1016/j.colsurfb.2024.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Deaths directly attributable to drug-resistant infections reached 1.27 million in 2019 and continue to rise. This escalating resistance to antibiotics has driven a resurgence in the exploration of ancient antimicrobials to develop efficacious alternatives. The modern field of nanomaterials is a promising area of research with silver nanoparticles performing well as antimicrobial agents due to their large surface area and multiple bacterial targets. In the current study antibiotic conjugated silver nanoparticles (3-35 nm) were synthesized using β-lactam antibiotic, ampicillin. The method of heating during synthesis either microwave (4 min) or convection (4 h) influenced the physical characteristics of the ampicillin coated silver nanoparticles, however both approaches produced nanomaterials with antimicrobial activity against a variety of multi-drug resistant (MDR) clinical isolates in physiologically relevant media (when present at <0.2-2.28 mg L-1 in defined media). Critically, the microwave method is five times faster than the traditional water bath method, allowing rapid synthesis of ampicillin-conjugated nanoparticles, which supports scale up processes for industry. We suggest that the combination of antibiotic and silver in these nanoparticles produces a synergistic effect that circumvents resistance mechanisms and has the potential to provide a new line of combinatorial agents able to treat multi-drug resistant infections.
Collapse
Affiliation(s)
- Juwon S Afolayan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jonathan C Thomas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | - Carole C Perry
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
13
|
Zuñiga-Miranda J, Carrera-Pacheco SE, Gonzalez-Pastor R, Mayorga-Ramos A, Rodríguez-Pólit C, Heredia-Moya J, Vizuete K, Debut A, Barba-Ostria C, Coyago-Cruz E, Guamán LP. Phytosynthesis of Silver Nanoparticles Using Mansoa alliacea (Lam.) A.H. Gentry (Bignoniaceae) Leaf Extract: Characterization and Their Biological Activities. Pharmaceutics 2024; 16:1247. [PMID: 39458579 PMCID: PMC11510252 DOI: 10.3390/pharmaceutics16101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Mansoa alliacea is a native plant renowned for its medicinal properties in traditional healing in the Amazon Region. This plant is rich in polyphenols, flavonoids, anthocyanins, phenolic acids, tannins, ketones, triterpenes, as well as other bioactive compounds. Objectives. This study aims to develop an innovative, eco-friendly method for synthesizing silver nanoparticles using an aqueous extract of M. alliacea (Ma-AgNPs), enhancing the biological activities of AgNPs by leveraging the therapeutic potential of the plant's bioactive compounds. Methods. Silver nanoparticles were synthesized using the aqueous extract of M. alliacea. The biological activities of Ma-AgNPs were assessed, including antibacterial, anti-inflammatory, antioxidant, antitumor, and anti-biofilm effects, along with evaluating their hemolytic activity. Results. Quantitative analysis revealed that Ma-AgNPs exhibit potent antibacterial activity against multidrug and non-multidrug-resistant bacteria, with MIC values ranging from 1.3 to 10.0 µg/mL. The Ma-AgNPs significantly reduced NO production by 86.9% at 4 µg/mL, indicating strong anti-inflammatory effects. They demonstrated robust antioxidant activity with an IC50 of 5.54 ± 1.48 µg/mL and minimal hemolytic activity, with no hemolysis observed up to 20 µg/mL and only 4.5% at 40 µg/mL. Their antitumor properties were notable, with IC50 values between 2.9 and 5.4 µg/mL across various cell lines, and they achieved over 50% biofilm inhibition at concentrations of 30-40 µg/mL. Conclusions. These findings underscore the potential of Ma-AgNPs for biomedical applications, particularly in developing new antimicrobial agents and bioactive coatings with reduced toxicity. This research highlights a sustainable approach that not only preserves but also amplifies the inherent biological activities of plant extracts, paving the way for innovative therapeutic solutions.
Collapse
Affiliation(s)
- Johana Zuñiga-Miranda
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (K.V.); (A.D.)
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Quito 170143, Ecuador;
| | - Linda P. Guamán
- Centro de Investigación Biomédica CENBIO, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (S.E.C.-P.); (R.G.-P.); (A.M.-R.); (J.H.-M.)
| |
Collapse
|
14
|
Shayo GM, Elimbinzi E, Shao GN. Preparation methods, applications, toxicity and mechanisms of silver nanoparticles as bactericidal agent and superiority of green synthesis method. Heliyon 2024; 10:e36539. [PMID: 39263137 PMCID: PMC11385776 DOI: 10.1016/j.heliyon.2024.e36539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Silver nanoparticles (SNPs) are a type of nanomaterial with wide applications in water treatment, medicine, food packaging, and industrial processes. Their unique optical, electrical, thermal conductivity, and biological properties distinguish them from other metal ions and liken them to noble metals like gold and copper. The present review explores the diverse applications, preparation techniques, mechanism of action of SNPs, and properties of SNPs focusing on their bactericidal activities and potential impacts on human health. Different preparation methods, encompassing chemical, physical, and biological techniques, were reviewed and analyzed to comprehend their effect on the properties and applications of SNPs. Studies revealed that the SNPs exhibit excellent antibactericidal properties. Mechanisms underlying their antimicrobial effects were explored, primarily focusing on pathogen-scavenging activities. Despite the promising benefits of SNPs, their potential toxicity to human health must be carefully managed. Regulatory standards, such as those set by WHO and USEPA; establish a maximum tolerable limit of 0.1 mg/L to mitigate health risks associated with SNP exposure. It is recommended to continue research into safer applications and alternative formulations of SNPs to minimize potential health risks while maximizing their beneficial applications across different industries.
Collapse
Affiliation(s)
- Godfrey Michael Shayo
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Elianaso Elimbinzi
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| | - Godlisten N Shao
- University of Dar es Salaam, Mkwawa College, Department of Chemistry, P.O. Box 2513, Iringa, Tanzania
| |
Collapse
|
15
|
Arora A, Lashani E, Turner RJ. Bacterial synthesis of metal nanoparticles as antimicrobials. Microb Biotechnol 2024; 17:e14549. [PMID: 39150434 PMCID: PMC11328525 DOI: 10.1111/1751-7915.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoscience, a pivotal field spanning multiple industries, including healthcare, focuses on nanomaterials characterized by their dimensions. These materials are synthesized through conventional chemical and physical methods, often involving costly and energy-intensive processes. Alternatively, biogenic synthesis using bacteria, fungi, or plant extracts offers a potentially sustainable and non-toxic approach for producing metal-based nanoparticles (NP). This eco-friendly synthesis approach not only reduces environmental impact but also enhances features of NP production due to the unique biochemistry of the biological systems. Recent advancements have shown that along with chemically synthesized NPs, biogenic NPs possess significant antimicrobial properties. The inherent biochemistry of bacteria enables the efficient conversion of metal salts into NPs through reduction processes, which are further stabilized by biomolecular capping layers that improve biocompatibility and functional properties. This mini review explores the use of bacteria to produce NPs with antimicrobial activities. Microbial technologies to produce NP antimicrobials have considerable potential to help address the antimicrobial resistance crisis, thus addressing critical health issues aligned with the United Nations Sustainability Goal #3 of good health and well-being.
Collapse
Affiliation(s)
- Anika Arora
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Elham Lashani
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
16
|
Assad N, Abbas A, Fayyaz Ur Rehman M, Naeem-Ul-Hassan M. Photo-catalytic and biological applications of phyto-functionalized zinc oxide nanoparticles synthesized using a polar extract of Equisetum diffusum D. RSC Adv 2024; 14:22344-22358. [PMID: 39010906 PMCID: PMC11247436 DOI: 10.1039/d4ra03573a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were fabricated using Equisetum diffusum D extract and their diverse properties and applications were studied. Phytochemical analysis confirmed the presence of phenols and flavonoids in the plant extract, playing a crucial role in the stabilization and reduction of the synthesized nanoparticles. The greenly synthesized ZnO NPs were characterized through a range of analytical techniques. UV-visible spectrophotometry has been employed to investigate their optical characteristics. FTIR spectroscopy was employed to identify the functional groups responsible for the synthesis of the ZnO NPs. The structural properties were evaluated using XRD. The morphology and size distribution of the synthesized NPs were examined using SEM, DLS, and elemental spectra evaluated using EDX. The charge that develops at the interface was analyzed using zeta potential which accounts for stability of the NPs. The ZnO NPs exhibited excellent photocatalytic degradation of cationic (methylene blue), anionic (methyl orange), and nonionic (p-nitrophenol) dyes under sunlight exposure with photocatalytic degradation of 85.61%, 79.10%, and 89.95% respectively. Additionally, the nanoparticles displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, and noteworthy antioxidant potential. The anti-inflammatory activity of the ZnO NPs, attributed to their ability to inhibit protein denaturation, was dose-dependent. Overall, our findings highlight the versatile properties of the greenly synthesized ZnO NPs, showcasing their potential in environmental remediation, and antimicrobial formulations, and as promising candidates for further exploration in the biomedical fields, including drug delivery and therapeutics.
Collapse
Affiliation(s)
- Nasir Assad
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923338967518
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan +923338967518
- Department of Chemistry, Government Ambala Muslim College Sargodha 40100 Pakistan
| | | | | |
Collapse
|
17
|
Hussain MA, Nijabat A, Rehman MMU, Qurashi R, Siddiqui MH, Alamri S, Mashwani ZUR, Leghari SUK, Shah MA, Zaman QU. Management of Tomato Bacterial Canker Disease by the Green Fabricated Silver Nanoparticles. BMC PLANT BIOLOGY 2024; 24:597. [PMID: 38914943 PMCID: PMC11197350 DOI: 10.1186/s12870-024-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.
Collapse
Affiliation(s)
- Muhammad Arif Hussain
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan.
| | | | - Rahmatullah Qurashi
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | | | | | | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
18
|
Dorterler OC, Akgun B, Alper M, Ayhan F. Improving Antimicrobial Properties of GelMA Biocomposite Hydrogels for Regenerative Endodontic Treatment. Polymers (Basel) 2024; 16:1675. [PMID: 38932026 PMCID: PMC11207667 DOI: 10.3390/polym16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Regenerative endodontics is a developing field involving the restoration of tooth structure and re-vitality of necrotic pulp. One of the most critical clinical considerations for regenerative endodontic procedures is the disinfection of the root canal system, since infection interferes with regeneration, repair, and stem cell activity. In this study, we aimed to provide the synthesis of injectable biopolymeric tissue scaffolds that can be used in routine clinical and regenerative endodontic treatment procedures using Gelatin methacryloyl (GelMA), and to test the antimicrobial efficacy of Gelatin methacryloyl/Silver nanoparticles (GelMA/AgNP), Gelatin methacryloyl/Hyaluronic acid (GelMA/HYA), and Gelatin methacryloyl/hydroxyapatite (GelMA/HA) composite hydrogels against microorganisms that are often encountered in stubborn infections in endodontic microbiology. Injectable biocomposite hydrogels exhibiting effective antimicrobial activity and non-cytotoxic behavior were successfully synthesized. This is also promising for clinical applications of regenerative endodontic procedures with hydrogels, which are proposed based on the collected data. The GelMA hydrogel loaded with hyaluronic acid showed the highest efficacy against Enterococcus faecalis, one of the stubborn bacteria in the root canal. The GelMA hydrogel loaded with hydroxyapatite also showed a significant effect against Candida albicans, which is another bacteria responsible for stubborn infections in the root canal.
Collapse
Affiliation(s)
- Ozgul C. Dorterler
- Department of Pediatric Dentistry, Faculty of Dentistry, Muğla Sıtkı Koçman University, Muğla 48000, Türkiye;
| | - Berre Akgun
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Türkiye; (B.A.); (M.A.)
| | - Mehlika Alper
- Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Türkiye; (B.A.); (M.A.)
| | - Fatma Ayhan
- Biochemistry & Biomaterials Research Group (BIOMATREG), Department of Chemistry, Biochemistry Division, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Türkiye
| |
Collapse
|
19
|
Liu X, Ishak MI, Ma H, Su B, Nobbs AH. Bacterial Surface Appendages Modulate the Antimicrobial Activity Induced by Nanoflake Surfaces on Titanium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310149. [PMID: 38233200 PMCID: PMC7616388 DOI: 10.1002/smll.202310149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.
Collapse
Affiliation(s)
- Xiayi Liu
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1, 3NY, UK
| | - Mohd I Ishak
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1, 3NY, UK
| | - Huan Ma
- School of Chemistry, Centre for Organized Matter Chemistry and Centre for Protolife Research, University of Bristol, Bristol, BS8 1TS, UK
| | - Bo Su
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1, 3NY, UK
| | - Angela H Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1, 3NY, UK
| |
Collapse
|
20
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
21
|
Granja Alvear A, Pineda-Aguilar N, Lozano P, Lárez-Velázquez C, Suppan G, Galeas S, Debut A, Vizuete K, De Lima L, Saucedo-Vázquez JP, Alexis F, López F. Synergistic Antibacterial Properties of Silver Nanoparticles and Its Reducing Agent from Cinnamon Bark Extract. Bioengineering (Basel) 2024; 11:517. [PMID: 38790383 PMCID: PMC11117492 DOI: 10.3390/bioengineering11050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Synthesis of silver nanoparticles with antibacterial properties using a one-pot green approach that harnesses the natural reducing and capping properties of cinnamon (Cinnamomum verum) bark extract is presented in this work. Silver nitrate was the sole chemical reagent employed in this process, acting as the precursor salt. Gas Chromatography-Mass Spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC) analysis, and some phytochemical tests demonstrated that cinnamaldehyde is the main component in the cinnamon bark extract. The resulting bio-reduced silver nanoparticles underwent comprehensive characterization by Ultraviolet-Vis (UV-Vis) and Fourier Transform InfraRed spectrophotometry (FTIR), Dynamic Light Scattering (DLS), Transmission Electron Microscopy, and Scanning Electron Microscopy suggesting that cinnamaldehyde was chemically oxidated to produce silver nanoparticles. These cinnamon-extract-based silver nanoparticles (AgNPs-cinnamon) displayed diverse morphologies ranging from spherical to prismatic shapes, with sizes spanning between 2.94 and 65.1 nm. Subsequently, the antibacterial efficacy of these nanoparticles was investigated against Klebsiella, E. Coli, Pseudomonas, Staphylococcus aureus, and Acinetobacter strains. The results suggest the promising potential of silver nanoparticles obtained (AgNPs-cinnamon) as antimicrobial agents, offering a new avenue in the fight against bacterial infections.
Collapse
Affiliation(s)
- Araceli Granja Alvear
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Nayely Pineda-Aguilar
- Centro de Investigación de Materiales Avanzados CIMAV-Monterrey, Monterrey 64630, Mexico;
| | - Patricia Lozano
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Cristóbal Lárez-Velázquez
- Laboratorio de Polímeros, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela;
| | - Gottfried Suppan
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Salomé Galeas
- Laboratorio de Nuevos Materiales (LANUM), Escuela Politécnica Nacional, Quito 170143, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui 171523, Ecuador; (A.D.); (K.V.)
| | - Lola De Lima
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Juan Pablo Saucedo-Vázquez
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingeniería, Instituto de Energía y Materiales, Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Floralba López
- CATS Research Group, School of Chemical Sciences Engineering, Yachay Tech University, Urcuquí 100119, Ecuador; (A.G.A.); (G.S.); (L.D.L.); (J.P.S.-V.)
| |
Collapse
|
22
|
El Megdar S, Fayzi L, Elkheloui R, Laktib A, Bourouache M, El Boulani A, Abou Oualid H, Cherifi K, Msanda F, Hassi M, Mimouni R, Hamadi F. Biological Synthesis of Silver Nanoparticles from Lavandula mairei Humbert: Antibacterial and Antioxidant Activities. Curr Microbiol 2024; 81:151. [PMID: 38647541 DOI: 10.1007/s00284-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Hospital-acquired infections involving carbapenem-resistant Acinetobacter baumannii (A. baumannii) and extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae pose significant challenges in the intensive care units. The lack of novel antimicrobial drugs amplifies the urgency to explore innovative management strategies. Nanotechnology, with its ability to generate nanoparticles possessing specific properties beneficial in drug delivery and nanomedicine, stands as a pivotal research domain. The objective of this study was to synthesize, for the first time, biologically silver nanoparticles (Ag-NPs) from Lavandula mairei Humbert (L. mairei) plant. The biosynthesized Ag-NPs were characterized by UV-visible spectral analysis, X-Ray diffraction Analysis, Fourier transform infrared spectroscopy analysis, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy. Subsequently, the antibacterial and antioxidant activities of Ag-NPs were assessed using the micro-dilution method, DPPH test and FRAP assay, respectively. The green-synthesized Ag-NPs exhibited high antibacterial activity against ESBL-producing multidrug-resistant (MDR) strains and against carbapenem-resistant and non-carbapenem-resistant strains of A. baumannii, as well as a very interesting antioxidant activity. The present study suggests that these results hold very promising for the potential application of biologically synthesized Ag-NPs from L. mairei (Ag-LM-NPs) in the invention of novel antibacterial and antioxidant agents.
Collapse
Affiliation(s)
- Soufiane El Megdar
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Lahbib Fayzi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Raja Elkheloui
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Asma Laktib
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Bourouache
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Abdellah El Boulani
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Hicham Abou Oualid
- Green Energy Park, Institut de Recherche en Energie Solaire Et Energies Nouvelles (IRESEN), Benguerir, Morocco
| | - Khalil Cherifi
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fouad Msanda
- Laboratory of Biotechnologies and Valorization of Natural Resources, Biology Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Hassi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Rachida Mimouni
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco
| | - Fatima Hamadi
- Laboratory of Microbial Biotechnology and Plants Protection. Biology, Department. Sciences Faculty, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
23
|
Saad MF, Elsayed MM, Khder M, Abdelaziz AS, El-Demerdash AS. Biocontrol of multidrug resistant pathogens isolated from fish farms using silver nanoparticles combined with hydrogen peroxide insight to its modulatory effect. Sci Rep 2024; 14:7971. [PMID: 38575637 PMCID: PMC10994946 DOI: 10.1038/s41598-024-58349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
This study was divided into two parts. The first part involved the isolation, and detection of the prevalence and antimicrobial resistance profile of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio species from Nile tilapia fish and marine aquatic water. One hundred freshly dead Nile tilapia fish were collected from freshwater aquaculture fish farms located in Al-Abbassah district, Sharkia Governorate, and 100 samples of marine aquatic water were collected from fish farms in Port Said. The second part of the study focused on determining the in vitro inhibitory effect of dual-combination of AgNPs-H2O2 on bacterial growth and its down regulatory effect on crucial virulence factors using RT-PCR. The highest levels of A. hydrophila and P. aeruginosa were detected in 43%, and 34% of Nile tilapia fish samples, respectively. Meanwhile, the highest level of Vibrio species was found in 37% of marine water samples. Additionally, most of the isolated A. hydrophila, P. aeruginosa and Vibrio species exhibited a multi-drug resistance profile. The MIC and MBC results indicated a bactericidal effect of AgNPs-H2O2. Furthermore, a transcriptional modulation effect of AgNPs-H2O2 on the virulence-associated genes resulted in a significant down-regulation of aerA, exoU, and trh genes in A. hydrophila, P. aeruginosa, and Vibrio spp., respectively. The findings of this study suggest the effectiveness of AgNPs-H2O2 against drug resistant pathogens related to aquaculture.
Collapse
Affiliation(s)
- Mai F Saad
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mariam Khder
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed S Abdelaziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Azza S El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, 44516, Egypt.
| |
Collapse
|
24
|
Vinyagamoorthy S, Sivalingam AM, Alex A, Brahma N. Pharmacological Effect of In Vitro Antioxidant Property and Green Synthesis of Silver Nanoparticles (AgNPs) Utilizing Murraya koenigii Antibacterial Application. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1263-S1269. [PMID: 38882802 PMCID: PMC11174184 DOI: 10.4103/jpbs.jpbs_567_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 06/18/2024] Open
Abstract
Background Nonessential heavy metals pose a significant threat to human health due to their toxicity. Mercury, in particular, is identified as a hazardous metal. The study aims to detect mercury using colorimetric analysis with Murraya koenigii, emphasizing the eco-friendliness of the method. Aims and Objectives The primary objective is to detect mercury using a colorimetric analysis method employing Murraya koenigii. Additionally, the study aims to investigate the eco-friendliness of this detection method. Materials and Methods Colorimetric analysis was conducted using Murraya koenigii to detect mercury. Ultraviolet-visible (UV-vis) spectroscopy was employed to detect the formation of silver nanoparticles (AgNPs), with a characteristic surface plasmon resonance (SPR) band observed. X-ray diffraction (XRD) data analysis was performed to determine the crystalline nature and size of AgNPs. Scanning electron microscopy (SEM) was utilized to visualize the morphology of AgNPs. Fourier transform infrared (FTIR) spectroscopy was employed to identify functional groups involved in reducing silver ions. Antibacterial properties of synthesized AgNPs were tested against various microorganisms, including Escherichia coli, Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. Results Mercury was successfully detected using colorimetric analysis with Murraya koenigii. Formation of AgNPs was confirmed by UV-vis spectroscopy, with a characteristic SPR band at 418 nm. AgNPs were found to be crystalline with an average size of 5.20 nm, as determined by XRD analysis. SEM images revealed spherical and polycrystalline AgNPs. FTIR spectra indicated the involvement of the -OH group of compounds in the extract in reducing silver ions. Synthesized AgNPs exhibited antibacterial properties against various microorganisms. Conclusion A sustainable and eco-friendly method for synthesizing AgNPs using Murraya koenigii extract was successfully developed. This method not only detected mercury but also demonstrated antibacterial properties against various microorganisms. The study underscores the health implications of nonessential heavy metals, emphasizing the importance of eco-friendly detection and mitigation methods.
Collapse
Affiliation(s)
- Sneha Vinyagamoorthy
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Azhagu Madhavan Sivalingam
- Natural Products and Nanobiotechnology Research Lab, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Arockia Alex
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| | - Neha Brahma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), (Saveetha Deemed to be University), Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
25
|
Pandey P, Pradhan S, Meher K, Lopus M, Vavilala SL. Exploring the efficacy of tryptone-stabilized silver nanoparticles against respiratory tract infection-causing bacteria: a study on planktonic and biofilm forms. Biomed Mater 2024; 19:025047. [PMID: 38364289 DOI: 10.1088/1748-605x/ad2a40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Respiratory tract infections (RTIs) are a common cause of mortality and morbidity in the human population. The overuse of antibiotics to overcome such infections has led to antibiotic resistance. The emergence of multidrug resistant bacteria is necessitating the development of novel therapeutic techniques in order to avoid a major global clinical threat. Our study aims to investigate the potential of tryptone stabilised silver nanoparticles (Ts-AgNPs) on planktonic and biofilms produced byKlebsiella pneumoniae(K. pneumoniae)and Pseudomonas aeruginosa(P. aeruginosa). The MIC50of Ts-AgNPs was found to be as low as 1.7 μg ml-1and 2.7 μg ml-1forK. pneumoniae and P.aeruginosarespectively. Ts-AgNPs ability to alter redox environment by producing intracellular ROS, time-kill curves showing substantial decrease in the bacterial growth and significantly reduced colony forming units further validate its antimicrobial effect. The biofilm inhibition and eradication ability of Ts-AgNPs was found to be as high as 93% and 97% in both the tested organisms. A significant decrease in the eDNA and EPS quantity in Ts-AgNPs treated cells proved its ability to successfully distort the matrix and matured biofilms. Interestingly Ts-AgNPs also attenuated QS-induced virulence factors production. This study paves way to develop Ts-AgNPs as novel antibiotics against RTIs causing bacterial biofilms.
Collapse
Affiliation(s)
- Pooja Pandey
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sristi Pradhan
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Kimaya Meher
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Kalina Campus, Mumbai 400098, India
| |
Collapse
|
26
|
Akay S, Yüksel G, Özad Düzgün A. Investigation of Antibiofilm and Antibacterial Properties of Green Synthesized Silver Nanoparticles from Aqueous Extract of Rumex sp. Appl Biochem Biotechnol 2024; 196:1089-1103. [PMID: 37329410 DOI: 10.1007/s12010-023-04592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
The decrease in the effectiveness of conventional drugs as a result of the growth of resistance to antibiotics has increased the need for innovative tools to control the infections. At this point, metallic nanoparticles, in particular silver nanoparticles, have appeared as a promising method. In the current study, the extract of Rumex sp. (Labada, dock) leaves was used as a reducing agent for the formation of silver nanoparticles. Unlike similar studies, in this study the synthesis conditions were optimized by changing the extract ratio and silver nitrate concentration. Morphological investigations of synthesized silver nanoparticles showed that spherical homogeneous particles at size under 100 nm had been produced. SEM/EDS and FTIR analyses showed that plant components are involved in the synthesis of nanoparticles. It was also determined that higher extract ratio reduced nanoparticle size. The antimicrobial effects of the synthesized nanoparticles against Gram-positive and Gram-negative bacteria were tested, and it was determined that all nanoparticles exhibited activity against both groups. Rumex sp. silver nanoparticles (NPs) were revealed to exhibit antibiofilm activity against three different isolates with moderate and strong biofilm-forming ability. The NPs reduced the biofilm-forming capacity of Acinetobacter baumannii and Klebsiella pneumonaie by 2.66-fold and 3.25-fold, whereas they decreased the Escherichia coli biofilm-forming capacity by 1.25-fold. The investigation of microbial biofilm could play an important role in developing new strategies for treatment options. Our results suggest that Rumex sp. silver NPs may have a high potential for use in the treatment of pathogenic strains.
Collapse
Affiliation(s)
- Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | - Gamze Yüksel
- Department of Biotechnology, Institute of Graduate Education, Gumushane University, Gümüşhane, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
27
|
Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy. Int J Mol Sci 2024; 25:861. [PMID: 38255936 PMCID: PMC10815654 DOI: 10.3390/ijms25020861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Recently, the utilization of biological agents in the green synthesis of nanoparticles has been given interest. In this study, silver nanoparticles were synthesized from an aqueous extract of macrofungus (mushroom), namely Phellinus adamantinus, in a dark room using 20 µL of silver nitrate. Biosynthesized silver nanoparticles were confirmed by analyzing them using a UV-Vis (ultraviolet-visible) spectrophotometer. The synthesized silver nanoparticles were optimized at different pH and temperatures with various dosages of AgNO3 (silver nitrate) and fungal extracts. The synthesized AgNPs (silver nanoparticles) were characterized using TEM (transmission electron microscopy) and EDX (energy-dispersive X-ray) analyses, which confirmed the presence of silver nanoparticles. The size of the nanosilver particles was found to be 50 nm with higher stability. The mycosynthesized AgNPs showed effective antibacterial activity against strains of Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (E. coli and Pseudomonas aeruginosa) bacteria. The minimum inhibitory concentration (MIC) was found to be 3.125 μg/mL by MIC assay. The MTT assay (3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl-2H-tetrazolium bromide) was performed to study cytotoxicity, and reduced cell viability was recorded at 100 μg/mL. Silver-Polygalacturonic acid-Polyvinyl alcohol ((Ag-PGA)-PVA) nanofiber was prepared using the electrospinning method. The in vitro wound scratch assay was demonstrated to study the wound-healing efficacy of the prepared nanofiber. The wound-healing efficacy of the AgNP-incorporated nanofiber was found to be 20% after 24 h. This study will lay a platform to establish a unique route to the development of a novel nanobiomaterial and its application in antibacterial and wound-healing therapy.
Collapse
Affiliation(s)
- Gayathri Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai 602105, India;
| | - Hyung Joo Kim
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (H.J.K.); (J.W.J.)
| | - Jeong Wook Jo
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; (H.J.K.); (J.W.J.)
| | | |
Collapse
|
28
|
Monedeiro-Milanowski M, Monedeiro F, Pomastowski P. Silver Lactoferrin as Antimicrobials: Mechanisms of Action and Resistance Assessed by Bacterial Molecular Profiles. ACS OMEGA 2023; 8:46236-46251. [PMID: 38075786 PMCID: PMC10702476 DOI: 10.1021/acsomega.3c07562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/04/2025]
Abstract
A diverse silver-lactoferrin (AgLTF) complex, comprising silver ions (Ag+) and silver nanoparticles, displayed a synergistic antibacterial effect while being almost five times more lethal than LTF alone. Gas chromatography-mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-in linear (LP) and reflectron (RP) positive modes-were used to comprehensively analyze metabolites and proteins profiles of bacteria (Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA) and Enterococcus faecalis (EF)) treated using AgLTF complex versus exclusively Ag+. Although both agents resulted in similar metabolic shifts in bacteria, AgLTF significantly triggered the production of sulfides (related to bacterial stress resistance), ethanol, 2-butanol (indicating exhaustion of cell respiration), decanoic acid, and nonane (suggesting ongoing oxidative stress). Keto acids formation and fermentation pathways were enhanced by AgLTF and suppressed by Ag+. Furthermore, AgLTF appears to interact with proteins fraction of bacteria in a concentration-dependent manner. EF molecular profiles showed less changes between treated and untreated bacteria. On the other hand, SA and PA proteins and metabolic patterns were the most differentiated from untreated bacteria. In conclusion, our study may provide valuable insights regarding the molecular mechanisms involved in AgLTF antimicrobial action.
Collapse
Affiliation(s)
| | | | - Paweł Pomastowski
- Centre for Modern
Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska
4 Str, Toruń 87-100, Poland
| |
Collapse
|
29
|
Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023; 9:e22105. [PMID: 38034786 PMCID: PMC10685370 DOI: 10.1016/j.heliyon.2023.e22105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Objective With the wide spread of Multidrug-resistant bacteria (MDR) due to the transfer and acquisition of antibiotic resistance genes and the formation of microbial biofilm, various researchers around the world are looking for a solution to overcome these resistances. One potential strategy and the best candidate to overcome these infections is using an effective nanomaterial with antibacterial properties against them. Methods and analysis: In this study, we overview nanomaterials with anti-MDR bacteria and anti-biofilm properties. Hence, we systematically explored biomedical databases (Web of Sciences, Google Scholar, PubMed, and Scopus) to categorize related studies about nanomaterial with anti-MDR bacteria and anti-biofilm activities from 2007 to December 2022. Results In total, forty-one studies were investigated to find antibacterial and anti-biofilm information about the nanomaterial during 2007-2022. According to the collected documents, nineteen types of nanomaterial showed putative antibacterial effects such as Cu, Ag, Au, Au/Pt, TiO2, Al2O3, ZnO, Se, CuO, Cu/Ni, Cu/Zn, Fe3O4, Au/Fe3O4, Au/Ag, Au/Pt, Graphene O, and CuS. In addition, seven types of them considered as anti-biofilm agents such as Ag, ZnO, Au/Ag, Graphene O, Cu, Fe3O4, and Au/Ag. Conclusion According to the studies, each of nanomaterial has been designed with different methods and their effects against standard strains, clinical strains, MDR strains, and bacterial biofilms have been investigated in-vitro and in-vivo conditions. In addition, nanomaterials have different destructive mechanism on bacterial structures. Various nanoparticles (NP) introduced as the best candidate to designing new drug and medical equipment preventing infectious disease outbreaks by overcome antibiotic resistance and bacterial biofilm.
Collapse
Affiliation(s)
- Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Fooladfar
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Genecya G, Adhika DR, Sutrisno W, Wungu TDK. Characteristic Improvement of a Carrageenan-Based Bionanocomposite Polymer Film Containing Montmorillonite as Food Packaging through the Addition of Silver and Cerium Oxide Nanoparticles. ACS OMEGA 2023; 8:39194-39202. [PMID: 37901572 PMCID: PMC10601045 DOI: 10.1021/acsomega.3c04575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Plastic has become an essential ingredient in social life, especially in its function as food packaging. An increase in plastic consumption can have a big impact, especially on environmental issues, because of the plastic waste produced. Substituting petroleum-based plastic with bionanocomposites can be done to reduce the impact of environmental issues caused by plastic waste. The purpose of this study is to produce nanoparticle-incorporated bioplastics, which can be applied as alternative food packaging, especially as petroleum-based plastic substitutes, and as food packaging that has added value in the form of antimicrobial properties. In addition, nanoparticles are also intended to improve the characteristics of bioplastics such as improving mechanical properties and film permeability as well as increasing the barrier properties of bioplastics against ultraviolet rays that can damage packaged food. Bionanocomposites with modified forms were investigated by various characterization such as Fourier transform infrared (FTIR), mechanical property testing of bioplastics as well as analysis of water vapor permeability (WVP), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV-visible spectrophotometry (UV-vis), and antimicrobial testing. Visible improvement of mechanical and UV barrier properties was seen in bionanocomposites with the addition of cerium nanoparticles. Furthermore, we have also demonstrated the antibacterial activity properties of nanoparticle-loaded bionanocomposites, which can add value to their use as food packaging. These results indicate that carrageenan-based bionanocomposites have a high potential for positive application in food packaging to ensure food safety and extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Gita Genecya
- Magister
of Nanotechnology, Graduate School, Institut
Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
| | - Damar R. Adhika
- Advanced
Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Gd. Center for Advance
Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
| | - Widayani Sutrisno
- Nuclear
Physics and Biophysics Research Group, Faculty of Mathematics and
Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
| | - Triati D. K. Wungu
- Nuclear
Physics and Biophysics Research Group, Faculty of Mathematics and
Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Gd. Center for Advance
Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, 40132 Bandung, West Java, Indonesia
| |
Collapse
|
31
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Controlling biofilm and virulence properties of Gram-positive bacteria by targeting wall teichoic acid and lipoteichoic acid. Int J Antimicrob Agents 2023; 62:106941. [PMID: 37536571 DOI: 10.1016/j.ijantimicag.2023.106941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Wall teichoic acid (WTA) and lipoteichoic acid (LTA) are structural components of Gram-positive bacteria's peptidoglycan and cell membrane, which are mostly anionic glycopolymers. WTA confers numerous physiological, virulence, and pathogenic features to bacterial pathogens. It controls cell shape, cell division, and the localisation of autolytic enzymes and ion homeostasis. In the context of virulence and pathogenicity, it aids bacterial cell attachment and colonisation and protects against the host defence system and antibiotics. Having such a broad function in pathogenic bacteria's lifecycle, WTA/LTA become one of the potential targets for antibacterial agents to reduce bacterial infection in the host. The number of reports for targeting the WTA/LTA pathway has risen, mostly by focusing on three distinct targets: antivirulence targets, β-lactam potentiator targets, and essential targets. The current review looked at the role of WTA/LTA in biofilm development and virulence in a range of Gram-positive pathogenic bacteria. Furthermore, alternate strategies, such as the application of natural and synthetic compounds that target the WTA/LTA pathway, have been thoroughly discussed. Moreover, the application of nanomaterials and a combination of drugs have also been discussed as a viable method for targeting the WTA/LTA in numerous Gram-positive bacteria. In addition, a future perspective for controlling bacterial infection by targeting the WTA/LTA is proposed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
32
|
Zhao Z, Zhang X, Lv D, Chen L, Zhang B, Wu D. Fabrication of silver nanoparticles immobilized on magnetic lignosulfonate: Evaluation of its catalytic activity in the N-acetylation reactions and investigation of its anti-cutaneous squamous cell carcinoma effects. Int J Biol Macromol 2023; 250:125901. [PMID: 37482167 DOI: 10.1016/j.ijbiomac.2023.125901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Due to the non-optimal response of most types of cancer to various treatment methods and their rapid progress, research continues in the field of producing drugs with less toxicity and greater efficiency. There are many nanocomposites with diverse biological activities that include part of anticancer drugs in new pharmacological science. The present investigation describes a green procedure for the in situ support of Ag nanoparticles (NPs) over sodium lignosulfonate (NaLS) modified magnetic nanoparticles (Fe3O4@NaLS/Ag) and its subsequent biological and chemical performance. FT-IR, TEM, FE-SEM, EDS, ICP, VSM and XRD techniques were used to characterize the synthesized Fe3O4@NaLS/Ag. The catalytic efficacy of the desired composite was applied in the N-acetylation of various amines in the presence of Ac2O under solvent-free conditions. The Fe3O4@NaLS/Ag catalyst was recovered by an external magnet and reused for nine runs without a significant decrease in the activity. The cytotoxic and anti-cutaneous squamous cell carcinoma potentials of biologically synthesized Fe3O4@NaLS/Ag nanocomposite against PM1 and MET1 cells were determined. The anti-cutaneous squamous cell carcinoma properties of the Fe3O4@NaLS/Ag nanocomposite could significantly remove PM1 and MET1 cells. The IC50 of Fe3O4@NaLS/Ag nanocomposite was 288 and 270 μg/mL against PM1 and MET1 cells, respectively. Also, Fe3O4@NaLS/Ag nanocomposite presented a high antioxidant potential according to the IC50 value. According to the above results, the recent nanocomposite can be used in treating cutaneous squamous cell carcinoma after doing clinical trial studies.
Collapse
Affiliation(s)
- Zunjiang Zhao
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China.
| | - Xuan Zhang
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China; Department of Burns and Plastic Surgery, An Qing 116 Hospital, An Qing 246003, Anhui, China
| | - Dalun Lv
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China
| | - Lei Chen
- Department of Burns and Plastic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241004, Anhui, China
| | - Baode Zhang
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an 237005, Anhui, China
| | - Dejin Wu
- Department of Burns and Plastic Surgery, Lu'an People's Hospital, Anhui Medical University, Lu'an 237005, Anhui, China
| |
Collapse
|
33
|
Jabbar A, Abbas A, Assad N, Naeem-Ul-Hassan M, Alhazmi HA, Najmi A, Zoghebi K, Al Bratty M, Hanbashi A, Amin HMA. A highly selective Hg 2+ colorimetric sensor and antimicrobial agent based on green synthesized silver nanoparticles using Equisetum diffusum extract. RSC Adv 2023; 13:28666-28675. [PMID: 37790097 PMCID: PMC10543206 DOI: 10.1039/d3ra05070j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Plasmonic nanoparticles such as Ag have gained great interest in the biomedical domain and chemical analysis due to their unique optical properties. Herein, we report a simple, cost-effective, and highly selective colorimetric sensor of mercury(ii) based on E. diffusum (horsetail) extract-functionalized Ag nanoparticles (ED-AgNPs). The ED-AgNPs were synthesized by exploiting the coordination of Ag+ with the various functional groups of ED extract under sunlight exposure for only tens of seconds. ED-AgNPs (63 nm) were characterized using various techniques such as UV-vis, FTIR, DLS, SEM and EDX. FTIR spectra suggested the successful encapsulation of the AgNPs surface with ED extract and XRD confirmed its crystalline nature. This ED-AgNPs colorimetric sensor revealed remarkable selectivity towards Hg2+ in aqueous solution among other transition metal ions through a redox reaction mechanism. Besides, the sensor exhibited high sensitivity with rapid response and a detection limit of 70 nM. The sensor demonstrated feasibility for Hg(ii) detection in spiked tap and river water samples. In addition, the synthesized ED-AgNPs revealed enhanced antimicrobial activity with higher efficacy against the Gram-positive bacterium (L. monocytogenes with an inhibition zone of 18 mm) than the Gram-negative bacterium (E. coli with an inhibition zone of 10 mm). The simplicity and adaptability of this colorimetric sensor render it a promising candidate for on-site and point-of-care detection of heavy metal ions in diverse conditions.
Collapse
Affiliation(s)
- Amina Jabbar
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
- Department of Chemistry, Government Ambala Muslim College Sargodha 40100 Pakistan
| | - Nasir Assad
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | | | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University Jazan 82912 Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University Jazan 82912 Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University Jazan 82912 Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University Jazan 82912 Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University Jazan 82912 Saudi Arabia
| | - Ali Hanbashi
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University Jazan 82912 Saudi Arabia
| | - Hatem M A Amin
- Chemistry Department, Faculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
34
|
Guglielmelli A, D’Aquila P, Palermo G, Dell’Aglio M, Passarino G, Strangi G, Bellizzi D. Role of the Human Serum Albumin Protein Corona in the Antimicrobial and Photothermal Activity of Metallic Nanoparticles against Escherichia coli Bacteria. ACS OMEGA 2023; 8:31333-31343. [PMID: 37663494 PMCID: PMC10468930 DOI: 10.1021/acsomega.3c03774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023]
Abstract
The emergence of antibiotic-resistant bacteria has become a major public health concern, leading to growing interest in alternative antimicrobial agents. The antibacterial activity of metal nanoparticles (NPs) has been extensively studied, showing that they can effectively inhibit the growth of various bacteria, including both Gram-positive and -negative strains. The presence of a protein corona, formed by the adsorption of proteins onto the NP surface in biological fluids, can significantly affect their toxicity. Understanding the effect of the protein corona on the antimicrobial activity of metal NPs is crucial for their effective use as antimicrobial agents. In this study, the antimicrobial activity of noble metal NPs, such as platinum (Pt), silver (Ag), and gold (Au) with and without the human serum albumin (HSA) protein corona against Escherichia coli strains, was investigated. In addition, the plasmonic photothermal effect related to AuNPs, which resulted to be the most biocompatible compared to the other considered metals, was evaluated. The obtained results suggest that the HSA protein corona modulated the antimicrobial activity exerted by the metal NPs against E. coli bacteria. These findings may pave the way for the investigation and development of innovative nanoapproaches to face antibiotic resistance emergence.
Collapse
Affiliation(s)
- Alexa Guglielmelli
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Patrizia D’Aquila
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanna Palermo
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
| | - Marcella Dell’Aglio
- CNR-IFN,
Institute for Photonics and Nanotechnologies, c/o Physics Department, University of Bari, Via Amendola 173, 70126 Bari, Italy
| | - Giuseppe Passarino
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Strangi
- Department
of Physics, NLHT-Lab, University of Calabria
and CNR-NANOTEC, Institute of Nanotechnology, 87036 Rende, Italy
- Department
of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, Ohio 44106, United States
| | - Dina Bellizzi
- Department
of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
35
|
Ghosh B, Bose A, Parmanik A, Ch S, Paul M, Biswas S, Rath G, Bhattacharya D. Facile fabrication of Nishamalaki churna mediated silver nanoparticles with antibacterial application. Heliyon 2023; 9:e18788. [PMID: 37560713 PMCID: PMC10407210 DOI: 10.1016/j.heliyon.2023.e18788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most serious threats to today's healthcare system. The prime factor behind increasing AMR is the formation of complex bacterial biofilms which acts as the protective shield between the bacterial cell and the antimicrobial drugs. Among various nanoformulations, green synthesized metallic silver nanoparticles are currently gaining research focus in safely breaking bacterial biofilms due to the inherent antimicrobial property of silver. In the current work, the aqueous extract of the ayurvedic formulation Nishamalaki churna is used to exhibit one pot green synthesis of silver nanoparticles. The physicochemical characteristics of Nishamalaki churna extract mediated AgNPs were evaluated using various analytical techniques, like UV-Visible spectrophotometer, FT-IR spectroscopy, SEM, XRD, DLS-Zeta potential analyzer etc. The synthesized spherical AgNPs were well formed within the size range of 30 nm to 80 nm. Furthermore, the synthesized AgNPs showed potent antibacterial effects against two primary AMR-causing bacterial species like Staphylococcus aureus and Pseudomonas aeruginosa with the successful destruction of their biofilm formation. Additionally, these AgNPs have shown profound antioxidant and anti-inflammatory activities as desirable add-on effects required by a prospective antibacterial agent.
Collapse
Affiliation(s)
- Bhavna Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
- Sri Jayadev College of Pharmaceutical Sciences, Naharkanta, Via: Balianta, Bhubaneswar, Odisha, 752101, India
| | - Anindya Bose
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ankita Parmanik
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Sanjay Ch
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus. Jawahar Nagar, Kapra Mandal. Medchal District, Telangana, 500 078, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
36
|
Sheikh-Oleslami S, Tao B, D'Souza J, Butt F, Suntharalingam H, Rempel L, Amiri N. A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo. Gels 2023; 9:591. [PMID: 37504470 PMCID: PMC10379627 DOI: 10.3390/gels9070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle-hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments.
Collapse
Affiliation(s)
- Sara Sheikh-Oleslami
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brendan Tao
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jonathan D'Souza
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Fahad Butt
- Faculty of Science, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Hareshan Suntharalingam
- Faculty of Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Lucas Rempel
- Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nafise Amiri
- International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
37
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
38
|
Abu Hajleh MN, Al-Limoun M, Al-Tarawneh A, Hijazin TJ, Alqaraleh M, Khleifat K, Al-Madanat OY, Qaisi YA, AlSarayreh A, Al-Samydai A, Qaralleh H, Al-Dujaili EAS. Synergistic Effects of AgNPs and Biochar: A Potential Combination for Combating Lung Cancer and Pathogenic Bacteria. Molecules 2023; 28:4757. [PMID: 37375312 DOI: 10.3390/molecules28124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The synthesis of reliable biological nanomaterials is a crucial area of study in nanotechnology. In this study, Emericella dentata was employed for the biosynthesis of AgNPs, which were then combined with synthesized biochar, a porous structure created through biomass pyrolysis. The synergistic effects of AgNPs and biochar were evaluated through the assessment of pro-inflammatory cytokines, anti-apoptotic gene expression, and antibacterial activity. Solid biosynthesized AgNPs were evaluated by XRD and SEM, with SEM images revealing that most of the AgNPs ranged from 10 to 80 nm, with over 70% being less than 40 nm. FTIR analysis indicated the presence of stabilizing and reducing functional groups in the AgNPs. The nanoemulsion's zeta potential, hydrodynamic diameter, and particle distribution index were found to be -19.6 mV, 37.62 nm, and 0.231, respectively. Biochar, on the other hand, did not have any antibacterial effects on the tested bacterial species. However, when combined with AgNPs, its antibacterial efficacy against all bacterial species was significantly enhanced. Furthermore, the combined material significantly reduced the expression of anti-apoptotic genes and pro-inflammatory cytokines compared to individual treatments. This study suggests that low-dose AgNPs coupled with biochar could be a more effective method to combat lung cancer epithelial cells and pathogenic bacteria compared to either substance alone.
Collapse
Affiliation(s)
- Maha N Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhamad Al-Limoun
- Department of Biological Sciences, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan
| | - Amjad Al-Tarawneh
- Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Al-Karak 61710, Jordan
| | - Tahani J Hijazin
- Department of Biological Sciences, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan
| | - Moath Alqaraleh
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Khaled Khleifat
- Department of Medical Analysis, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Osama Y Al-Madanat
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Yaseen Al Qaisi
- Department of Biological Sciences, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan
| | - Ahmad AlSarayreh
- Department of Biological Sciences, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Haitham Qaralleh
- Department of Medical Analysis, Faculty of Science, Mutah University, Al-Karak 61710, Jordan
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH8 9YL, UK
| |
Collapse
|
39
|
Rama P, Mariselvi P, Sundaram R, Muthu K. Eco-friendly green synthesis of silver nanoparticles from Aegle marmelos leaf extract and their antimicrobial, antioxidant, anticancer and photocatalytic degradation activity. Heliyon 2023; 9:e16277. [PMID: 37255978 PMCID: PMC10225894 DOI: 10.1016/j.heliyon.2023.e16277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
The present research work, green synthesis of silver nanoparticles (Ag NPs) was synthesized from silver ions using the reducing and capping agents of Aegle marmelos leaf extract. Initially, UV-vis spectrophotometry absorption of the Surface Plasmon Resonance centre at 450 nm was confirmed the formation of Ag NPs. Preliminary phytochemical and FT-IR analysis indicate the identification of secondary metabolised flavonoids that act as the reducing and capping agent of the synthesized Ag NPs. Transmission electron microscope analysis, morphology of Ag NPs shown by transmission electron microscopy is spherical with a size range of ∼30-50 nm. The synthesized Ag NPs were investigate the in-vitro anticancer, antimicrobial and antioxidant activity, results shows the potential activity against the standard drugs. The Ag NPs also revealed the cytotoxicity against MDA-MB-231 human breast cancer cells. The MTT assay shows the IC50 values at 125 ± 4.26 μg/mL of Ag NPs compared to the untreated cells of negative control. The Ag NPs was excellent photocatalyst act as degradation of environmentally polluted Basic Fuchsin dye within 18 min.
Collapse
Affiliation(s)
- P. Rama
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - P. Mariselvi
- Department of Chemistry, Rani Anna Govt. College for Women (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India), Tirunelveli, 627008, Tamil Nadu, India
| | - R. Sundaram
- Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, (Saveetha University) Vellapanchavadi, Chennai, 600077, Tamil Nadu, India
| | - K. Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| |
Collapse
|
40
|
Mahini M, Arabameri S, Ashayerizadeh O, Ansari M, Samadi F. In ovo injection of silver nanoparticles modulates some productive traits and hepatic gene expression of broilers exposed to lipopolysaccharide challenge. 3 Biotech 2023; 13:197. [PMID: 37215372 PMCID: PMC10192475 DOI: 10.1007/s13205-023-03627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
This study aimed to evaluate the effectiveness of the embryonic injection of silver nanoparticles (SilNPs) on some productive traits and hepatic gene expression of lipopolysaccharide (LPS)-challenged broilers after a 42 d rearing period. 560 fertile eggs were randomly allocated to four groups and received either of the following treatments at d 7 of incubation, control (no injection), placebo (1 mL saline), SilNP20 (20 mg/kg silver nanoparticles), or SilNP40 (40 mg/kg silver nanoparticles). After the incubation, 320 hatchlings experienced a 42 d standard rearing period. Live body weight (LBW), feed intake (FI), and feed conversion ratio (FCR) were weekly recorded. At the end of the experiment, two birds from each replicate (n = 8 per treatment) were exposed to LPS intraperitoneal injection at 48, 24, and 12 h before slaughter time. They were also used for blood, intestinal, and microbial evaluations. The hepatic mRNA levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), transforming growth factor beta (TGF-β), and insulin-like growth factor I (IGF-I) were assessed at d 1 and 42 of the experiment. Adminstration of SiLNPs improved LBW, FI, and FCR and also enhanced liver and spleen weights (P < 0.05). SilNP20 birds had significantly lower bursa of Fabricius weight (P < 0.05). SilNP20 had lower total cholesterol levels than others. There was a significant difference (P < 0.05) between SliNP40 and SilNP20 in the ratio of villus height to crypt width. Compared to control groups, chicks of SilNP20, but not SilNP40, showed a significant increase in the relative expression of TNF-α, IL-6, TGF-β, and IFG-I genes at d 1. On d 42, however, both SilNP20 and SilNP40 had significantly higher TNF-α and TGF-β levels than both controls. Silver nanoparticles did not significantly affect the microflora of the ileum and cecum in the current study. In summary, SilNPs administration to chick embryos showed a long-term positive effect on their productive performance.
Collapse
Affiliation(s)
- M. Mahini
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan Iran
| | - S. Arabameri
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan Iran
| | - O. Ashayerizadeh
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan Iran
| | - M. Ansari
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan Iran
| | - F. Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan Iran
| |
Collapse
|
41
|
Raj R, Bhattu M, Verma M, Acevedo R, Duc ND, Singh J. Biogenic silver based nanostructures: Synthesis, mechanistic approach and biological applications. ENVIRONMENTAL RESEARCH 2023; 231:116045. [PMID: 37146935 DOI: 10.1016/j.envres.2023.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
The alarming impact of antibiotic resistance sparked the quest for complementary treatments to overcome the confrontation over resistant pathogens. Metallic nanoparticles, especially silver nanoparticles (Ag NPs) have gained a much attention because of their remarkable biological characteristics. Moreover, their medicinal properties can be enhanced by preparing the composites with other materials. This article delves a comprehensive review of biosynthesis route for Ag NPs and their nanocomposites (NCs) with in-depth mechanism, methods and favorable experimental parameters. Comprehensive biological features Ag NPs such as antibacterial, antiviral, antifungal have been examined, with a focus on their potential uses in biomedicine and diagnostics has also been discussed. Additionally, we have also explored the hitches and potential outcomes of biosynthesis of Ag NPs in biomedical filed.
Collapse
Affiliation(s)
- Riya Raj
- Department of Biochemistry, Bangalore University, Mysore Rd, Jnana Bharathi, Bengaluru, Karnataka, 560056, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Roberto Acevedo
- San Sebastián University.Santiago, Campus Bellavista 7, Chile
| | - Nguyen D Duc
- Department of Environmental Energy Engineering, Kyonggi University, South Korea
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
42
|
El-Sherbiny MM, Devassy RP, El-Hefnawy ME, Al-Goul ST, Orif MI, El-Newehy MH. Facile Synthesis, Characterization, and Antimicrobial Assessment of a Silver/Montmorillonite Nanocomposite as an Effective Antiseptic against Foodborne Pathogens for Promising Food Protection. Molecules 2023; 28:molecules28093699. [PMID: 37175109 PMCID: PMC10180218 DOI: 10.3390/molecules28093699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Foodborne pathogens can have devastating repercussions and significantly threaten public health. Therefore, it is indeed essential to guarantee the sustainability of our food production. Food preservation and storage using nanocomposites is a promising strategy. Accordingly, the present research's objectives were to identify and isolate a few foodborne pathogens from food products, (ii) synthesize and characterize silver nanoparticles (AgNPs) using wet chemical reduction into the lamellar space layer of montmorillonite (MMT), and (iii) investigate the antibacterial potential of the AgNPs/MMT nanocomposite versus isolated strains of bacteria. Six bacterial species, including Escherichia coli, Salmonella spp., Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus were isolated from some food products (meat, fish, cheese, and vegetables). The Ag/MMT nanocomposite was synthesized and characterized using UV-visible spectroscopy, transmission electron microscopy, particle size analyzer, zeta potential, X-ray diffraction (XRD), and scanning electron microscopy with dispersive energy X-ray (EDX). The antibacterial effectiveness of the AgNPs/MMT nanocomposite further investigated distinct bacterial species using a zone of inhibition assay and microtiter-based methods. Nanoparticles with a narrow dimension range of 12 to 30 nm were identified using TEM analysis. The SEM was employed to view the sizeable flakes of the AgNPs/MMT. At 416 nm, the most excellent UV absorption was measured. Four silver metallic diffraction peaks were found in the XRD pattern during the study, and the EDX spectrum revealed a strong signal attributed to Ag nanocrystals. AgNPs/MMT figured out the powerful antibacterial action. The AgNPs/MMT nanocomposite confirmed outstanding minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six isolates of foodborne pathogens, ranging from 15 to 75 µg/mL, respectively. The AgNPs/MMT's antibacterial potential against gram-negative bacteria was noticeably better than gram-positive bacteria. Therefore, the AgNPs/MMT nanocomposite has the potential to be used as a reliable deactivator in food processing and preservation to protect against foodborne pathogenic bacteria. This suggests that the nanocomposite may be effective at inhibiting the growth and proliferation of harmful bacteria in food, which could help to reduce the risk of foodborne illness.
Collapse
Affiliation(s)
- Mohsen M El-Sherbiny
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reny P Devassy
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed E El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soha T Al-Goul
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed I Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed H El-Newehy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin – A Review. INORG CHEM COMMUN 2023; 152:110682. [PMID: 37041990 PMCID: PMC10067464 DOI: 10.1016/j.inoche.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Multidrug resistant (MDR) pathogens have become a major global health challenge and have severely threatened the health of society. Current conditions have gotten worse as a result of the COVID-19 pandemic, and infection rates in the future will rise. It is necessary to design, respond effectively, and take action to address these challenges by investigating new avenues. In this regard, the fabrication of metal NPs utilized by various methods, including green synthesis using mushroom, is highly versatile, cost-effective, eco-compatible, and superior. In contrast, biofabrication of metal NPs can be employed as a powerful weapon against MDR pathogens and have immense biomedical applications. In addition, the advancement in nanotechnology has made possible to modify the nanomaterials and enhance their activities. Metal NPs with biomolecules composite to prevents their microbial adhesion and kills the microbial pathogens through biofilm formation. Bacteriocin is an excellent antimicrobial peptide that works well as an augmentation substance to boost the antimicrobial effects. As a result, we concentrate on the creation of new, eco-compatible mycosynthesized metal NPs with bacteriocin nanocomposite via electrostatic, covalent, or non-covalent bindings. The synergistic benefits of metal NPs with bacteriocin to combat MDR pathogens and COVID-19, as well as other biomedical applications, are discussed in this review. Moreover, the importance of the adverse outcome pathway (AOP) in risk analysis of manufactured metal nanocomposite nanomaterial and their future possibilities also discussed.
Collapse
|
44
|
Kocabas BB, Attar A, Yuka SA, Yapaoz MA. Biogenic synthesis, molecular docking, biomedical and environmental applications of multifunctional CuO nanoparticles mediated Phragmites australis. Bioorg Chem 2023; 133:106414. [PMID: 36774691 DOI: 10.1016/j.bioorg.2023.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 μg/mL against S. aureus and 125 μg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 μg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 μg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.
Collapse
Affiliation(s)
- Buket Bulut Kocabas
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| | - Azade Attar
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey.
| | - Selcen Ari Yuka
- Yildiz Technical University, Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Istanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Yildiz Technical University, Faculty of Science and Letters, Department of Chemistry, Davutpasa Campus, 34220 Istanbul, Turkey
| |
Collapse
|
45
|
Kumar S, Masurkar P, Sravani B, Bag D, Sharma KR, Singh P, Korra T, Meena M, Swapnil P, Rajput VD, Minkina T. A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:54. [DOI: 10.1007/s11051-023-05708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
46
|
Afolayan EM, Afegbua SL, Ado SA. Characterization and antibacterial activity of silver nanoparticles synthesized by soil-dwelling Bacillus thuringiensis against drug-resistant bacteria. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
47
|
Ghaffarlou M, İlk S, Rahimi H, Danafar H, Barsbay M, Sharafi A. Bovine serum albumin-mediated synthesis and quorum sensing inhibitory properties of Ag-Ag 2S nanoparticles. Nanomedicine (Lond) 2023; 17:2145-2155. [PMID: 36853339 DOI: 10.2217/nnm-2022-0203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: Quorum sensing (QS) is a density-dependent chemical process of cell-to-cell communication in which certain signals are activated, leading to the coordination of pathogenic behaviors and the regulation of virulence in bacteria. Inhibition of QS can prevent biofilm formation and reduce virulence behaviors of bacteria. Herein, bovine serum albumin (BSA)-coated silver nanoparticles (NPs) (Ag-Ag2S@BSA NPs) were synthesized and studied as an anti-QS agent. Materials & methods: Ag-Ag2S NPs prepared through a BSA-mediated biomineralization process under ambient aqueous conditions and their physicochemical properties were characterized. The anti-QS activity of the resulting BSA-coated NPs (Ag-Ag2S@BSA NPs) was investigated for the first time. Results & conclusion: The result confirmed the potential of Ag-Ag2S@BSA NPs as novel and useful therapeutic tools for antibacterial purposes.
Collapse
Affiliation(s)
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niğde Ömer Halisdemir University, Niğde, 51240, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology & Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, Stockholm, SE-10691, Sweden
| | - Hossein Rahimi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
48
|
Bhatti A, DeLong RK. Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacol Transl Sci 2023; 6:220-228. [PMID: 36798473 PMCID: PMC9926521 DOI: 10.1021/acsptsci.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Nanomaterials have now found applications across all segments of society including but not limited to energy, environment, defense, agriculture, purification, food medicine, diagnostics, and others. The pandemic and the vulnerability of humankind to emerging viruses and other infectious diseases has renewed interest in nanoparticles as a potential new class of antivirals. In fact, a growing body of evidence in the literature suggests nanoparticles may have activity against multiple viruses including HIV, HNV, SARS-CoV-2, HBV, HCV, HSV, RSV, and others. The most described antiviral nanoparticles include copper, alloys, and oxides including zinc oxide (ZnO), titanium oxide, iron oxide, and their composites, nitrides, and other ceramic nanoparticles, as well as gold and silver nanoparticles, and sulfated and nonsulfated polysaccharides and other sulfated polymers including galactan, cellulose, polyethylenimine, chitosan/chitin, and others. Nanoparticles, synthesized via the biological or green method, also have great importance and are under major consideration these days, as their method of synthesis is easy, reliable, cost-effective, efficient, and eco-friendly, and is done using easily available sources such as bacteria, actinomycetes, yeast, fungi, algae, herbs, and plants, in comparison to chemically mediated synthesis. Chemical synthesis is highly expensive and involves toxic solvents, high pressure, energy, and high temperature conversion. Examples of biologically synthesized NPs include iron oxide, Cu and CuO NPs, and platinum and palladium NPs. In contrast to traditional medications, nanomedications have multiple advantages: their small size, increased surface to volume ratio, improved pharmacokinetics, improved biodistribution, and targeted delivery. In terms of antiviral activity, nanoscale interactions represent a unique mode of action. As reviewed here their biomedical application as an antiviral has shown four major mechanisms: (1) direct viral interaction prohibiting the virus from infecting the cell, (2) interaction to receptor or cell surface preventing the virus from entering the host cells, (3) preventing the replication of the virus, or (4) other processing mechanisms which inhibit the spread of virus. Here these pharmacologic mechanisms are reviewed and the challenges for technology translation are discussed in more detail.
Collapse
Affiliation(s)
- Abeera Bhatti
- Kansas
State University, College of Veterinary
Medicine, Nanotechnology Innovation Center, Department of Anatomy
and Physiology, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Landmark
Bio, Innovation Development Laboratory, Watertown, Massachusetts 02472, United States
| |
Collapse
|
49
|
Shabatina TI, Vernaya OI, Melnikov MY. Hybrid Nanosystems of Antibiotics with Metal Nanoparticles-Novel Antibacterial Agents. Molecules 2023; 28:molecules28041603. [PMID: 36838591 PMCID: PMC9959110 DOI: 10.3390/molecules28041603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
- Correspondence:
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
| | - Mikhail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
50
|
More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms 2023; 11:369. [PMID: 36838334 PMCID: PMC9961011 DOI: 10.3390/microorganisms11020369] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
This review highlights the different modes of synthesizing silver nanoparticles (AgNPs) from their elemental state to particle format and their mechanism of action against multidrug-resistant and biofilm-forming bacterial pathogens. Various studies have demonstrated that the AgNPs cause oxidative stress, protein dysfunction, membrane disruption, and DNA damage in bacteria, ultimately leading to bacterial death. AgNPs have also been found to alter the adhesion of bacterial cells to prevent biofilm formation. The benefits of using AgNPs in medicine are, to some extent, counter-weighted by their toxic effect on humans and the environment. In this review, we have compiled recent studies demonstrating the antibacterial activity of AgNPs, and we are discussing the known mechanisms of action of AgNPs against bacterial pathogens. Ongoing clinical trials involving AgNPs are briefly presented. A particular focus is placed on the mechanism of interaction of AgNPs with bacterial biofilms, which are a significant pathogenicity determinant. A brief overview of the use of AgNPs in other medical applications (e.g., diagnostics, promotion of wound healing) and the non-medical sectors is presented. Finally, current drawbacks and limitations of AgNPs use in medicine are discussed, and perspectives for the improved future use of functionalized AgNPs in medical applications are presented.
Collapse
Affiliation(s)
- Pragati Rajendra More
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Bio Sustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|